Diff for /imach/src/imach.c between versions 1.111 and 1.125

version 1.111, 2006/01/25 20:38:18 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): Lots of cleaning and bugs added (Gompertz)    Errors in calculation of health expectancies. Age was not initialized.
   (Module): Comments can be added in data file. Missing date values    Forecasting file added.
   can be a simple dot '.'.  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Revision 1.110  2006/01/25 00:51:50  brouard    Parameters are printed with %lf instead of %f (more numbers after the comma).
   (Module): Lots of cleaning and bugs added (Gompertz)    The log-likelihood is printed in the log file
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
   Revision 1.108  2006/01/19 18:05:42  lievre  
   Gnuplot problem appeared...    * imach.c (Module): Weights can have a decimal point as for
   To be fixed    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.107  2006/01/19 16:20:37  brouard    Modification of warning when the covariates values are not 0 or
   Test existence of gnuplot in imach path    1.
     Version 0.98g
   Revision 1.106  2006/01/19 13:24:36  brouard  
   Some cleaning and links added in html output    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.105  2006/01/05 20:23:19  lievre    English (a comma might work with a correct LC_NUMERIC environment,
   *** empty log message ***    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.104  2005/09/30 16:11:43  lievre    1.
   (Module): sump fixed, loop imx fixed, and simplifications.    Version 0.98g
   (Module): If the status is missing at the last wave but we know  
   that the person is alive, then we can code his/her status as -2    Revision 1.121  2006/03/16 17:45:01  lievre
   (instead of missing=-1 in earlier versions) and his/her    * imach.c (Module): Comments concerning covariates added
   contributions to the likelihood is 1 - Prob of dying from last  
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    * imach.c (Module): refinements in the computation of lli if
   the healthy state at last known wave). Version is 0.98    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Revision 1.103  2005/09/30 15:54:49  lievre  
   (Module): sump fixed, loop imx fixed, and simplifications.    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   Revision 1.102  2004/09/15 17:31:30  brouard    status=-2 in order to have more reliable computation if stepm is
   Add the possibility to read data file including tab characters.    not 1 month. Version 0.98f
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   Fix on curr_time    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   Revision 1.100  2004/07/12 18:29:06  brouard  
   Add version for Mac OS X. Just define UNIX in Makefile    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Revision 1.99  2004/06/05 08:57:40  brouard    table of variances if popbased=1 .
   *** empty log message ***    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Revision 1.98  2004/05/16 15:05:56  brouard    (Module): Version 0.98d
   New version 0.97 . First attempt to estimate force of mortality  
   directly from the data i.e. without the need of knowing the health    Revision 1.117  2006/03/14 17:16:22  brouard
   state at each age, but using a Gompertz model: log u =a + b*age .    (Module): varevsij Comments added explaining the second
   This is the basic analysis of mortality and should be done before any    table of variances if popbased=1 .
   other analysis, in order to test if the mortality estimated from the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   cross-longitudinal survey is different from the mortality estimated    (Module): Function pstamp added
   from other sources like vital statistic data.    (Module): Version 0.98d
   
   The same imach parameter file can be used but the option for mle should be -3.    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Agnès, who wrote this part of the code, tried to keep most of the    varian-covariance of ej. is needed (Saito).
   former routines in order to include the new code within the former code.  
     Revision 1.115  2006/02/27 12:17:45  brouard
   The output is very simple: only an estimate of the intercept and of    (Module): One freematrix added in mlikeli! 0.98c
   the slope with 95% confident intervals.  
     Revision 1.114  2006/02/26 12:57:58  brouard
   Current limitations:    (Module): Some improvements in processing parameter
   A) Even if you enter covariates, i.e. with the    filename with strsep.
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.  
   B) There is no computation of Life Expectancy nor Life Table.    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
   Revision 1.97  2004/02/20 13:25:42  lievre    datafile was not closed, some imatrix were not freed and on matrix
   Version 0.96d. Population forecasting command line is (temporarily)    allocation too.
   suppressed.  
     Revision 1.112  2006/01/30 09:55:26  brouard
   Revision 1.96  2003/07/15 15:38:55  brouard    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.95  2003/07/08 07:54:34  brouard    (Module): Comments can be added in data file. Missing date values
   * imach.c (Repository):    can be a simple dot '.'.
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.94  2003/06/27 13:00:02  brouard  
   Just cleaning    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
   Revision 1.93  2003/06/25 16:33:55  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.108  2006/01/19 18:05:42  lievre
   exist so I changed back to asctime which exists.    Gnuplot problem appeared...
   (Module): Version 0.96b    To be fixed
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    Test existence of gnuplot in imach path
   exist so I changed back to asctime which exists.  
     Revision 1.106  2006/01/19 13:24:36  brouard
   Revision 1.91  2003/06/25 15:30:29  brouard    Some cleaning and links added in html output
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.105  2006/01/05 20:23:19  lievre
   helps to forecast when convergence will be reached. Elapsed time    *** empty log message ***
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.90  2003/06/24 12:34:15  brouard    (Module): If the status is missing at the last wave but we know
   (Module): Some bugs corrected for windows. Also, when    that the person is alive, then we can code his/her status as -2
   mle=-1 a template is output in file "or"mypar.txt with the design    (instead of missing=-1 in earlier versions) and his/her
   of the covariance matrix to be input.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Revision 1.89  2003/06/24 12:30:52  brouard    the healthy state at last known wave). Version is 0.98
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.103  2005/09/30 15:54:49  lievre
   of the covariance matrix to be input.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    Add the possibility to read data file including tab characters.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Version 0.96    Fix on curr_time
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   (Module): Change position of html and gnuplot routines and added    Add version for Mac OS X. Just define UNIX in Makefile
   routine fileappend.  
     Revision 1.99  2004/06/05 08:57:40  brouard
   Revision 1.85  2003/06/17 13:12:43  brouard    *** empty log message ***
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    Revision 1.98  2004/05/16 15:05:56  brouard
   prior to the death. In this case, dh was negative and likelihood    New version 0.97 . First attempt to estimate force of mortality
   was wrong (infinity). We still send an "Error" but patch by    directly from the data i.e. without the need of knowing the health
   assuming that the date of death was just one stepm after the    state at each age, but using a Gompertz model: log u =a + b*age .
   interview.    This is the basic analysis of mortality and should be done before any
   (Repository): Because some people have very long ID (first column)    other analysis, in order to test if the mortality estimated from the
   we changed int to long in num[] and we added a new lvector for    cross-longitudinal survey is different from the mortality estimated
   memory allocation. But we also truncated to 8 characters (left    from other sources like vital statistic data.
   truncation)  
   (Repository): No more line truncation errors.    The same imach parameter file can be used but the option for mle should be -3.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Agnès, who wrote this part of the code, tried to keep most of the
   * imach.c (Repository): Replace "freqsummary" at a correct    former routines in order to include the new code within the former code.
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    The output is very simple: only an estimate of the intercept and of
   parcimony.    the slope with 95% confident intervals.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)  
     Current limitations:
   Revision 1.83  2003/06/10 13:39:11  lievre    A) Even if you enter covariates, i.e. with the
   *** empty log message ***    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 */    suppressed.
 /*  
    Interpolated Markov Chain    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   Short summary of the programme:    rewritten within the same printf. Workaround: many printfs.
     
   This program computes Healthy Life Expectancies from    Revision 1.95  2003/07/08 07:54:34  brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Repository):
   first survey ("cross") where individuals from different ages are    (Repository): Using imachwizard code to output a more meaningful covariance
   interviewed on their health status or degree of disability (in the    matrix (cov(a12,c31) instead of numbers.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.94  2003/06/27 13:00:02  brouard
   (if any) in individual health status.  Health expectancies are    Just cleaning
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.93  2003/06/25 16:33:55  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): On windows (cygwin) function asctime_r doesn't
   simplest model is the multinomial logistic model where pij is the    exist so I changed back to asctime which exists.
   probability to be observed in state j at the second wave    (Module): Version 0.96b
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.92  2003/06/25 16:30:45  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): On windows (cygwin) function asctime_r doesn't
   complex model than "constant and age", you should modify the program    exist so I changed back to asctime which exists.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.91  2003/06/25 15:30:29  brouard
   convergence.    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
   The advantage of this computer programme, compared to a simple    helps to forecast when convergence will be reached. Elapsed time
   multinomial logistic model, is clear when the delay between waves is not    is stamped in powell.  We created a new html file for the graphs
   identical for each individual. Also, if a individual missed an    concerning matrix of covariance. It has extension -cov.htm.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
   hPijx is the probability to be observed in state i at age x+h    mle=-1 a template is output in file "or"mypar.txt with the design
   conditional to the observed state i at age x. The delay 'h' can be    of the covariance matrix to be input.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.89  2003/06/24 12:30:52  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    (Module): Some bugs corrected for windows. Also, when
   matrix is simply the matrix product of nh*stepm elementary matrices    mle=-1 a template is output in file "or"mypar.txt with the design
   and the contribution of each individual to the likelihood is simply    of the covariance matrix to be input.
   hPijx.  
     Revision 1.88  2003/06/23 17:54:56  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.87  2003/06/18 12:26:01  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Version 0.96
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.86  2003/06/17 20:04:08  brouard
   from the European Union.    (Module): Change position of html and gnuplot routines and added
   It is copyrighted identically to a GNU software product, ie programme and    routine fileappend.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    current date of interview. It may happen when the death was just
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    prior to the death. In this case, dh was negative and likelihood
       was wrong (infinity). We still send an "Error" but patch by
   **********************************************************************/    assuming that the date of death was just one stepm after the
 /*    interview.
   main    (Repository): Because some people have very long ID (first column)
   read parameterfile    we changed int to long in num[] and we added a new lvector for
   read datafile    memory allocation. But we also truncated to 8 characters (left
   concatwav    truncation)
   freqsummary    (Repository): No more line truncation errors.
   if (mle >= 1)  
     mlikeli    Revision 1.84  2003/06/13 21:44:43  brouard
   print results files    * imach.c (Repository): Replace "freqsummary" at a correct
   if mle==1     place. It differs from routine "prevalence" which may be called
      computes hessian    many times. Probs is memory consuming and must be used with
   read end of parameter file: agemin, agemax, bage, fage, estepm    parcimony.
       begin-prev-date,...    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   open gnuplot file  
   open html file    Revision 1.83  2003/06/10 13:39:11  lievre
   stable prevalence    *** empty log message ***
    for age prevalim()  
   h Pij x    Revision 1.82  2003/06/05 15:57:20  brouard
   variance of p varprob    Add log in  imach.c and  fullversion number is now printed.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies  */
   Variance-covariance of DFLE  /*
   prevalence()     Interpolated Markov Chain
    movingaverage()  
   varevsij()     Short summary of the programme:
   if popbased==1 varevsij(,popbased)   
   total life expectancies    This program computes Healthy Life Expectancies from
   Variance of stable prevalence    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
  end    first survey ("cross") where individuals from different ages are
 */    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
 #include <math.h>    model. More health states you consider, more time is necessary to reach the
 #include <stdio.h>    Maximum Likelihood of the parameters involved in the model.  The
 #include <stdlib.h>    simplest model is the multinomial logistic model where pij is the
 #include <string.h>    probability to be observed in state j at the second wave
 #include <unistd.h>    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include <limits.h>    'age' is age and 'sex' is a covariate. If you want to have a more
 #include <sys/types.h>    complex model than "constant and age", you should modify the program
 #include <sys/stat.h>    where the markup *Covariates have to be included here again* invites
 #include <errno.h>    you to do it.  More covariates you add, slower the
 extern int errno;    convergence.
   
 /* #include <sys/time.h> */    The advantage of this computer programme, compared to a simple
 #include <time.h>    multinomial logistic model, is clear when the delay between waves is not
 #include "timeval.h"    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /* #include <libintl.h> */    account using an interpolation or extrapolation.  
 /* #define _(String) gettext (String) */  
     hPijx is the probability to be observed in state i at age x+h
 #define MAXLINE 256    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 #define GNUPLOTPROGRAM "gnuplot"    states. This elementary transition (by month, quarter,
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    semester or year) is modelled as a multinomial logistic.  The hPx
 #define FILENAMELENGTH 132    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    hPijx.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Also this programme outputs the covariance matrix of the parameters but also
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    of the life expectancies. It also computes the period (stable) prevalence.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */   
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define NINTERVMAX 8             Institut national d'études démographiques, Paris.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This software have been partly granted by Euro-REVES, a concerted action
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    from the European Union.
 #define NCOVMAX 8 /* Maximum number of covariates */    It is copyrighted identically to a GNU software product, ie programme and
 #define MAXN 20000    software can be distributed freely for non commercial use. Latest version
 #define YEARM 12. /* Number of months per year */    can be accessed at http://euroreves.ined.fr/imach .
 #define AGESUP 130  
 #define AGEBASE 40    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #ifdef UNIX   
 #define DIRSEPARATOR '/'    **********************************************************************/
 #define CHARSEPARATOR "/"  /*
 #define ODIRSEPARATOR '\\'    main
 #else    read parameterfile
 #define DIRSEPARATOR '\\'    read datafile
 #define CHARSEPARATOR "\\"    concatwav
 #define ODIRSEPARATOR '/'    freqsummary
 #endif    if (mle >= 1)
       mlikeli
 /* $Id$ */    print results files
 /* $State$ */    if mle==1
        computes hessian
 char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";    read end of parameter file: agemin, agemax, bage, fage, estepm
 char fullversion[]="$Revision$ $Date$";         begin-prev-date,...
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    open gnuplot file
 int nvar;    open html file
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    period (stable) prevalence
 int npar=NPARMAX;     for age prevalim()
 int nlstate=2; /* Number of live states */    h Pij x
 int ndeath=1; /* Number of dead states */    variance of p varprob
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    forecasting if prevfcast==1 prevforecast call prevalence()
 int popbased=0;    health expectancies
     Variance-covariance of DFLE
 int *wav; /* Number of waves for this individuual 0 is possible */    prevalence()
 int maxwav; /* Maxim number of waves */     movingaverage()
 int jmin, jmax; /* min, max spacing between 2 waves */    varevsij()
 int ijmin, ijmax; /* Individuals having jmin and jmax */     if popbased==1 varevsij(,popbased)
 int gipmx, gsw; /* Global variables on the number of contributions     total life expectancies
                    to the likelihood and the sum of weights (done by funcone)*/    Variance of period (stable) prevalence
 int mle, weightopt;   end
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */   
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <math.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <stdio.h>
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <stdlib.h>
 FILE *ficlog, *ficrespow;  #include <string.h>
 int globpr; /* Global variable for printing or not */  #include <unistd.h>
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */  #include <limits.h>
 double sw; /* Sum of weights */  #include <sys/types.h>
 char filerespow[FILENAMELENGTH];  #include <sys/stat.h>
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #include <errno.h>
 FILE *ficresilk;  extern int errno;
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;  /* #include <sys/time.h> */
 FILE *fichtm, *fichtmcov; /* Html File */  #include <time.h>
 FILE *ficreseij;  #include "timeval.h"
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;  /* #include <libintl.h> */
 char fileresv[FILENAMELENGTH];  /* #define _(String) gettext (String) */
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];  #define MAXLINE 256
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];   #define FILENAMELENGTH 132
 char command[FILENAMELENGTH];  
 int  outcmd=0;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 char filelog[FILENAMELENGTH]; /* Log file */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];  #define NINTERVMAX 8
 char popfile[FILENAMELENGTH];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #define YEARM 12. /* Number of months per year */
 struct timezone tzp;  #define AGESUP 130
 extern int gettimeofday();  #define AGEBASE 40
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 long time_value;  #ifdef UNIX
 extern long time();  #define DIRSEPARATOR '/'
 char strcurr[80], strfor[80];  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 char *endptr;  #else
 long lval;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 #define NR_END 1  #define ODIRSEPARATOR '/'
 #define FREE_ARG char*  #endif
 #define FTOL 1.0e-10  
   /* $Id$ */
 #define NRANSI   /* $State$ */
 #define ITMAX 200   
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 #define TOL 2.0e-4   char fullversion[]="$Revision$ $Date$";
   char strstart[80];
 #define CGOLD 0.3819660   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 #define ZEPS 1.0e-10   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define GOLD 1.618034   int npar=NPARMAX;
 #define GLIMIT 100.0   int nlstate=2; /* Number of live states */
 #define TINY 1.0e-20   int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 static double maxarg1,maxarg2;  int popbased=0;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  int *wav; /* Number of waves for this individuual 0 is possible */
     int maxwav; /* Maxim number of waves */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  int jmin, jmax; /* min, max spacing between 2 waves */
 #define rint(a) floor(a+0.5)  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
 static double sqrarg;                     to the likelihood and the sum of weights (done by funcone)*/
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  int mle, weightopt;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int agegomp= AGEGOMP;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 int imx;              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 int stepm=1;  double jmean; /* Mean space between 2 waves */
 /* Stepm, step in month: minimum step interpolation*/  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 int estepm;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
 int m,nb;  double fretone; /* Only one call to likelihood */
 long *num;  long ipmx; /* Number of contributions */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  double sw; /* Sum of weights */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char filerespow[FILENAMELENGTH];
 double **pmmij, ***probs;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double *ageexmed,*agecens;  FILE *ficresilk;
 double dateintmean=0;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 double *weight;  FILE *fichtm, *fichtmcov; /* Html File */
 int **s; /* Status */  FILE *ficreseij;
 double *agedc, **covar, idx;  char filerese[FILENAMELENGTH];
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  FILE *ficresstdeij;
 double *lsurv, *lpop, *tpop;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  char filerescve[FILENAMELENGTH];
 double ftolhess; /* Tolerance for computing hessian */  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 /**************** split *************************/  FILE  *ficresvpl;
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   */   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   char  *ss;                            /* pointer */  char command[FILENAMELENGTH];
   int   l1, l2;                         /* length counters */  int  outcmd=0;
   
   l1 = strlen(path );                   /* length of path */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  char filelog[FILENAMELENGTH]; /* Log file */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  char filerest[FILENAMELENGTH];
     strcpy( name, path );               /* we got the fullname name because no directory */  char fileregp[FILENAMELENGTH];
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  char popfile[FILENAMELENGTH];
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
     /* get current working directory */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       return( GLOCK_ERROR_GETCWD );  struct timezone tzp;
     }  extern int gettimeofday();
     /* got dirc from getcwd*/  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     printf(" DIRC = %s \n",dirc);  long time_value;
   } else {                              /* strip direcotry from path */  extern long time();
     ss++;                               /* after this, the filename */  char strcurr[80], strfor[80];
     l2 = strlen( ss );                  /* length of filename */  
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char *endptr;
     strcpy( name, ss );         /* save file name */  long lval;
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double dval;
     dirc[l1-l2] = 0;                    /* add zero */  
     printf(" DIRC2 = %s \n",dirc);  #define NR_END 1
   }  #define FREE_ARG char*
   /* We add a separator at the end of dirc if not exists */  #define FTOL 1.0e-10
   l1 = strlen( dirc );                  /* length of directory */  
   if( dirc[l1-1] != DIRSEPARATOR ){  #define NRANSI
     dirc[l1] =  DIRSEPARATOR;  #define ITMAX 200
     dirc[l1+1] = 0;   
     printf(" DIRC3 = %s \n",dirc);  #define TOL 2.0e-4
   }  
   ss = strrchr( name, '.' );            /* find last / */  #define CGOLD 0.3819660
   if (ss >0){  #define ZEPS 1.0e-10
     ss++;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
     strcpy(ext,ss);                     /* save extension */  
     l1= strlen( name);  #define GOLD 1.618034
     l2= strlen(ss)+1;  #define GLIMIT 100.0
     strncpy( finame, name, l1-l2);  #define TINY 1.0e-20
     finame[l1-l2]= 0;  
   }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   return( 0 );                          /* we're done */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }   
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /******************************************/  
   static double sqrarg;
 void replace_back_to_slash(char *s, char*t)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   int i;  int agegomp= AGEGOMP;
   int lg=0;  
   i=0;  int imx;
   lg=strlen(t);  int stepm=1;
   for(i=0; i<= lg; i++) {  /* Stepm, step in month: minimum step interpolation*/
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 int nbocc(char *s, char occ)  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   int i,j=0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   int lg=20;  double **pmmij, ***probs;
   i=0;  double *ageexmed,*agecens;
   lg=strlen(s);  double dateintmean=0;
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  double *weight;
   }  int **s; /* Status */
   return j;  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double *lsurv, *lpop, *tpop;
 void cutv(char *u,char *v, char*t, char occ)  
 {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   double ftolhess; /* Tolerance for computing hessian */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  
      gives u="abcedf" and v="ghi2j" */  /**************** split *************************/
   int i,lg,j,p=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   i=0;  {
   for(j=0; j<=strlen(t)-1; j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */
     char  *ss;                            /* pointer */
   lg=strlen(t);    int   l1, l2;                         /* length counters */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      u[p]='\0';    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
    for(j=0; j<= lg; j++) {      strcpy( name, path );               /* we got the fullname name because no directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 }      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /********************** nrerror ********************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 void nrerror(char error_text[])      }
 {      /* got dirc from getcwd*/
   fprintf(stderr,"ERREUR ...\n");      printf(" DIRC = %s \n",dirc);
   fprintf(stderr,"%s\n",error_text);    } else {                              /* strip direcotry from path */
   exit(EXIT_FAILURE);      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
 /*********************** vector *******************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double *vector(int nl, int nh)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double *v;      dirc[l1-l2] = 0;                    /* add zero */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      printf(" DIRC2 = %s \n",dirc);
   if (!v) nrerror("allocation failure in vector");    }
   return v-nl+NR_END;    /* We add a separator at the end of dirc if not exists */
 }    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
 /************************ free vector ******************/      dirc[l1] =  DIRSEPARATOR;
 void free_vector(double*v, int nl, int nh)      dirc[l1+1] = 0;
 {      printf(" DIRC3 = %s \n",dirc);
   free((FREE_ARG)(v+nl-NR_END));    }
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /************************ivector *******************************/      ss++;
 int *ivector(long nl,long nh)      strcpy(ext,ss);                     /* save extension */
 {      l1= strlen( name);
   int *v;      l2= strlen(ss)+1;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      strncpy( finame, name, l1-l2);
   if (!v) nrerror("allocation failure in ivector");      finame[l1-l2]= 0;
   return v-nl+NR_END;    }
 }  
     return( 0 );                          /* we're done */
 /******************free ivector **************************/  }
 void free_ivector(int *v, long nl, long nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));  /******************************************/
 }  
   void replace_back_to_slash(char *s, char*t)
 /************************lvector *******************************/  {
 long *lvector(long nl,long nh)    int i;
 {    int lg=0;
   long *v;    i=0;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));    lg=strlen(t);
   if (!v) nrerror("allocation failure in ivector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /******************free lvector **************************/  }
 void free_lvector(long *v, long nl, long nh)  
 {  int nbocc(char *s, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    int i,j=0;
     int lg=20;
 /******************* imatrix *******************************/    i=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)     lg=strlen(s);
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     for(i=0; i<= lg; i++) {
 {     if  (s[i] == occ ) j++;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;     }
   int **m;     return j;
     }
   /* allocate pointers to rows */   
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   void cutv(char *u,char *v, char*t, char occ)
   if (!m) nrerror("allocation failure 1 in matrix()");   {
   m += NR_END;     /* cuts string t into u and v where u ends before first occurence of char 'occ'
   m -= nrl;        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
          gives u="abcedf" and v="ghi2j" */
       int i,lg,j,p=0;
   /* allocate rows and set pointers to them */     i=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     for(j=0; j<=strlen(t)-1; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl] += NR_END;     }
   m[nrl] -= ncl;   
       lg=strlen(t);
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     for(j=0; j<p; j++) {
         (u[j] = t[j]);
   /* return pointer to array of pointers to rows */     }
   return m;        u[p]='\0';
 }   
      for(j=0; j<= lg; j++) {
 /****************** free_imatrix *************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;  }
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   /********************** nrerror ********************/
 {   
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   void nrerror(char error_text[])
   free((FREE_ARG) (m+nrl-NR_END));   {
 }     fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /******************* matrix *******************************/    exit(EXIT_FAILURE);
 double **matrix(long nrl, long nrh, long ncl, long nch)  }
 {  /*********************** vector *******************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double *vector(int nl, int nh)
   double **m;  {
     double *v;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m += NR_END;    return v-nl+NR_END;
   m -= nrl;  }
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /************************ free vector ******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void free_vector(double*v, int nl, int nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    free((FREE_ARG)(v+nl-NR_END));
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /************************ivector *******************************/
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   int *ivector(long nl,long nh)
    */  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 /*************************free matrix ************************/    if (!v) nrerror("allocation failure in ivector");
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    return v-nl+NR_END;
 {  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  /******************free ivector **************************/
 }  void free_ivector(int *v, long nl, long nh)
   {
 /******************* ma3x *******************************/    free((FREE_ARG)(v+nl-NR_END));
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /************************lvector *******************************/
   double ***m;  long *lvector(long nl,long nh)
   {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    long *v;
   if (!m) nrerror("allocation failure 1 in matrix()");    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   m += NR_END;    if (!v) nrerror("allocation failure in ivector");
   m -= nrl;    return v-nl+NR_END;
   }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /******************free lvector **************************/
   m[nrl] += NR_END;  void free_lvector(long *v, long nl, long nh)
   m[nrl] -= ncl;  {
     free((FREE_ARG)(v+nl-NR_END));
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /******************* imatrix *******************************/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int **imatrix(long nrl, long nrh, long ncl, long nch)
   m[nrl][ncl] += NR_END;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   m[nrl][ncl] -= nll;  {
   for (j=ncl+1; j<=nch; j++)     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
     m[nrl][j]=m[nrl][j-1]+nlay;    int **m;
      
   for (i=nrl+1; i<=nrh; i++) {    /* allocate pointers to rows */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
     for (j=ncl+1; j<=nch; j++)     if (!m) nrerror("allocation failure 1 in matrix()");
       m[i][j]=m[i][j-1]+nlay;    m += NR_END;
   }    m -= nrl;
   return m;    
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])   
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    /* allocate rows and set pointers to them */
   */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************************free ma3x ************************/    m[nrl] -= ncl;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)   
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));   
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* return pointer to array of pointers to rows */
   free((FREE_ARG)(m+nrl-NR_END));    return m;
 }  }
   
 /*************** function subdirf ***********/  /****************** free_imatrix *************************/
 char *subdirf(char fileres[])  void free_imatrix(m,nrl,nrh,ncl,nch)
 {        int **m;
   /* Caution optionfilefiname is hidden */        long nch,ncl,nrh,nrl;
   strcpy(tmpout,optionfilefiname);       /* free an int matrix allocated by imatrix() */
   strcat(tmpout,"/"); /* Add to the right */  {
   strcat(tmpout,fileres);    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   return tmpout;    free((FREE_ARG) (m+nrl-NR_END));
 }  }
   
 /*************** function subdirf2 ***********/  /******************* matrix *******************************/
 char *subdirf2(char fileres[], char *preop)  double **matrix(long nrl, long nrh, long ncl, long nch)
 {  {
       long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   /* Caution optionfilefiname is hidden */    double **m;
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   strcat(tmpout,preop);    if (!m) nrerror("allocation failure 1 in matrix()");
   strcat(tmpout,fileres);    m += NR_END;
   return tmpout;    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /*************** function subdirf3 ***********/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 char *subdirf3(char fileres[], char *preop, char *preop2)    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
     
