Diff for /imach/src/imach.c between versions 1.41 and 1.111

version 1.41, 2002/05/07 15:53:01 version 1.111, 2006/01/25 20:38:18
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.111  2006/01/25 20:38:18  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
   This program computes Healthy Life Expectancies from    (Module): Comments can be added in data file. Missing date values
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    can be a simple dot '.'.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.110  2006/01/25 00:51:50  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Lots of cleaning and bugs added (Gompertz)
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.109  2006/01/24 19:37:15  brouard
   computed from the time spent in each health state according to a    (Module): Comments (lines starting with a #) are allowed in data.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.108  2006/01/19 18:05:42  lievre
   simplest model is the multinomial logistic model where pij is the    Gnuplot problem appeared...
   probability to be observed in state j at the second wave    To be fixed
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.107  2006/01/19 16:20:37  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Test existence of gnuplot in imach path
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.106  2006/01/19 13:24:36  brouard
   you to do it.  More covariates you add, slower the    Some cleaning and links added in html output
   convergence.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   The advantage of this computer programme, compared to a simple    *** empty log message ***
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.104  2005/09/30 16:11:43  lievre
   intermediate interview, the information is lost, but taken into    (Module): sump fixed, loop imx fixed, and simplifications.
   account using an interpolation or extrapolation.      (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   hPijx is the probability to be observed in state i at age x+h    (instead of missing=-1 in earlier versions) and his/her
   conditional to the observed state i at age x. The delay 'h' can be    contributions to the likelihood is 1 - Prob of dying from last
   split into an exact number (nh*stepm) of unobserved intermediate    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   states. This elementary transition (by month or quarter trimester,    the healthy state at last known wave). Version is 0.98
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.103  2005/09/30 15:54:49  lievre
   and the contribution of each individual to the likelihood is simply    (Module): sump fixed, loop imx fixed, and simplifications.
   hPijx.  
     Revision 1.102  2004/09/15 17:31:30  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Add the possibility to read data file including tab characters.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.101  2004/09/15 10:38:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Fix on curr_time
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.100  2004/07/12 18:29:06  brouard
   from the European Union.    Add version for Mac OS X. Just define UNIX in Makefile
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.99  2004/06/05 08:57:40  brouard
   can be accessed at http://euroreves.ined.fr/imach .    *** empty log message ***
   **********************************************************************/  
      Revision 1.98  2004/05/16 15:05:56  brouard
 #include <math.h>    New version 0.97 . First attempt to estimate force of mortality
 #include <stdio.h>    directly from the data i.e. without the need of knowing the health
 #include <stdlib.h>    state at each age, but using a Gompertz model: log u =a + b*age .
 #include <unistd.h>    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 #define MAXLINE 256    cross-longitudinal survey is different from the mortality estimated
 #define GNUPLOTPROGRAM "wgnuplot"    from other sources like vital statistic data.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    The same imach parameter file can be used but the option for mle should be -3.
 /*#define DEBUG*/  
 #define windows    Agnès, who wrote this part of the code, tried to keep most of the
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    former routines in order to include the new code within the former code.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     The output is very simple: only an estimate of the intercept and of
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    the slope with 95% confident intervals.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Current limitations:
 #define NINTERVMAX 8    A) Even if you enter covariates, i.e. with the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    B) There is no computation of Life Expectancy nor Life Table.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.97  2004/02/20 13:25:42  lievre
 #define YEARM 12. /* Number of months per year */    Version 0.96d. Population forecasting command line is (temporarily)
 #define AGESUP 130    suppressed.
 #define AGEBASE 40  
     Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int erreur; /* Error number */    rewritten within the same printf. Workaround: many printfs.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.95  2003/07/08 07:54:34  brouard
 int npar=NPARMAX;    * imach.c (Repository):
 int nlstate=2; /* Number of live states */    (Repository): Using imachwizard code to output a more meaningful covariance
 int ndeath=1; /* Number of dead states */    matrix (cov(a12,c31) instead of numbers.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.93  2003/06/25 16:33:55  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): On windows (cygwin) function asctime_r doesn't
 int mle, weightopt;    exist so I changed back to asctime which exists.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (Module): Version 0.96b
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.92  2003/06/25 16:30:45  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): On windows (cygwin) function asctime_r doesn't
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    exist so I changed back to asctime which exists.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.91  2003/06/25 15:30:29  brouard
 FILE *ficreseij;    * imach.c (Repository): Duplicated warning errors corrected.
   char filerese[FILENAMELENGTH];    (Repository): Elapsed time after each iteration is now output. It
  FILE  *ficresvij;    helps to forecast when convergence will be reached. Elapsed time
   char fileresv[FILENAMELENGTH];    is stamped in powell.  We created a new html file for the graphs
  FILE  *ficresvpl;    concerning matrix of covariance. It has extension -cov.htm.
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.90  2003/06/24 12:34:15  brouard
 #define NR_END 1    (Module): Some bugs corrected for windows. Also, when
 #define FREE_ARG char*    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FTOL 1.0e-10    of the covariance matrix to be input.
   
 #define NRANSI    Revision 1.89  2003/06/24 12:30:52  brouard
 #define ITMAX 200    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 #define TOL 2.0e-4    of the covariance matrix to be input.
   