   /* Caution optionfilefiname is hidden */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   strcpy(tmpout,optionfilefiname);    return m;
   strcat(tmpout,"/");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   strcat(tmpout,preop);     */
   strcat(tmpout,preop2);  }
   strcat(tmpout,fileres);  
   return tmpout;  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /***************** f1dim *************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 extern int ncom;     free((FREE_ARG)(m+nrl-NR_END));
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);   
    /******************* ma3x *******************************/
 double f1dim(double x)   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {   {
   int j;     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double f;    double ***m;
   double *xt;   
      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xt=vector(1,ncom);     if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];     m += NR_END;
   f=(*nrfunc)(xt);     m -= nrl;
   free_vector(xt,1,ncom);   
   return f;     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*****************brent *************************/    m[nrl] -= ncl;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int iter;   
   double a,b,d,etemp;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double fu,fv,fw,fx;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double ftemp;    m[nrl][ncl] += NR_END;
   double p,q,r,tol1,tol2,u,v,w,x,xm;     m[nrl][ncl] -= nll;
   double e=0.0;     for (j=ncl+1; j<=nch; j++)
        m[nrl][j]=m[nrl][j-1]+nlay;
   a=(ax < cx ? ax : cx);    
   b=(ax > cx ? ax : cx);     for (i=nrl+1; i<=nrh; i++) {
   x=w=v=bx;       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   fw=fv=fx=(*f)(x);       for (j=ncl+1; j<=nch; j++)
   for (iter=1;iter<=ITMAX;iter++) {         m[i][j]=m[i][j-1]+nlay;
     xm=0.5*(a+b);     }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     return m;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     printf(".");fflush(stdout);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     fprintf(ficlog,".");fflush(ficlog);    */
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*************************free ma3x ************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       *xmin=x;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
       return fx;     free((FREE_ARG)(m+nrl-NR_END));
     }   }
     ftemp=fu;  
     if (fabs(e) > tol1) {   /*************** function subdirf ***********/
       r=(x-w)*(fx-fv);   char *subdirf(char fileres[])
       q=(x-v)*(fx-fw);   {
       p=(x-v)*q-(x-w)*r;     /* Caution optionfilefiname is hidden */
       q=2.0*(q-r);     strcpy(tmpout,optionfilefiname);
       if (q > 0.0) p = -p;     strcat(tmpout,"/"); /* Add to the right */
       q=fabs(q);     strcat(tmpout,fileres);
       etemp=e;     return tmpout;
       e=d;   }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))   
         d=CGOLD*(e=(x >= xm ? a-x : b-x));   /*************** function subdirf2 ***********/
       else {   char *subdirf2(char fileres[], char *preop)
         d=p/q;   {
         u=x+d;    
         if (u-a < tol2 || b-u < tol2)     /* Caution optionfilefiname is hidden */
           d=SIGN(tol1,xm-x);     strcpy(tmpout,optionfilefiname);
       }     strcat(tmpout,"/");
     } else {     strcat(tmpout,preop);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     strcat(tmpout,fileres);
     }     return tmpout;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   }
     fu=(*f)(u);   
     if (fu <= fx) {   /*************** function subdirf3 ***********/
       if (u >= x) a=x; else b=x;   char *subdirf3(char fileres[], char *preop, char *preop2)
       SHFT(v,w,x,u)   {
         SHFT(fv,fw,fx,fu)    
         } else {     /* Caution optionfilefiname is hidden */
           if (u < x) a=u; else b=u;     strcpy(tmpout,optionfilefiname);
           if (fu <= fw || w == x) {     strcat(tmpout,"/");
             v=w;     strcat(tmpout,preop);
             w=u;     strcat(tmpout,preop2);
             fv=fw;     strcat(tmpout,fileres);
             fw=fu;     return tmpout;
           } else if (fu <= fv || v == x || v == w) {   }
             v=u;   
             fv=fu;   /***************** f1dim *************************/
           }   extern int ncom;
         }   extern double *pcom,*xicom;
   }   extern double (*nrfunc)(double []);
   nrerror("Too many iterations in brent");    
   *xmin=x;   double f1dim(double x)
   return fx;   {
 }     int j;
     double f;
 /****************** mnbrak ***********************/    double *xt;
    
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     xt=vector(1,ncom);
             double (*func)(double))     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
 {     f=(*nrfunc)(xt);
   double ulim,u,r,q, dum;    free_vector(xt,1,ncom);
   double fu;     return f;
    }
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);   /*****************brent *************************/
   if (*fb > *fa) {   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
     SHFT(dum,*ax,*bx,dum)   {
       SHFT(dum,*fb,*fa,dum)     int iter;
       }     double a,b,d,etemp;
   *cx=(*bx)+GOLD*(*bx-*ax);     double fu,fv,fw,fx;
   *fc=(*func)(*cx);     double ftemp;
   while (*fb > *fc) {     double p,q,r,tol1,tol2,u,v,w,x,xm;
     r=(*bx-*ax)*(*fb-*fc);     double e=0.0;
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     a=(ax < cx ? ax : cx);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     b=(ax > cx ? ax : cx);
     ulim=(*bx)+GLIMIT*(*cx-*bx);     x=w=v=bx;
     if ((*bx-u)*(u-*cx) > 0.0) {     fw=fv=fx=(*f)(x);
       fu=(*func)(u);     for (iter=1;iter<=ITMAX;iter++) {
     } else if ((*cx-u)*(u-ulim) > 0.0) {       xm=0.5*(a+b);
       fu=(*func)(u);       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       if (fu < *fc) {       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))       printf(".");fflush(stdout);
           SHFT(*fb,*fc,fu,(*func)(u))       fprintf(ficlog,".");fflush(ficlog);
           }   #ifdef DEBUG
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       u=ulim;       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fu=(*func)(u);       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     } else {   #endif
       u=(*cx)+GOLD*(*cx-*bx);       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       fu=(*func)(u);         *xmin=x;
     }         return fx;
     SHFT(*ax,*bx,*cx,u)       }
       SHFT(*fa,*fb,*fc,fu)       ftemp=fu;
       }       if (fabs(e) > tol1) {
 }         r=(x-w)*(fx-fv);
         q=(x-v)*(fx-fw);
 /*************** linmin ************************/        p=(x-v)*q-(x-w)*r;
         q=2.0*(q-r);
 int ncom;         if (q > 0.0) p = -p;
 double *pcom,*xicom;        q=fabs(q);
 double (*nrfunc)(double []);         etemp=e;
          e=d;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
 {           d=CGOLD*(e=(x >= xm ? a-x : b-x));
   double brent(double ax, double bx, double cx,         else {
                double (*f)(double), double tol, double *xmin);           d=p/q;
   double f1dim(double x);           u=x+d;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,           if (u-a < tol2 || b-u < tol2)
               double *fc, double (*func)(double));             d=SIGN(tol1,xm-x);
   int j;         }
   double xx,xmin,bx,ax;       } else {
   double fx,fb,fa;        d=CGOLD*(e=(x >= xm ? a-x : b-x));
        }
   ncom=n;       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   pcom=vector(1,n);       fu=(*f)(u);
   xicom=vector(1,n);       if (fu <= fx) {
   nrfunc=func;         if (u >= x) a=x; else b=x;
   for (j=1;j<=n;j++) {         SHFT(v,w,x,u)
     pcom[j]=p[j];           SHFT(fv,fw,fx,fu)
     xicom[j]=xi[j];           } else {
   }             if (u < x) a=u; else b=u;
   ax=0.0;             if (fu <= fw || w == x) {
   xx=1.0;               v=w;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);               w=u;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);               fv=fw;
 #ifdef DEBUG              fw=fu;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);            } else if (fu <= fv || v == x || v == w) {
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);              v=u;
 #endif              fv=fu;
   for (j=1;j<=n;j++) {             }
     xi[j] *= xmin;           }
     p[j] += xi[j];     }
   }     nrerror("Too many iterations in brent");
   free_vector(xicom,1,n);     *xmin=x;
   free_vector(pcom,1,n);     return fx;
 }   }
   
 char *asc_diff_time(long time_sec, char ascdiff[])  /****************** mnbrak ***********************/
 {  
   long sec_left, days, hours, minutes;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   days = (time_sec) / (60*60*24);              double (*func)(double))
   sec_left = (time_sec) % (60*60*24);  {
   hours = (sec_left) / (60*60) ;    double ulim,u,r,q, dum;
   sec_left = (sec_left) %(60*60);    double fu;
   minutes = (sec_left) /60;   
   sec_left = (sec_left) % (60);    *fa=(*func)(*ax);
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      *fb=(*func)(*bx);
   return ascdiff;    if (*fb > *fa) {
 }      SHFT(dum,*ax,*bx,dum)
         SHFT(dum,*fb,*fa,dum)
 /*************** powell ************************/        }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     *cx=(*bx)+GOLD*(*bx-*ax);
             double (*func)(double []))     *fc=(*func)(*cx);
 {     while (*fb > *fc) {
   void linmin(double p[], double xi[], int n, double *fret,       r=(*bx-*ax)*(*fb-*fc);
               double (*func)(double []));       q=(*bx-*cx)*(*fb-*fa);
   int i,ibig,j;       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   double del,t,*pt,*ptt,*xit;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   double fp,fptt;      ulim=(*bx)+GLIMIT*(*cx-*bx);
   double *xits;      if ((*bx-u)*(u-*cx) > 0.0) {
   int niterf, itmp;        fu=(*func)(u);
       } else if ((*cx-u)*(u-ulim) > 0.0) {
   pt=vector(1,n);         fu=(*func)(u);
   ptt=vector(1,n);         if (fu < *fc) {
   xit=vector(1,n);           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   xits=vector(1,n);             SHFT(*fb,*fc,fu,(*func)(u))
   *fret=(*func)(p);             }
   for (j=1;j<=n;j++) pt[j]=p[j];       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
   for (*iter=1;;++(*iter)) {         u=ulim;
     fp=(*fret);         fu=(*func)(u);
     ibig=0;       } else {
     del=0.0;         u=(*cx)+GOLD*(*cx-*bx);
     last_time=curr_time;        fu=(*func)(u);
     (void) gettimeofday(&curr_time,&tzp);      }
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);      SHFT(*ax,*bx,*cx,u)
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);        SHFT(*fa,*fb,*fc,fu)
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);        }
     */  }
    for (i=1;i<=n;i++) {  
       printf(" %d %.12f",i, p[i]);  /*************** linmin ************************/
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);  int ncom;
     }  double *pcom,*xicom;
     printf("\n");  double (*nrfunc)(double []);
     fprintf(ficlog,"\n");   
     fprintf(ficrespow,"\n");fflush(ficrespow);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
     if(*iter <=3){  {
       tm = *localtime(&curr_time.tv_sec);    double brent(double ax, double bx, double cx,
       strcpy(strcurr,asctime(&tm));                 double (*f)(double), double tol, double *xmin);
 /*       asctime_r(&tm,strcurr); */    double f1dim(double x);
       forecast_time=curr_time;     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       itmp = strlen(strcurr);                double *fc, double (*func)(double));
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    int j;
         strcurr[itmp-1]='\0';    double xx,xmin,bx,ax;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    double fx,fb,fa;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);   
       for(niterf=10;niterf<=30;niterf+=10){    ncom=n;
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    pcom=vector(1,n);
         tmf = *localtime(&forecast_time.tv_sec);    xicom=vector(1,n);
 /*      asctime_r(&tmf,strfor); */    nrfunc=func;
         strcpy(strfor,asctime(&tmf));    for (j=1;j<=n;j++) {
         itmp = strlen(strfor);      pcom[j]=p[j];
         if(strfor[itmp-1]=='\n')      xicom[j]=xi[j];
         strfor[itmp-1]='\0';    }
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    ax=0.0;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    xx=1.0;
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
     for (i=1;i<=n;i++) {   #ifdef DEBUG
       for (j=1;j<=n;j++) xit[j]=xi[j][i];     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       fptt=(*fret);     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #ifdef DEBUG  #endif
       printf("fret=%lf \n",*fret);    for (j=1;j<=n;j++) {
       fprintf(ficlog,"fret=%lf \n",*fret);      xi[j] *= xmin;
 #endif      p[j] += xi[j];
       printf("%d",i);fflush(stdout);    }
       fprintf(ficlog,"%d",i);fflush(ficlog);    free_vector(xicom,1,n);
       linmin(p,xit,n,fret,func);     free_vector(pcom,1,n);
       if (fabs(fptt-(*fret)) > del) {   }
         del=fabs(fptt-(*fret));   
         ibig=i;   char *asc_diff_time(long time_sec, char ascdiff[])
       }   {
 #ifdef DEBUG    long sec_left, days, hours, minutes;
       printf("%d %.12e",i,(*fret));    days = (time_sec) / (60*60*24);
       fprintf(ficlog,"%d %.12e",i,(*fret));    sec_left = (time_sec) % (60*60*24);
       for (j=1;j<=n;j++) {    hours = (sec_left) / (60*60) ;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    sec_left = (sec_left) %(60*60);
         printf(" x(%d)=%.12e",j,xit[j]);    minutes = (sec_left) /60;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    sec_left = (sec_left) % (60);
       }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       for(j=1;j<=n;j++) {    return ascdiff;
         printf(" p=%.12e",p[j]);  }
         fprintf(ficlog," p=%.12e",p[j]);  
       }  /*************** powell ************************/
       printf("\n");  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       fprintf(ficlog,"\n");              double (*func)(double []))
 #endif  {
     }     void linmin(double p[], double xi[], int n, double *fret,
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {                double (*func)(double []));
 #ifdef DEBUG    int i,ibig,j;
       int k[2],l;    double del,t,*pt,*ptt,*xit;
       k[0]=1;    double fp,fptt;
       k[1]=-1;    double *xits;
       printf("Max: %.12e",(*func)(p));    int niterf, itmp;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {    pt=vector(1,n);
         printf(" %.12e",p[j]);    ptt=vector(1,n);
         fprintf(ficlog," %.12e",p[j]);    xit=vector(1,n);
       }    xits=vector(1,n);
       printf("\n");    *fret=(*func)(p);
       fprintf(ficlog,"\n");    for (j=1;j<=n;j++) pt[j]=p[j];
       for(l=0;l<=1;l++) {    for (*iter=1;;++(*iter)) {
         for (j=1;j<=n;j++) {      fp=(*fret);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      ibig=0;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      del=0.0;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      last_time=curr_time;
         }      (void) gettimeofday(&curr_time,&tzp);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 #endif     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
       free_vector(xit,1,n);         fprintf(ficrespow," %.12lf", p[i]);
       free_vector(xits,1,n);       }
       free_vector(ptt,1,n);       printf("\n");
       free_vector(pt,1,n);       fprintf(ficlog,"\n");
       return;       fprintf(ficrespow,"\n");fflush(ficrespow);
     }       if(*iter <=3){
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         tm = *localtime(&curr_time.tv_sec);
     for (j=1;j<=n;j++) {         strcpy(strcurr,asctime(&tm));
       ptt[j]=2.0*p[j]-pt[j];   /*       asctime_r(&tm,strcurr); */
       xit[j]=p[j]-pt[j];         forecast_time=curr_time;
       pt[j]=p[j];         itmp = strlen(strcurr);
     }         if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     fptt=(*func)(ptt);           strcurr[itmp-1]='\0';
     if (fptt < fp) {         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       if (t < 0.0) {         for(niterf=10;niterf<=30;niterf+=10){
         linmin(p,xit,n,fret,func);           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         for (j=1;j<=n;j++) {           tmf = *localtime(&forecast_time.tv_sec);
           xi[j][ibig]=xi[j][n];   /*      asctime_r(&tmf,strfor); */
           xi[j][n]=xit[j];           strcpy(strfor,asctime(&tmf));
         }          itmp = strlen(strfor);
 #ifdef DEBUG          if(strfor[itmp-1]=='\n')
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          strfor[itmp-1]='\0';
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         for(j=1;j<=n;j++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           printf(" %.12e",xit[j]);        }
           fprintf(ficlog," %.12e",xit[j]);      }
         }      for (i=1;i<=n;i++) {
         printf("\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i];
         fprintf(ficlog,"\n");        fptt=(*fret);
 #endif  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
     }         fprintf(ficlog,"fret=%lf \n",*fret);
   }   #endif
 }         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 /**** Prevalence limit (stable prevalence)  ****************/        linmin(p,xit,n,fret,func);
         if (fabs(fptt-(*fret)) > del) {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          del=fabs(fptt-(*fret));
 {          ibig=i;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        }
      matrix by transitions matrix until convergence is reached */  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   int i, ii,j,k;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double min, max, maxmin, maxmax,sumnew=0.;        for (j=1;j<=n;j++) {
   double **matprod2();          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double **out, cov[NCOVMAX], **pmij();          printf(" x(%d)=%.12e",j,xit[j]);
   double **newm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double agefin, delaymax=50 ; /* Max number of years to converge */        }
         for(j=1;j<=n;j++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)          printf(" p=%.12e",p[j]);
     for (j=1;j<=nlstate+ndeath;j++){          fprintf(ficlog," p=%.12e",p[j]);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
     }        printf("\n");
         fprintf(ficlog,"\n");
    cov[1]=1.;  #endif
        }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #ifdef DEBUG
     newm=savm;        int k[2],l;
     /* Covariates have to be included here again */        k[0]=1;
      cov[2]=agefin;        k[1]=-1;
           printf("Max: %.12e",(*func)(p));
       for (k=1; k<=cptcovn;k++) {        fprintf(ficlog,"Max: %.12e",(*func)(p));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        for (j=1;j<=n;j++) {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          printf(" %.12e",p[j]);
       }          fprintf(ficlog," %.12e",p[j]);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)        printf("\n");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          for (j=1;j<=n;j++) {
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
     savm=oldm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     oldm=newm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     maxmax=0.;        }
     for(j=1;j<=nlstate;j++){  #endif
       min=1.;  
       max=0.;  
       for(i=1; i<=nlstate; i++) {        free_vector(xit,1,n);
         sumnew=0;        free_vector(xits,1,n);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        free_vector(ptt,1,n);
         prlim[i][j]= newm[i][j]/(1-sumnew);        free_vector(pt,1,n);
         max=FMAX(max,prlim[i][j]);        return;
         min=FMIN(min,prlim[i][j]);      }
       }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
       maxmin=max-min;      for (j=1;j<=n;j++) {
       maxmax=FMAX(maxmax,maxmin);        ptt[j]=2.0*p[j]-pt[j];
     }        xit[j]=p[j]-pt[j];
     if(maxmax < ftolpl){        pt[j]=p[j];
       return prlim;      }
     }      fptt=(*func)(ptt);
   }      if (fptt < fp) {
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         if (t < 0.0) {
 /*************** transition probabilities ***************/           linmin(p,xit,n,fret,func);
           for (j=1;j<=n;j++) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )            xi[j][ibig]=xi[j][n];
 {            xi[j][n]=xit[j];
   double s1, s2;          }
   /*double t34;*/  #ifdef DEBUG
   int i,j,j1, nc, ii, jj;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(i=1; i<= nlstate; i++){          for(j=1;j<=n;j++){
       for(j=1; j<i;j++){            printf(" %.12e",xit[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){            fprintf(ficlog," %.12e",xit[j]);
           /*s2 += param[i][j][nc]*cov[nc];*/          }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf("\n");
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */          fprintf(ficlog,"\n");
         }  #endif
         ps[i][j]=s2;        }
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */      }
       }    }
       for(j=i+1; j<=nlstate+ndeath;j++){  }
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /**** Prevalence limit (stable or period prevalence)  ****************/
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */  
         }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         ps[i][j]=s2;  {
       }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     }       matrix by transitions matrix until convergence is reached */
     /*ps[3][2]=1;*/  
         int i, ii,j,k;
     for(i=1; i<= nlstate; i++){    double min, max, maxmin, maxmax,sumnew=0.;
       s1=0;    double **matprod2();
       for(j=1; j<i; j++)    double **out, cov[NCOVMAX], **pmij();
         s1+=exp(ps[i][j]);    double **newm;
       for(j=i+1; j<=nlstate+ndeath; j++)    double agefin, delaymax=50 ; /* Max number of years to converge */
         s1+=exp(ps[i][j]);  
       ps[i][i]=1./(s1+1.);    for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<i; j++)      for (j=1;j<=nlstate+ndeath;j++){
         ps[i][j]= exp(ps[i][j])*ps[i][i];        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=i+1; j<=nlstate+ndeath; j++)      }
         ps[i][j]= exp(ps[i][j])*ps[i][i];  
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */     cov[1]=1.;
     } /* end i */   
        /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       for(jj=1; jj<= nlstate+ndeath; jj++){      newm=savm;
         ps[ii][jj]=0;      /* Covariates have to be included here again */
         ps[ii][ii]=1;       cov[2]=agefin;
       }   
     }        for (k=1; k<=cptcovn;k++) {
               cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */        }
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /*         printf("ddd %lf ",ps[ii][jj]); */        for (k=1; k<=cptcovprod;k++)
 /*       } */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /*       printf("\n "); */  
 /*        } */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /*        printf("\n ");printf("%lf ",cov[2]); */        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        /*        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       goto end;*/  
     return ps;      savm=oldm;
 }      oldm=newm;
       maxmax=0.;
 /**************** Product of 2 matrices ******************/      for(j=1;j<=nlstate;j++){
         min=1.;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          sumnew=0;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* in, b, out are matrice of pointers which should have been initialized           prlim[i][j]= newm[i][j]/(1-sumnew);
      before: only the contents of out is modified. The function returns          max=FMAX(max,prlim[i][j]);
      a pointer to pointers identical to out */          min=FMIN(min,prlim[i][j]);
   long i, j, k;        }
   for(i=nrl; i<= nrh; i++)        maxmin=max-min;
     for(k=ncolol; k<=ncoloh; k++)        maxmax=FMAX(maxmax,maxmin);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      }
         out[i][k] +=in[i][j]*b[j][k];      if(maxmax < ftolpl){
         return prlim;
   return out;      }
 }    }
   }
   
 /************* Higher Matrix Product ***************/  /*************** transition probabilities ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   /* Computes the transition matrix starting at age 'age' over     double s1, s2;
      'nhstepm*hstepm*stepm' months (i.e. until    /*double t34;*/
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     int i,j,j1, nc, ii, jj;
      nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       for(i=1; i<= nlstate; i++){
      (typically every 2 years instead of every month which is too big         for(j=1; j<i;j++){
      for the memory).          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      Model is determined by parameters x and covariates have to be             /*s2 += param[i][j][nc]*cov[nc];*/
      included manually here.             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
      */          }
           ps[i][j]=s2;
   int i, j, d, h, k;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double **out, cov[NCOVMAX];        }
   double **newm;        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   /* Hstepm could be zero and should return the unit matrix */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=1;i<=nlstate+ndeath;i++)  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     for (j=1;j<=nlstate+ndeath;j++){          }
       oldm[i][j]=(i==j ? 1.0 : 0.0);          ps[i][j]=s2;
       po[i][j][0]=(i==j ? 1.0 : 0.0);        }
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /*ps[3][2]=1;*/
   for(h=1; h <=nhstepm; h++){     
     for(d=1; d <=hstepm; d++){      for(i=1; i<= nlstate; i++){
       newm=savm;        s1=0;
       /* Covariates have to be included here again */        for(j=1; j<i; j++)
       cov[1]=1.;          s1+=exp(ps[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        for(j=i+1; j<=nlstate+ndeath; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          s1+=exp(ps[i][j]);
       for (k=1; k<=cptcovage;k++)        ps[i][i]=1./(s1+1.);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(j=1; j<i; j++)
       for (k=1; k<=cptcovprod;k++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } /* end i */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/     
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        for(jj=1; jj<= nlstate+ndeath; jj++){
       savm=oldm;          ps[ii][jj]=0;
       oldm=newm;          ps[ii][ii]=1;
     }        }
     for(i=1; i<=nlstate+ndeath; i++)      }
       for(j=1;j<=nlstate+ndeath;j++) {     
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
          */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }  /*         printf("ddd %lf ",ps[ii][jj]); */
   } /* end h */  /*       } */
   return po;  /*       printf("\n "); */
 }  /*        } */
   /*        printf("\n ");printf("%lf ",cov[2]); */
          /*
 /*************** log-likelihood *************/        for(i=1; i<= npar; i++) printf("%f ",x[i]);
 double func( double *x)        goto end;*/
 {      return ps;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /**************** Product of 2 matrices ******************/
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   int s1, s2;  {
   double bbh, survp;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   long ipmx;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /*extern weight */    /* in, b, out are matrice of pointers which should have been initialized
   /* We are differentiating ll according to initial status */       before: only the contents of out is modified. The function returns
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       a pointer to pointers identical to out */
   /*for(i=1;i<imx;i++)     long i, j, k;
     printf(" %d\n",s[4][i]);    for(i=nrl; i<= nrh; i++)
   */      for(k=ncolol; k<=ncoloh; k++)
   cov[1]=1.;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
     return out;
   if(mle==1){  }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){  /************* Higher Matrix Product ***************/
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Computes the transition matrix starting at age 'age' over
           }       'nhstepm*hstepm*stepm' months (i.e. until
         for(d=0; d<dh[mi][i]; d++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           newm=savm;       nhstepm*hstepm matrices.
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           for (kk=1; kk<=cptcovage;kk++) {       (typically every 2 years instead of every month which is too big
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       for the memory).
           }       Model is determined by parameters x and covariates have to be
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       included manually here.
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;       */
           oldm=newm;  
         } /* end mult */    int i, j, d, h, k;
           double **out, cov[NCOVMAX];
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    double **newm;
         /* But now since version 0.9 we anticipate for bias at large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay     /* Hstepm could be zero and should return the unit matrix */
          * (in months) between two waves is not a multiple of stepm, we rounded to     for (i=1;i<=nlstate+ndeath;i++)
          * the nearest (and in case of equal distance, to the lowest) interval but now      for (j=1;j<=nlstate+ndeath;j++){
          * we keep into memory the bias bh[mi][i] and also the previous matrix product        oldm[i][j]=(i==j ? 1.0 : 0.0);
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the        po[i][j][0]=(i==j ? 1.0 : 0.0);
          * probability in order to take into account the bias as a fraction of the way      }
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
          * -stepm/2 to stepm/2 .    for(h=1; h <=nhstepm; h++){
          * For stepm=1 the results are the same as for previous versions of Imach.      for(d=1; d <=hstepm; d++){
          * For stepm > 1 the results are less biased than in previous versions.         newm=savm;
          */        /* Covariates have to be included here again */
         s1=s[mw[mi][i]][i];        cov[1]=1.;
         s2=s[mw[mi+1][i]][i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         bbh=(double)bh[mi][i]/(double)stepm;         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /* bias bh is positive if real duration        for (k=1; k<=cptcovage;k++)
          * is higher than the multiple of stepm and negative otherwise.          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          */        for (k=1; k<=cptcovprod;k++)
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         if( s2 > nlstate){   
           /* i.e. if s2 is a death state and if the date of death is known   
              then the contribution to the likelihood is the probability to         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
              die between last step unit time and current  step unit time,         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              which is also equal to probability to die before dh         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
              minus probability to die before dh-stepm .                      pmij(pmmij,cov,ncovmodel,x,nlstate));
              In version up to 0.92 likelihood was computed        savm=oldm;
         as if date of death was unknown. Death was treated as any other        oldm=newm;
         health state: the date of the interview describes the actual state      }
         and not the date of a change in health state. The former idea was      for(i=1; i<=nlstate+ndeath; i++)
         to consider that at each interview the state was recorded        for(j=1;j<=nlstate+ndeath;j++) {
         (healthy, disable or death) and IMaCh was corrected; but when we          po[i][j][h]=newm[i][j];
         introduced the exact date of death then we should have modified          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         the contribution of an exact death to the likelihood. This new           */
         contribution is smaller and very dependent of the step unit        }
         stepm. It is no more the probability to die between last interview    } /* end h */
         and month of death but the probability to survive from last    return po;
         interview up to one month before death multiplied by the  }
         probability to die within a month. Thanks to Chris  
         Jackson for correcting this bug.  Former versions increased  
         mortality artificially. The bad side is that we add another loop  /*************** log-likelihood *************/
         which slows down the processing. The difference can be up to 10%  double func( double *x)
         lower mortality.  {
           */    int i, ii, j, k, mi, d, kk;
           lli=log(out[s1][s2] - savm[s1][s2]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
     double sw; /* Sum of weights */
         } else if  (s2==-2) {    double lli; /* Individual log likelihood */
           for (j=1,survp=0. ; j<=nlstate; j++)     int s1, s2;
             survp += out[s1][j];    double bbh, survp;
           lli= survp;    long ipmx;
         }    /*extern weight */
             /* We are differentiating ll according to initial status */
         else if  (s2==-4) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for (j=3,survp=0. ; j<=nlstate; j++)     /*for(i=1;i<imx;i++)
             survp += out[s1][j];      printf(" %d\n",s[4][i]);
           lli= survp;    */
         }    cov[1]=1.;
           
         else if  (s2==-5) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for (j=1,survp=0. ; j<=2; j++)   
             survp += out[s1][j];    if(mle==1){
           lli= survp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         else{            for (j=1;j<=nlstate+ndeath;j++){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }             }
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          for(d=0; d<dh[mi][i]; d++){
         /*if(lli ==000.0)*/            newm=savm;
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         ipmx +=1;            for (kk=1; kk<=cptcovage;kk++) {
         sw += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            }
       } /* end of wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     } /* end of individual */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }  else if(mle==2){            savm=oldm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            oldm=newm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          } /* end mult */
       for(mi=1; mi<= wav[i]-1; mi++){       
         for (ii=1;ii<=nlstate+ndeath;ii++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           for (j=1;j<=nlstate+ndeath;j++){          /* But now since version 0.9 we anticipate for bias at large stepm.
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           * If stepm is larger than one month (smallest stepm) and if the exact delay
             savm[ii][j]=(ii==j ? 1.0 : 0.0);           * (in months) between two waves is not a multiple of stepm, we rounded to
           }           * the nearest (and in case of equal distance, to the lowest) interval but now
         for(d=0; d<=dh[mi][i]; d++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           newm=savm;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * probability in order to take into account the bias as a fraction of the way
           for (kk=1; kk<=cptcovage;kk++) {           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];           * -stepm/2 to stepm/2 .
           }           * For stepm=1 the results are the same as for previous versions of Imach.
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           * For stepm > 1 the results are less biased than in previous versions.
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));           */
           savm=oldm;          s1=s[mw[mi][i]][i];
           oldm=newm;          s2=s[mw[mi+1][i]][i];
         } /* end mult */          bbh=(double)bh[mi][i]/(double)stepm;
                 /* bias bh is positive if real duration
         s1=s[mw[mi][i]][i];           * is higher than the multiple of stepm and negative otherwise.
         s2=s[mw[mi+1][i]][i];           */
         bbh=(double)bh[mi][i]/(double)stepm;           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          if( s2 > nlstate){
         ipmx +=1;            /* i.e. if s2 is a death state and if the date of death is known
         sw += weight[i];               then the contribution to the likelihood is the probability to
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;               die between last step unit time and current  step unit time,
       } /* end of wave */               which is also equal to probability to die before dh
     } /* end of individual */               minus probability to die before dh-stepm .
   }  else if(mle==3){  /* exponential inter-extrapolation */               In version up to 0.92 likelihood was computed
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          as if date of death was unknown. Death was treated as any other
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          health state: the date of the interview describes the actual state
       for(mi=1; mi<= wav[i]-1; mi++){          and not the date of a change in health state. The former idea was
         for (ii=1;ii<=nlstate+ndeath;ii++)          to consider that at each interview the state was recorded
           for (j=1;j<=nlstate+ndeath;j++){          (healthy, disable or death) and IMaCh was corrected; but when we
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          introduced the exact date of death then we should have modified
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          the contribution of an exact death to the likelihood. This new
           }          contribution is smaller and very dependent of the step unit
         for(d=0; d<dh[mi][i]; d++){          stepm. It is no more the probability to die between last interview
           newm=savm;          and month of death but the probability to survive from last
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          interview up to one month before death multiplied by the
           for (kk=1; kk<=cptcovage;kk++) {          probability to die within a month. Thanks to Chris
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          Jackson for correcting this bug.  Former versions increased
           }          mortality artificially. The bad side is that we add another loop
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          which slows down the processing. The difference can be up to 10%
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          lower mortality.
           savm=oldm;            */
           oldm=newm;            lli=log(out[s1][s2] - savm[s1][s2]);
         } /* end mult */  
         
         s1=s[mw[mi][i]][i];          } else if  (s2==-2) {
         s2=s[mw[mi+1][i]][i];            for (j=1,survp=0. ; j<=nlstate; j++)
         bbh=(double)bh[mi][i]/(double)stepm;               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            /*survp += out[s1][j]; */
         ipmx +=1;            lli= log(survp);
         sw += weight[i];          }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;         
       } /* end of wave */          else if  (s2==-4) {
     } /* end of individual */            for (j=3,survp=0. ; j<=nlstate; j++)  
   }else if (mle==4){  /* ml=4 no inter-extrapolation */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            lli= log(survp);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          }
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)          else if  (s2==-5) {
           for (j=1;j<=nlstate+ndeath;j++){            for (j=1,survp=0. ; j<=2; j++)  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            lli= log(survp);
           }          }
         for(d=0; d<dh[mi][i]; d++){         
           newm=savm;          else{
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (kk=1; kk<=cptcovage;kk++) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          }
           }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   /*if(lli ==000.0)*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          ipmx +=1;
           savm=oldm;          sw += weight[i];
           oldm=newm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end mult */        } /* end of wave */
             } /* end of individual */
         s1=s[mw[mi][i]][i];    }  else if(mle==2){
         s2=s[mw[mi+1][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if( s2 > nlstate){         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           lli=log(out[s1][s2] - savm[s1][s2]);        for(mi=1; mi<= wav[i]-1; mi++){
         }else{          for (ii=1;ii<=nlstate+ndeath;ii++)
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ipmx +=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         sw += weight[i];            }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for(d=0; d<=dh[mi][i]; d++){
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            newm=savm;
       } /* end of wave */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* end of individual */            for (kk=1; kk<=cptcovage;kk++) {
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(mi=1; mi<= wav[i]-1; mi++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (ii=1;ii<=nlstate+ndeath;ii++)            savm=oldm;
           for (j=1;j<=nlstate+ndeath;j++){            oldm=newm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          } /* end mult */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);       
           }          s1=s[mw[mi][i]][i];
         for(d=0; d<dh[mi][i]; d++){          s2=s[mw[mi+1][i]][i];
           newm=savm;          bbh=(double)bh[mi][i]/(double)stepm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for (kk=1; kk<=cptcovage;kk++) {          ipmx +=1;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 } /* end of wave */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } /* end of individual */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    }  else if(mle==3){  /* exponential inter-extrapolation */
           savm=oldm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           oldm=newm;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         } /* end mult */        for(mi=1; mi<= wav[i]-1; mi++){
                 for (ii=1;ii<=nlstate+ndeath;ii++)
         s1=s[mw[mi][i]][i];            for (j=1;j<=nlstate+ndeath;j++){
         s2=s[mw[mi+1][i]][i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         ipmx +=1;            }
         sw += weight[i];          for(d=0; d<dh[mi][i]; d++){
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            newm=savm;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       } /* end of wave */            for (kk=1; kk<=cptcovage;kk++) {
     } /* end of individual */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   } /* End of if */            }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            savm=oldm;
   return -l;            oldm=newm;
 }          } /* end mult */
        
 /*************** log-likelihood *************/          s1=s[mw[mi][i]][i];
 double funcone( double *x)          s2=s[mw[mi+1][i]][i];
 {          bbh=(double)bh[mi][i]/(double)stepm;
   /* Same as likeli but slower because of a lot of printf and if */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, ii, j, k, mi, d, kk;          ipmx +=1;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          sw += weight[i];
   double **out;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double lli; /* Individual log likelihood */        } /* end of wave */
   double llt;      } /* end of individual */
   int s1, s2;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   double bbh, survp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*extern weight */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* We are differentiating ll according to initial status */        for(mi=1; mi<= wav[i]-1; mi++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   /*for(i=1;i<imx;i++)             for (j=1;j<=nlstate+ndeath;j++){
     printf(" %d\n",s[4][i]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   cov[1]=1.;            }
           for(d=0; d<dh[mi][i]; d++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            for (kk=1; kk<=cptcovage;kk++) {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(mi=1; mi<= wav[i]-1; mi++){            }
       for (ii=1;ii<=nlstate+ndeath;ii++)         
         for (j=1;j<=nlstate+ndeath;j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm[ii][j]=(ii==j ? 1.0 : 0.0);            savm=oldm;
         }            oldm=newm;
       for(d=0; d<dh[mi][i]; d++){          } /* end mult */
         newm=savm;       
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          s1=s[mw[mi][i]][i];
         for (kk=1; kk<=cptcovage;kk++) {          s2=s[mw[mi+1][i]][i];
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          if( s2 > nlstate){
         }            lli=log(out[s1][s2] - savm[s1][s2]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          }else{
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         savm=oldm;          }
         oldm=newm;          ipmx +=1;
       } /* end mult */          sw += weight[i];
                 ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       s1=s[mw[mi][i]][i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       s2=s[mw[mi+1][i]][i];        } /* end of wave */
       bbh=(double)bh[mi][i]/(double)stepm;       } /* end of individual */
       /* bias is positive if real duration    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        * is higher than the multiple of stepm and negative otherwise.      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        for(mi=1; mi<= wav[i]-1; mi++){
         lli=log(out[s1][s2] - savm[s1][s2]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       } else if (mle==1){            for (j=1;j<=nlstate+ndeath;j++){
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else if(mle==2){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            }
       } else if(mle==3){  /* exponential inter-extrapolation */          for(d=0; d<dh[mi][i]; d++){
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            newm=savm;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         lli=log(out[s1][s2]); /* Original formula */            for (kk=1; kk<=cptcovage;kk++) {
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         lli=log(out[s1][s2]); /* Original formula */            }
       } /* End of if */         
       ipmx +=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       sw += weight[i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            savm=oldm;
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            oldm=newm;
       if(globpr){          } /* end mult */
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\       
  %10.6f %10.6f %10.6f ", \          s1=s[mw[mi][i]][i];
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          s2=s[mw[mi+1][i]][i];
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){          ipmx +=1;
           llt +=ll[k]*gipmx/gsw;          sw += weight[i];
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         fprintf(ficresilk," %10.6f\n", -llt);        } /* end of wave */
       }      } /* end of individual */
     } /* end of wave */    } /* End of if */
   } /* end of individual */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    return -l;
   if(globpr==0){ /* First time we count the contributions and weights */  }
     gipmx=ipmx;  
     gsw=sw;  /*************** log-likelihood *************/
   }  double funcone( double *x)
   return -l;  {
 }    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX], cov[NCOVMAX];
 /*************** function likelione ***********/    double **out;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))    double lli; /* Individual log likelihood */
 {    double llt;
   /* This routine should help understanding what is done with     int s1, s2;
      the selection of individuals/waves and    double bbh, survp;
      to check the exact contribution to the likelihood.    /*extern weight */
      Plotting could be done.    /* We are differentiating ll according to initial status */
    */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int k;    /*for(i=1;i<imx;i++)
       printf(" %d\n",s[4][i]);
   if(*globpri !=0){ /* Just counts and sums, no printings */    */
     strcpy(fileresilk,"ilk");     cov[1]=1.;
     strcat(fileresilk,fileres);  
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       printf("Problem with resultfile: %s\n", fileresilk);  
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");        for (ii=1;ii<=nlstate+ndeath;ii++)
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          for (j=1;j<=nlstate+ndeath;j++){
     for(k=1; k<=nlstate; k++)             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");          }
   }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   *fretone=(*funcone)(p);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if(*globpri !=0){          for (kk=1; kk<=cptcovage;kk++) {
     fclose(ficresilk);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          }
     fflush(fichtm);           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return;          savm=oldm;
 }          oldm=newm;
         } /* end mult */
        
 /*********** Maximum Likelihood Estimation ***************/        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        bbh=(double)bh[mi][i]/(double)stepm;
 {        /* bias is positive if real duration
   int i,j, iter;         * is higher than the multiple of stepm and negative otherwise.
   double **xi;         */
   double fret;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double fretone; /* Only one call to likelihood */          lli=log(out[s1][s2] - savm[s1][s2]);
   /*  char filerespow[FILENAMELENGTH];*/        } else if  (s2==-2) {
   xi=matrix(1,npar,1,npar);          for (j=1,survp=0. ; j<=nlstate; j++)
   for (i=1;i<=npar;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for (j=1;j<=npar;j++)          lli= log(survp);
       xi[i][j]=(i==j ? 1.0 : 0.0);        }else if (mle==1){
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   strcpy(filerespow,"pow");         } else if(mle==2){
   strcat(filerespow,fileres);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        } else if(mle==3){  /* exponential inter-extrapolation */
     printf("Problem with resultfile: %s\n", filerespow);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   for (i=1;i<=nlstate;i++)          lli=log(out[s1][s2]); /* Original formula */
     for(j=1;j<=nlstate+ndeath;j++)        } /* End of if */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        ipmx +=1;
   fprintf(ficrespow,"\n");        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   fclose(ficrespow);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));   %11.6f %11.6f %11.6f ", \
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
 }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 /**** Computes Hessian and covariance matrix ***/          }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          fprintf(ficresilk," %10.6f\n", -llt);
 {        }
   double  **a,**y,*x,pd;      } /* end of wave */
   double **hess;    } /* end of individual */
   int i, j,jk;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int *indx;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    if(globpr==0){ /* First time we count the contributions and weights */
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);      gipmx=ipmx;
   void lubksb(double **a, int npar, int *indx, double b[]) ;      gsw=sw;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    }
   double gompertz(double p[]);    return -l;
   hess=matrix(1,npar,1,npar);  }
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  /*************** function likelione ***********/
   for (i=1;i<=npar;i++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     printf("%d",i);fflush(stdout);  {
     fprintf(ficlog,"%d",i);fflush(ficlog);    /* This routine should help understanding what is done with
           the selection of individuals/waves and
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);       to check the exact contribution to the likelihood.
            Plotting could be done.
     /*  printf(" %f ",p[i]);     */
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    int k;
   }  
       if(*globpri !=0){ /* Just counts and sums, no printings */
   for (i=1;i<=npar;i++) {      strcpy(fileresilk,"ilk");
     for (j=1;j<=npar;j++)  {      strcat(fileresilk,fileres);
       if (j>i) {       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf(".%d%d",i,j);fflush(stdout);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         hess[i][j]=hessij(p,delti,i,j,func,npar);      }
               fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         hess[j][i]=hess[i][j];          fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         /*printf(" %lf ",hess[i][j]);*/      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++)
     }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   printf("\n");    }
   fprintf(ficlog,"\n");  
     *fretone=(*funcone)(p);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    if(*globpri !=0){
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      fclose(ficresilk);
         fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   a=matrix(1,npar,1,npar);      fflush(fichtm);
   y=matrix(1,npar,1,npar);    }
   x=vector(1,npar);    return;
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /*********** Maximum Likelihood Estimation ***************/
   
   for (j=1;j<=npar;j++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    int i,j, iter;
     lubksb(a,npar,indx,x);    double **xi;
     for (i=1;i<=npar;i++){     double fret;
       matcov[i][j]=x[i];    double fretone; /* Only one call to likelihood */
     }    /*  char filerespow[FILENAMELENGTH];*/
   }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   printf("\n#Hessian matrix#\n");      for (j=1;j<=npar;j++)
   fprintf(ficlog,"\n#Hessian matrix#\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++) {     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for (j=1;j<=npar;j++) {     strcpy(filerespow,"pow");
       printf("%.3e ",hess[i][j]);    strcat(filerespow,fileres);
       fprintf(ficlog,"%.3e ",hess[i][j]);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", filerespow);
     printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficlog,"\n");    }
   }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
   /* Recompute Inverse */      for(j=1;j<=nlstate+ndeath;j++)
   for (i=1;i<=npar;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    fprintf(ficrespow,"\n");
   ludcmp(a,npar,indx,&pd);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
   /*  printf("\n#Hessian matrix recomputed#\n");  
     free_matrix(xi,1,npar,1,npar);
   for (j=1;j<=npar;j++) {    fclose(ficrespow);
     for (i=1;i<=npar;i++) x[i]=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     x[j]=1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     lubksb(a,npar,indx,x);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=1;i<=npar;i++){   
       y[i][j]=x[i];  }
       printf("%.3e ",y[i][j]);  
       fprintf(ficlog,"%.3e ",y[i][j]);  /**** Computes Hessian and covariance matrix ***/
     }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     printf("\n");  {
     fprintf(ficlog,"\n");    double  **a,**y,*x,pd;
   }    double **hess;
   */    int i, j,jk;
     int *indx;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   free_vector(x,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   free_ivector(indx,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_matrix(hess,1,npar,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
 }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
 /*************** hessian matrix ****************/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    for (i=1;i<=npar;i++){
 {      printf("%d",i);fflush(stdout);
   int i;      fprintf(ficlog,"%d",i);fflush(ficlog);
   int l=1, lmax=20;     
   double k1,k2;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double p2[NPARMAX+1];     
   double res;      /*  printf(" %f ",p[i]);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double fx;    }
   int k=0,kmax=10;   
   double l1;    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
   fx=func(x);        if (j>i) {
   for (i=1;i<=npar;i++) p2[i]=x[i];          printf(".%d%d",i,j);fflush(stdout);
   for(l=0 ; l <=lmax; l++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     l1=pow(10,l);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     delts=delt;         
     for(k=1 ; k <kmax; k=k+1){          hess[j][i]=hess[i][j];    
       delt = delta*(l1*k);          /*printf(" %lf ",hess[i][j]);*/
       p2[theta]=x[theta] +delt;        }
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;    printf("\n");
       /*res= (k1-2.0*fx+k2)/delt/delt; */    fprintf(ficlog,"\n");
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
           printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 #ifdef DEBUG    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);   
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    a=matrix(1,npar,1,npar);
 #endif    y=matrix(1,npar,1,npar);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    x=vector(1,npar);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    indx=ivector(1,npar);
         k=kmax;    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    ludcmp(a,npar,indx,&pd);
         k=kmax; l=lmax*10.;  
       }    for (j=1;j<=npar;j++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){       for (i=1;i<=npar;i++) x[i]=0;
         delts=delt;      x[j]=1;
       }      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){
   }        matcov[i][j]=x[i];
   delti[theta]=delts;      }
   return res;     }
     