 #define CGOLD 0.3819660    Revision 1.88  2003/06/23 17:54:56  brouard
 #define ZEPS 1.0e-10    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.87  2003/06/18 12:26:01  brouard
 #define GOLD 1.618034    Version 0.96
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 static double maxarg1,maxarg2;    routine fileappend.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.85  2003/06/17 13:12:43  brouard
      * imach.c (Repository): Check when date of death was earlier that
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    current date of interview. It may happen when the death was just
 #define rint(a) floor(a+0.5)    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 static double sqrarg;    assuming that the date of death was just one stepm after the
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    interview.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 int imx;    memory allocation. But we also truncated to 8 characters (left
 int stepm;    truncation)
 /* Stepm, step in month: minimum step interpolation*/    (Repository): No more line truncation errors.
   
 int estepm;    Revision 1.84  2003/06/13 21:44:43  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 int m,nb;    many times. Probs is memory consuming and must be used with
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    parcimony.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 double *weight;  
 int **s; /* Status */    Revision 1.82  2003/06/05 15:57:20  brouard
 double *agedc, **covar, idx;    Add log in  imach.c and  fullversion number is now printed.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /*
 double ftolhess; /* Tolerance for computing hessian */     Interpolated Markov Chain
   
 /**************** split *************************/    Short summary of the programme:
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    
 {    This program computes Healthy Life Expectancies from
    char *s;                             /* pointer */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    int  l1, l2;                         /* length counters */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
    l1 = strlen( path );                 /* length of path */    case of a health survey which is our main interest) -2- at least a
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    second wave of interviews ("longitudinal") which measure each change
 #ifdef windows    (if any) in individual health status.  Health expectancies are
    s = strrchr( path, '\\' );           /* find last / */    computed from the time spent in each health state according to a
 #else    model. More health states you consider, more time is necessary to reach the
    s = strrchr( path, '/' );            /* find last / */    Maximum Likelihood of the parameters involved in the model.  The
 #endif    simplest model is the multinomial logistic model where pij is the
    if ( s == NULL ) {                   /* no directory, so use current */    probability to be observed in state j at the second wave
 #if     defined(__bsd__)                /* get current working directory */    conditional to be observed in state i at the first wave. Therefore
       extern char       *getwd( );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
       if ( getwd( dirc ) == NULL ) {    complex model than "constant and age", you should modify the program
 #else    where the markup *Covariates have to be included here again* invites
       extern char       *getcwd( );    you to do it.  More covariates you add, slower the
     convergence.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    The advantage of this computer programme, compared to a simple
          return( GLOCK_ERROR_GETCWD );    multinomial logistic model, is clear when the delay between waves is not
       }    identical for each individual. Also, if a individual missed an
       strcpy( name, path );             /* we've got it */    intermediate interview, the information is lost, but taken into
    } else {                             /* strip direcotry from path */    account using an interpolation or extrapolation.  
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    hPijx is the probability to be observed in state i at age x+h
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    conditional to the observed state i at age x. The delay 'h' can be
       strcpy( name, s );                /* save file name */    split into an exact number (nh*stepm) of unobserved intermediate
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    states. This elementary transition (by month, quarter,
       dirc[l1-l2] = 0;                  /* add zero */    semester or year) is modelled as a multinomial logistic.  The hPx
    }    matrix is simply the matrix product of nh*stepm elementary matrices
    l1 = strlen( dirc );                 /* length of directory */    and the contribution of each individual to the likelihood is simply
 #ifdef windows    hPijx.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Also this programme outputs the covariance matrix of the parameters but also
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    of the life expectancies. It also computes the stable prevalence. 
 #endif    
    s = strrchr( name, '.' );            /* find last / */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    s++;             Institut national d'études démographiques, Paris.
    strcpy(ext,s);                       /* save extension */    This software have been partly granted by Euro-REVES, a concerted action
    l1= strlen( name);    from the European Union.
    l2= strlen( s)+1;    It is copyrighted identically to a GNU software product, ie programme and
    strncpy( finame, name, l1-l2);    software can be distributed freely for non commercial use. Latest version
    finame[l1-l2]= 0;    can be accessed at http://euroreves.ined.fr/imach .
    return( 0 );                         /* we're done */  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /******************************************/    **********************************************************************/
   /*
 void replace(char *s, char*t)    main
 {    read parameterfile
   int i;    read datafile
   int lg=20;    concatwav
   i=0;    freqsummary
   lg=strlen(t);    if (mle >= 1)
   for(i=0; i<= lg; i++) {      mlikeli
     (s[i] = t[i]);    print results files
     if (t[i]== '\\') s[i]='/';    if mle==1 
   }       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 int nbocc(char *s, char occ)    open gnuplot file
 {    open html file
   int i,j=0;    stable prevalence
   int lg=20;     for age prevalim()
   i=0;    h Pij x
   lg=strlen(s);    variance of p varprob
   for(i=0; i<= lg; i++) {    forecasting if prevfcast==1 prevforecast call prevalence()
   if  (s[i] == occ ) j++;    health expectancies
   }    Variance-covariance of DFLE
   return j;    prevalence()
 }     movingaverage()
     varevsij() 
 void cutv(char *u,char *v, char*t, char occ)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int i,lg,j,p=0;    Variance of stable prevalence
   i=0;   end
   for(j=0; j<=strlen(t)-1; j++) {  */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  
   
   lg=strlen(t);   
   for(j=0; j<p; j++) {  #include <math.h>
     (u[j] = t[j]);  #include <stdio.h>
   }  #include <stdlib.h>
      u[p]='\0';  #include <string.h>
   #include <unistd.h>
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #include <limits.h>
   }  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /********************** nrerror ********************/  extern int errno;
   