 }    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    for (i=1;i<=npar;i++) {
 {      for (j=1;j<=npar;j++) {
   int i;        printf("%.3e ",hess[i][j]);
   int l=1, l1, lmax=20;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double k1,k2,k3,k4,res,fx;      }
   double p2[NPARMAX+1];      printf("\n");
   int k;      fprintf(ficlog,"\n");
     }
   fx=func(x);  
   for (k=1; k<=2; k++) {    /* Recompute Inverse */
     for (i=1;i<=npar;i++) p2[i]=x[i];    for (i=1;i<=npar;i++)
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    ludcmp(a,npar,indx,&pd);
     k1=func(p2)-fx;  
       /*  printf("\n#Hessian matrix recomputed#\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for (j=1;j<=npar;j++) {
     k2=func(p2)-fx;      for (i=1;i<=npar;i++) x[i]=0;
         x[j]=1;
     p2[thetai]=x[thetai]-delti[thetai]/k;      lubksb(a,npar,indx,x);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for (i=1;i<=npar;i++){
     k3=func(p2)-fx;        y[i][j]=x[i];
           printf("%.3e ",y[i][j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"%.3e ",y[i][j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      }
     k4=func(p2)-fx;      printf("\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      fprintf(ficlog,"\n");
 #ifdef DEBUG    }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif    free_matrix(a,1,npar,1,npar);
   }    free_matrix(y,1,npar,1,npar);
   return res;    free_vector(x,1,npar);
 }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)   
 {   }
   int i,imax,j,k;   
   double big,dum,sum,temp;   /*************** hessian matrix ****************/
   double *vv;   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
    {
   vv=vector(1,n);     int i;
   *d=1.0;     int l=1, lmax=20;
   for (i=1;i<=n;i++) {     double k1,k2;
     big=0.0;     double p2[NPARMAX+1];
     for (j=1;j<=n;j++)     double res;
       if ((temp=fabs(a[i][j])) > big) big=temp;     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     double fx;
     vv[i]=1.0/big;     int k=0,kmax=10;
   }     double l1;
   for (j=1;j<=n;j++) {   
     for (i=1;i<j;i++) {     fx=func(x);
       sum=a[i][j];     for (i=1;i<=npar;i++) p2[i]=x[i];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     for(l=0 ; l <=lmax; l++){
       a[i][j]=sum;       l1=pow(10,l);
     }       delts=delt;
     big=0.0;       for(k=1 ; k <kmax; k=k+1){
     for (i=j;i<=n;i++) {         delt = delta*(l1*k);
       sum=a[i][j];         p2[theta]=x[theta] +delt;
       for (k=1;k<j;k++)         k1=func(p2)-fx;
         sum -= a[i][k]*a[k][j];         p2[theta]=x[theta]-delt;
       a[i][j]=sum;         k2=func(p2)-fx;
       if ( (dum=vv[i]*fabs(sum)) >= big) {         /*res= (k1-2.0*fx+k2)/delt/delt; */
         big=dum;         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         imax=i;        
       }   #ifdef DEBUG
     }         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     if (j != imax) {         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for (k=1;k<=n;k++) {   #endif
         dum=a[imax][k];         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         a[imax][k]=a[j][k];         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         a[j][k]=dum;           k=kmax;
       }         }
       *d = -(*d);         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       vv[imax]=vv[j];           k=kmax; l=lmax*10.;
     }         }
     indx[j]=imax;         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
     if (a[j][j] == 0.0) a[j][j]=TINY;           delts=delt;
     if (j != n) {         }
       dum=1.0/(a[j][j]);       }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     }
     }     delti[theta]=delts;
   }     return res;
   free_vector(vv,1,n);  /* Doesn't work */   
 ;  }
 }   
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 void lubksb(double **a, int n, int *indx, double b[])   {
 {     int i;
   int i,ii=0,ip,j;     int l=1, l1, lmax=20;
   double sum;     double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   for (i=1;i<=n;i++) {     int k;
     ip=indx[i];   
     sum=b[ip];     fx=func(x);
     b[ip]=b[i];     for (k=1; k<=2; k++) {
     if (ii)       for (i=1;i<=npar;i++) p2[i]=x[i];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];       p2[thetai]=x[thetai]+delti[thetai]/k;
     else if (sum) ii=i;       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     b[i]=sum;       k1=func(p2)-fx;
   }    
   for (i=n;i>=1;i--) {       p2[thetai]=x[thetai]+delti[thetai]/k;
     sum=b[i];       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];       k2=func(p2)-fx;
     b[i]=sum/a[i][i];    
   }       p2[thetai]=x[thetai]-delti[thetai]/k;
 }       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k3=func(p2)-fx;
 /************ Frequencies ********************/   
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])      p2[thetai]=x[thetai]-delti[thetai]/k;
 {  /* Some frequencies */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         k4=func(p2)-fx;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   int first;  #ifdef DEBUG
   double ***freq; /* Frequencies */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double *pp, **prop;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  #endif
   FILE *ficresp;    }
   char fileresp[FILENAMELENGTH];    return res;
     }
   pp=vector(1,nlstate);  
   prop=matrix(1,nlstate,iagemin,iagemax+3);  /************** Inverse of matrix **************/
   strcpy(fileresp,"p");  void ludcmp(double **a, int n, int *indx, double *d)
   strcat(fileresp,fileres);  {
   if((ficresp=fopen(fileresp,"w"))==NULL) {    int i,imax,j,k;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double big,dum,sum,temp;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double *vv;
     exit(0);   
   }    vv=vector(1,n);
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    *d=1.0;
   j1=0;    for (i=1;i<=n;i++) {
         big=0.0;
   j=cptcoveff;      for (j=1;j<=n;j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        if ((temp=fabs(a[i][j])) > big) big=temp;
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   first=1;      vv[i]=1.0/big;
     }
   for(k1=1; k1<=j;k1++){    for (j=1;j<=n;j++) {
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1;i<j;i++) {
       j1++;        sum=a[i][j];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
         scanf("%d", i);*/        a[i][j]=sum;
       for (i=-5; i<=nlstate+ndeath; i++)        }
         for (jk=-5; jk<=nlstate+ndeath; jk++)        big=0.0;
           for(m=iagemin; m <= iagemax+3; m++)      for (i=j;i<=n;i++) {
             freq[i][jk][m]=0;        sum=a[i][j];
         for (k=1;k<j;k++)
     for (i=1; i<=nlstate; i++)            sum -= a[i][k]*a[k][j];
       for(m=iagemin; m <= iagemax+3; m++)        a[i][j]=sum;
         prop[i][m]=0;        if ( (dum=vv[i]*fabs(sum)) >= big) {
                 big=dum;
       dateintsum=0;          imax=i;
       k2cpt=0;        }
       for (i=1; i<=imx; i++) {      }
         bool=1;      if (j != imax) {
         if  (cptcovn>0) {        for (k=1;k<=n;k++) {
           for (z1=1; z1<=cptcoveff; z1++)           dum=a[imax][k];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           a[imax][k]=a[j][k];
               bool=0;          a[j][k]=dum;
         }        }
         if (bool==1){        *d = -(*d);
           for(m=firstpass; m<=lastpass; m++){        vv[imax]=vv[j];
             k2=anint[m][i]+(mint[m][i]/12.);      }
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      indx[j]=imax;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      if (a[j][j] == 0.0) a[j][j]=TINY;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      if (j != n) {
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];        dum=1.0/(a[j][j]);
               if (m<lastpass) {        for (i=j+1;i<=n;i++) a[i][j] *= dum;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      }
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    }
               }    free_vector(vv,1,n);  /* Doesn't work */
                 ;
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {  }
                 dateintsum=dateintsum+k2;  
                 k2cpt++;  void lubksb(double **a, int n, int *indx, double b[])
               }  {
               /*}*/    int i,ii=0,ip,j;
           }    double sum;
         }   
       }    for (i=1;i<=n;i++) {
              ip=indx[i];
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      sum=b[ip];
 fprintf(ficresp, "#Local time at start: %s", strstart);      b[ip]=b[i];
       if  (cptcovn>0) {      if (ii)
         fprintf(ficresp, "\n#********** Variable ");         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      else if (sum) ii=i;
         fprintf(ficresp, "**********\n#");      b[i]=sum;
       }    }
       for(i=1; i<=nlstate;i++)     for (i=n;i>=1;i--) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      sum=b[i];
       fprintf(ficresp, "\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
             b[i]=sum/a[i][i];
       for(i=iagemin; i <= iagemax+3; i++){    }
         if(i==iagemax+3){  }
           fprintf(ficlog,"Total");  
         }else{  void pstamp(FILE *fichier)
           if(first==1){  {
             first=0;    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             printf("See log file for details...\n");  }
           }  
           fprintf(ficlog,"Age %d", i);  /************ Frequencies ********************/
         }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         for(jk=1; jk <=nlstate ; jk++){  {  /* Some frequencies */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)   
             pp[jk] += freq[jk][m][i];     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         }    int first;
         for(jk=1; jk <=nlstate ; jk++){    double ***freq; /* Frequencies */
           for(m=-1, pos=0; m <=0 ; m++)    double *pp, **prop;
             pos += freq[jk][m][i];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
           if(pp[jk]>=1.e-10){    char fileresp[FILENAMELENGTH];
             if(first==1){   
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    pp=vector(1,nlstate);
             }    prop=matrix(1,nlstate,iagemin,iagemax+3);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    strcpy(fileresp,"p");
           }else{    strcat(fileresp,fileres);
             if(first==1)    if((ficresp=fopen(fileresp,"w"))==NULL) {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      printf("Problem with prevalence resultfile: %s\n", fileresp);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           }      exit(0);
         }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for(jk=1; jk <=nlstate ; jk++){    j1=0;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   
             pp[jk] += freq[jk][m][i];    j=cptcoveff;
         }           if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  
           pos += pp[jk];    first=1;
           posprop += prop[jk][i];  
         }    for(k1=1; k1<=j;k1++){
         for(jk=1; jk <=nlstate ; jk++){      for(i1=1; i1<=ncodemax[k1];i1++){
           if(pos>=1.e-5){        j1++;
             if(first==1)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          scanf("%d", i);*/
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (i=-5; i<=nlstate+ndeath; i++)  
           }else{          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             if(first==1)            for(m=iagemin; m <= iagemax+3; m++)
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              freq[i][jk][m]=0;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           }      for (i=1; i<=nlstate; i++)  
           if( i <= iagemax){        for(m=iagemin; m <= iagemax+3; m++)
             if(pos>=1.e-5){          prop[i][m]=0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);       
               /*probs[i][jk][j1]= pp[jk]/pos;*/        dateintsum=0;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        k2cpt=0;
             }        for (i=1; i<=imx; i++) {
             else          bool=1;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);          if  (cptcovn>0) {
           }            for (z1=1; z1<=cptcoveff; z1++)
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                         bool=0;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          }
           for(m=-1; m <=nlstate+ndeath; m++)          if (bool==1){
             if(freq[jk][m][i] !=0 ) {            for(m=firstpass; m<=lastpass; m++){
             if(first==1)              k2=anint[m][i]+(mint[m][i]/12.);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         if(i <= iagemax)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficresp,"\n");                if (m<lastpass) {
         if(first==1)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           printf("Others in log...\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         fprintf(ficlog,"\n");                }
       }               
     }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   }                  dateintsum=dateintsum+k2;
   dateintmean=dateintsum/k2cpt;                   k2cpt++;
                  }
   fclose(ficresp);                /*}*/
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);            }
   free_vector(pp,1,nlstate);          }
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);        }
   /* End of Freq */         
 }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
 /************ Prevalence ********************/        if  (cptcovn>0) {
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)          fprintf(ficresp, "\n#********** Variable ");
 {            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          fprintf(ficresp, "**********\n#");
      in each health status at the date of interview (if between dateprev1 and dateprev2).        }
      We still use firstpass and lastpass as another selection.        for(i=1; i<=nlstate;i++)
   */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(ficresp, "\n");
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;       
   double ***freq; /* Frequencies */        for(i=iagemin; i <= iagemax+3; i++){
   double *pp, **prop;          if(i==iagemax+3){
   double pos,posprop;             fprintf(ficlog,"Total");
   double  y2; /* in fractional years */          }else{
   int iagemin, iagemax;            if(first==1){
               first=0;
   iagemin= (int) agemin;              printf("See log file for details...\n");
   iagemax= (int) agemax;            }
   /*pp=vector(1,nlstate);*/            fprintf(ficlog,"Age %d", i);
   prop=matrix(1,nlstate,iagemin,iagemax+3);           }
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/          for(jk=1; jk <=nlstate ; jk++){
   j1=0;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                 pp[jk] += freq[jk][m][i];
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(jk=1; jk <=nlstate ; jk++){
               for(m=-1, pos=0; m <=0 ; m++)
   for(k1=1; k1<=j;k1++){              pos += freq[jk][m][i];
     for(i1=1; i1<=ncodemax[k1];i1++){            if(pp[jk]>=1.e-10){
       j1++;              if(first==1){
                     printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (i=1; i<=nlstate; i++)                }
         for(m=iagemin; m <= iagemax+3; m++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           prop[i][m]=0.0;            }else{
                    if(first==1)
       for (i=1; i<=imx; i++) { /* Each individual */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         bool=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)           }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;          for(jk=1; jk <=nlstate ; jk++){
         }             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         if (bool==1) {               pp[jk] += freq[jk][m][i];
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          }      
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */            pos += pp[jk];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;            posprop += prop[jk][i];
               if(agev[m][i]==1) agev[m][i]=iagemax+2;          }
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);           for(jk=1; jk <=nlstate ; jk++){
               if (s[m][i]>0 && s[m][i]<=nlstate) {             if(pos>=1.e-5){
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/              if(first==1)
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                 prop[s[m][i]][iagemax+3] += weight[i];               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               }             }else{
             }              if(first==1)
           } /* end selection of waves */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
       for(i=iagemin; i <= iagemax+3; i++){              if( i <= iagemax){
                       if(pos>=1.e-5){
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           posprop += prop[jk][i];                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         }                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
         for(jk=1; jk <=nlstate ; jk++){                   else
           if( i <=  iagemax){                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             if(posprop>=1.e-5){             }
               probs[i][jk][j1]= prop[jk][i]/posprop;          }
             }          
           }           for(jk=-1; jk <=nlstate+ndeath; jk++)
         }/* end jk */             for(m=-1; m <=nlstate+ndeath; m++)
       }/* end i */               if(freq[jk][m][i] !=0 ) {
     } /* end i1 */              if(first==1)
   } /* end k1 */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/              }
   /*free_vector(pp,1,nlstate);*/          if(i <= iagemax)
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);            fprintf(ficresp,"\n");
 }  /* End of prevalence */          if(first==1)
             printf("Others in log...\n");
 /************* Waves Concatenation ***************/          fprintf(ficlog,"\n");
         }
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      }
 {    }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    dateintmean=dateintsum/k2cpt;
      Death is a valid wave (if date is known).   
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    fclose(ficresp);
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      and mw[mi+1][i]. dh depends on stepm.    free_vector(pp,1,nlstate);
      */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
   int i, mi, m;  }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  /************ Prevalence ********************/
   int first;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int j, k=0,jk, ju, jl;  {  
   double sum=0.;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   first=0;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   jmin=1e+5;       We still use firstpass and lastpass as another selection.
   jmax=-1;    */
   jmean=0.;   
   for(i=1; i<=imx; i++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     mi=0;    double ***freq; /* Frequencies */
     m=firstpass;    double *pp, **prop;
     while(s[m][i] <= nlstate){    double pos,posprop;
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)    double  y2; /* in fractional years */
         mw[++mi][i]=m;    int iagemin, iagemax;
       if(m >=lastpass)  
         break;    iagemin= (int) agemin;
       else    iagemax= (int) agemax;
         m++;    /*pp=vector(1,nlstate);*/
     }/* end while */    prop=matrix(1,nlstate,iagemin,iagemax+3);
     if (s[m][i] > nlstate){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       mi++;     /* Death is another wave */    j1=0;
       /* if(mi==0)  never been interviewed correctly before death */   
          /* Only death is a correct wave */    j=cptcoveff;
       mw[mi][i]=m;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     }   
     for(k1=1; k1<=j;k1++){
     wav[i]=mi;      for(i1=1; i1<=ncodemax[k1];i1++){
     if(mi==0){        j1++;
       nbwarn++;       
       if(first==0){        for (i=1; i<=nlstate; i++)  
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);          for(m=iagemin; m <= iagemax+3; m++)
         first=1;            prop[i][m]=0.0;
       }       
       if(first==1){        for (i=1; i<=imx; i++) { /* Each individual */
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);          bool=1;
       }          if  (cptcovn>0) {
     } /* end mi==0 */            for (z1=1; z1<=cptcoveff; z1++)
   } /* End individuals */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                 bool=0;
   for(i=1; i<=imx; i++){          }
     for(mi=1; mi<wav[i];mi++){          if (bool==1) {
       if (stepm <=0)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         dh[mi][i]=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       else{              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           if (agedc[i] < 2*AGESUP) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
             if(j==0) j=1;  /* Survives at least one month after exam */                if (s[m][i]>0 && s[m][i]<=nlstate) {
             else if(j<0){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
               nberr++;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                  prop[s[m][i]][iagemax+3] += weight[i];
               j=1; /* Temporary Dangerous patch */                }
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);              }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            } /* end selection of waves */
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);          }
             }        }
             k=k+1;        for(i=iagemin; i <= iagemax+3; i++){  
             if (j >= jmax){         
               jmax=j;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
               ijmax=i;            posprop += prop[jk][i];
             }          }
             if (j <= jmin){  
               jmin=j;          for(jk=1; jk <=nlstate ; jk++){    
               ijmin=i;            if( i <=  iagemax){
             }              if(posprop>=1.e-5){
             sum=sum+j;                probs[i][jk][j1]= prop[jk][i]/posprop;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              }
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/            }
           }          }/* end jk */
         }        }/* end i */
         else{      } /* end i1 */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    } /* end k1 */
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */   
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           k=k+1;    /*free_vector(pp,1,nlstate);*/
           if (j >= jmax) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             jmax=j;  }  /* End of prevalence */
             ijmax=i;  
           }  /************* Waves Concatenation ***************/
           else if (j <= jmin){  
             jmin=j;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
             ijmin=i;  {
           }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       Death is a valid wave (if date is known).
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           if(j<0){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             nberr++;       and mw[mi+1][i]. dh depends on stepm.
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       */
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  
           }    int i, mi, m;
           sum=sum+j;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         }       double sum=0., jmean=0.;*/
         jk= j/stepm;    int first;
         jl= j -jk*stepm;    int j, k=0,jk, ju, jl;
         ju= j -(jk+1)*stepm;    double sum=0.;
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */    first=0;
           if(jl==0){    jmin=1e+5;
             dh[mi][i]=jk;    jmax=-1;
             bh[mi][i]=0;    jmean=0.;
           }else{ /* We want a negative bias in order to only have interpolation ie    for(i=1; i<=imx; i++){
                   * at the price of an extra matrix product in likelihood */      mi=0;
             dh[mi][i]=jk+1;      m=firstpass;
             bh[mi][i]=ju;      while(s[m][i] <= nlstate){
           }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         }else{          mw[++mi][i]=m;
           if(jl <= -ju){        if(m >=lastpass)
             dh[mi][i]=jk;          break;
             bh[mi][i]=jl;       /* bias is positive if real duration        else
                                  * is higher than the multiple of stepm and negative otherwise.          m++;
                                  */      }/* end while */
           }      if (s[m][i] > nlstate){
           else{        mi++;     /* Death is another wave */
             dh[mi][i]=jk+1;        /* if(mi==0)  never been interviewed correctly before death */
             bh[mi][i]=ju;           /* Only death is a correct wave */
           }        mw[mi][i]=m;
           if(dh[mi][i]==0){      }
             dh[mi][i]=1; /* At least one step */  
             bh[mi][i]=ju; /* At least one step */      wav[i]=mi;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/      if(mi==0){
           }        nbwarn++;
         } /* end if mle */        if(first==0){
       }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     } /* end wave */          first=1;
   }        }
   jmean=sum/k;        if(first==1){
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);        }
  }      } /* end mi==0 */
     } /* End individuals */
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    for(i=1; i<=imx; i++){
 {      for(mi=1; mi<wav[i];mi++){
           if (stepm <=0)
   int Ndum[20],ij=1, k, j, i, maxncov=19;          dh[mi][i]=1;
   int cptcode=0;        else{
   cptcoveff=0;           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   for (k=0; k<maxncov; k++) Ndum[k]=0;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   for (k=1; k<=7; k++) ncodemax[k]=0;              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {                nberr++;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                                modality*/                 j=1; /* Temporary Dangerous patch */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       Ndum[ij]++; /*store the modality */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable               }
                                        Tvar[j]. If V=sex and male is 0 and               k=k+1;
                                        female is 1, then  cptcode=1.*/              if (j >= jmax){
     }                jmax=j;
                 ijmax=i;
     for (i=0; i<=cptcode; i++) {              }
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              if (j <= jmin){
     }                jmin=j;
                 ijmin=i;
     ij=1;               }
     for (i=1; i<=ncodemax[j]; i++) {              sum=sum+j;
       for (k=0; k<= maxncov; k++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         if (Ndum[k] != 0) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           nbcode[Tvar[j]][ij]=k;             }
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */          }
                     else{
           ij++;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         if (ij > ncodemax[j]) break;   
       }              k=k+1;
     }             if (j >= jmax) {
   }                jmax=j;
               ijmax=i;
  for (k=0; k< maxncov; k++) Ndum[k]=0;            }
             else if (j <= jmin){
  for (i=1; i<=ncovmodel-2; i++) {               jmin=j;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/              ijmin=i;
    ij=Tvar[i];            }
    Ndum[ij]++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
  }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
  ij=1;              nberr++;
  for (i=1; i<= maxncov; i++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    if((Ndum[i]!=0) && (i<=ncovcol)){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      Tvaraff[ij]=i; /*For printing */            }
      ij++;            sum=sum+j;
    }          }
  }          jk= j/stepm;
            jl= j -jk*stepm;
  cptcoveff=ij-1; /*Number of simple covariates*/          ju= j -(jk+1)*stepm;
 }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
 /*********** Health Expectancies ****************/              dh[mi][i]=jk;
               bh[mi][i]=0;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
 {              dh[mi][i]=jk+1;
   /* Health expectancies */              bh[mi][i]=ju;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          }else{
   double ***p3mat,***varhe;            if(jl <= -ju){
   double **dnewm,**doldm;              dh[mi][i]=jk;
   double *xp;              bh[mi][i]=jl;       /* bias is positive if real duration
   double **gp, **gm;                                   * is higher than the multiple of stepm and negative otherwise.
   double ***gradg, ***trgradg;                                   */
   int theta;            }
             else{
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              dh[mi][i]=jk+1;
   xp=vector(1,npar);              bh[mi][i]=ju;
   dnewm=matrix(1,nlstate*nlstate,1,npar);            }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);            if(dh[mi][i]==0){
                 dh[mi][i]=1; /* At least one step */
   fprintf(ficreseij,"# Local time at start: %s", strstart);              bh[mi][i]=ju; /* At least one step */
   fprintf(ficreseij,"# Health expectancies\n");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)          } /* end if mle */
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      } /* end wave */
   fprintf(ficreseij,"\n");    }
     jmean=sum/k;
   if(estepm < stepm){    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     printf ("Problem %d lower than %d\n",estepm, stepm);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   }   }
   else  hstepm=estepm;     
   /* We compute the life expectancy from trapezoids spaced every estepm months  /*********** Tricode ****************************/
    * This is mainly to measure the difference between two models: for example  void tricode(int *Tvar, int **nbcode, int imx)
    * if stepm=24 months pijx are given only every 2 years and by summing them  {
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression in between and thus overestimating or underestimating according    int Ndum[20],ij=1, k, j, i, maxncov=19;
    * to the curvature of the survival function. If, for the same date, we     int cptcode=0;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    cptcoveff=0;
    * to compare the new estimate of Life expectancy with the same linear    
    * hypothesis. A more precise result, taking into account a more precise    for (k=0; k<maxncov; k++) Ndum[k]=0;
    * curvature will be obtained if estepm is as small as stepm. */    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   /* For example we decided to compute the life expectancy with the smallest unit */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
      nhstepm is the number of hstepm from age to agelim                                  modality*/
      nstepm is the number of stepm from age to agelin.         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
      Look at hpijx to understand the reason of that which relies in memory size        Ndum[ij]++; /*store the modality */
      and note for a fixed period like estepm months */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
      survival function given by stepm (the optimization length). Unfortunately it                                         Tvar[j]. If V=sex and male is 0 and
      means that if the survival funtion is printed only each two years of age and if                                         female is 1, then  cptcode=1.*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       }
      results. So we changed our mind and took the option of the best precision.  
   */      for (i=0; i<=cptcode; i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      ij=1;
     /* nhstepm age range expressed in number of stepm */      for (i=1; i<=ncodemax[j]; i++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         for (k=0; k<= maxncov; k++) {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           if (Ndum[k] != 0) {
     /* if (stepm >= YEARM) hstepm=1;*/            nbcode[Tvar[j]][ij]=k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);            ij++;
     gp=matrix(0,nhstepm,1,nlstate*nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate*nlstate);          if (ij > ncodemax[j]) break;
         }  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    }  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
     for (k=0; k< maxncov; k++) Ndum[k]=0;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */   for (i=1; i<=ncovmodel-2; i++) {
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     /* Computing  Variances of health expectancies */     ij=Tvar[i];
      Ndum[ij]++;
      for(theta=1; theta <=npar; theta++){   }
       for(i=1; i<=npar; i++){   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   ij=1;
       }   for (i=1; i<= maxncov; i++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       if((Ndum[i]!=0) && (i<=ncovcol)){
          Tvaraff[ij]=i; /*For printing */
       cptj=0;       ij++;
       for(j=1; j<= nlstate; j++){     }
         for(i=1; i<=nlstate; i++){   }
           cptj=cptj+1;   
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){   cptcoveff=ij-1; /*Number of simple covariates*/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  }
           }  
         }  /*********** Health Expectancies ****************/
       }  
        void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
        
       for(i=1; i<=npar; i++)   {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Health expectancies, no variances */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           double age, agelim, hf;
       cptj=0;    double ***p3mat;
       for(j=1; j<= nlstate; j++){    double eip;
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;    pstamp(ficreseij);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for(i=1; i<=nlstate;i++){
           }      for(j=1; j<=nlstate;j++){
         }        fprintf(ficreseij," e%1d%1d ",i,j);
       }      }
       for(j=1; j<= nlstate*nlstate; j++)      fprintf(ficreseij," e%1d. ",i);
         for(h=0; h<=nhstepm-1; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficreseij,"\n");
         }  
      }    
        if(estepm < stepm){
 /* End theta */      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    else  hstepm=estepm;  
     /* We compute the life expectancy from trapezoids spaced every estepm months
      for(h=0; h<=nhstepm-1; h++)     * This is mainly to measure the difference between two models: for example
       for(j=1; j<=nlstate*nlstate;j++)     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(theta=1; theta <=npar; theta++)     * we are calculating an estimate of the Life Expectancy assuming a linear
           trgradg[h][j][theta]=gradg[h][theta][j];     * progression in between and thus overestimating or underestimating according
           * to the curvature of the survival function. If, for the same date, we
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      for(i=1;i<=nlstate*nlstate;i++)     * to compare the new estimate of Life expectancy with the same linear
       for(j=1;j<=nlstate*nlstate;j++)     * hypothesis. A more precise result, taking into account a more precise
         varhe[i][j][(int)age] =0.;     * curvature will be obtained if estepm is as small as stepm. */
   
      printf("%d|",(int)age);fflush(stdout);    /* For example we decided to compute the life expectancy with the smallest unit */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
      for(h=0;h<=nhstepm-1;h++){       nhstepm is the number of hstepm from age to agelim
       for(k=0;k<=nhstepm-1;k++){       nstepm is the number of stepm from age to agelin.
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);       Look at hpijx to understand the reason of that which relies in memory size
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);       and note for a fixed period like estepm months */
         for(i=1;i<=nlstate*nlstate;i++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(j=1;j<=nlstate*nlstate;j++)       survival function given by stepm (the optimization length). Unfortunately it
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     }       results. So we changed our mind and took the option of the best precision.
     /* Computing expectancies */    */
     for(i=1; i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    agelim=AGESUP;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /* If stepm=6 months */
                 /* Computed by stepm unit matrices, product of hstepm matrices, stored
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      
         }  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     fprintf(ficreseij,"%3.0f",age );    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     cptj=0;    /* if (stepm >= YEARM) hstepm=1;*/
     for(i=1; i<=nlstate;i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(j=1; j<=nlstate;j++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    for (age=bage; age<=fage; age ++){
       }  
     fprintf(ficreseij,"\n");  
          hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);     
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);     
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);      printf("%d|",(int)age);fflush(stdout);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }     
   printf("\n");  
   fprintf(ficlog,"\n");      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   free_vector(xp,1,npar);        for(j=1; j<=nlstate;j++)
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);           
 }            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
 /************ Variance ******************/          }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])     
 {      fprintf(ficreseij,"%3.0f",age );
   /* Variance of health expectancies */      for(i=1; i<=nlstate;i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        eip=0;
   /* double **newm;*/        for(j=1; j<=nlstate;j++){
   double **dnewm,**doldm;          eip +=eij[i][j][(int)age];
   double **dnewmp,**doldmp;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;        fprintf(ficreseij,"%9.4f", eip );
   double *xp;      }
   double **gp, **gm;  /* for var eij */      fprintf(ficreseij,"\n");
   double ***gradg, ***trgradg; /*for var eij */     
   double **gradgp, **trgradgp; /* for var p point j */    }
   double *gpp, *gmp; /* for var p point j */    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    printf("\n");
   double ***p3mat;    fprintf(ficlog,"\n");
   double age,agelim, hf;   
   double ***mobaverage;  }
   int theta;  
   char digit[4];  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   char digitp[25];  
   {
   char fileresprobmorprev[FILENAMELENGTH];    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   if(popbased==1){    */
     if(mobilav!=0)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       strcpy(digitp,"-populbased-mobilav-");    double age, agelim, hf;
     else strcpy(digitp,"-populbased-nomobil-");    double ***p3matp, ***p3matm, ***varhe;
   }    double **dnewm,**doldm;
   else     double *xp, *xm;
     strcpy(digitp,"-stablbased-");    double **gp, **gm;
     double ***gradg, ***trgradg;
   if (mobilav!=0) {    int theta;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    double eip, vip;
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     }    xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   strcpy(fileresprobmorprev,"prmorprev");     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   sprintf(digit,"%-d",ij);   
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    pstamp(ficresstdeij);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    fprintf(ficresstdeij,"# Age");
   strcat(fileresprobmorprev,fileres);    for(i=1; i<=nlstate;i++){
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      for(j=1; j<=nlstate;j++)
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      fprintf(ficresstdeij," e%1d. ",i);
   }    }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    fprintf(ficresstdeij,"\n");
    
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    pstamp(ficrescveij);
   fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    fprintf(ficrescveij,"# Age");
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    for(i=1; i<=nlstate;i++)
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for(j=1; j<=nlstate;j++){
     fprintf(ficresprobmorprev," p.%-d SE",j);        cptj= (j-1)*nlstate+i;
     for(i=1; i<=nlstate;i++)        for(i2=1; i2<=nlstate;i2++)
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          for(j2=1; j2<=nlstate;j2++){
   }              cptj2= (j2-1)*nlstate+i2;
   fprintf(ficresprobmorprev,"\n");            if(cptj2 <= cptj)
   fprintf(ficgp,"\n# Routine varevsij");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/          }
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      }
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    fprintf(ficrescveij,"\n");
 /*   } */   
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    if(estepm < stepm){
  fprintf(ficresvij, "#Local time at start: %s", strstart);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    }
   fprintf(ficresvij,"# Age");    else  hstepm=estepm;  
   for(i=1; i<=nlstate;i++)    /* We compute the life expectancy from trapezoids spaced every estepm months
     for(j=1; j<=nlstate;j++)     * This is mainly to measure the difference between two models: for example
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);     * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficresvij,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear
      * progression in between and thus overestimating or underestimating according
   xp=vector(1,npar);     * to the curvature of the survival function. If, for the same date, we
   dnewm=matrix(1,nlstate,1,npar);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   doldm=matrix(1,nlstate,1,nlstate);     * to compare the new estimate of Life expectancy with the same linear
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);     * hypothesis. A more precise result, taking into account a more precise
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     * curvature will be obtained if estepm is as small as stepm. */
   
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    /* For example we decided to compute the life expectancy with the smallest unit */
   gpp=vector(nlstate+1,nlstate+ndeath);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   gmp=vector(nlstate+1,nlstate+ndeath);       nhstepm is the number of hstepm from age to agelim
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/       nstepm is the number of stepm from age to agelin.
          Look at hpijx to understand the reason of that which relies in memory size
   if(estepm < stepm){       and note for a fixed period like estepm months */
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   else  hstepm=estepm;          means that if the survival funtion is printed only each two years of age and if
   /* For example we decided to compute the life expectancy with the smallest unit */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        results. So we changed our mind and took the option of the best precision.
      nhstepm is the number of hstepm from age to agelim     */
      nstepm is the number of stepm from age to agelin.     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    /* If stepm=6 months */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* nhstepm age range expressed in number of stepm */
      survival function given by stepm (the optimization length). Unfortunately it    agelim=AGESUP;
      means that if the survival funtion is printed every two years of age and if    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     /* Typically if 20 years nstepm = 20*12/6=40 stepm */
      results. So we changed our mind and took the option of the best precision.    /* if (stepm >= YEARM) hstepm=1;*/
   */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
   agelim = AGESUP;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    for (age=bage; age<=fage; age ++){
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for(theta=1; theta <=npar; theta++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* Computing  Variances of health expectancies */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       if (popbased==1) {      for(theta=1; theta <=npar; theta++){
         if(mobilav ==0){        for(i=1; i<=npar; i++){
           for(i=1; i<=nlstate;i++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             prlim[i][i]=probs[(int)age][i][ij];          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }else{ /* mobilav */         }
           for(i=1; i<=nlstate;i++)        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
             prlim[i][i]=mobaverage[(int)age][i][ij];        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         }   
       }        for(j=1; j<= nlstate; j++){
             for(i=1; i<=nlstate; i++){
       for(j=1; j<= nlstate; j++){            for(h=0; h<=nhstepm-1; h++){
         for(h=0; h<=nhstepm; h++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }          }
       }        }
       /* This for computing probability of death (h=1 means       
          computed over hstepm matrices product = hstepm*stepm months)         for(ij=1; ij<= nlstate*nlstate; ij++)
          as a weighted average of prlim.          for(h=0; h<=nhstepm-1; h++){
       */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          }
         for(i=1,gpp[j]=0.; i<= nlstate; i++)      }/* End theta */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];     
       }         
       /* end probability of death */      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */          for(theta=1; theta <=npar; theta++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            trgradg[h][j][theta]=gradg[h][theta][j];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
         for(ij=1;ij<=nlstate*nlstate;ij++)
       if (popbased==1) {        for(ji=1;ji<=nlstate*nlstate;ji++)
         if(mobilav ==0){          varhe[ij][ji][(int)age] =0.;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];       printf("%d|",(int)age);fflush(stdout);
         }else{ /* mobilav */        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(i=1; i<=nlstate;i++)       for(h=0;h<=nhstepm-1;h++){
             prlim[i][i]=mobaverage[(int)age][i][ij];        for(k=0;k<=nhstepm-1;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
       for(j=1; j<= nlstate; j++){            for(ji=1;ji<=nlstate*nlstate;ji++)
         for(h=0; h<=nhstepm; h++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }  
       }      /* Computing expectancies */
       /* This for computing probability of death (h=1 means      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
          computed over hstepm matrices product = hstepm*stepm months)       for(i=1; i<=nlstate;i++)
          as a weighted average of prlim.        for(j=1; j<=nlstate;j++)
       */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)           
          gmp[j] += prlim[i][i]*p3mat[i][j][1];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }      
       /* end probability of death */          }
   
       for(j=1; j<= nlstate; j++) /* vareij */      fprintf(ficresstdeij,"%3.0f",age );
         for(h=0; h<=nhstepm; h++){      for(i=1; i<=nlstate;i++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        eip=0.;
         }        vip=0.;
         for(j=1; j<=nlstate;j++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          eip += eij[i][j][(int)age];
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       }            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     } /* End theta */        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      }
       fprintf(ficresstdeij,"\n");
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)      fprintf(ficrescveij,"%3.0f",age );
         for(theta=1; theta <=npar; theta++)      for(i=1; i<=nlstate;i++)
           trgradg[h][j][theta]=gradg[h][theta][j];        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          for(i2=1; i2<=nlstate;i2++)
       for(theta=1; theta <=npar; theta++)            for(j2=1; j2<=nlstate;j2++){
         trgradgp[j][theta]=gradgp[theta][j];              cptj2= (j2-1)*nlstate+i2;
                 if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
     for(i=1;i<=nlstate;i++)        }
       for(j=1;j<=nlstate;j++)      fprintf(ficrescveij,"\n");
         vareij[i][j][(int)age] =0.;     
     }
     for(h=0;h<=nhstepm;h++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       for(k=0;k<=nhstepm;k++){    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         for(i=1;i<=nlstate;i++)    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1;j<=nlstate;j++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
       free_vector(xm,1,npar);
     /* pptj */    free_vector(xp,1,npar);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  }
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */  /************ Variance ******************/
     /*  x centered again */  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    {
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     if (popbased==1) {    /* double **newm;*/
       if(mobilav ==0){    double **dnewm,**doldm;
         for(i=1; i<=nlstate;i++)    double **dnewmp,**doldmp;
           prlim[i][i]=probs[(int)age][i][ij];    int i, j, nhstepm, hstepm, h, nstepm ;
       }else{ /* mobilav */     int k, cptcode;
         for(i=1; i<=nlstate;i++)    double *xp;
           prlim[i][i]=mobaverage[(int)age][i][ij];    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
     }    double **gradgp, **trgradgp; /* for var p point j */
                  double *gpp, *gmp; /* for var p point j */
     /* This for computing probability of death (h=1 means    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     double ***p3mat;
        as a weighted average of prlim.    double age,agelim, hf;
     */    double ***mobaverage;
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    int theta;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     char digit[4];
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     char digitp[25];
     }      
     /* end probability of death */    char fileresprobmorprev[FILENAMELENGTH];
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    if(popbased==1){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      if(mobilav!=0)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        strcpy(digitp,"-populbased-mobilav-");
       for(i=1; i<=nlstate;i++){      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    }
       }    else
     }       strcpy(digitp,"-stablbased-");
     fprintf(ficresprobmorprev,"\n");  
     if (mobilav!=0) {
     fprintf(ficresvij,"%.0f ",age );      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(i=1; i<=nlstate;i++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for(j=1; j<=nlstate;j++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }      }
     fprintf(ficresvij,"\n");    }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);    strcpy(fileresprobmorprev,"prmorprev");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    sprintf(digit,"%-d",ij);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   } /* End age */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   free_vector(gpp,nlstate+1,nlstate+ndeath);    strcat(fileresprobmorprev,fileres);
   free_vector(gmp,nlstate+1,nlstate+ndeath);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");   
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    pstamp(ficresprobmorprev);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      fprintf(ficresprobmorprev," p.%-d SE",j);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));      for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    }  
 */    fprintf(ficresprobmorprev,"\n");
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   free_vector(xp,1,npar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   free_matrix(doldm,1,nlstate,1,nlstate);  /*   } */
   free_matrix(dnewm,1,nlstate,1,npar);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    pstamp(ficresvij);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    if(popbased==1)
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   fclose(ficresprobmorprev);    else
   fflush(ficgp);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   fflush(fichtm);     fprintf(ficresvij,"# Age");
 }  /* end varevsij */    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
 /************ Variance of prevlim ******************/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])    fprintf(ficresvij,"\n");
 {  
   /* Variance of prevalence limit */    xp=vector(1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    dnewm=matrix(1,nlstate,1,npar);
   double **newm;    doldm=matrix(1,nlstate,1,nlstate);
   double **dnewm,**doldm;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   int i, j, nhstepm, hstepm;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int k, cptcode;  
   double *xp;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   double *gp, *gm;    gpp=vector(nlstate+1,nlstate+ndeath);
   double **gradg, **trgradg;    gmp=vector(nlstate+1,nlstate+ndeath);
   double age,agelim;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int theta;   
   fprintf(ficresvpl, "#Local time at start: %s", strstart);     if(estepm < stepm){
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficresvpl,"# Age");    }
   for(i=1; i<=nlstate;i++)    else  hstepm=estepm;  
       fprintf(ficresvpl," %1d-%1d",i,i);    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficresvpl,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
   xp=vector(1,npar);       nstepm is the number of stepm from age to agelin.
   dnewm=matrix(1,nlstate,1,npar);       Look at hpijx to understand the reason of that which relies in memory size
   doldm=matrix(1,nlstate,1,nlstate);       and note for a fixed period like k years */
       /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   hstepm=1*YEARM; /* Every year of age */       survival function given by stepm (the optimization length). Unfortunately it
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        means that if the survival funtion is printed every two years of age and if
   agelim = AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       results. So we changed our mind and took the option of the best precision.
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     */
     if (stepm >= YEARM) hstepm=1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    agelim = AGESUP;
     gradg=matrix(1,npar,1,nlstate);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     gp=vector(1,nlstate);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     gm=vector(1,nlstate);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(theta=1; theta <=npar; theta++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for(i=1; i<=npar; i++){ /* Computes gradient */      gp=matrix(0,nhstepm,1,nlstate);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      gm=matrix(0,nhstepm,1,nlstate);
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)      for(theta=1; theta <=npar; theta++){
         gp[i] = prlim[i][i];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];        if (popbased==1) {
           if(mobilav ==0){
       for(i=1;i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              prlim[i][i]=probs[(int)age][i][ij];
     } /* End theta */          }else{ /* mobilav */
             for(i=1; i<=nlstate;i++)
     trgradg =matrix(1,nlstate,1,npar);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
     for(j=1; j<=nlstate;j++)        }
       for(theta=1; theta <=npar; theta++)   
         trgradg[j][theta]=gradg[theta][j];        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
     for(i=1;i<=nlstate;i++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       varpl[i][(int)age] =0.;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)        /* This for computing probability of death (h=1 means
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
     fprintf(ficresvpl,"%.0f ",age );        */
     for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     fprintf(ficresvpl,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_vector(gp,1,nlstate);        }    
     free_vector(gm,1,nlstate);        /* end probability of death */
     free_matrix(gradg,1,npar,1,nlstate);  
     free_matrix(trgradg,1,nlstate,1,npar);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   } /* End age */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   free_vector(xp,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(doldm,1,nlstate,1,npar);   
   free_matrix(dnewm,1,nlstate,1,nlstate);        if (popbased==1) {
           if(mobilav ==0){
 }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
 /************ Variance of one-step probabilities  ******************/          }else{ /* mobilav */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])            for(i=1; i<=nlstate;i++)
 {              prlim[i][i]=mobaverage[(int)age][i][ij];
   int i, j=0,  i1, k1, l1, t, tj;          }
   int k2, l2, j1,  z1;        }
   int k=0,l, cptcode;  
   int first=1, first1;        for(j=1; j<= nlstate; j++){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          for(h=0; h<=nhstepm; h++){
   double **dnewm,**doldm;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   double *xp;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double **mu;        /* This for computing probability of death (h=1 means
   double age,agelim, cov[NCOVMAX];           computed over hstepm matrices product = hstepm*stepm months)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */           as a weighted average of prlim.
   int theta;        */
   char fileresprob[FILENAMELENGTH];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   char fileresprobcov[FILENAMELENGTH];          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   char fileresprobcor[FILENAMELENGTH];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   double ***varpij;        /* end probability of death */
   
   strcpy(fileresprob,"prob");         for(j=1; j<= nlstate; j++) /* vareij */
   strcat(fileresprob,fileres);          for(h=0; h<=nhstepm; h++){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf("Problem with resultfile: %s\n", fileresprob);          }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   strcpy(fileresprobcov,"probcov");           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   strcat(fileresprobcov,fileres);        }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);      } /* End theta */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   strcpy(fileresprobcor,"probcor");   
   strcat(fileresprobcor,fileres);      for(h=0; h<=nhstepm; h++) /* veij */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        for(j=1; j<=nlstate;j++)
     printf("Problem with resultfile: %s\n", fileresprobcor);          for(theta=1; theta <=npar; theta++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        for(theta=1; theta <=npar; theta++)
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          trgradgp[j][theta]=gradgp[theta][j];
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);   
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresprob, "#Local time at start: %s", strstart);      for(i=1;i<=nlstate;i++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        for(j=1;j<=nlstate;j++)
   fprintf(ficresprob,"# Age");          vareij[i][j][(int)age] =0.;
   fprintf(ficresprobcov, "#Local time at start: %s", strstart);  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      for(h=0;h<=nhstepm;h++){
   fprintf(ficresprobcov,"# Age");        for(k=0;k<=nhstepm;k++){
   fprintf(ficresprobcor, "#Local time at start: %s", strstart);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   fprintf(ficresprobcov,"# Age");          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   for(i=1; i<=nlstate;i++)        }
     for(j=1; j<=(nlstate+ndeath);j++){      }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);   
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      /* pptj */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     }        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  /* fprintf(ficresprob,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   fprintf(ficresprobcov,"\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficresprobcor,"\n");          varppt[j][i]=doldmp[j][i];
  */      /* end ppptj */
  xp=vector(1,npar);      /*  x centered again */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);   
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      if (popbased==1) {
   first=1;        if(mobilav ==0){
   fprintf(ficgp,"\n# Routine varprob");          for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            prlim[i][i]=probs[(int)age][i][ij];
   fprintf(fichtm,"\n");        }else{ /* mobilav */
           for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);            prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        }
   file %s<br>\n",optionfilehtmcov);      }
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\               
 and drawn. It helps understanding how is the covariance between two incidences.\      /* This for computing probability of death (h=1 means
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months)
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \         as a weighted average of prlim.
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \      */
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 standard deviations wide on each axis. <br>\        for(i=1,gmp[j]=0.;i<= nlstate; i++)
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\          gmp[j] += prlim[i][i]*p3mat[i][j][1];
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      }    
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      /* end probability of death */
   
   cov[1]=1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   tj=cptcoveff;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   j1=0;        for(i=1; i<=nlstate;i++){
   for(t=1; t<=tj;t++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     for(i1=1; i1<=ncodemax[t];i1++){         }
       j1++;      }
       if  (cptcovn>0) {      fprintf(ficresprobmorprev,"\n");
         fprintf(ficresprob, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficresprob, "**********\n#\n");      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobcov, "\n#********** Variable ");         for(j=1; j<=nlstate;j++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         fprintf(ficresprobcov, "**********\n#\n");        }
               fprintf(ficresvij,"\n");
         fprintf(ficgp, "\n#********** Variable ");       free_matrix(gp,0,nhstepm,1,nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficgp, "**********\n#\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
               free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     } /* End age */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_vector(gpp,nlstate+1,nlstate+ndeath);
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    free_vector(gmp,nlstate+1,nlstate+ndeath);
             free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficresprobcor, "\n#********** Variable ");        free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         fprintf(ficresprobcor, "**********\n#");        /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
         /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       for (age=bage; age<=fage; age ++){   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         cov[2]=age;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         for (k=1; k<=cptcovn;k++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         for (k=1; k<=cptcovprod;k++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));    free_vector(xp,1,npar);
         free_matrix(doldm,1,nlstate,1,nlstate);
         for(theta=1; theta <=npar; theta++){    free_matrix(dnewm,1,nlstate,1,npar);
           for(i=1; i<=npar; i++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
               free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               fclose(ficresprobmorprev);
           k=0;    fflush(ficgp);
           for(i=1; i<= (nlstate); i++){    fflush(fichtm);
             for(j=1; j<=(nlstate+ndeath);j++){  }  /* end varevsij */
               k=k+1;  
               gp[k]=pmmij[i][j];  /************ Variance of prevlim ******************/
             }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           }  {
               /* Variance of prevalence limit */
           for(i=1; i<=npar; i++)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    double **newm;
         double **dnewm,**doldm;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int i, j, nhstepm, hstepm;
           k=0;    int k, cptcode;
           for(i=1; i<=(nlstate); i++){    double *xp;
             for(j=1; j<=(nlstate+ndeath);j++){    double *gp, *gm;
               k=k+1;    double **gradg, **trgradg;
               gm[k]=pmmij[i][j];    double age,agelim;
             }    int theta;
           }   
          pstamp(ficresvpl);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      fprintf(ficresvpl,"# Age");
         }    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    fprintf(ficresvpl,"\n");
           for(theta=1; theta <=npar; theta++)  
             trgradg[j][theta]=gradg[theta][j];    xp=vector(1,npar);
             dnewm=matrix(1,nlstate,1,npar);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     doldm=matrix(1,nlstate,1,nlstate);
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);   
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    hstepm=1*YEARM; /* Every year of age */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    agelim = AGESUP;
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         pmij(pmmij,cov,ncovmodel,x,nlstate);      if (stepm >= YEARM) hstepm=1;
               nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         k=0;      gradg=matrix(1,npar,1,nlstate);
         for(i=1; i<=(nlstate); i++){      gp=vector(1,nlstate);
           for(j=1; j<=(nlstate+ndeath);j++){      gm=vector(1,nlstate);
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient */
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             varpij[i][j][(int)age] = doldm[i][j];        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
         /*printf("\n%d ",(int)age);     
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(i=1; i<=npar; i++) /* Computes gradient */
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           }*/        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);        for(i=1;i<=nlstate;i++)
         fprintf(ficresprobcor,"\n%d ",(int)age);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      trgradg =matrix(1,nlstate,1,npar);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for(j=1; j<=nlstate;j++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for(theta=1; theta <=npar; theta++)
         }          trgradg[j][theta]=gradg[theta][j];
         i=0;  
         for (k=1; k<=(nlstate);k++){      for(i=1;i<=nlstate;i++)
           for (l=1; l<=(nlstate+ndeath);l++){         varpl[i][(int)age] =0.;
             i=i++;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(i=1;i<=nlstate;i++)
             for (j=1; j<=i;j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      fprintf(ficresvpl,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
           }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         }/* end of loop for state */      fprintf(ficresvpl,"\n");
       } /* end of loop for age */      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       /* Confidence intervalle of pij  */      free_matrix(gradg,1,npar,1,nlstate);
       /*      free_matrix(trgradg,1,nlstate,1,npar);
         fprintf(ficgp,"\nset noparametric;unset label");    } /* End age */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_vector(xp,1,npar);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    free_matrix(doldm,1,nlstate,1,npar);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    free_matrix(dnewm,1,nlstate,1,nlstate);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  }
       */  
   /************ Variance of one-step probabilities  ******************/
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       first1=1;  {
       for (k2=1; k2<=(nlstate);k2++){    int i, j=0,  i1, k1, l1, t, tj;
         for (l2=1; l2<=(nlstate+ndeath);l2++){     int k2, l2, j1,  z1;
           if(l2==k2) continue;    int k=0,l, cptcode;
           j=(k2-1)*(nlstate+ndeath)+l2;    int first=1, first1;
           for (k1=1; k1<=(nlstate);k1++){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
             for (l1=1; l1<=(nlstate+ndeath);l1++){     double **dnewm,**doldm;
               if(l1==k1) continue;    double *xp;
               i=(k1-1)*(nlstate+ndeath)+l1;    double *gp, *gm;
               if(i<=j) continue;    double **gradg, **trgradg;
               for (age=bage; age<=fage; age ++){     double **mu;
                 if ((int)age %5==0){    double age,agelim, cov[NCOVMAX];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    int theta;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    char fileresprob[FILENAMELENGTH];
                   mu1=mu[i][(int) age]/stepm*YEARM ;    char fileresprobcov[FILENAMELENGTH];
                   mu2=mu[j][(int) age]/stepm*YEARM;    char fileresprobcor[FILENAMELENGTH];
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */    double ***varpij;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    strcpy(fileresprob,"prob");
                   /* Eigen vectors */    strcat(fileresprob,fileres);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   /*v21=sqrt(1.-v11*v11); *//* error */      printf("Problem with resultfile: %s\n", fileresprob);
                   v21=(lc1-v1)/cv12*v11;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   v12=-v21;    }
                   v22=v11;    strcpy(fileresprobcov,"probcov");
                   tnalp=v21/v11;    strcat(fileresprobcov,fileres);
                   if(first1==1){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                     first1=0;      printf("Problem with resultfile: %s\n", fileresprobcov);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   }    }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    strcpy(fileresprobcor,"probcor");
                   /*printf(fignu*/    strcat(fileresprobcor,fileres);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      printf("Problem with resultfile: %s\n", fileresprobcor);
                   if(first==1){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                     first=0;    }
                     fprintf(ficgp,"\nset parametric;unset label");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    pstamp(ficresprob);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprob,"# Age");
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    pstamp(ficresprobcov);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fprintf(ficresprobcov,"# Age");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    pstamp(ficresprobcor);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    fprintf(ficresprobcor,"# Age");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }else{  
                     first=0;    for(i=1; i<=nlstate;i++)
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);      for(j=1; j<=(nlstate+ndeath);j++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      }  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));   /* fprintf(ficresprob,"\n");
                   }/* if first */    fprintf(ficresprobcov,"\n");
                 } /* age mod 5 */    fprintf(ficresprobcor,"\n");
               } /* end loop age */   */
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);   xp=vector(1,npar);
               first=1;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             } /*l12 */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           } /* k12 */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         } /*l1 */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       }/* k1 */    first=1;
     } /* loop covariates */    fprintf(ficgp,"\n# Routine varprob");
   }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    fprintf(fichtm,"\n");
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
   free_vector(xp,1,npar);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   fclose(ficresprob);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   fclose(ficresprobcov);    file %s<br>\n",optionfilehtmcov);
   fclose(ficresprobcor);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   fflush(ficgp);  and drawn. It helps understanding how is the covariance between two incidences.\
   fflush(fichtmcov);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 /******************* Printing html file ***********/  standard deviations wide on each axis. <br>\
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   int lastpass, int stepm, int weightopt, char model[],\   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \    cov[1]=1;
                   double jprev2, double mprev2,double anprev2){    tj=cptcoveff;
   int jj1, k1, i1, cpt;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    for(t=1; t<=tj;t++){
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \      for(i1=1; i1<=ncodemax[t];i1++){
 </ul>");        j1++;
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \        if  (cptcovn>0) {
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",          fprintf(ficresprob, "\n#********** Variable ");
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(fichtm,"\          fprintf(ficresprob, "**********\n#\n");
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",          fprintf(ficresprobcov, "\n#********** Variable ");
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(fichtm,"\          fprintf(ficresprobcov, "**********\n#\n");
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",         
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));          fprintf(ficgp, "\n#********** Variable ");
    fprintf(fichtm,"\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  - Life expectancies by age and initial health status (estepm=%2d months): \          fprintf(ficgp, "**********\n#\n");
    <a href=\"%s\">%s</a> <br>\n</li>",         
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));         
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
  m=cptcoveff;         
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  jj1=0;          fprintf(ficresprobcor, "**********\n#");    
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){       
      jj1++;        for (age=bage; age<=fage; age ++){
      if (cptcovn > 0) {          cov[2]=age;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for (k=1; k<=cptcovn;k++) {
        for (cpt=1; cpt<=cptcoveff;cpt++)             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      }          for (k=1; k<=cptcovprod;k++)
      /* Pij */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \         
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);               gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      /* Quasi-incidences */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\          gp=vector(1,(nlstate)*(nlstate+ndeath));
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \          gm=vector(1,(nlstate)*(nlstate+ndeath));
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      
        /* Stable prevalence in each health state */          for(theta=1; theta <=npar; theta++){
        for(cpt=1; cpt<nlstate;cpt++){            for(i=1; i<=npar; i++)
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);           
        }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      for(cpt=1; cpt<=nlstate;cpt++) {           
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \            k=0;
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);            for(i=1; i<= (nlstate); i++){
      }              for(j=1; j<=(nlstate+ndeath);j++){
    } /* end i1 */                k=k+1;
  }/* End k1 */                gp[k]=pmmij[i][j];
  fprintf(fichtm,"</ul>");              }
             }
            
  fprintf(fichtm,"\            for(i=1; i<=npar; i++)
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);     
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",            k=0;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));            for(i=1; i<=(nlstate); i++){
  fprintf(fichtm,"\              for(j=1; j<=(nlstate+ndeath);j++){
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",                k=k+1;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));                gm[k]=pmmij[i][j];
               }
  fprintf(fichtm,"\            }
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",       
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
  fprintf(fichtm,"\              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",          }
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));  
  fprintf(fichtm,"\          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",            for(theta=1; theta <=npar; theta++)
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));              trgradg[j][theta]=gradg[theta][j];
  fprintf(fichtm,"\         
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*  if(popforecast==1) fprintf(fichtm,"\n */          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*      <br>",fileres,fileres,fileres,fileres); */  
 /*  else  */          pmij(pmmij,cov,ncovmodel,x,nlstate);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */         
  fflush(fichtm);          k=0;
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
  m=cptcoveff;              k=k+1;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              mu[k][(int) age]=pmmij[i][j];
             }
  jj1=0;          }
  for(k1=1; k1<=m;k1++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    for(i1=1; i1<=ncodemax[k1];i1++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      jj1++;              varpij[i][j][(int)age] = doldm[i][j];
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          /*printf("\n%d ",(int)age);
        for (cpt=1; cpt<=cptcoveff;cpt++)             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      }            }*/
      for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \          fprintf(ficresprob,"\n%d ",(int)age);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\          fprintf(ficresprobcov,"\n%d ",(int)age);
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);            fprintf(ficresprobcor,"\n%d ",(int)age);
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 health expectancies in states (1) and (2): %s%d.png<br>\            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    } /* end i1 */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
  }/* End k1 */            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  fprintf(fichtm,"</ul>");          }
  fflush(fichtm);          i=0;
 }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){
 /******************* Gnuplot file **************/              i=i++;
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   char dirfileres[132],optfileres[132];              for (j=1; j<=i;j++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   int ng;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */              }
 /*     printf("Problem with file %s",optionfilegnuplot); */            }
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */          }/* end of loop for state */
 /*   } */        } /* end of loop for age */
   
   /*#ifdef windows */        /* Confidence intervalle of pij  */
   fprintf(ficgp,"cd \"%s\" \n",pathc);        /*
     /*#endif */          fprintf(ficgp,"\nset noparametric;unset label");
   m=pow(2,cptcoveff);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcpy(dirfileres,optionfilefiname);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   strcpy(optfileres,"vpl");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  /* 1eme*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   for (cpt=1; cpt<= nlstate ; cpt ++) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
    for (k1=1; k1<= m ; k1 ++) {        */
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);  
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
      fprintf(ficgp,"set xlabel \"Age\" \n\        first1=1;
 set ylabel \"Probability\" \n\        for (k2=1; k2<=(nlstate);k2++){
 set ter png small\n\          for (l2=1; l2<=(nlstate+ndeath);l2++){
 set size 0.65,0.65\n\            if(l2==k2) continue;
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);            j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
      for (i=1; i<= nlstate ; i ++) {              for (l1=1; l1<=(nlstate+ndeath);l1++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if(l1==k1) continue;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                i=(k1-1)*(nlstate+ndeath)+l1;
      }                if(i<=j) continue;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                for (age=bage; age<=fage; age ++){
      for (i=1; i<= nlstate ; i ++) {                  if ((int)age %5==0){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
      }                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);                     mu1=mu[i][(int) age]/stepm*YEARM ;
      for (i=1; i<= nlstate ; i ++) {                    mu2=mu[j][(int) age]/stepm*YEARM;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                    c12=cv12/sqrt(v1*v2);
        else fprintf(ficgp," \%%*lf (\%%*lf)");                    /* Computing eigen value of matrix of covariance */
      }                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
    }                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   /*2 eme*/                    /*v21=sqrt(1.-v11*v11); *//* error */
                       v21=(lc1-v1)/cv12*v11;
   for (k1=1; k1<= m ; k1 ++) {                     v12=-v21;
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);                    v22=v11;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                    tnalp=v21/v11;
                         if(first1==1){
     for (i=1; i<= nlstate+1 ; i ++) {                      first1=0;
       k=2*i;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                    }
       for (j=1; j<= nlstate+1 ; j ++) {                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                    /*printf(fignu*/
         else fprintf(ficgp," \%%*lf (\%%*lf)");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       }                       /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                    if(first==1){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                      first=0;
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                      fprintf(ficgp,"\nset parametric;unset label");
       for (j=1; j<= nlstate+1 ; j ++) {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       }      :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       fprintf(ficgp,"\" t\"\" w l 0,");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       for (j=1; j<= nlstate+1 ; j ++) {                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       }                         fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       else fprintf(ficgp,"\" t\"\" w l 0,");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                 mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /*3eme*/                    }else{
                         first=0;
   for (k1=1; k1<= m ; k1 ++) {                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     for (cpt=1; cpt<= nlstate ; cpt ++) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       k=2+nlstate*(2*cpt-2);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       fprintf(ficgp,"set ter png small\n\                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 set size 0.65,0.65\n\                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);                    }/* if first */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                  } /* age mod 5 */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                } /* end loop age */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                first=1;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              } /*l12 */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            } /* k12 */
                   } /*l1 */
       */        }/* k1 */
       for (i=1; i< nlstate ; i ++) {      } /* loop covariates */
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);    }
             free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       }     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       free_vector(xp,1,npar);
   /* CV preval stable (period) */    fclose(ficresprob);
   for (k1=1; k1<= m ; k1 ++) {     fclose(ficresprobcov);
     for (cpt=1; cpt<=nlstate ; cpt ++) {    fclose(ficresprobcor);
       k=3;    fflush(ficgp);
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);    fflush(fichtmcov);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\  }
 set ter png small\nset size 0.65,0.65\n\  
 unset log y\n\  
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);  /******************* Printing html file ***********/
         void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       for (i=1; i< nlstate ; i ++)                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficgp,"+$%d",k+i+1);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                    int popforecast, int estepm ,\
                           double jprev1, double mprev1,double anprev1, \
       l=3+(nlstate+ndeath)*cpt;                    double jprev2, double mprev2,double anprev2){
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);    int jj1, k1, i1, cpt;
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         fprintf(ficgp,"+$%d",l+i+1);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       }  </ul>");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     }    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   }               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
        fprintf(fichtm,"\
   /* proba elementaires */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   for(i=1,jk=1; i <=nlstate; i++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     for(k=1; k <=(nlstate+ndeath); k++){     fprintf(fichtm,"\
       if (k != i) {   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
         for(j=1; j <=ncovmodel; j++){             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     fprintf(fichtm,"\
           jk++;    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           fprintf(ficgp,"\n");     <a href=\"%s\">%s</a> <br>\n",
         }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       }     fprintf(fichtm,"\
     }   - Population projections by age and states: \
    }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    m=cptcoveff;
        if (ng==2)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else   jj1=0;
          fprintf(ficgp,"\nset title \"Probability\"\n");   for(k1=1; k1<=m;k1++){
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);     for(i1=1; i1<=ncodemax[k1];i1++){
        i=1;       jj1++;
        for(k2=1; k2<=nlstate; k2++) {       if (cptcovn > 0) {
          k3=i;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for(k=1; k<=(nlstate+ndeath); k++) {         for (cpt=1; cpt<=cptcoveff;cpt++)
            if (k != k2){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
              if(ng==2)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);       }
              else       /* Pij */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
              ij=1;  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
              for(j=3; j <=ncovmodel; j++) {       /* Quasi-incidences */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
                  ij++;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
                }         /* Period (stable) prevalence in each health state */
                else         for(cpt=1; cpt<nlstate;cpt++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
              }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
              fprintf(ficgp,")/(1");         }
                     for(cpt=1; cpt<=nlstate;cpt++) {
              for(k1=1; k1 <=nlstate; k1++){             fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
                ij=1;       }
                for(j=3; j <=ncovmodel; j++){     } /* end i1 */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   }/* End k1 */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);   fprintf(fichtm,"</ul>");
                    ij++;  
                  }  
                  else   fprintf(fichtm,"\
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                fprintf(ficgp,")");  
              }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   fprintf(fichtm,"\
              i=i+ncovmodel;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
          } /* end k */  
        } /* end k2 */   fprintf(fichtm,"\
      } /* end jk */   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    } /* end ng */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fflush(ficgp);    fprintf(fichtm,"\
 }  /* end gnuplot */   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
 /*************** Moving average **************/   fprintf(fichtm,"\
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   int i, cpt, cptcod;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   int modcovmax =1;   fprintf(fichtm,"\
   int mobilavrange, mob;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   double age;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
                            a covariate has 2 modalities */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     if(mobilav==1) mobilavrange=5; /* default */  
     else mobilavrange=mobilav;  /*  if(popforecast==1) fprintf(fichtm,"\n */
     for (age=bage; age<=fage; age++)  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       for (i=1; i<=nlstate;i++)  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         for (cptcod=1;cptcod<=modcovmax;cptcod++)  /*      <br>",fileres,fileres,fileres,fileres); */
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];  /*  else  */
     /* We keep the original values on the extreme ages bage, fage and for   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2   fflush(fichtm);
        we use a 5 terms etc. until the borders are no more concerned.    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     */   
     for (mob=3;mob <=mobilavrange;mob=mob+2){   m=cptcoveff;
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         for (i=1; i<=nlstate;i++){  
           for (cptcod=1;cptcod<=modcovmax;cptcod++){   jj1=0;
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];   for(k1=1; k1<=m;k1++){
               for (cpt=1;cpt<=(mob-1)/2;cpt++){     for(i1=1; i1<=ncodemax[k1];i1++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];       jj1++;
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];       if (cptcovn > 0) {
               }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;         for (cpt=1; cpt<=cptcoveff;cpt++)
           }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }/* end age */       }
     }/* end mob */       for(cpt=1; cpt<=nlstate;cpt++) {
   }else return -1;         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   return 0;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
 }/* End movingaverage */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
 /************** Forecasting ******************/  health expectancies in states (1) and (2): %s%d.png<br>\
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   /* proj1, year, month, day of starting projection      } /* end i1 */
      agemin, agemax range of age   }/* End k1 */
      dateprev1 dateprev2 range of dates during which prevalence is computed   fprintf(fichtm,"</ul>");
      anproj2 year of en of projection (same day and month as proj1).   fflush(fichtm);
   */  }
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;  
   int *popage;  /******************* Gnuplot file **************/
   double agec; /* generic age */  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    char dirfileres[132],optfileres[132];
   double ***p3mat;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   double ***mobaverage;    int ng;
   char fileresf[FILENAMELENGTH];  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   agelim=AGESUP;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  /*   } */
    
   strcpy(fileresf,"f");     /*#ifdef windows */
   strcat(fileresf,fileres);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      /*#endif */
     printf("Problem with forecast resultfile: %s\n", fileresf);    m=pow(2,cptcoveff);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }    strcpy(dirfileres,optionfilefiname);
   printf("Computing forecasting: result on file '%s' \n", fileresf);    strcpy(optfileres,"vpl");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   if (mobilav!=0) {       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficgp,"set xlabel \"Age\" \n\
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  set ylabel \"Probability\" \n\
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  set ter png small\n\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  set size 0.65,0.65\n\
     }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   }  
        for (i=1; i<= nlstate ; i ++) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (stepm<=12) stepsize=1;         else fprintf(ficgp," \%%*lf (\%%*lf)");
   if(estepm < stepm){       }
     printf ("Problem %d lower than %d\n",estepm, stepm);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   }       for (i=1; i<= nlstate ; i ++) {
   else  hstepm=estepm;            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=hstepm/stepm;        }
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
                                fractional in yp1 */       for (i=1; i<= nlstate ; i ++) {
   anprojmean=yp;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   yp2=modf((yp1*12),&yp);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   mprojmean=yp;       }  
   yp1=modf((yp2*30.5),&yp);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   jprojmean=yp;     }
   if(jprojmean==0) jprojmean=1;    }
   if(mprojmean==0) jprojmean=1;    /*2 eme*/
    
   i1=cptcoveff;    for (k1=1; k1<= m ; k1 ++) {
   if (cptcovn < 1){i1=1;}      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);      
         for (i=1; i<= nlstate+1 ; i ++) {
   fprintf(ficresf,"#****** Routine prevforecast **\n");        k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 /*            if (h==(int)(YEARM*yearp)){ */        for (j=1; j<= nlstate+1 ; j ++) {
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          else fprintf(ficgp," \%%*lf (\%%*lf)");
       k=k+1;        }  
       fprintf(ficresf,"\n#******");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       for(j=1;j<=cptcoveff;j++) {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficresf,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1; j<=nlstate+ndeath;j++){         }  
         for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\" t\"\" w l 0,");
           fprintf(ficresf," p%d%d",i,j);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficresf," p.%d",j);        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {           else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresf,"\n");        }  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
         for (agec=fage; agec>=(ageminpar-1); agec--){       }
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     }
           nhstepm = nhstepm/hstepm;    
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*3eme*/
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      for (k1=1; k1<= m ; k1 ++) {
               for (cpt=1; cpt<= nlstate ; cpt ++) {
           for (h=0; h<=nhstepm; h++){        /*       k=2+nlstate*(2*cpt-2); */
             if (h*hstepm/YEARM*stepm ==yearp) {        k=2+(nlstate+1)*(cpt-1);
               fprintf(ficresf,"\n");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
               for(j=1;j<=cptcoveff;j++)         fprintf(ficgp,"set ter png small\n\
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  set size 0.65,0.65\n\
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
             }         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
             for(j=1; j<=nlstate+ndeath;j++) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               ppij=0.;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               for(i=1; i<=nlstate;i++) {          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 if (mobilav==1)           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                 else {         
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        */
                 }        for (i=1; i< nlstate ; i ++) {
                 if (h*hstepm/YEARM*stepm== yearp) {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                 }         
               } /* end i */        }
               if (h*hstepm/YEARM*stepm==yearp) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                 fprintf(ficresf," %.3f", ppij);      }
               }    }
             }/* end j */   
           } /* end h */    /* CV preval stable (period) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (k1=1; k1<= m ; k1 ++) {
         } /* end agec */      for (cpt=1; cpt<=nlstate ; cpt ++) {
       } /* end yearp */        k=3;
     } /* end cptcod */        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   } /* end  cptcov */        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
          set ter png small\nset size 0.65,0.65\n\
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fclose(ficresf);       
 }        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
 /************** Forecasting *****not tested NB*************/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       
           l=3+(nlstate+ndeath)*cpt;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   int *popage;        for (i=1; i< nlstate ; i ++) {
   double calagedatem, agelim, kk1, kk2;          l=3+(nlstate+ndeath)*cpt;
   double *popeffectif,*popcount;          fprintf(ficgp,"+$%d",l+i+1);
   double ***p3mat,***tabpop,***tabpopprev;        }
   double ***mobaverage;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   char filerespop[FILENAMELENGTH];      }
     }  
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* proba elementaires */
   agelim=AGESUP;    for(i=1,jk=1; i <=nlstate; i++){
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          for(j=1; j <=ncovmodel; j++){
               fprintf(ficgp,"p%d=%f ",jk,p[jk]);
               jk++;
   strcpy(filerespop,"pop");             fprintf(ficgp,"\n");
   strcat(filerespop,fileres);          }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);      }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);     }
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   if (mobilav!=0) {         else
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(ficgp,"\nset title \"Probability\"\n");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);         i=1;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);         for(k2=1; k2<=nlstate; k2++) {
     }           k3=i;
   }           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
   stepsize=(int) (stepm+YEARM-1)/YEARM;               if(ng==2)
   if (stepm<=12) stepsize=1;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else
   agelim=AGESUP;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  ij=1;
   hstepm=1;               for(j=3; j <=ncovmodel; j++) {
   hstepm=hstepm/stepm;                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   if (popforecast==1) {                   ij++;
     if((ficpop=fopen(popfile,"r"))==NULL) {                 }
       printf("Problem with population file : %s\n",popfile);exit(0);                 else
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     }                }
     popage=ivector(0,AGESUP);               fprintf(ficgp,")/(1");
     popeffectif=vector(0,AGESUP);               
     popcount=vector(0,AGESUP);               for(k1=1; k1 <=nlstate; k1++){  
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     i=1;                    ij=1;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                 for(j=3; j <=ncovmodel; j++){
                       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     imx=i;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                     ij++;
   }                   }
                    else
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                 }
       k=k+1;                 fprintf(ficgp,")");
       fprintf(ficrespop,"\n#******");               }
       for(j=1;j<=cptcoveff;j++) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       }               i=i+ncovmodel;
       fprintf(ficrespop,"******\n");             }
       fprintf(ficrespop,"# Age");           } /* end k */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);         } /* end k2 */
       if (popforecast==1)  fprintf(ficrespop," [Population]");       } /* end jk */
            } /* end ng */
       for (cpt=0; cpt<=0;cpt++) {      fflush(ficgp);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     }  /* end gnuplot */
           