 void nrerror(char error_text[])  /* #include <sys/time.h> */
 {  #include <time.h>
   fprintf(stderr,"ERREUR ...\n");  #include "timeval.h"
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  #define MAXLINE 256
 {  
   double *v;  #define GNUPLOTPROGRAM "gnuplot"
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!v) nrerror("allocation failure in vector");  #define FILENAMELENGTH 132
   return v-nl+NR_END;  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /************************ivector *******************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int *ivector(long nl,long nh)  #define NCOVMAX 8 /* Maximum number of covariates */
 {  #define MAXN 20000
   int *v;  #define YEARM 12. /* Number of months per year */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define AGESUP 130
   if (!v) nrerror("allocation failure in ivector");  #define AGEBASE 40
   return v-nl+NR_END;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 /******************free ivector **************************/  #define CHARSEPARATOR "/"
 void free_ivector(int *v, long nl, long nh)  #define ODIRSEPARATOR '\\'
 {  #else
   free((FREE_ARG)(v+nl-NR_END));  #define DIRSEPARATOR '\\'
 }  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 /******************* imatrix *******************************/  #endif
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /* $Id$ */
 {  /* $State$ */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  char version[]="Imach version 0.98b, January 2006, INED-EUROREVES ";
    char fullversion[]="$Revision$ $Date$"; 
   /* allocate pointers to rows */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int nvar;
   if (!m) nrerror("allocation failure 1 in matrix()");  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   m += NR_END;  int npar=NPARMAX;
   m -= nrl;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
    int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   /* allocate rows and set pointers to them */  int popbased=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int *wav; /* Number of waves for this individuual 0 is possible */
   m[nrl] += NR_END;  int maxwav; /* Maxim number of waves */
   m[nrl] -= ncl;  int jmin, jmax; /* min, max spacing between 2 waves */
    int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int gipmx, gsw; /* Global variables on the number of contributions 
                       to the likelihood and the sum of weights (done by funcone)*/
   /* return pointer to array of pointers to rows */  int mle, weightopt;
   return m;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /****************** free_imatrix *************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 void free_imatrix(m,nrl,nrh,ncl,nch)  double jmean; /* Mean space between 2 waves */
       int **m;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       long nch,ncl,nrh,nrl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
      /* free an int matrix allocated by imatrix() */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int globpr; /* Global variable for printing or not */
   free((FREE_ARG) (m+nrl-NR_END));  double fretone; /* Only one call to likelihood */
 }  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
 /******************* matrix *******************************/  char filerespow[FILENAMELENGTH];
 double **matrix(long nrl, long nrh, long ncl, long nch)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   double **m;  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  FILE *ficreseij;
   if (!m) nrerror("allocation failure 1 in matrix()");  char filerese[FILENAMELENGTH];
   m += NR_END;  FILE  *ficresvij;
   m -= nrl;  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fileresvpl[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char title[MAXLINE];
   m[nrl] += NR_END;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] -= ncl;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char command[FILENAMELENGTH];
   return m;  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileregp[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  char popfile[FILENAMELENGTH];
 }  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 {  struct timezone tzp;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  extern int gettimeofday();
   double ***m;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  extern long time();
   if (!m) nrerror("allocation failure 1 in matrix()");  char strcurr[80], strfor[80];
   m += NR_END;  
   m -= nrl;  char *endptr;
   long lval;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NR_END 1
   m[nrl] += NR_END;  #define FREE_ARG char*
   m[nrl] -= ncl;  #define FTOL 1.0e-10
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NRANSI 
   #define ITMAX 200 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define TOL 2.0e-4 
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  #define CGOLD 0.3819660 
   for (j=ncl+1; j<=nch; j++)  #define ZEPS 1.0e-10 
     m[nrl][j]=m[nrl][j-1]+nlay;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    
   for (i=nrl+1; i<=nrh; i++) {  #define GOLD 1.618034 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define GLIMIT 100.0 
     for (j=ncl+1; j<=nch; j++)  #define TINY 1.0e-20 
       m[i][j]=m[i][j-1]+nlay;  
   }  static double maxarg1,maxarg2;
   return m;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 /*************************free ma3x ************************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #define rint(a) floor(a+0.5)
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  static double sqrarg;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   free((FREE_ARG)(m+nrl-NR_END));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
 /***************** f1dim *************************/  int imx; 
 extern int ncom;  int stepm=1;
 extern double *pcom,*xicom;  /* Stepm, step in month: minimum step interpolation*/
 extern double (*nrfunc)(double []);  
    int estepm;
 double f1dim(double x)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int j;  int m,nb;
   double f;  long *num;
   double *xt;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
    double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   xt=vector(1,ncom);  double **pmmij, ***probs;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double *ageexmed,*agecens;
   f=(*nrfunc)(xt);  double dateintmean=0;
   free_vector(xt,1,ncom);  
   return f;  double *weight;
 }  int **s; /* Status */
   double *agedc, **covar, idx;
 /*****************brent *************************/  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  double *lsurv, *lpop, *tpop;
 {  
   int iter;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double a,b,d,etemp;  double ftolhess; /* Tolerance for computing hessian */
   double fu,fv,fw,fx;  
   double ftemp;  /**************** split *************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   double e=0.0;  {
      /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   a=(ax < cx ? ax : cx);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   b=(ax > cx ? ax : cx);    */ 
   x=w=v=bx;    char  *ss;                            /* pointer */
   fw=fv=fx=(*f)(x);    int   l1, l2;                         /* length counters */
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    l1 = strlen(path );                   /* length of path */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     printf(".");fflush(stdout);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #ifdef DEBUG      strcpy( name, path );               /* we got the fullname name because no directory */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 #endif      /* get current working directory */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      /*    extern  char* getcwd ( char *buf , int len);*/
       *xmin=x;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       return fx;        return( GLOCK_ERROR_GETCWD );
     }      }
     ftemp=fu;      /* got dirc from getcwd*/
     if (fabs(e) > tol1) {      printf(" DIRC = %s \n",dirc);
       r=(x-w)*(fx-fv);    } else {                              /* strip direcotry from path */
       q=(x-v)*(fx-fw);      ss++;                               /* after this, the filename */
       p=(x-v)*q-(x-w)*r;      l2 = strlen( ss );                  /* length of filename */
       q=2.0*(q-r);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       if (q > 0.0) p = -p;      strcpy( name, ss );         /* save file name */
       q=fabs(q);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       etemp=e;      dirc[l1-l2] = 0;                    /* add zero */
       e=d;      printf(" DIRC2 = %s \n",dirc);
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* We add a separator at the end of dirc if not exists */
       else {    l1 = strlen( dirc );                  /* length of directory */
         d=p/q;    if( dirc[l1-1] != DIRSEPARATOR ){
         u=x+d;      dirc[l1] =  DIRSEPARATOR;
         if (u-a < tol2 || b-u < tol2)      dirc[l1+1] = 0; 
           d=SIGN(tol1,xm-x);      printf(" DIRC3 = %s \n",dirc);
       }    }
     } else {    ss = strrchr( name, '.' );            /* find last / */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (ss >0){
     }      ss++;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      strcpy(ext,ss);                     /* save extension */
     fu=(*f)(u);      l1= strlen( name);
     if (fu <= fx) {      l2= strlen(ss)+1;
       if (u >= x) a=x; else b=x;      strncpy( finame, name, l1-l2);
       SHFT(v,w,x,u)      finame[l1-l2]= 0;
         SHFT(fv,fw,fx,fu)    }
         } else {  
           if (u < x) a=u; else b=u;    return( 0 );                          /* we're done */
           if (fu <= fw || w == x) {  }
             v=w;  
             w=u;  
             fv=fw;  /******************************************/
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  void replace_back_to_slash(char *s, char*t)
             v=u;  {
             fv=fu;    int i;
           }    int lg=0;
         }    i=0;
   }    lg=strlen(t);
   nrerror("Too many iterations in brent");    for(i=0; i<= lg; i++) {
   *xmin=x;      (s[i] = t[i]);
   return fx;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /****************** mnbrak ***********************/  
   int nbocc(char *s, char occ)
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  {
             double (*func)(double))    int i,j=0;
 {    int lg=20;
   double ulim,u,r,q, dum;    i=0;
   double fu;    lg=strlen(s);
      for(i=0; i<= lg; i++) {
   *fa=(*func)(*ax);    if  (s[i] == occ ) j++;
   *fb=(*func)(*bx);    }
   if (*fb > *fa) {    return j;
     SHFT(dum,*ax,*bx,dum)  }
       SHFT(dum,*fb,*fa,dum)  
       }  void cutv(char *u,char *v, char*t, char occ)
   *cx=(*bx)+GOLD*(*bx-*ax);  {
   *fc=(*func)(*cx);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   while (*fb > *fc) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     r=(*bx-*ax)*(*fb-*fc);       gives u="abcedf" and v="ghi2j" */
     q=(*bx-*cx)*(*fb-*fa);    int i,lg,j,p=0;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    i=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    for(j=0; j<=strlen(t)-1; j++) {
     ulim=(*bx)+GLIMIT*(*cx-*bx);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     if ((*bx-u)*(u-*cx) > 0.0) {    }
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    lg=strlen(t);
       fu=(*func)(u);    for(j=0; j<p; j++) {
       if (fu < *fc) {      (u[j] = t[j]);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    }
           SHFT(*fb,*fc,fu,(*func)(u))       u[p]='\0';
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     for(j=0; j<= lg; j++) {
       u=ulim;      if (j>=(p+1))(v[j-p-1] = t[j]);
       fu=(*func)(u);    }
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /********************** nrerror ********************/
     }  
     SHFT(*ax,*bx,*cx,u)  void nrerror(char error_text[])
       SHFT(*fa,*fb,*fc,fu)  {
       }    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /*************** linmin ************************/  }
   /*********************** vector *******************/
 int ncom;  double *vector(int nl, int nh)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    double *v;
      v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /************************ free vector ******************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  void free_vector(double*v, int nl, int nh)
               double *fc, double (*func)(double));  {
   int j;    free((FREE_ARG)(v+nl-NR_END));
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    /************************ivector *******************************/
   ncom=n;  int *ivector(long nl,long nh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    int *v;
   nrfunc=func;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (j=1;j<=n;j++) {    if (!v) nrerror("allocation failure in ivector");
     pcom[j]=p[j];    return v-nl+NR_END;
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  /******************free ivector **************************/
   xx=1.0;  void free_ivector(int *v, long nl, long nh)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /************************lvector *******************************/
   for (j=1;j<=n;j++) {  long *lvector(long nl,long nh)
     xi[j] *= xmin;  {
     p[j] += xi[j];    long *v;
   }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   free_vector(xicom,1,n);    if (!v) nrerror("allocation failure in ivector");
   free_vector(pcom,1,n);    return v-nl+NR_END;
 }  }
   
 /*************** powell ************************/  /******************free lvector **************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  void free_lvector(long *v, long nl, long nh)
             double (*func)(double []))  {
 {    free((FREE_ARG)(v+nl-NR_END));
   void linmin(double p[], double xi[], int n, double *fret,  }
               double (*func)(double []));  
   int i,ibig,j;  /******************* imatrix *******************************/
   double del,t,*pt,*ptt,*xit;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double fp,fptt;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double *xits;  { 
   pt=vector(1,n);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   ptt=vector(1,n);    int **m; 
   xit=vector(1,n);    
   xits=vector(1,n);    /* allocate pointers to rows */ 
   *fret=(*func)(p);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for (j=1;j<=n;j++) pt[j]=p[j];    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (*iter=1;;++(*iter)) {    m += NR_END; 
     fp=(*fret);    m -= nrl; 
     ibig=0;    
     del=0.0;    
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    /* allocate rows and set pointers to them */ 
     for (i=1;i<=n;i++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       printf(" %d %.12f",i, p[i]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     printf("\n");    m[nrl] += NR_END; 
     for (i=1;i<=n;i++) {    m[nrl] -= ncl; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    
       fptt=(*fret);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #ifdef DEBUG    
       printf("fret=%lf \n",*fret);    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
       printf("%d",i);fflush(stdout);  } 
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /****************** free_imatrix *************************/
         del=fabs(fptt-(*fret));  void free_imatrix(m,nrl,nrh,ncl,nch)
         ibig=i;        int **m;
       }        long nch,ncl,nrh,nrl; 
 #ifdef DEBUG       /* free an int matrix allocated by imatrix() */ 
       printf("%d %.12e",i,(*fret));  { 
       for (j=1;j<=n;j++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    free((FREE_ARG) (m+nrl-NR_END)); 
         printf(" x(%d)=%.12e",j,xit[j]);  } 
       }  
       for(j=1;j<=n;j++)  /******************* matrix *******************************/
         printf(" p=%.12e",p[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
       printf("\n");  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     }    double **m;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       int k[2],l;    if (!m) nrerror("allocation failure 1 in matrix()");
       k[0]=1;    m += NR_END;
       k[1]=-1;    m -= nrl;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf(" %.12e",p[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       printf("\n");    m[nrl] += NR_END;
       for(l=0;l<=1;l++) {    m[nrl] -= ncl;
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    return m;
         }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));     */
       }  }
 #endif  
   /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       free_vector(ptt,1,n);    free((FREE_ARG)(m+nrl-NR_END));
       free_vector(pt,1,n);  }
       return;  
     }  /******************* ma3x *******************************/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     for (j=1;j<=n;j++) {  {
       ptt[j]=2.0*p[j]-pt[j];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       xit[j]=p[j]-pt[j];    double ***m;
       pt[j]=p[j];  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fptt=(*func)(ptt);    if (!m) nrerror("allocation failure 1 in matrix()");
     if (fptt < fp) {    m += NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    m -= nrl;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           xi[j][ibig]=xi[j][n];    m[nrl] += NR_END;
           xi[j][n]=xit[j];    m[nrl] -= ncl;
         }  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           printf(" %.12e",xit[j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         printf("\n");    m[nrl][ncl] += NR_END;
 #endif    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /**** Prevalence limit ****************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    }
 {    return m; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
      matrix by transitions matrix until convergence is reached */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  /*************************free ma3x ************************/
   double **out, cov[NCOVMAX], **pmij();  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double **newm;  {
   double agefin, delaymax=50 ; /* Max number of years to converge */    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m+nrl-NR_END));
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
    cov[1]=1.;  {
      /* Caution optionfilefiname is hidden */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    strcpy(tmpout,optionfilefiname);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcat(tmpout,"/"); /* Add to the right */
     newm=savm;    strcat(tmpout,fileres);
     /* Covariates have to be included here again */    return tmpout;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /*************** function subdirf2 ***********/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char *subdirf2(char fileres[], char *preop)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* Caution optionfilefiname is hidden */
       for (k=1; k<=cptcovprod;k++)    strcpy(tmpout,optionfilefiname);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcat(tmpout,"/");
     strcat(tmpout,preop);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,fileres);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return tmpout;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /*************** function subdirf3 ***********/
     savm=oldm;  char *subdirf3(char fileres[], char *preop, char *preop2)
     oldm=newm;  {
     maxmax=0.;    
     for(j=1;j<=nlstate;j++){    /* Caution optionfilefiname is hidden */
       min=1.;    strcpy(tmpout,optionfilefiname);
       max=0.;    strcat(tmpout,"/");
       for(i=1; i<=nlstate; i++) {    strcat(tmpout,preop);
         sumnew=0;    strcat(tmpout,preop2);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,fileres);
         prlim[i][j]= newm[i][j]/(1-sumnew);    return tmpout;
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  
       }  /***************** f1dim *************************/
       maxmin=max-min;  extern int ncom; 
       maxmax=FMAX(maxmax,maxmin);  extern double *pcom,*xicom;
     }  extern double (*nrfunc)(double []); 
     if(maxmax < ftolpl){   
       return prlim;  double f1dim(double x) 
     }  { 
   }    int j; 
 }    double f;
     double *xt; 
 /*************** transition probabilities ***************/   
     xt=vector(1,ncom); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 {    f=(*nrfunc)(xt); 
   double s1, s2;    free_vector(xt,1,ncom); 
   /*double t34;*/    return f; 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /*****************brent *************************/
     for(j=1; j<i;j++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         /*s2 += param[i][j][nc]*cov[nc];*/    int iter; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double a,b,d,etemp;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double fu,fv,fw,fx;
       }    double ftemp;
       ps[i][j]=s2;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double e=0.0; 
     }   
     for(j=i+1; j<=nlstate+ndeath;j++){    a=(ax < cx ? ax : cx); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    b=(ax > cx ? ax : cx); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    x=w=v=bx; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    fw=fv=fx=(*f)(x); 
       }    for (iter=1;iter<=ITMAX;iter++) { 
       ps[i][j]=s2;      xm=0.5*(a+b); 
     }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     /*ps[3][2]=1;*/      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   for(i=1; i<= nlstate; i++){  #ifdef DEBUG
      s1=0;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=1; j<i; j++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       s1+=exp(ps[i][j]);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     for(j=i+1; j<=nlstate+ndeath; j++)  #endif
       s1+=exp(ps[i][j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     ps[i][i]=1./(s1+1.);        *xmin=x; 
     for(j=1; j<i; j++)        return fx; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      ftemp=fu;
       ps[i][j]= exp(ps[i][j])*ps[i][i];      if (fabs(e) > tol1) { 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        r=(x-w)*(fx-fv); 
   } /* end i */        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        q=2.0*(q-r); 
     for(jj=1; jj<= nlstate+ndeath; jj++){        if (q > 0.0) p = -p; 
       ps[ii][jj]=0;        q=fabs(q); 
       ps[ii][ii]=1;        etemp=e; 
     }        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          d=p/q; 
     for(jj=1; jj<= nlstate+ndeath; jj++){          u=x+d; 
      printf("%lf ",ps[ii][jj]);          if (u-a < tol2 || b-u < tol2) 
    }            d=SIGN(tol1,xm-x); 
     printf("\n ");        } 
     }      } else { 
     printf("\n ");printf("%lf ",cov[2]);*/        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*      } 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   goto end;*/      fu=(*f)(u); 
     return ps;      if (fu <= fx) { 
 }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 /**************** Product of 2 matrices ******************/          SHFT(fv,fw,fx,fu) 
           } else { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times              v=w; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */              w=u; 
   /* in, b, out are matrice of pointers which should have been initialized              fv=fw; 
      before: only the contents of out is modified. The function returns              fw=fu; 
      a pointer to pointers identical to out */            } else if (fu <= fv || v == x || v == w) { 
   long i, j, k;              v=u; 
   for(i=nrl; i<= nrh; i++)              fv=fu; 
     for(k=ncolol; k<=ncoloh; k++)            } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          } 
         out[i][k] +=in[i][j]*b[j][k];    } 
     nrerror("Too many iterations in brent"); 
   return out;    *xmin=x; 
 }    return fx; 
   } 
   