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){   
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   /*************** Moving average **************/
           nhstepm = nhstepm/hstepm;   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, cpt, cptcod;
           oldm=oldms;savm=savms;    int modcovmax =1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int mobilavrange, mob;
             double age;
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedatem+YEARM*cpt)) {    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                             a covariate has 2 modalities */
             }     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
               for(i=1; i<=nlstate;i++) {                    if(mobilav==1) mobilavrange=5; /* default */
                 if (mobilav==1)       else mobilavrange=mobilav;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for (age=bage; age<=fage; age++)
                 else {        for (i=1; i<=nlstate;i++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for (cptcod=1;cptcod<=modcovmax;cptcod++)
                 }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
               }      /* We keep the original values on the extreme ages bage, fage and for
               if (h==(int)(calagedatem+12*cpt)){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;         we use a 5 terms etc. until the borders are no more concerned.
                   /*fprintf(ficrespop," %.3f", kk1);      */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
               }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
             }          for (i=1; i<=nlstate;i++){
             for(i=1; i<=nlstate;i++){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               kk1=0.;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for(j=1; j<=nlstate;j++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                 }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];                }
             }              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)           }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        }/* end age */
           }      }/* end mob */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }else return -1;
         }    return 0;
       }  }/* End movingaverage */
    
   /******/  
   /************** Forecasting ******************/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       /* proj1, year, month, day of starting projection
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        agemin, agemax range of age
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        dateprev1 dateprev2 range of dates during which prevalence is computed
           nhstepm = nhstepm/hstepm;        anproj2 year of en of projection (same day and month as proj1).
               */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
           oldm=oldms;savm=savms;    int *popage;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double agec; /* generic age */
           for (h=0; h<=nhstepm; h++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
             if (h==(int) (calagedatem+YEARM*cpt)) {    double *popeffectif,*popcount;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***p3mat;
             }     double ***mobaverage;
             for(j=1; j<=nlstate+ndeath;j++) {    char fileresf[FILENAMELENGTH];
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  agelim=AGESUP;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
               }   
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);            strcpy(fileresf,"f");
             }    strcat(fileresf,fileres);
           }    if((ficresf=fopen(fileresf,"w"))==NULL) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with forecast resultfile: %s\n", fileresf);
         }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       }    }
    }     printf("Computing forecasting: result on file '%s' \n", fileresf);
   }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
    
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   if (popforecast==1) {    if (mobilav!=0) {
     free_ivector(popage,0,AGESUP);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(popeffectif,0,AGESUP);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     free_vector(popcount,0,AGESUP);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   fclose(ficrespop);  
 } /* End of popforecast */    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
 int fileappend(FILE *fichier, char *optionfich)    if(estepm < stepm){
 {      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((fichier=fopen(optionfich,"a"))==NULL) {    }
     printf("Problem with file: %s\n", optionfich);    else  hstepm=estepm;  
     fprintf(ficlog,"Problem with file: %s\n", optionfich);  
     return (0);    hstepm=hstepm/stepm;
   }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   fflush(fichier);                                 fractional in yp1 */
   return (1);    anprojmean=yp;
 }    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
 /**************** function prwizard **********************/    jprojmean=yp;
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)    if(jprojmean==0) jprojmean=1;
 {    if(mprojmean==0) jprojmean=1;
   
   /* Wizard to print covariance matrix template */    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   char ca[32], cb[32], cc[32];   
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   int numlinepar;   
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /*            if (h==(int)(YEARM*yearp)){ */
   for(i=1; i <=nlstate; i++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     jj=0;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     for(j=1; j <=nlstate+ndeath; j++){        k=k+1;
       if(j==i) continue;        fprintf(ficresf,"\n#******");
       jj++;        for(j=1;j<=cptcoveff;j++) {
       /*ca[0]= k+'a'-1;ca[1]='\0';*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       printf("%1d%1d",i,j);        }
       fprintf(ficparo,"%1d%1d",i,j);        fprintf(ficresf,"******\n");
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         /*        printf(" %lf",param[i][j][k]); */        for(j=1; j<=nlstate+ndeath;j++){
         /*        fprintf(ficparo," %lf",param[i][j][k]); */          for(i=1; i<=nlstate;i++)              
         printf(" 0.");            fprintf(ficresf," p%d%d",i,j);
         fprintf(ficparo," 0.");          fprintf(ficresf," p.%d",j);
       }        }
       printf("\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
       fprintf(ficparo,"\n");          fprintf(ficresf,"\n");
     }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   }  
   printf("# Scales (for hessian or gradient estimation)\n");          for (agec=fage; agec>=(ageminpar-1); agec--){
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/             nhstepm = nhstepm/hstepm;
   for(i=1; i <=nlstate; i++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     jj=0;            oldm=oldms;savm=savms;
     for(j=1; j <=nlstate+ndeath; j++){            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
       if(j==i) continue;         
       jj++;            for (h=0; h<=nhstepm; h++){
       fprintf(ficparo,"%1d%1d",i,j);              if (h*hstepm/YEARM*stepm ==yearp) {
       printf("%1d%1d",i,j);                fprintf(ficresf,"\n");
       fflush(stdout);                for(j=1;j<=cptcoveff;j++)
       for(k=1; k<=ncovmodel;k++){                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         /*      printf(" %le",delti3[i][j][k]); */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */              }
         printf(" 0.");              for(j=1; j<=nlstate+ndeath;j++) {
         fprintf(ficparo," 0.");                ppij=0.;
       }                for(i=1; i<=nlstate;i++) {
       numlinepar++;                  if (mobilav==1)
       printf("\n");                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       fprintf(ficparo,"\n");                  else {
     }                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   }                  }
   printf("# Covariance matrix\n");                  if (h*hstepm/YEARM*stepm== yearp) {
 /* # 121 Var(a12)\n\ */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                  }
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                } /* end i */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                if (h*hstepm/YEARM*stepm==yearp) {
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                  fprintf(ficresf," %.3f", ppij);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                }
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */              }/* end j */
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */            } /* end h */
   fflush(stdout);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"# Covariance matrix\n");          } /* end agec */
   /* # 121 Var(a12)\n\ */        } /* end yearp */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */      } /* end cptcod */
   /* #   ...\n\ */    } /* end  cptcov */
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */         
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(itimes=1;itimes<=2;itimes++){  
     jj=0;    fclose(ficresf);
     for(i=1; i <=nlstate; i++){  }
       for(j=1; j <=nlstate+ndeath; j++){  
         if(j==i) continue;  /************** Forecasting *****not tested NB*************/
         for(k=1; k<=ncovmodel;k++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
           jj++;   
           ca[0]= k+'a'-1;ca[1]='\0';    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
           if(itimes==1){    int *popage;
             printf("#%1d%1d%d",i,j,k);    double calagedatem, agelim, kk1, kk2;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    double *popeffectif,*popcount;
           }else{    double ***p3mat,***tabpop,***tabpopprev;
             printf("%1d%1d%d",i,j,k);    double ***mobaverage;
             fprintf(ficparo,"%1d%1d%d",i,j,k);    char filerespop[FILENAMELENGTH];
             /*  printf(" %.5le",matcov[i][j]); */  
           }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           ll=0;    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(li=1;li <=nlstate; li++){    agelim=AGESUP;
             for(lj=1;lj <=nlstate+ndeath; lj++){    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
               if(lj==li) continue;   
               for(lk=1;lk<=ncovmodel;lk++){    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                 ll++;   
                 if(ll<=jj){   
                   cb[0]= lk +'a'-1;cb[1]='\0';    strcpy(filerespop,"pop");
                   if(ll<jj){    strcat(filerespop,fileres);
                     if(itimes==1){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      printf("Problem with forecast resultfile: %s\n", filerespop);
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                     }else{    }
                       printf(" 0.");    printf("Computing forecasting: result on file '%s' \n", filerespop);
                       fprintf(ficparo," 0.");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                     }  
                   }else{    if (cptcoveff==0) ncodemax[cptcoveff]=1;
                     if(itimes==1){  
                       printf(" Var(%s%1d%1d)",ca,i,j);    if (mobilav!=0) {
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     }else{      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                       printf(" 0.");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                       fprintf(ficparo," 0.");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                     }      }
                   }    }
                 }  
               } /* end lk */    stepsize=(int) (stepm+YEARM-1)/YEARM;
             } /* end lj */    if (stepm<=12) stepsize=1;
           } /* end li */   
           printf("\n");    agelim=AGESUP;
           fprintf(ficparo,"\n");   
           numlinepar++;    hstepm=1;
         } /* end k*/    hstepm=hstepm/stepm;
       } /*end j */   
     } /* end i */    if (popforecast==1) {
   } /* end itimes */      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
 } /* end of prwizard */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
 /******************* Gompertz Likelihood ******************************/      }
 double gompertz(double x[])      popage=ivector(0,AGESUP);
 {       popeffectif=vector(0,AGESUP);
   double A,B,L=0.0,sump=0.,num=0.;      popcount=vector(0,AGESUP);
   int i,n=0; /* n is the size of the sample */     
       i=1;  
   for (i=0;i<=imx-1 ; i++) {      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     sump=sump+weight[i];     
     /*    sump=sump+1;*/      imx=i;
     num=num+1;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   }    }
    
      for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   /* for (i=0; i<=imx; i++)      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/        k=k+1;
         fprintf(ficrespop,"\n#******");
   for (i=1;i<=imx ; i++)        for(j=1;j<=cptcoveff;j++) {
     {          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       if (cens[i] == 1 && wav[i]>1)        }
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));        fprintf(ficrespop,"******\n");
               fprintf(ficrespop,"# Age");
       if (cens[i] == 0 && wav[i]>1)        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))        if (popforecast==1)  fprintf(ficrespop," [Population]");
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);         
               for (cpt=0; cpt<=0;cpt++) {
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       if (wav[i] > 1 ) { /* ??? */         
         L=L+A*weight[i];          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
       }            nhstepm = nhstepm/hstepm;
     }           
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   return -2*L*num/sump;         
 }            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 /******************* Printing html file ***********/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \              }
                   int lastpass, int stepm, int weightopt, char model[],\              for(j=1; j<=nlstate+ndeath;j++) {
                   int imx,  double p[],double **matcov,double agemortsup){                kk1=0.;kk2=0;
   int i,k;                for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1)
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);                  else {
   for (i=1;i<=2;i++)                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));                  }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");                }
   fprintf(fichtm,"</ul>");                if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");                }
               }
  for (k=agegomp;k<(agemortsup-2);k++)               for(i=1; i<=nlstate;i++){
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                kk1=0.;
                   for(j=1; j<=nlstate;j++){
                      kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   fflush(fichtm);                  }
 }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
 /******************* Gnuplot file **************/  
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   char dirfileres[132],optfileres[132];            }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int ng;          }
         }
    
   /*#ifdef windows */    /******/
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
     /*#endif */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   strcpy(dirfileres,optionfilefiname);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   strcpy(optfileres,"vpl");            nhstepm = nhstepm/hstepm;
   fprintf(ficgp,"set out \"graphmort.png\"\n ");            
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficgp, "set ter png small\n set log y\n");             oldm=oldms;savm=savms;
   fprintf(ficgp, "set size 0.65,0.65\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 }                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
 /***********************************************/                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
 /**************** Main Program *****************/                }
 /***********************************************/                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
 int main(int argc, char *argv[])            }
 {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);          }
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;        }
   int linei, month, year,iout;     }
   int jj, ll, li, lj, lk, imk;    }
   int numlinepar=0; /* Current linenumber of parameter file */   
   int itimes;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int NDIM=2;  
     if (popforecast==1) {
   char ca[32], cb[32], cc[32];      free_ivector(popage,0,AGESUP);
   char dummy[]="                         ";      free_vector(popeffectif,0,AGESUP);
   /*  FILE *fichtm; *//* Html File */      free_vector(popcount,0,AGESUP);
   /* FILE *ficgp;*/ /*Gnuplot File */    }
   struct stat info;    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double agedeb, agefin,hf;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    fclose(ficrespop);
   } /* End of popforecast */
   double fret;  
   double **xi,tmp,delta;  int fileappend(FILE *fichier, char *optionfich)
   {
   double dum; /* Dummy variable */    if((fichier=fopen(optionfich,"a"))==NULL) {
   double ***p3mat;      printf("Problem with file: %s\n", optionfich);
   double ***mobaverage;      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   int *indx;      return (0);
   char line[MAXLINE], linepar[MAXLINE];    }
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    fflush(fichier);
   char pathr[MAXLINE], pathimach[MAXLINE];     return (1);
   int firstobs=1, lastobs=10;  }
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  
   int ju,jl, mi;  /**************** function prwizard **********************/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   {
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */  
   int mobilav=0,popforecast=0;    /* Wizard to print covariance matrix template */
   int hstepm, nhstepm;  
   int agemortsup;    char ca[32], cb[32], cc[32];
   float  sumlpop=0.;    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    int numlinepar;
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double bage, fage, age, agelim, agebase;    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   double ftolpl=FTOL;    for(i=1; i <=nlstate; i++){
   double **prlim;      jj=0;
   double *severity;      for(j=1; j <=nlstate+ndeath; j++){
   double ***param; /* Matrix of parameters */        if(j==i) continue;
   double  *p;        jj++;
   double **matcov; /* Matrix of covariance */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   double ***delti3; /* Scale */        printf("%1d%1d",i,j);
   double *delti; /* Scale */        fprintf(ficparo,"%1d%1d",i,j);
   double ***eij, ***vareij;        for(k=1; k<=ncovmodel;k++){
   double **varpl; /* Variances of prevalence limits by age */          /*        printf(" %lf",param[i][j][k]); */
   double *epj, vepp;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   double kk1, kk2;          printf(" 0.");
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;          fprintf(ficparo," 0.");
   double **ximort;        }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        printf("\n");
   int *dcwave;        fprintf(ficparo,"\n");
       }
   char z[1]="c", occ;    }
     printf("# Scales (for hessian or gradient estimation)\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   char strstart[80], *strt, strtend[80];    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   char *stratrunc;    for(i=1; i <=nlstate; i++){
   int lstra;      jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
   long total_usecs;        if(j==i) continue;
          jj++;
 /*   setlocale (LC_ALL, ""); */        fprintf(ficparo,"%1d%1d",i,j);
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */        printf("%1d%1d",i,j);
 /*   textdomain (PACKAGE); */        fflush(stdout);
 /*   setlocale (LC_CTYPE, ""); */        for(k=1; k<=ncovmodel;k++){
 /*   setlocale (LC_MESSAGES, ""); */          /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          printf(" 0.");
   (void) gettimeofday(&start_time,&tzp);          fprintf(ficparo," 0.");
   curr_time=start_time;        }
   tm = *localtime(&start_time.tv_sec);        numlinepar++;
   tmg = *gmtime(&start_time.tv_sec);        printf("\n");
   strcpy(strstart,asctime(&tm));        fprintf(ficparo,"\n");
       }
 /*  printf("Localtime (at start)=%s",strstart); */    }
 /*  tp.tv_sec = tp.tv_sec +86400; */    printf("# Covariance matrix\n");
 /*  tm = *localtime(&start_time.tv_sec); */  /* # 121 Var(a12)\n\ */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */  /* # 122 Cov(b12,a12) Var(b12)\n\ */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
 /*   tmg.tm_hour=tmg.tm_hour + 1; */  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
 /*   tp.tv_sec = mktime(&tmg); */  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
 /*   strt=asctime(&tmg); */  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
 /*   printf("Time(after) =%s",strstart);  */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
 /*  (void) time (&time_value);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    fflush(stdout);
 *  tm = *localtime(&time_value);    fprintf(ficparo,"# Covariance matrix\n");
 *  strstart=asctime(&tm);    /* # 121 Var(a12)\n\ */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);     /* # 122 Cov(b12,a12) Var(b12)\n\ */
 */    /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   nberr=0; /* Number of errors and warnings */   
   nbwarn=0;    for(itimes=1;itimes<=2;itimes++){
   getcwd(pathcd, size);      jj=0;
       for(i=1; i <=nlstate; i++){
   printf("\n%s\n%s",version,fullversion);        for(j=1; j <=nlstate+ndeath; j++){
   if(argc <=1){          if(j==i) continue;
     printf("\nEnter the parameter file name: ");          for(k=1; k<=ncovmodel;k++){
     scanf("%s",pathtot);            jj++;
   }            ca[0]= k+'a'-1;ca[1]='\0';
   else{            if(itimes==1){
     strcpy(pathtot,argv[1]);              printf("#%1d%1d%d",i,j,k);
   }              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/            }else{
   /*cygwin_split_path(pathtot,path,optionfile);              printf("%1d%1d%d",i,j,k);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              fprintf(ficparo,"%1d%1d%d",i,j,k);
   /* cutv(path,optionfile,pathtot,'\\');*/              /*  printf(" %.5le",matcov[i][j]); */
             }
   /* Split argv[0], imach program to get pathimach */            ll=0;
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);            for(li=1;li <=nlstate; li++){
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);              for(lj=1;lj <=nlstate+ndeath; lj++){
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);                if(lj==li) continue;
  /*   strcpy(pathimach,argv[0]); */                for(lk=1;lk<=ncovmodel;lk++){
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */                  ll++;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                  if(ll<=jj){
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                    cb[0]= lk +'a'-1;cb[1]='\0';
   chdir(path);                    if(ll<jj){
   strcpy(command,"mkdir ");                      if(itimes==1){
   strcat(command,optionfilefiname);                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   if((outcmd=system(command)) != 0){                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);                      }else{
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */                        printf(" 0.");
     /* fclose(ficlog); */                        fprintf(ficparo," 0.");
 /*     exit(1); */                      }
   }                    }else{
 /*   if((imk=mkdir(optionfilefiname))<0){ */                      if(itimes==1){
 /*     perror("mkdir"); */                        printf(" Var(%s%1d%1d)",ca,i,j);
 /*   } */                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
   /*-------- arguments in the command line --------*/                        printf(" 0.");
                         fprintf(ficparo," 0.");
   /* Log file */                      }
   strcat(filelog, optionfilefiname);                    }
   strcat(filelog,".log");    /* */                  }
   if((ficlog=fopen(filelog,"w"))==NULL)    {                } /* end lk */
     printf("Problem with logfile %s\n",filelog);              } /* end lj */
     goto end;            } /* end li */
   }            printf("\n");
   fprintf(ficlog,"Log filename:%s\n",filelog);            fprintf(ficparo,"\n");
   fprintf(ficlog,"\n%s\n%s",version,fullversion);            numlinepar++;
   fprintf(ficlog,"\nEnter the parameter file name: \n");          } /* end k*/
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\        } /*end j */
  path=%s \n\      } /* end i */
  optionfile=%s\n\    } /* end itimes */
  optionfilext=%s\n\  
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);  } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   printf("Local time (at start):%s",strstart);  double gompertz(double x[])
   fprintf(ficlog,"Local time (at start): %s",strstart);  {
   fflush(ficlog);    double A,B,L=0.0,sump=0.,num=0.;
 /*   (void) gettimeofday(&curr_time,&tzp); */    int i,n=0; /* n is the size of the sample */
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */  
     for (i=0;i<=imx-1 ; i++) {
   /* */      sump=sump+weight[i];
   strcpy(fileres,"r");      /*    sump=sump+1;*/
   strcat(fileres, optionfilefiname);      num=num+1;
   strcat(fileres,".txt");    /* Other files have txt extension */    }
    
   /*---------arguments file --------*/   
     /* for (i=0; i<=imx; i++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    for (i=1;i<=imx ; i++)
     fflush(ficlog);      {
     goto end;        if (cens[i] == 1 && wav[i]>1)
   }          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   strcpy(filereso,"o");               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   strcat(filereso,fileres);       
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
     printf("Problem with Output resultfile: %s\n", filereso);        if (wav[i] > 1 ) { /* ??? */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          L=L+A*weight[i];
     fflush(ficlog);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     goto end;        }
   }      }
   
   /* Reads comments: lines beginning with '#' */   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   numlinepar=0;   
   while((c=getc(ficpar))=='#' && c!= EOF){    return -2*L*num/sump;
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;  /******************* Printing html file ***********/
     puts(line);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     fputs(line,ficparo);                    int lastpass, int stepm, int weightopt, char model[],\
     fputs(line,ficlog);                    int imx,  double p[],double **matcov,double agemortsup){
   }    int i,k;
   ungetc(c,ficpar);  
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   numlinepar++;    for (i=1;i<=2;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(fichtm,"</ul>");
   fflush(ficlog);  
   while((c=getc(ficpar))=='#' && c!= EOF){  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     numlinepar++;  
     puts(line);   for (k=agegomp;k<(agemortsup-2);k++)
     fputs(line,ficparo);     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     fputs(line,ficlog);  
   }   
   ungetc(c,ficpar);    fflush(fichtm);
   }
      