 /************* Higher Matrix Product ***************/  /****************** mnbrak ***********************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 {              double (*func)(double)) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    double ulim,u,r,q, dum;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double fu; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   
      (typically every 2 years instead of every month which is too big).    *fa=(*func)(*ax); 
      Model is determined by parameters x and covariates have to be    *fb=(*func)(*bx); 
      included manually here.    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
      */        SHFT(dum,*fb,*fa,dum) 
         } 
   int i, j, d, h, k;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double **out, cov[NCOVMAX];    *fc=(*func)(*cx); 
   double **newm;    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
   /* Hstepm could be zero and should return the unit matrix */      q=(*bx-*cx)*(*fb-*fa); 
   for (i=1;i<=nlstate+ndeath;i++)      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for (j=1;j<=nlstate+ndeath;j++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for(h=1; h <=nhstepm; h++){        fu=(*func)(u); 
     for(d=1; d <=hstepm; d++){        if (fu < *fc) { 
       newm=savm;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       /* Covariates have to be included here again */            SHFT(*fb,*fc,fu,(*func)(u)) 
       cov[1]=1.;            } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        u=ulim; 
       for (k=1; k<=cptcovage;k++)        fu=(*func)(u); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      } else { 
       for (k=1; k<=cptcovprod;k++)        u=(*cx)+GOLD*(*cx-*bx); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fu=(*func)(u); 
       } 
       SHFT(*ax,*bx,*cx,u) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        SHFT(*fa,*fb,*fc,fu) 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /*************** linmin ************************/
       oldm=newm;  
     }  int ncom; 
     for(i=1; i<=nlstate+ndeath; i++)  double *pcom,*xicom;
       for(j=1;j<=nlstate+ndeath;j++) {  double (*nrfunc)(double []); 
         po[i][j][h]=newm[i][j];   
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
          */  { 
       }    double brent(double ax, double bx, double cx, 
   } /* end h */                 double (*f)(double), double tol, double *xmin); 
   return po;    double f1dim(double x); 
 }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
     int j; 
 /*************** log-likelihood *************/    double xx,xmin,bx,ax; 
 double func( double *x)    double fx,fb,fa;
 {   
   int i, ii, j, k, mi, d, kk;    ncom=n; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    pcom=vector(1,n); 
   double **out;    xicom=vector(1,n); 
   double sw; /* Sum of weights */    nrfunc=func; 
   double lli; /* Individual log likelihood */    for (j=1;j<=n;j++) { 
   long ipmx;      pcom[j]=p[j]; 
   /*extern weight */      xicom[j]=xi[j]; 
   /* We are differentiating ll according to initial status */    } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    ax=0.0; 
   /*for(i=1;i<imx;i++)    xx=1.0; 
     printf(" %d\n",s[4][i]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   cov[1]=1.;  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (j=1;j<=n;j++) { 
     for(mi=1; mi<= wav[i]-1; mi++){      xi[j] *= xmin; 
       for (ii=1;ii<=nlstate+ndeath;ii++)      p[j] += xi[j]; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } 
       for(d=0; d<dh[mi][i]; d++){    free_vector(xicom,1,n); 
         newm=savm;    free_vector(pcom,1,n); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  } 
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  char *asc_diff_time(long time_sec, char ascdiff[])
         }  {
            long sec_left, days, hours, minutes;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    days = (time_sec) / (60*60*24);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    sec_left = (time_sec) % (60*60*24);
         savm=oldm;    hours = (sec_left) / (60*60) ;
         oldm=newm;    sec_left = (sec_left) %(60*60);
            minutes = (sec_left) /60;
            sec_left = (sec_left) % (60);
       } /* end mult */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
          return ascdiff;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /*************** powell ************************/
       sw += weight[i];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;              double (*func)(double [])) 
     } /* end of wave */  { 
   } /* end of individual */    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    int i,ibig,j; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    double del,t,*pt,*ptt,*xit;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double fp,fptt;
   return -l;    double *xits;
 }    int niterf, itmp;
   