   covar=matrix(0,NCOVMAX,1,n);   /******************* Gnuplot file **************/
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     char dirfileres[132],optfileres[132];
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    int ng;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*#ifdef windows */
   delti=delti3[1][1];    fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/      /*#endif */
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    strcpy(dirfileres,optionfilefiname);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    strcpy(optfileres,"vpl");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     fprintf(ficgp,"set out \"graphmort.png\"\n ");
     fclose (ficparo);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fclose (ficlog);    fprintf(ficgp, "set ter png small\n set log y\n");
     exit(0);    fprintf(ficgp, "set size 0.65,0.65\n");
   }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   else if(mle==-3) {  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  }
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     matcov=matrix(1,npar,1,npar);  
   }  
   else{  /***********************************************/
     /* Read guess parameters */  /**************** Main Program *****************/
     /* Reads comments: lines beginning with '#' */  /***********************************************/
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  int main(int argc, char *argv[])
       fgets(line, MAXLINE, ficpar);  {
       numlinepar++;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       puts(line);    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
       fputs(line,ficparo);    int linei, month, year,iout;
       fputs(line,ficlog);    int jj, ll, li, lj, lk, imk;
     }    int numlinepar=0; /* Current linenumber of parameter file */
     ungetc(c,ficpar);    int itimes;
         int NDIM=2;
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++){    char ca[32], cb[32], cc[32];
       j=0;    char dummy[]="                         ";
       for(jj=1; jj <=nlstate+ndeath; jj++){    /*  FILE *fichtm; *//* Html File */
         if(jj==i) continue;    /* FILE *ficgp;*/ /*Gnuplot File */
         j++;    struct stat info;
         fscanf(ficpar,"%1d%1d",&i1,&j1);    double agedeb, agefin,hf;
         if ((i1 != i) && (j1 != j)){    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
           exit(1);    double fret;
         }    double **xi,tmp,delta;
         fprintf(ficparo,"%1d%1d",i1,j1);  
         if(mle==1)    double dum; /* Dummy variable */
           printf("%1d%1d",i,j);    double ***p3mat;
         fprintf(ficlog,"%1d%1d",i,j);    double ***mobaverage;
         for(k=1; k<=ncovmodel;k++){    int *indx;
           fscanf(ficpar," %lf",&param[i][j][k]);    char line[MAXLINE], linepar[MAXLINE];
           if(mle==1){    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
             printf(" %lf",param[i][j][k]);    char pathr[MAXLINE], pathimach[MAXLINE];
             fprintf(ficlog," %lf",param[i][j][k]);    char **bp, *tok, *val; /* pathtot */
           }    int firstobs=1, lastobs=10;
           else    int sdeb, sfin; /* Status at beginning and end */
             fprintf(ficlog," %lf",param[i][j][k]);    int c,  h , cpt,l;
           fprintf(ficparo," %lf",param[i][j][k]);    int ju,jl, mi;
         }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
         fscanf(ficpar,"\n");    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
         numlinepar++;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
         if(mle==1)    int mobilav=0,popforecast=0;
           printf("\n");    int hstepm, nhstepm;
         fprintf(ficlog,"\n");    int agemortsup;
         fprintf(ficparo,"\n");    float  sumlpop=0.;
       }    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     }      double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     fflush(ficlog);  
     double bage, fage, age, agelim, agebase;
     p=param[1][1];    double ftolpl=FTOL;
         double **prlim;
     /* Reads comments: lines beginning with '#' */    double *severity;
     while((c=getc(ficpar))=='#' && c!= EOF){    double ***param; /* Matrix of parameters */
       ungetc(c,ficpar);    double  *p;
       fgets(line, MAXLINE, ficpar);    double **matcov; /* Matrix of covariance */
       numlinepar++;    double ***delti3; /* Scale */
       puts(line);    double *delti; /* Scale */
       fputs(line,ficparo);    double ***eij, ***vareij;
       fputs(line,ficlog);    double **varpl; /* Variances of prevalence limits by age */
     }    double *epj, vepp;
     ungetc(c,ficpar);    double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     for(i=1; i <=nlstate; i++){    double **ximort;
       for(j=1; j <=nlstate+ndeath-1; j++){    char *alph[]={"a","a","b","c","d","e"}, str[4];
         fscanf(ficpar,"%1d%1d",&i1,&j1);    int *dcwave;
         if ((i1-i)*(j1-j)!=0){  
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    char z[1]="c", occ;
           exit(1);  
         }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
         printf("%1d%1d",i,j);    char  *strt, strtend[80];
         fprintf(ficparo,"%1d%1d",i1,j1);    char *stratrunc;
         fprintf(ficlog,"%1d%1d",i1,j1);    int lstra;
         for(k=1; k<=ncovmodel;k++){  
           fscanf(ficpar,"%le",&delti3[i][j][k]);    long total_usecs;
           printf(" %le",delti3[i][j][k]);   
           fprintf(ficparo," %le",delti3[i][j][k]);  /*   setlocale (LC_ALL, ""); */
           fprintf(ficlog," %le",delti3[i][j][k]);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
         }  /*   textdomain (PACKAGE); */
         fscanf(ficpar,"\n");  /*   setlocale (LC_CTYPE, ""); */
         numlinepar++;  /*   setlocale (LC_MESSAGES, ""); */
         printf("\n");  
         fprintf(ficparo,"\n");    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
         fprintf(ficlog,"\n");    (void) gettimeofday(&start_time,&tzp);
       }    curr_time=start_time;
     }    tm = *localtime(&start_time.tv_sec);
     fflush(ficlog);    tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
     delti=delti3[1][1];  
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  /*  tm = *localtime(&start_time.tv_sec); */
     /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     /* Reads comments: lines beginning with '#' */  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
     while((c=getc(ficpar))=='#' && c!= EOF){  /*   tmg.tm_hour=tmg.tm_hour + 1; */
       ungetc(c,ficpar);  /*   tp.tv_sec = mktime(&tmg); */
       fgets(line, MAXLINE, ficpar);  /*   strt=asctime(&tmg); */
       numlinepar++;  /*   printf("Time(after) =%s",strstart);  */
       puts(line);  /*  (void) time (&time_value);
       fputs(line,ficparo);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
       fputs(line,ficlog);  *  tm = *localtime(&time_value);
     }  *  strstart=asctime(&tm);
     ungetc(c,ficpar);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     */
     matcov=matrix(1,npar,1,npar);  
     for(i=1; i <=npar; i++){    nberr=0; /* Number of errors and warnings */
       fscanf(ficpar,"%s",&str);    nbwarn=0;
       if(mle==1)    getcwd(pathcd, size);
         printf("%s",str);  
       fprintf(ficlog,"%s",str);    printf("\n%s\n%s",version,fullversion);
       fprintf(ficparo,"%s",str);    if(argc <=1){
       for(j=1; j <=i; j++){      printf("\nEnter the parameter file name: ");
         fscanf(ficpar," %le",&matcov[i][j]);      fgets(pathr,FILENAMELENGTH,stdin);
         if(mle==1){      i=strlen(pathr);
           printf(" %.5le",matcov[i][j]);      if(pathr[i-1]=='\n')
         }        pathr[i-1]='\0';
         fprintf(ficlog," %.5le",matcov[i][j]);     for (tok = pathr; tok != NULL; ){
         fprintf(ficparo," %.5le",matcov[i][j]);        printf("Pathr |%s|\n",pathr);
       }        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       fscanf(ficpar,"\n");        printf("val= |%s| pathr=%s\n",val,pathr);
       numlinepar++;        strcpy (pathtot, val);
       if(mle==1)        if(pathr[0] == '\0') break; /* Dirty */
         printf("\n");      }
       fprintf(ficlog,"\n");    }
       fprintf(ficparo,"\n");    else{
     }      strcpy(pathtot,argv[1]);
     for(i=1; i <=npar; i++)    }
       for(j=i+1;j<=npar;j++)    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
         matcov[i][j]=matcov[j][i];    /*cygwin_split_path(pathtot,path,optionfile);
           printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     if(mle==1)    /* cutv(path,optionfile,pathtot,'\\');*/
       printf("\n");  
     fprintf(ficlog,"\n");    /* Split argv[0], imach program to get pathimach */
         printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     fflush(ficlog);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
         printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     /*-------- Rewriting parameter file ----------*/   /*   strcpy(pathimach,argv[0]); */
     strcpy(rfileres,"r");    /* "Rparameterfile */    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     strcat(rfileres,".");    /* */    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    chdir(path); /* Can be a relative path */
     if((ficres =fopen(rfileres,"w"))==NULL) {    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      printf("Current directory %s!\n",pathcd);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    strcpy(command,"mkdir ");
     }    strcat(command,optionfilefiname);
     fprintf(ficres,"#%s\n",version);    if((outcmd=system(command)) != 0){
   }    /* End of mle != -3 */      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   /*-------- data file ----------*/      /* fclose(ficlog); */
   if((fic=fopen(datafile,"r"))==NULL)    {  /*     exit(1); */
     printf("Problem with datafile: %s\n", datafile);goto end;    }
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  /*   if((imk=mkdir(optionfilefiname))<0){ */
   }  /*     perror("mkdir"); */
   /*   } */
   n= lastobs;  
   severity = vector(1,maxwav);    /*-------- arguments in the command line --------*/
   outcome=imatrix(1,maxwav+1,1,n);  
   num=lvector(1,n);    /* Log file */
   moisnais=vector(1,n);    strcat(filelog, optionfilefiname);
   annais=vector(1,n);    strcat(filelog,".log");    /* */
   moisdc=vector(1,n);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   andc=vector(1,n);      printf("Problem with logfile %s\n",filelog);
   agedc=vector(1,n);      goto end;
   cod=ivector(1,n);    }
   weight=vector(1,n);    fprintf(ficlog,"Log filename:%s\n",filelog);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   mint=matrix(1,maxwav,1,n);    fprintf(ficlog,"\nEnter the parameter file name: \n");
   anint=matrix(1,maxwav,1,n);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
   s=imatrix(1,maxwav+1,1,n);   path=%s \n\
   tab=ivector(1,NCOVMAX);   optionfile=%s\n\
   ncodemax=ivector(1,8);   optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   i=1;  
   linei=0;    printf("Local time (at start):%s",strstart);
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    fprintf(ficlog,"Local time (at start): %s",strstart);
     linei=linei+1;    fflush(ficlog);
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */  /*   (void) gettimeofday(&curr_time,&tzp); */
       if(line[j] == '\t')  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
         line[j] = ' ';  
     }    /* */
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){    strcpy(fileres,"r");
       ;    strcat(fileres, optionfilefiname);
     };    strcat(fileres,".txt");    /* Other files have txt extension */
     line[j+1]=0;  /* Trims blanks at end of line */  
     if(line[0]=='#'){    /*---------arguments file --------*/
       fprintf(ficlog,"Comment line\n%s\n",line);  
       printf("Comment line\n%s\n",line);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       continue;      printf("Problem with optionfile %s\n",optionfile);
     }      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
     for (j=maxwav;j>=1;j--){      goto end;
       cutv(stra, strb,line,' ');     }
       errno=0;  
       lval=strtol(strb,&endptr,10);   
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/  
       if( strb[0]=='\0' || (*endptr != '\0')){    strcpy(filereso,"o");
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    strcat(filereso,fileres);
         exit(1);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       }      printf("Problem with Output resultfile: %s\n", filereso);
       s[j][i]=lval;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
             fflush(ficlog);
       strcpy(line,stra);      goto end;
       cutv(stra, strb,line,' ');    }
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){  
       }    /* Reads comments: lines beginning with '#' */
       else  if(iout=sscanf(strb,"%s.") != 0){    numlinepar=0;
         month=99;    while((c=getc(ficpar))=='#' && c!= EOF){
         year=9999;      ungetc(c,ficpar);
       }else{      fgets(line, MAXLINE, ficpar);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);      numlinepar++;
         exit(1);      puts(line);
       }      fputs(line,ficparo);
       anint[j][i]= (double) year;       fputs(line,ficlog);
       mint[j][i]= (double)month;     }
       strcpy(line,stra);    ungetc(c,ficpar);
     } /* ENd Waves */  
         fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     cutv(stra, strb,line,' ');     numlinepar++;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
       month=99;    fflush(ficlog);
       year=9999;    while((c=getc(ficpar))=='#' && c!= EOF){
     }else{      ungetc(c,ficpar);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      fgets(line, MAXLINE, ficpar);
       exit(1);      numlinepar++;
     }      puts(line);
     andc[i]=(double) year;       fputs(line,ficparo);
     moisdc[i]=(double) month;       fputs(line,ficlog);
     strcpy(line,stra);    }
         ungetc(c,ficpar);
     cutv(stra, strb,line,' ');   
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){     
     }    covar=matrix(0,NCOVMAX,1,n);
     else  if(iout=sscanf(strb,"%s.") != 0){    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       month=99;    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
       year=9999;  
     }else{    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       exit(1);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     }  
     annais[i]=(double)(year);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     moisnais[i]=(double)(month);     delti=delti3[1][1];
     strcpy(line,stra);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
         if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     cutv(stra, strb,line,' ');       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     errno=0;      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     lval=strtol(strb,&endptr,10);       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     if( strb[0]=='\0' || (*endptr != '\0')){      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);      fclose (ficparo);
       exit(1);      fclose (ficlog);
     }      goto end;
     weight[i]=(double)(lval);       exit(0);
     strcpy(line,stra);    }
         else if(mle==-3) {
     for (j=ncovcol;j>=1;j--){      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       cutv(stra, strb,line,' ');       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       errno=0;      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       lval=strtol(strb,&endptr,10);       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       if( strb[0]=='\0' || (*endptr != '\0')){      matcov=matrix(1,npar,1,npar);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);    }
         exit(1);    else{
       }      /* Read guess parameters */
       if(lval <-1 || lval >1){      /* Reads comments: lines beginning with '#' */
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);      while((c=getc(ficpar))=='#' && c!= EOF){
         exit(1);        ungetc(c,ficpar);
       }        fgets(line, MAXLINE, ficpar);
       covar[j][i]=(double)(lval);        numlinepar++;
       strcpy(line,stra);        puts(line);
     }         fputs(line,ficparo);
     lstra=strlen(stra);        fputs(line,ficlog);
           }
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      ungetc(c,ficpar);
       stratrunc = &(stra[lstra-9]);     
       num[i]=atol(stratrunc);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     }      for(i=1; i <=nlstate; i++){
     else        j=0;
       num[i]=atol(stra);        for(jj=1; jj <=nlstate+ndeath; jj++){
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          if(jj==i) continue;
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          j++;
               fscanf(ficpar,"%1d%1d",&i1,&j1);
     i=i+1;          if ((i1 != i) && (j1 != j)){
   } /* End loop reading  data */            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   /* printf("ii=%d", ij);  It might be a problem of design; if ncovcol and the model are correct\n \
      scanf("%d",i);*/  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
   imx=i-1; /* Number of individuals */            exit(1);
           }
   /* for (i=1; i<=imx; i++){          fprintf(ficparo,"%1d%1d",i1,j1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          if(mle==1)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            printf("%1d%1d",i,j);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficlog,"%1d%1d",i,j);
     }*/          for(k=1; k<=ncovmodel;k++){
    /*  for (i=1; i<=imx; i++){            fscanf(ficpar," %lf",&param[i][j][k]);
      if (s[4][i]==9)  s[4][i]=-1;             if(mle==1){
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              printf(" %lf",param[i][j][k]);
                 fprintf(ficlog," %lf",param[i][j][k]);
   /* for (i=1; i<=imx; i++) */            }
              else
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;              fprintf(ficlog," %lf",param[i][j][k]);
      else weight[i]=1;*/            fprintf(ficparo," %lf",param[i][j][k]);
           }
   /* Calculation of the number of parameters from char model */          fscanf(ficpar,"\n");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          numlinepar++;
   Tprod=ivector(1,15);           if(mle==1)
   Tvaraff=ivector(1,15);             printf("\n");
   Tvard=imatrix(1,15,1,2);          fprintf(ficlog,"\n");
   Tage=ivector(1,15);                fprintf(ficparo,"\n");
            }
   if (strlen(model) >1){ /* If there is at least 1 covariate */      }  
     j=0, j1=0, k1=1, k2=1;      fflush(ficlog);
     j=nbocc(model,'+'); /* j=Number of '+' */  
     j1=nbocc(model,'*'); /* j1=Number of '*' */      p=param[1][1];
     cptcovn=j+1;      
     cptcovprod=j1; /*Number of products */      /* Reads comments: lines beginning with '#' */
           while((c=getc(ficpar))=='#' && c!= EOF){
     strcpy(modelsav,model);         ungetc(c,ficpar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fgets(line, MAXLINE, ficpar);
       printf("Error. Non available option model=%s ",model);        numlinepar++;
       fprintf(ficlog,"Error. Non available option model=%s ",model);        puts(line);
       goto end;        fputs(line,ficparo);
     }        fputs(line,ficlog);
           }
     /* This loop fills the array Tvar from the string 'model'.*/      ungetc(c,ficpar);
   
     for(i=(j+1); i>=1;i--){      for(i=1; i <=nlstate; i++){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         for(j=1; j <=nlstate+ndeath-1; j++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */          fscanf(ficpar,"%1d%1d",&i1,&j1);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          if ((i1-i)*(j1-j)!=0){
       /*scanf("%d",i);*/            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
       if (strchr(strb,'*')) {  /* Model includes a product */            exit(1);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          }
         if (strcmp(strc,"age")==0) { /* Vn*age */          printf("%1d%1d",i,j);
           cptcovprod--;          fprintf(ficparo,"%1d%1d",i1,j1);
           cutv(strb,stre,strd,'V');          fprintf(ficlog,"%1d%1d",i1,j1);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          for(k=1; k<=ncovmodel;k++){
           cptcovage++;            fscanf(ficpar,"%le",&delti3[i][j][k]);
             Tage[cptcovage]=i;            printf(" %le",delti3[i][j][k]);
             /*printf("stre=%s ", stre);*/            fprintf(ficparo," %le",delti3[i][j][k]);
         }            fprintf(ficlog," %le",delti3[i][j][k]);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          }
           cptcovprod--;          fscanf(ficpar,"\n");
           cutv(strb,stre,strc,'V');          numlinepar++;
           Tvar[i]=atoi(stre);          printf("\n");
           cptcovage++;          fprintf(ficparo,"\n");
           Tage[cptcovage]=i;          fprintf(ficlog,"\n");
         }        }
         else {  /* Age is not in the model */      }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      fflush(ficlog);
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      delti=delti3[1][1];
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
           Tvar[cptcovn+k2]=Tvard[k1][1];   
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       /* Reads comments: lines beginning with '#' */
           for (k=1; k<=lastobs;k++)       while((c=getc(ficpar))=='#' && c!= EOF){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        ungetc(c,ficpar);
           k1++;        fgets(line, MAXLINE, ficpar);
           k2=k2+2;        numlinepar++;
         }        puts(line);
       }        fputs(line,ficparo);
       else { /* no more sum */        fputs(line,ficlog);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      }
        /*  scanf("%d",i);*/      ungetc(c,ficpar);
       cutv(strd,strc,strb,'V');   
       Tvar[i]=atoi(strc);      matcov=matrix(1,npar,1,npar);
       }      for(i=1; i <=npar; i++){
       strcpy(modelsav,stra);          fscanf(ficpar,"%s",&str);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        if(mle==1)
         scanf("%d",i);*/          printf("%s",str);
     } /* end of loop + */        fprintf(ficlog,"%s",str);
   } /* end model */        fprintf(ficparo,"%s",str);
           for(j=1; j <=i; j++){
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.          fscanf(ficpar," %le",&matcov[i][j]);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/          if(mle==1){
             printf(" %.5le",matcov[i][j]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          }
   printf("cptcovprod=%d ", cptcovprod);          fprintf(ficlog," %.5le",matcov[i][j]);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          fprintf(ficparo," %.5le",matcov[i][j]);
         }
   scanf("%d ",i);        fscanf(ficpar,"\n");
   fclose(fic);*/        numlinepar++;
         if(mle==1)
     /*  if(mle==1){*/          printf("\n");
   if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficlog,"\n");
     for(i=1;i<=n;i++) weight[i]=1.0;        fprintf(ficparo,"\n");
   }      }
     /*-calculation of age at interview from date of interview and age at death -*/      for(i=1; i <=npar; i++)
   agev=matrix(1,maxwav,1,imx);        for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
   for (i=1; i<=imx; i++) {     
     for(m=2; (m<= maxwav); m++) {      if(mle==1)
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){        printf("\n");
         anint[m][i]=9999;      fprintf(ficlog,"\n");
         s[m][i]=-1;     
       }      fflush(ficlog);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){     
         nberr++;      /*-------- Rewriting parameter file ----------*/
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      strcpy(rfileres,"r");    /* "Rparameterfile */
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
         s[m][i]=-1;      strcat(rfileres,".");    /* */
       }      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){      if((ficres =fopen(rfileres,"w"))==NULL) {
         nberr++;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);       }
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */      fprintf(ficres,"#%s\n",version);
       }    }    /* End of mle != -3 */
     }  
   }    /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
   for (i=1; i<=imx; i++)  {      printf("Problem while opening datafile: %s\n", datafile);goto end;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     for(m=firstpass; (m<= lastpass); m++){    }
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){  
         if (s[m][i] >= nlstate+1) {    n= lastobs;
           if(agedc[i]>0)    severity = vector(1,maxwav);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)    outcome=imatrix(1,maxwav+1,1,n);
               agev[m][i]=agedc[i];    num=lvector(1,n);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    moisnais=vector(1,n);
             else {    annais=vector(1,n);
               if ((int)andc[i]!=9999){    moisdc=vector(1,n);
                 nbwarn++;    andc=vector(1,n);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);    agedc=vector(1,n);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    cod=ivector(1,n);
                 agev[m][i]=-1;    weight=vector(1,n);
               }    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
             }    mint=matrix(1,maxwav,1,n);
         }    anint=matrix(1,maxwav,1,n);
         else if(s[m][i] !=9){ /* Standard case, age in fractional    s=imatrix(1,maxwav+1,1,n);
                                  years but with the precision of a month */    tab=ivector(1,NCOVMAX);
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    ncodemax=ivector(1,8);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  
             agev[m][i]=1;    i=1;
           else if(agev[m][i] <agemin){     linei=0;
             agemin=agev[m][i];    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      linei=linei+1;
           }      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
           else if(agev[m][i] >agemax){        if(line[j] == '\t')
             agemax=agev[m][i];          line[j] = ' ';
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      }
           }      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
           /*agev[m][i]=anint[m][i]-annais[i];*/        ;
           /*     agev[m][i] = age[i]+2*m;*/      };
         }      line[j+1]=0;  /* Trims blanks at end of line */
         else { /* =9 */      if(line[0]=='#'){
           agev[m][i]=1;        fprintf(ficlog,"Comment line\n%s\n",line);
           s[m][i]=-1;        printf("Comment line\n%s\n",line);
         }        continue;
       }      }
       else /*= 0 Unknown */  
         agev[m][i]=1;      for (j=maxwav;j>=1;j--){
     }        cutv(stra, strb,line,' ');
             errno=0;
   }        lval=strtol(strb,&endptr,10);
   for (i=1; i<=imx; i++)  {        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
     for(m=firstpass; (m<=lastpass); m++){        if( strb[0]=='\0' || (*endptr != '\0')){
       if (s[m][i] > (nlstate+ndeath)) {          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
         nberr++;          exit(1);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             }
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             s[j][i]=lval;
         goto end;       
       }        strcpy(line,stra);
     }        cutv(stra, strb,line,' ');
   }        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
   /*for (i=1; i<=imx; i++){        else  if(iout=sscanf(strb,"%s.") != 0){
   for (m=firstpass; (m<lastpass); m++){          month=99;
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          year=9999;
 }        }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
 }*/          exit(1);
         }
         anint[j][i]= (double) year;
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        mint[j][i]= (double)month;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         strcpy(line,stra);
       } /* ENd Waves */
   agegomp=(int)agemin;     
   free_vector(severity,1,maxwav);      cutv(stra, strb,line,' ');
   free_imatrix(outcome,1,maxwav+1,1,n);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   free_vector(moisnais,1,n);      }
   free_vector(annais,1,n);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   /* free_matrix(mint,1,maxwav,1,n);        month=99;
      free_matrix(anint,1,maxwav,1,n);*/        year=9999;
   free_vector(moisdc,1,n);      }else{
   free_vector(andc,1,n);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
          }
   wav=ivector(1,imx);      andc[i]=(double) year;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      moisdc[i]=(double) month;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      strcpy(line,stra);
   mw=imatrix(1,lastpass-firstpass+1,1,imx);     
          cutv(stra, strb,line,' ');
   /* Concatenates waves */      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }
       else  if(iout=sscanf(strb,"%s.") != 0){
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */        month=99;
         year=9999;
   Tcode=ivector(1,100);      }else{
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   ncodemax[1]=1;        exit(1);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);      }
             annais[i]=(double)(year);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of       moisnais[i]=(double)(month);
                                  the estimations*/      strcpy(line,stra);
   h=0;     
   m=pow(2,cptcoveff);      cutv(stra, strb,line,' ');
        errno=0;
   for(k=1;k<=cptcoveff; k++){      dval=strtod(strb,&endptr);
     for(i=1; i <=(m/pow(2,k));i++){      if( strb[0]=='\0' || (*endptr != '\0')){
       for(j=1; j <= ncodemax[k]; j++){        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        exit(1);
           h++;      }
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      weight[i]=dval;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      strcpy(line,stra);
         }      
       }      for (j=ncovcol;j>=1;j--){
     }        cutv(stra, strb,line,' ');
   }         errno=0;
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         lval=strtol(strb,&endptr,10);
      codtab[1][2]=1;codtab[2][2]=2; */        if( strb[0]=='\0' || (*endptr != '\0')){
   /* for(i=1; i <=m ;i++){           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
      for(k=1; k <=cptcovn; k++){          exit(1);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        }
      }        if(lval <-1 || lval >1){
      printf("\n");          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
      }   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
      scanf("%d",i);*/   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
        For example, for multinomial values like 1, 2 and 3,\n \
   /*------------ gnuplot -------------*/   build V1=0 V2=0 for the reference value (1),\n \
   strcpy(optionfilegnuplot,optionfilefiname);          V1=1 V2=0 for (2) \n \
   if(mle==-3)   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
     strcat(optionfilegnuplot,"-mort");   output of IMaCh is often meaningless.\n \
   strcat(optionfilegnuplot,".gp");   Exiting.\n",lval,linei, i,line,j);
           exit(1);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        }
     printf("Problem with file %s",optionfilegnuplot);        covar[j][i]=(double)(lval);
   }        strcpy(line,stra);
   else{      }
     fprintf(ficgp,"\n# %s\n", version);       lstra=strlen(stra);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);      
     fprintf(ficgp,"set missing 'NaNq'\n");      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
   }        stratrunc = &(stra[lstra-9]);
   /*  fclose(ficgp);*/        num[i]=atol(stratrunc);
   /*--------- index.htm --------*/      }
       else
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        num[i]=atol(stra);
   if(mle==-3)      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
     strcat(optionfilehtm,"-mort");        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   strcat(optionfilehtm,".htm");     
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      i=i+1;
     printf("Problem with %s \n",optionfilehtm), exit(0);    } /* End loop reading  data */
   }    fclose(fic);
     /* printf("ii=%d", ij);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */       scanf("%d",i);*/
   strcat(optionfilehtmcov,"-cov.htm");    imx=i-1; /* Number of individuals */
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    /* for (i=1; i<=imx; i++){
   }      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   else{      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      }*/
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\     /*  for (i=1; i<=imx; i++){
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);       if (s[4][i]==9)  s[4][i]=-1;
   }       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    /* for (i=1; i<=imx; i++) */
 <hr size=\"2\" color=\"#EC5E5E\"> \n\   
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
 \n\       else weight[i]=1;*/
 <hr  size=\"2\" color=\"#EC5E5E\">\  
  <ul><li><h4>Parameter files</h4>\n\    /* Calculation of the number of parameters from char model */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    Tprod=ivector(1,15);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\    Tvaraff=ivector(1,15);
  - Date and time at start: %s</ul>\n",\    Tvard=imatrix(1,15,1,2);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    Tage=ivector(1,15);      
           fileres,fileres,\     
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);    if (strlen(model) >1){ /* If there is at least 1 covariate */
   fflush(fichtm);      j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
   strcpy(pathr,path);      j1=nbocc(model,'*'); /* j1=Number of '*' */
   strcat(pathr,optionfilefiname);      cptcovn=j+1;
   chdir(optionfilefiname); /* Move to directory named optionfile */      cptcovprod=j1; /*Number of products */
        
   /* Calculates basic frequencies. Computes observed prevalence at single age      strcpy(modelsav,model);
      and prints on file fileres'p'. */      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);        printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
   fprintf(fichtm,"\n");        goto end;
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      }
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\     
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      /* This loop fills the array Tvar from the string 'model'.*/
           imx,agemin,agemax,jmin,jmax,jmean);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=(j+1); i>=1;i--){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /*scanf("%d",i);*/
             if (strchr(strb,'*')) {  /* Model includes a product */
              cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   /* For Powell, parameters are in a vector p[] starting at p[1]          if (strcmp(strc,"age")==0) { /* Vn*age */
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            cptcovprod--;
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */            cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/            cptcovage++;
               Tage[cptcovage]=i;
   if (mle==-3){              /*printf("stre=%s ", stre);*/
     ximort=matrix(1,NDIM,1,NDIM);          }
     cens=ivector(1,n);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
     ageexmed=vector(1,n);            cptcovprod--;
     agecens=vector(1,n);            cutv(strb,stre,strc,'V');
     dcwave=ivector(1,n);            Tvar[i]=atoi(stre);
              cptcovage++;
     for (i=1; i<=imx; i++){            Tage[cptcovage]=i;
       dcwave[i]=-1;          }
       for (m=firstpass; m<=lastpass; m++)          else {  /* Age is not in the model */
         if (s[m][i]>nlstate) {            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
           dcwave[i]=m;            Tvar[i]=ncovcol+k1;
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
           break;            Tprod[k1]=i;
         }            Tvard[k1][1]=atoi(strc); /* m*/
     }            Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
     for (i=1; i<=imx; i++) {            Tvar[cptcovn+k2+1]=Tvard[k1][2];
       if (wav[i]>0){            for (k=1; k<=lastobs;k++)
         ageexmed[i]=agev[mw[1][i]][i];              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
         j=wav[i];            k1++;
         agecens[i]=1.;             k2=k2+2;
           }
         if (ageexmed[i]> 1 && wav[i] > 0){        }
           agecens[i]=agev[mw[j][i]][i];        else { /* no more sum */
           cens[i]= 1;          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
         }else if (ageexmed[i]< 1)          /*  scanf("%d",i);*/
           cens[i]= -1;        cutv(strd,strc,strb,'V');
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)        Tvar[i]=atoi(strc);
           cens[i]=0 ;        }
       }        strcpy(modelsav,stra);  
       else cens[i]=-1;        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
     }          scanf("%d",i);*/
           } /* end of loop + */
     for (i=1;i<=NDIM;i++) {    } /* end model */
       for (j=1;j<=NDIM;j++)   
         ximort[i][j]=(i == j ? 1.0 : 0.0);    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
     }      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       
     p[1]=0.0268; p[NDIM]=0.083;    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     /*printf("%lf %lf", p[1], p[2]);*/    printf("cptcovprod=%d ", cptcovprod);
         fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");    scanf("%d ",i);*/
     strcpy(filerespow,"pow-mort");   
     strcat(filerespow,fileres);      /*  if(mle==1){*/
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    if (weightopt != 1) { /* Maximisation without weights*/
       printf("Problem with resultfile: %s\n", filerespow);      for(i=1;i<=n;i++) weight[i]=1.0;
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    }
     }      /*-calculation of age at interview from date of interview and age at death -*/
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    agev=matrix(1,maxwav,1,imx);
     /*  for (i=1;i<=nlstate;i++)  
         for(j=1;j<=nlstate+ndeath;j++)    for (i=1; i<=imx; i++) {
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      for(m=2; (m<= maxwav); m++) {
     */        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
     fprintf(ficrespow,"\n");          anint[m][i]=9999;
               s[m][i]=-1;
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);        }
     fclose(ficrespow);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
               nberr++;
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     for(i=1; i <=NDIM; i++)          s[m][i]=-1;
       for(j=i+1;j<=NDIM;j++)        }
         matcov[i][j]=matcov[j][i];        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
               nberr++;
     printf("\nCovariance matrix\n ");          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     for(i=1; i <=NDIM; i++) {          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
       for(j=1;j<=NDIM;j++){           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         printf("%f ",matcov[i][j]);        }
       }      }
       printf("\n ");    }
     }  
         for (i=1; i<=imx; i++)  {
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     for (i=1;i<=NDIM;i++)       for(m=firstpass; (m<= lastpass); m++){
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
     lsurv=vector(1,AGESUP);            if(agedc[i]>0)
     lpop=vector(1,AGESUP);              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     tpop=vector(1,AGESUP);                agev[m][i]=agedc[i];
     lsurv[agegomp]=100000;            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   else {
     for (k=agegomp;k<=AGESUP;k++) {                if ((int)andc[i]!=9999){
       agemortsup=k;                  nbwarn++;
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                       agev[m][i]=-1;
     for (k=agegomp;k<agemortsup;k++)                }
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));              }
               }
     for (k=agegomp;k<agemortsup;k++){          else if(s[m][i] !=9){ /* Standard case, age in fractional
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;                                   years but with the precision of a month */
       sumlpop=sumlpop+lpop[k];            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     }            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   agev[m][i]=1;
     tpop[agegomp]=sumlpop;            else if(agev[m][i] <agemin){
     for (k=agegomp;k<(agemortsup-3);k++){              agemin=agev[m][i];
       /*  tpop[k+1]=2;*/              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
       tpop[k+1]=tpop[k]-lpop[k];            }
     }            else if(agev[m][i] >agemax){
                   agemax=agev[m][i];
                   /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");            }
     for (k=agegomp;k<(agemortsup-2);k++)             /*agev[m][i]=anint[m][i]-annais[i];*/
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);            /*     agev[m][i] = age[i]+2*m;*/
               }
               else { /* =9 */
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */            agev[m][i]=1;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);            s[m][i]=-1;
               }
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \        }
                      stepm, weightopt,\        else /*= 0 Unknown */
                      model,imx,p,matcov,agemortsup);          agev[m][i]=1;
           }
     free_vector(lsurv,1,AGESUP);     
     free_vector(lpop,1,AGESUP);    }
     free_vector(tpop,1,AGESUP);    for (i=1; i<=imx; i++)  {
   } /* Endof if mle==-3 */      for(m=firstpass; (m<=lastpass); m++){
           if (s[m][i] > (nlstate+ndeath)) {
   else{ /* For mle >=1 */          nberr++;
             printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);          goto end;
     for (k=1; k<=npar;k++)        }
       printf(" %d %8.5f",k,p[k]);      }
     printf("\n");    }
     globpr=1; /* to print the contributions */  
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */    /*for (i=1; i<=imx; i++){
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    for (m=firstpass; (m<lastpass); m++){
     for (k=1; k<=npar;k++)       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
       printf(" %d %8.5f",k,p[k]);  }
     printf("\n");  
     if(mle>=1){ /* Could be 1 or 2 */  }*/
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }  
         printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     /*--------- results files --------------*/    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
         agegomp=(int)agemin;
         free_vector(severity,1,maxwav);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_imatrix(outcome,1,maxwav+1,1,n);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_vector(moisnais,1,n);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    free_vector(annais,1,n);
     for(i=1,jk=1; i <=nlstate; i++){    /* free_matrix(mint,1,maxwav,1,n);
       for(k=1; k <=(nlstate+ndeath); k++){       free_matrix(anint,1,maxwav,1,n);*/
         if (k != i) {    free_vector(moisdc,1,n);
           printf("%d%d ",i,k);    free_vector(andc,1,n);
           fprintf(ficlog,"%d%d ",i,k);  
           fprintf(ficres,"%1d%1d ",i,k);     
           for(j=1; j <=ncovmodel; j++){    wav=ivector(1,imx);
             printf("%f ",p[jk]);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
             fprintf(ficlog,"%f ",p[jk]);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
             fprintf(ficres,"%f ",p[jk]);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
             jk++;      
           }    /* Concatenates waves */
           printf("\n");    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
           fprintf(ficlog,"\n");  
           fprintf(ficres,"\n");    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
         }  
       }    Tcode=ivector(1,100);
     }    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     if(mle!=0){    ncodemax[1]=1;
       /* Computing hessian and covariance matrix */    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
       ftolhess=ftol; /* Usually correct */       
       hesscov(matcov, p, npar, delti, ftolhess, func);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
     }                                   the estimations*/
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    h=0;
     printf("# Scales (for hessian or gradient estimation)\n");    m=pow(2,cptcoveff);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");   
     for(i=1,jk=1; i <=nlstate; i++){    for(k=1;k<=cptcoveff; k++){
       for(j=1; j <=nlstate+ndeath; j++){      for(i=1; i <=(m/pow(2,k));i++){
         if (j!=i) {        for(j=1; j <= ncodemax[k]; j++){
           fprintf(ficres,"%1d%1d",i,j);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
           printf("%1d%1d",i,j);            h++;
           fprintf(ficlog,"%1d%1d",i,j);            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
           for(k=1; k<=ncovmodel;k++){            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
             printf(" %.5e",delti[jk]);          }
             fprintf(ficlog," %.5e",delti[jk]);        }
             fprintf(ficres," %.5e",delti[jk]);      }
             jk++;    }
           }    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
           printf("\n");       codtab[1][2]=1;codtab[2][2]=2; */
           fprintf(ficlog,"\n");    /* for(i=1; i <=m ;i++){
           fprintf(ficres,"\n");       for(k=1; k <=cptcovn; k++){
         }       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
       }       }
     }       printf("\n");
            }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       scanf("%d",i);*/
     if(mle>=1)     
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /*------------ gnuplot -------------*/
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcpy(optionfilegnuplot,optionfilefiname);
     /* # 121 Var(a12)\n\ */    if(mle==-3)
     /* # 122 Cov(b12,a12) Var(b12)\n\ */      strcat(optionfilegnuplot,"-mort");
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    strcat(optionfilegnuplot,".gp");
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      printf("Problem with file %s",optionfilegnuplot);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    }
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */    else{
           fprintf(ficgp,"\n# %s\n", version);
           fprintf(ficgp,"# %s\n", optionfilegnuplot);
     /* Just to have a covariance matrix which will be more understandable      fprintf(ficgp,"set missing 'NaNq'\n");
        even is we still don't want to manage dictionary of variables    }
     */    /*  fclose(ficgp);*/
     for(itimes=1;itimes<=2;itimes++){    /*--------- index.htm --------*/
       jj=0;  
       for(i=1; i <=nlstate; i++){    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
         for(j=1; j <=nlstate+ndeath; j++){    if(mle==-3)
           if(j==i) continue;      strcat(optionfilehtm,"-mort");
           for(k=1; k<=ncovmodel;k++){    strcat(optionfilehtm,".htm");
             jj++;    if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
             ca[0]= k+'a'-1;ca[1]='\0';      printf("Problem with %s \n",optionfilehtm), exit(0);
             if(itimes==1){    }
               if(mle>=1)  
                 printf("#%1d%1d%d",i,j,k);    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);    strcat(optionfilehtmcov,"-cov.htm");
               fprintf(ficres,"#%1d%1d%d",i,j,k);    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
             }else{      printf("Problem with %s \n",optionfilehtmcov), exit(0);
               if(mle>=1)    }
                 printf("%1d%1d%d",i,j,k);    else{
               fprintf(ficlog,"%1d%1d%d",i,j,k);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
               fprintf(ficres,"%1d%1d%d",i,j,k);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
             }  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             ll=0;            optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
             for(li=1;li <=nlstate; li++){    }
               for(lj=1;lj <=nlstate+ndeath; lj++){  
                 if(lj==li) continue;    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                 for(lk=1;lk<=ncovmodel;lk++){  <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   ll++;  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                   if(ll<=jj){  \n\
                     cb[0]= lk +'a'-1;cb[1]='\0';  <hr  size=\"2\" color=\"#EC5E5E\">\
                     if(ll<jj){   <ul><li><h4>Parameter files</h4>\n\
                       if(itimes==1){   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                         if(mle>=1)   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   - Date and time at start: %s</ul>\n",\
                       }else{            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                         if(mle>=1)            optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                           printf(" %.5e",matcov[jj][ll]);             fileres,fileres,\
                         fprintf(ficlog," %.5e",matcov[jj][ll]);             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                         fprintf(ficres," %.5e",matcov[jj][ll]);     fflush(fichtm);
                       }  
                     }else{    strcpy(pathr,path);
                       if(itimes==1){    strcat(pathr,optionfilefiname);
                         if(mle>=1)    chdir(optionfilefiname); /* Move to directory named optionfile */
                           printf(" Var(%s%1d%1d)",ca,i,j);   
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);    /* Calculates basic frequencies. Computes observed prevalence at single age
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);       and prints on file fileres'p'. */
                       }else{    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
                         if(mle>=1)  
                           printf(" %.5e",matcov[jj][ll]);     fprintf(fichtm,"\n");
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
                         fprintf(ficres," %.5e",matcov[jj][ll]);   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                       }  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                     }            imx,agemin,agemax,jmin,jmax,jmean);
                   }    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                 } /* end lk */      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
               } /* end lj */      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
             } /* end li */      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
             if(mle>=1)      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
               printf("\n");     
             fprintf(ficlog,"\n");     
             fprintf(ficres,"\n");    /* For Powell, parameters are in a vector p[] starting at p[1]
             numlinepar++;       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
           } /* end k*/    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
         } /*end j */  
       } /* end i */    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     } /* end itimes */  
         if (mle==-3){
     fflush(ficlog);      ximort=matrix(1,NDIM,1,NDIM);
     fflush(ficres);      cens=ivector(1,n);
           ageexmed=vector(1,n);
     while((c=getc(ficpar))=='#' && c!= EOF){      agecens=vector(1,n);
       ungetc(c,ficpar);      dcwave=ivector(1,n);
       fgets(line, MAXLINE, ficpar);   
       puts(line);      for (i=1; i<=imx; i++){
       fputs(line,ficparo);        dcwave[i]=-1;
     }        for (m=firstpass; m<=lastpass; m++)
     ungetc(c,ficpar);          if (s[m][i]>nlstate) {
                 dcwave[i]=m;
     estepm=0;            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            break;
     if (estepm==0 || estepm < stepm) estepm=stepm;          }
     if (fage <= 2) {      }
       bage = ageminpar;  
       fage = agemaxpar;      for (i=1; i<=imx; i++) {
     }        if (wav[i]>0){
               ageexmed[i]=agev[mw[1][i]][i];
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          j=wav[i];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          agecens[i]=1.;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
               if (ageexmed[i]> 1 && wav[i] > 0){
     while((c=getc(ficpar))=='#' && c!= EOF){            agecens[i]=agev[mw[j][i]][i];
       ungetc(c,ficpar);            cens[i]= 1;
       fgets(line, MAXLINE, ficpar);          }else if (ageexmed[i]< 1)
       puts(line);            cens[i]= -1;
       fputs(line,ficparo);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     }            cens[i]=0 ;
     ungetc(c,ficpar);        }
             else cens[i]=-1;
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);      }
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);     
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for (i=1;i<=NDIM;i++) {
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        for (j=1;j<=NDIM;j++)
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          ximort[i][j]=(i == j ? 1.0 : 0.0);
           }
     while((c=getc(ficpar))=='#' && c!= EOF){     
       ungetc(c,ficpar);      p[1]=0.0268; p[NDIM]=0.083;
       fgets(line, MAXLINE, ficpar);      /*printf("%lf %lf", p[1], p[2]);*/
       puts(line);     
       fputs(line,ficparo);     
     }      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     ungetc(c,ficpar);      strcpy(filerespow,"pow-mort");
           strcat(filerespow,fileres);
           if((ficrespow=fopen(filerespow,"w"))==NULL) {
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        printf("Problem with resultfile: %s\n", filerespow);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           }
     fscanf(ficpar,"pop_based=%d\n",&popbased);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficparo,"pop_based=%d\n",popbased);         /*  for (i=1;i<=nlstate;i++)
     fprintf(ficres,"pop_based=%d\n",popbased);             for(j=1;j<=nlstate+ndeath;j++)
               if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     while((c=getc(ficpar))=='#' && c!= EOF){      */
       ungetc(c,ficpar);      fprintf(ficrespow,"\n");
       fgets(line, MAXLINE, ficpar);     
       puts(line);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fputs(line,ficparo);      fclose(ficrespow);
     }     
     ungetc(c,ficpar);      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
       
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      for(i=1; i <=NDIM; i++)
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        for(j=i+1;j<=NDIM;j++)
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          matcov[i][j]=matcov[j][i];
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      printf("\nCovariance matrix\n ");
     /* day and month of proj2 are not used but only year anproj2.*/      for(i=1; i <=NDIM; i++) {
             for(j=1;j<=NDIM;j++){
               printf("%f ",matcov[i][j]);
             }
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        printf("\n ");
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      }
          
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      for (i=1;i<=NDIM;i++)
             printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\  
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\      lsurv=vector(1,AGESUP);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      lpop=vector(1,AGESUP);
             tpop=vector(1,AGESUP);
    /*------------ free_vector  -------------*/      lsurv[agegomp]=100000;
    /*  chdir(path); */     
        for (k=agegomp;k<=AGESUP;k++) {
     free_ivector(wav,1,imx);        agemortsup=k;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      }
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        
     free_lvector(num,1,n);      for (k=agegomp;k<agemortsup;k++)
     free_vector(agedc,1,n);        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     /*free_matrix(covar,0,NCOVMAX,1,n);*/     
     /*free_matrix(covar,1,NCOVMAX,1,n);*/      for (k=agegomp;k<agemortsup;k++){
     fclose(ficparo);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
     fclose(ficres);        sumlpop=sumlpop+lpop[k];
       }
      
     /*--------------- Prevalence limit  (stable prevalence) --------------*/      tpop[agegomp]=sumlpop;
         for (k=agegomp;k<(agemortsup-3);k++){
     strcpy(filerespl,"pl");        /*  tpop[k+1]=2;*/
     strcat(filerespl,fileres);        tpop[k+1]=tpop[k]-lpop[k];
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      }
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;     
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;     
     }      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);      for (k=agegomp;k<(agemortsup-2);k++)
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
     fprintf(ficrespl, "#Local time at start: %s", strstart);     
     fprintf(ficrespl,"#Stable prevalence \n");     
     fprintf(ficrespl,"#Age ");      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     fprintf(ficrespl,"\n");     
         printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
     prlim=matrix(1,nlstate,1,nlstate);                       stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
     agebase=ageminpar;     
     agelim=agemaxpar;      free_vector(lsurv,1,AGESUP);
     ftolpl=1.e-10;      free_vector(lpop,1,AGESUP);
     i1=cptcoveff;      free_vector(tpop,1,AGESUP);
     if (cptcovn < 1){i1=1;}    } /* Endof if mle==-3 */
    
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    else{ /* For mle >=1 */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
         k=k+1;      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
         fprintf(ficrespl,"\n#******");      for (k=1; k<=npar;k++)
         printf("\n#******");        printf(" %d %8.5f",k,p[k]);
         fprintf(ficlog,"\n#******");      printf("\n");
         for(j=1;j<=cptcoveff;j++) {      globpr=1; /* to print the contributions */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (k=1; k<=npar;k++)
         }        printf(" %d %8.5f",k,p[k]);
         fprintf(ficrespl,"******\n");      printf("\n");
         printf("******\n");      if(mle>=1){ /* Could be 1 or 2 */
         fprintf(ficlog,"******\n");        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
               }
         for (age=agebase; age<=agelim; age++){     
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      /*--------- results files --------------*/
           fprintf(ficrespl,"%.0f ",age );      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
           for(j=1;j<=cptcoveff;j++)     
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
           for(i=1; i<=nlstate;i++)      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             fprintf(ficrespl," %.5f", prlim[i][i]);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           fprintf(ficrespl,"\n");      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
         }      for(i=1,jk=1; i <=nlstate; i++){
       }        for(k=1; k <=(nlstate+ndeath); k++){
     }          if (k != i) {
     fclose(ficrespl);            printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
     /*------------- h Pij x at various ages ------------*/            fprintf(ficres,"%1d%1d ",i,k);
               for(j=1; j <=ncovmodel; j++){
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);              printf("%lf ",p[jk]);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {              fprintf(ficlog,"%lf ",p[jk]);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              fprintf(ficres,"%lf ",p[jk]);
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;              jk++;
     }            }
     printf("Computing pij: result on file '%s' \n", filerespij);            printf("\n");
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);            fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
     stepsize=(int) (stepm+YEARM-1)/YEARM;          }
     /*if (stepm<=24) stepsize=2;*/        }
       }
     agelim=AGESUP;      if(mle!=0){
     hstepm=stepsize*YEARM; /* Every year of age */        /* Computing hessian and covariance matrix */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
     /* hstepm=1;   aff par mois*/      }
     fprintf(ficrespij, "#Local time at start: %s", strstart);      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      printf("# Scales (for hessian or gradient estimation)\n");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1,jk=1; i <=nlstate; i++){
         k=k+1;        for(j=1; j <=nlstate+ndeath; j++){
         fprintf(ficrespij,"\n#****** ");          if (j!=i) {
         for(j=1;j<=cptcoveff;j++)             fprintf(ficres,"%1d%1d",i,j);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            printf("%1d%1d",i,j);
         fprintf(ficrespij,"******\n");            fprintf(ficlog,"%1d%1d",i,j);
                     for(k=1; k<=ncovmodel;k++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              printf(" %.5e",delti[jk]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               fprintf(ficlog," %.5e",delti[jk]);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              fprintf(ficres," %.5e",delti[jk]);
               jk++;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            }
             printf("\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficlog,"\n");
           oldm=oldms;savm=savms;            fprintf(ficres,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        }
           for(i=1; i<=nlstate;i++)      }
             for(j=1; j<=nlstate+ndeath;j++)     
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
           fprintf(ficrespij,"\n");      if(mle>=1)
           for (h=0; h<=nhstepm; h++){        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
             for(i=1; i<=nlstate;i++)      /* # 121 Var(a12)\n\ */
               for(j=1; j<=nlstate+ndeath;j++)      /* # 122 Cov(b12,a12) Var(b12)\n\ */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
             fprintf(ficrespij,"\n");      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
           }      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           fprintf(ficrespij,"\n");      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
         }      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       }     
     }     
       /* Just to have a covariance matrix which will be more understandable
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);         even is we still don't want to manage dictionary of variables
       */
     fclose(ficrespij);      for(itimes=1;itimes<=2;itimes++){
         jj=0;
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i <=nlstate; i++){
     for(i=1;i<=AGESUP;i++)          for(j=1; j <=nlstate+ndeath; j++){
       for(j=1;j<=NCOVMAX;j++)            if(j==i) continue;
         for(k=1;k<=NCOVMAX;k++)            for(k=1; k<=ncovmodel;k++){
           probs[i][j][k]=0.;              jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
     /*---------- Forecasting ------------------*/              if(itimes==1){
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/                if(mle>=1)
     if(prevfcast==1){                  printf("#%1d%1d%d",i,j,k);
       /*    if(stepm ==1){*/                fprintf(ficlog,"#%1d%1d%d",i,j,k);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);                fprintf(ficres,"#%1d%1d%d",i,j,k);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/              }else{
       /*      }  */                if(mle>=1)
       /*      else{ */                  printf("%1d%1d%d",i,j,k);
       /*        erreur=108; */                fprintf(ficlog,"%1d%1d%d",i,j,k);
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */                fprintf(ficres,"%1d%1d%d",i,j,k);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */              }
       /*      } */              ll=0;
     }              for(li=1;li <=nlstate; li++){
                   for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
     /*---------- Health expectancies and variances ------------*/                  for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
     strcpy(filerest,"t");                    if(ll<=jj){
     strcat(filerest,fileres);                      cb[0]= lk +'a'-1;cb[1]='\0';
     if((ficrest=fopen(filerest,"w"))==NULL) {                      if(ll<jj){
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;                        if(itimes==1){
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                          if(mle>=1)
     }                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     printf("Computing Total LEs with variances: file '%s' \n", filerest);                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
     strcpy(filerese,"e");                            printf(" %.5e",matcov[jj][ll]);
     strcat(filerese,fileres);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     if((ficreseij=fopen(filerese,"w"))==NULL) {                          fprintf(ficres," %.5e",matcov[jj][ll]);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                        }
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                      }else{
     }                        if(itimes==1){
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                          if(mle>=1)
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                            printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     strcpy(fileresv,"v");                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     strcat(fileresv,fileres);                        }else{
     if((ficresvij=fopen(fileresv,"w"))==NULL) {                          if(mle>=1)
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                            printf(" %.5e",matcov[jj][ll]);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     }                          fprintf(ficres," %.5e",matcov[jj][ll]);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                        }
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                      }
                     }
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */                  } /* end lk */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                } /* end lj */
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\              } /* end li */
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);              if(mle>=1)
     */                printf("\n");
               fprintf(ficlog,"\n");
     if (mobilav!=0) {              fprintf(ficres,"\n");
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              numlinepar++;
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            } /* end k*/
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          } /*end j */
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        } /* end i */
       }      } /* end itimes */
     }     
       fflush(ficlog);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      fflush(ficres);
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;       while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficrest,"\n#****** ");        ungetc(c,ficpar);
         for(j=1;j<=cptcoveff;j++)         fgets(line, MAXLINE, ficpar);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        puts(line);
         fprintf(ficrest,"******\n");        fputs(line,ficparo);
       }
         fprintf(ficreseij,"\n#****** ");      ungetc(c,ficpar);
         for(j=1;j<=cptcoveff;j++)      
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      estepm=0;
         fprintf(ficreseij,"******\n");      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
         fprintf(ficresvij,"\n#****** ");      if (fage <= 2) {
         for(j=1;j<=cptcoveff;j++)         bage = ageminpar;
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fage = agemaxpar;
         fprintf(ficresvij,"******\n");      }
      
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
         oldm=oldms;savm=savms;      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);        fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      while((c=getc(ficpar))=='#' && c!= EOF){
         oldm=oldms;savm=savms;        ungetc(c,ficpar);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        fgets(line, MAXLINE, ficpar);
         if(popbased==1){        puts(line);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);        fputs(line,ficparo);
         }      }
       ungetc(c,ficpar);
         fprintf(ficrest, "#Local time at start: %s", strstart);     
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         fprintf(ficrest,"\n");      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         epj=vector(1,nlstate+1);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
         for(age=bage; age <=fage ;age++){     
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      while((c=getc(ficpar))=='#' && c!= EOF){
           if (popbased==1) {        ungetc(c,ficpar);
             if(mobilav ==0){        fgets(line, MAXLINE, ficpar);
               for(i=1; i<=nlstate;i++)        puts(line);
                 prlim[i][i]=probs[(int)age][i][k];        fputs(line,ficparo);
             }else{ /* mobilav */       }
               for(i=1; i<=nlstate;i++)      ungetc(c,ficpar);
                 prlim[i][i]=mobaverage[(int)age][i][k];     
             }     
           }      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
               dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
           fprintf(ficrest," %4.0f",age);     
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      fscanf(ficpar,"pop_based=%d\n",&popbased);
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      fprintf(ficparo,"pop_based=%d\n",popbased);  
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      fprintf(ficres,"pop_based=%d\n",popbased);  
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/     
             }      while((c=getc(ficpar))=='#' && c!= EOF){
             epj[nlstate+1] +=epj[j];        ungetc(c,ficpar);
           }        fgets(line, MAXLINE, ficpar);
         puts(line);
           for(i=1, vepp=0.;i <=nlstate;i++)        fputs(line,ficparo);
             for(j=1;j <=nlstate;j++)      }
               vepp += vareij[i][j][(int)age];      ungetc(c,ficpar);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));     
           for(j=1;j <=nlstate;j++){      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           }      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
           fprintf(ficrest,"\n");      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         }      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      /* day and month of proj2 are not used but only year anproj2.*/
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     
         free_vector(epj,1,nlstate+1);     
       }     
     }      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     free_vector(weight,1,n);      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_imatrix(Tvard,1,15,1,2);     
     free_imatrix(s,1,maxwav+1,1,n);      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     free_matrix(anint,1,maxwav,1,n);       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     free_matrix(mint,1,maxwav,1,n);     
     free_ivector(cod,1,n);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
     free_ivector(tab,1,NCOVMAX);                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
     fclose(ficreseij);                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
     fclose(ficresvij);       
     fclose(ficrest);     /*------------ free_vector  -------------*/
     fclose(ficpar);     /*  chdir(path); */
      
     /*------- Variance of stable prevalence------*/         free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     strcpy(fileresvpl,"vpl");      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     strcat(fileresvpl,fileres);      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      free_lvector(num,1,n);
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);      free_vector(agedc,1,n);
       exit(0);      /*free_matrix(covar,0,NCOVMAX,1,n);*/
     }      /*free_matrix(covar,1,NCOVMAX,1,n);*/
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);      fclose(ficparo);
       fclose(ficres);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
         fprintf(ficresvpl,"\n#****** ");   
         for(j=1;j<=cptcoveff;j++)       strcpy(filerespl,"pl");
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(filerespl,fileres);
         fprintf(ficresvpl,"******\n");      if((ficrespl=fopen(filerespl,"w"))==NULL) {
               printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         oldm=oldms;savm=savms;      }
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       }      pstamp(ficrespl);
     }      fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
     fclose(ficresvpl);      for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     /*---------- End : free ----------------*/   
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      prlim=matrix(1,nlstate,1,nlstate);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       agebase=ageminpar;
   }  /* mle==-3 arrives here for freeing */      agelim=agemaxpar;
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      ftolpl=1.e-10;
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      i1=cptcoveff;
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      if (cptcovn < 1){i1=1;}
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
         for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     free_matrix(covar,0,NCOVMAX,1,n);        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     free_matrix(matcov,1,npar,1,npar);          k=k+1;
     /*free_vector(delti,1,npar);*/          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);           fprintf(ficrespl,"\n#******");
     free_matrix(agev,1,maxwav,1,imx);          printf("\n#******");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
     free_ivector(ncodemax,1,8);            fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ivector(Tvar,1,15);            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ivector(Tprod,1,15);            fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_ivector(Tvaraff,1,15);          }
     free_ivector(Tage,1,15);          fprintf(ficrespl,"******\n");
     free_ivector(Tcode,1,100);          printf("******\n");
           fprintf(ficlog,"******\n");
          
   fflush(fichtm);          for (age=agebase; age<=agelim; age++){
   fflush(ficgp);            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
   if((nberr >0) || (nbwarn>0)){              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);            for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);              fprintf(ficrespl," %.5f", prlim[i][i]);
   }else{            fprintf(ficrespl,"\n");
     printf("End of Imach\n");          }
     fprintf(ficlog,"End of Imach\n");        }
   }      }
   printf("See log file on %s\n",filelog);      fclose(ficrespl);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
   (void) gettimeofday(&end_time,&tzp);      /*------------- h Pij x at various ages ------------*/
   tm = *localtime(&end_time.tv_sec);   
   tmg = *gmtime(&end_time.tv_sec);      strcpy(filerespij,"pij");  strcat(filerespij,fileres);
   strcpy(strtend,asctime(&tm));      if((ficrespij=fopen(filerespij,"w"))==NULL) {
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      }
       printf("Computing pij: result on file '%s' \n", filerespij);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));   
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);      stepsize=(int) (stepm+YEARM-1)/YEARM;
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      /*if (stepm<=24) stepsize=2;*/
 /*   if(fileappend(fichtm,optionfilehtm)){ */  
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      agelim=AGESUP;
   fclose(fichtm);      hstepm=stepsize*YEARM; /* Every year of age */
   fclose(fichtmcov);      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   fclose(ficgp);  
   fclose(ficlog);      /* hstepm=1;   aff par mois*/
   /*------ End -----------*/      pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
   chdir(path);      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   /*strcat(plotcmd,CHARSEPARATOR);*/        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   sprintf(plotcmd,"gnuplot");          k=k+1;
 #ifndef UNIX          fprintf(ficrespij,"\n#****** ");
   sprintf(plotcmd,"\"%swgnuplot.exe\"",pathimach);          for(j=1;j<=cptcoveff;j++)
 #endif            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   if(!stat(plotcmd,&info)){          fprintf(ficrespij,"******\n");
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);         
     if(!stat(getenv("GNUPLOTBIN"),&info)){          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     }else            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       strcpy(pplotcmd,plotcmd);  
 #ifdef UNIX            /*      nhstepm=nhstepm*YEARM; aff par mois*/
     strcpy(plotcmd,GNUPLOTPROGRAM);  
     if(!stat(plotcmd,&info)){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);            oldm=oldms;savm=savms;
     }else            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       strcpy(pplotcmd,plotcmd);            fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
 #endif            for(i=1; i<=nlstate;i++)
   }else              for(j=1; j<=nlstate+ndeath;j++)
     strcpy(pplotcmd,plotcmd);                fprintf(ficrespij," %1d-%1d",i,j);
               fprintf(ficrespij,"\n");
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);            for (h=0; h<=nhstepm; h++){
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
   if((outcmd=system(plotcmd)) != 0){                for(j=1; j<=nlstate+ndeath;j++)
     printf("\n Problem with gnuplot\n");                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
   }              fprintf(ficrespij,"\n");
   printf(" Wait...");            }
   while (z[0] != 'q') {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* chdir(path); */            fprintf(ficrespij,"\n");
     printf("\nType e to edit output files, g to graph again and q for exiting: ");          }
     scanf("%s",z);        }
 /*     if (z[0] == 'c') system("./imach"); */      }
     if (z[0] == 'e') {  
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       system(optionfilehtm);  
     }      fclose(ficrespij);
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      for(i=1;i<=AGESUP;i++)
   end:        for(j=1;j<=NCOVMAX;j++)
   while (z[0] != 'q') {          for(k=1;k<=NCOVMAX;k++)
     printf("\nType  q for exiting: ");            probs[i][j][k]=0.;
     scanf("%s",z);  
   }      /*---------- Forecasting ------------------*/
 }      /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.111  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>