     pt=vector(1,n); 
 /*********** Maximum Likelihood Estimation ***************/    ptt=vector(1,n); 
     xit=vector(1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i,j, iter;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **xi,*delti;    for (*iter=1;;++(*iter)) { 
   double fret;      fp=(*fret); 
   xi=matrix(1,npar,1,npar);      ibig=0; 
   for (i=1;i<=npar;i++)      del=0.0; 
     for (j=1;j<=npar;j++)      last_time=curr_time;
       xi[i][j]=(i==j ? 1.0 : 0.0);      (void) gettimeofday(&curr_time,&tzp);
   printf("Powell\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   powell(p,xi,npar,ftol,&iter,&fret,func);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      printf("\n");
 {      fprintf(ficlog,"\n");
   double  **a,**y,*x,pd;      fprintf(ficrespow,"\n");fflush(ficrespow);
   double **hess;      if(*iter <=3){
   int i, j,jk;        tm = *localtime(&curr_time.tv_sec);
   int *indx;        strcpy(strcurr,asctime(&tm));
   /*       asctime_r(&tm,strcurr); */
   double hessii(double p[], double delta, int theta, double delti[]);        forecast_time=curr_time; 
   double hessij(double p[], double delti[], int i, int j);        itmp = strlen(strcurr);
   void lubksb(double **a, int npar, int *indx, double b[]) ;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   void ludcmp(double **a, int npar, int *indx, double *d) ;          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   hess=matrix(1,npar,1,npar);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   printf("\nCalculation of the hessian matrix. Wait...\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++){          tmf = *localtime(&forecast_time.tv_sec);
     printf("%d",i);fflush(stdout);  /*      asctime_r(&tmf,strfor); */
     hess[i][i]=hessii(p,ftolhess,i,delti);          strcpy(strfor,asctime(&tmf));
     /*printf(" %f ",p[i]);*/          itmp = strlen(strfor);
     /*printf(" %lf ",hess[i][i]);*/          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++)  {        }
       if (j>i) {      }
         printf(".%d%d",i,j);fflush(stdout);      for (i=1;i<=n;i++) { 
         hess[i][j]=hessij(p,delti,i,j);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         hess[j][i]=hess[i][j];            fptt=(*fret); 
         /*printf(" %lf ",hess[i][j]);*/  #ifdef DEBUG
       }        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
   printf("\n");        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
   a=matrix(1,npar,1,npar);          del=fabs(fptt-(*fret)); 
   y=matrix(1,npar,1,npar);          ibig=i; 
   x=vector(1,npar);        } 
   indx=ivector(1,npar);  #ifdef DEBUG
   for (i=1;i<=npar;i++)        printf("%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"%d %.12e",i,(*fret));
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (j=1;j<=npar;j++) {          printf(" x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     x[j]=1;        }
     lubksb(a,npar,indx,x);        for(j=1;j<=n;j++) {
     for (i=1;i<=npar;i++){          printf(" p=%.12e",p[j]);
       matcov[i][j]=x[i];          fprintf(ficlog," p=%.12e",p[j]);
     }        }
   }        printf("\n");
         fprintf(ficlog,"\n");
   printf("\n#Hessian matrix#\n");  #endif
   for (i=1;i<=npar;i++) {      } 
     for (j=1;j<=npar;j++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       printf("%.3e ",hess[i][j]);  #ifdef DEBUG
     }        int k[2],l;
     printf("\n");        k[0]=1;
   }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   /* Recompute Inverse */        fprintf(ficlog,"Max: %.12e",(*func)(p));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          printf(" %.12e",p[j]);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog," %.12e",p[j]);
         }
   /*  printf("\n#Hessian matrix recomputed#\n");        printf("\n");
         fprintf(ficlog,"\n");
   for (j=1;j<=npar;j++) {        for(l=0;l<=1;l++) {
     for (i=1;i<=npar;i++) x[i]=0;          for (j=1;j<=n;j++) {
     x[j]=1;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     lubksb(a,npar,indx,x);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (i=1;i<=npar;i++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       y[i][j]=x[i];          }
       printf("%.3e ",y[i][j]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     printf("\n");        }
   }  #endif
   */  
   
   free_matrix(a,1,npar,1,npar);        free_vector(xit,1,n); 
   free_matrix(y,1,npar,1,npar);        free_vector(xits,1,n); 
   free_vector(x,1,npar);        free_vector(ptt,1,n); 
   free_ivector(indx,1,npar);        free_vector(pt,1,n); 
   free_matrix(hess,1,npar,1,npar);        return; 
       } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
 }      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
 /*************** hessian matrix ****************/        xit[j]=p[j]-pt[j]; 
 double hessii( double x[], double delta, int theta, double delti[])        pt[j]=p[j]; 
 {      } 
   int i;      fptt=(*func)(ptt); 
   int l=1, lmax=20;      if (fptt < fp) { 
   double k1,k2;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   double p2[NPARMAX+1];        if (t < 0.0) { 
   double res;          linmin(p,xit,n,fret,func); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          for (j=1;j<=n;j++) { 
   double fx;            xi[j][ibig]=xi[j][n]; 
   int k=0,kmax=10;            xi[j][n]=xit[j]; 
   double l1;          }
   #ifdef DEBUG
   fx=func(x);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++) p2[i]=x[i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(l=0 ; l <=lmax; l++){          for(j=1;j<=n;j++){
     l1=pow(10,l);            printf(" %.12e",xit[j]);
     delts=delt;            fprintf(ficlog," %.12e",xit[j]);
     for(k=1 ; k <kmax; k=k+1){          }
       delt = delta*(l1*k);          printf("\n");
       p2[theta]=x[theta] +delt;          fprintf(ficlog,"\n");
       k1=func(p2)-fx;  #endif
       p2[theta]=x[theta]-delt;        }
       k2=func(p2)-fx;      } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  } 
        
 #ifdef DEBUG  /**** Prevalence limit (stable prevalence)  ****************/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  {
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         k=kmax;       matrix by transitions matrix until convergence is reached */
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int i, ii,j,k;
         k=kmax; l=lmax*10.;    double min, max, maxmin, maxmax,sumnew=0.;
       }    double **matprod2();
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double **out, cov[NCOVMAX], **pmij();
         delts=delt;    double **newm;
       }    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
   delti[theta]=delts;      for (j=1;j<=nlstate+ndeath;j++){
   return res;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }
 }  
      cov[1]=1.;
 double hessij( double x[], double delti[], int thetai,int thetaj)   
 {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int l=1, l1, lmax=20;      newm=savm;
   double k1,k2,k3,k4,res,fx;      /* Covariates have to be included here again */
   double p2[NPARMAX+1];       cov[2]=agefin;
   int k;    
         for (k=1; k<=cptcovn;k++) {
   fx=func(x);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (k=1; k<=2; k++) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for (i=1;i<=npar;i++) p2[i]=x[i];        }
     p2[thetai]=x[thetai]+delti[thetai]/k;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for (k=1; k<=cptcovprod;k++)
     k1=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
     p2[thetai]=x[thetai]+delti[thetai]/k;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     k2=func(p2)-fx;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      savm=oldm;
     k3=func(p2)-fx;      oldm=newm;
        maxmax=0.;
     p2[thetai]=x[thetai]-delti[thetai]/k;      for(j=1;j<=nlstate;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        min=1.;
     k4=func(p2)-fx;        max=0.;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for(i=1; i<=nlstate; i++) {
 #ifdef DEBUG          sumnew=0;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 #endif          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max=FMAX(max,prlim[i][j]);
   return res;          min=FMIN(min,prlim[i][j]);
 }        }
         maxmin=max-min;
 /************** Inverse of matrix **************/        maxmax=FMAX(maxmax,maxmin);
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {      if(maxmax < ftolpl){
   int i,imax,j,k;        return prlim;
   double big,dum,sum,temp;      }
   double *vv;    }
    }
   vv=vector(1,n);  
   *d=1.0;  /*************** transition probabilities ***************/ 
   for (i=1;i<=n;i++) {  
     big=0.0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for (j=1;j<=n;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;    double s1, s2;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    /*double t34;*/
     vv[i]=1.0/big;    int i,j,j1, nc, ii, jj;
   }  
   for (j=1;j<=n;j++) {      for(i=1; i<= nlstate; i++){
     for (i=1;i<j;i++) {        for(j=1; j<i;j++){
       sum=a[i][j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            /*s2 += param[i][j][nc]*cov[nc];*/
       a[i][j]=sum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     big=0.0;          }
     for (i=j;i<=n;i++) {          ps[i][j]=s2;
       sum=a[i][j];  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       for (k=1;k<j;k++)        }
         sum -= a[i][k]*a[k][j];        for(j=i+1; j<=nlstate+ndeath;j++){
       a[i][j]=sum;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       if ( (dum=vv[i]*fabs(sum)) >= big) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         big=dum;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
         imax=i;          }
       }          ps[i][j]=s2;
     }        }
     if (j != imax) {      }
       for (k=1;k<=n;k++) {      /*ps[3][2]=1;*/
         dum=a[imax][k];      
         a[imax][k]=a[j][k];      for(i=1; i<= nlstate; i++){
         a[j][k]=dum;        s1=0;
       }        for(j=1; j<i; j++)
       *d = -(*d);          s1+=exp(ps[i][j]);
       vv[imax]=vv[j];        for(j=i+1; j<=nlstate+ndeath; j++)
     }          s1+=exp(ps[i][j]);
     indx[j]=imax;        ps[i][i]=1./(s1+1.);
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=1; j<i; j++)
     if (j != n) {          ps[i][j]= exp(ps[i][j])*ps[i][i];
       dum=1.0/(a[j][j]);        for(j=i+1; j<=nlstate+ndeath; j++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   }      } /* end i */
   free_vector(vv,1,n);  /* Doesn't work */      
 ;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 }        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
 void lubksb(double **a, int n, int *indx, double b[])          ps[ii][ii]=1;
 {        }
   int i,ii=0,ip,j;      }
   double sum;      
    
   for (i=1;i<=n;i++) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
     ip=indx[i];  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     sum=b[ip];  /*         printf("ddd %lf ",ps[ii][jj]); */
     b[ip]=b[i];  /*       } */
     if (ii)  /*       printf("\n "); */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  /*        } */
     else if (sum) ii=i;  /*        printf("\n ");printf("%lf ",cov[2]); */
     b[i]=sum;         /*
   }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for (i=n;i>=1;i--) {        goto end;*/
     sum=b[i];      return ps;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  
   }  /**************** Product of 2 matrices ******************/
 }  
   double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 {  /* Some frequencies */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       before: only the contents of out is modified. The function returns
   double ***freq; /* Frequencies */       a pointer to pointers identical to out */
   double *pp;    long i, j, k;
   double pos, k2, dateintsum=0,k2cpt=0;    for(i=nrl; i<= nrh; i++)
   FILE *ficresp;      for(k=ncolol; k<=ncoloh; k++)
   char fileresp[FILENAMELENGTH];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
            out[i][k] +=in[i][j]*b[j][k];
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    return out;
   strcpy(fileresp,"p");  }
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /************* Higher Matrix Product ***************/
     exit(0);  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    /* Computes the transition matrix starting at age 'age' over 
         'nhstepm*hstepm*stepm' months (i.e. until
   j=cptcoveff;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   for(k1=1; k1<=j;k1++){       (typically every 2 years instead of every month which is too big 
     for(i1=1; i1<=ncodemax[k1];i1++){       for the memory).
       j1++;       Model is determined by parameters x and covariates have to be 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);       included manually here. 
         scanf("%d", i);*/  
       for (i=-1; i<=nlstate+ndeath; i++)         */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    int i, j, d, h, k;
             freq[i][jk][m]=0;    double **out, cov[NCOVMAX];
          double **newm;
       dateintsum=0;  
       k2cpt=0;    /* Hstepm could be zero and should return the unit matrix */
       for (i=1; i<=imx; i++) {    for (i=1;i<=nlstate+ndeath;i++)
         bool=1;      for (j=1;j<=nlstate+ndeath;j++){
         if  (cptcovn>0) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      }
               bool=0;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
         if (bool==1) {      for(d=1; d <=hstepm; d++){
           for(m=firstpass; m<=lastpass; m++){        newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);        /* Covariates have to be included here again */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        cov[1]=1.;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               if (m<lastpass) {        for (k=1; k<=cptcovage;k++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        for (k=1; k<=cptcovprod;k++)
               }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                 k2cpt++;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
               }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
             }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           }        savm=oldm;
         }        oldm=newm;
       }      }
              for(i=1; i<=nlstate+ndeath; i++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
       if  (cptcovn>0) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         fprintf(ficresp, "\n#********** Variable ");           */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresp, "**********\n#");    } /* end h */
       }    return po;
       for(i=1; i<=nlstate;i++)  }
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  
        /*************** log-likelihood *************/
       for(i=(int)agemin; i <= (int)agemax+3; i++){  double func( double *x)
         if(i==(int)agemax+3)  {
           printf("Total");    int i, ii, j, k, mi, d, kk;
         else    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           printf("Age %d", i);    double **out;
         for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double lli; /* Individual log likelihood */
             pp[jk] += freq[jk][m][i];    int s1, s2;
         }    double bbh, survp;
         for(jk=1; jk <=nlstate ; jk++){    long ipmx;
           for(m=-1, pos=0; m <=0 ; m++)    /*extern weight */
             pos += freq[jk][m][i];    /* We are differentiating ll according to initial status */
           if(pp[jk]>=1.e-10)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    /*for(i=1;i<imx;i++) 
           else      printf(" %d\n",s[4][i]);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    */
         }    cov[1]=1.;
   
         for(jk=1; jk <=nlstate ; jk++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    if(mle==1){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1,pos=0; jk <=nlstate ; jk++)        for(mi=1; mi<= wav[i]-1; mi++){
           pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           if(pos>=1.e-5)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           else            }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for(d=0; d<dh[mi][i]; d++){
           if( i <= (int) agemax){            newm=savm;
             if(pos>=1.e-5){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            for (kk=1; kk<=cptcovage;kk++) {
               probs[i][jk][j1]= pp[jk]/pos;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
                
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           for(m=-1; m <=nlstate+ndeath; m++)          /* But now since version 0.9 we anticipate for bias at large stepm.
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         if(i <= (int) agemax)           * (in months) between two waves is not a multiple of stepm, we rounded to 
           fprintf(ficresp,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
         printf("\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   dateintmean=dateintsum/k2cpt;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
   fclose(ficresp);           * For stepm > 1 the results are less biased than in previous versions. 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   /* End of Freq */          bbh=(double)bh[mi][i]/(double)stepm; 
 }          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
 /************ Prevalence ********************/           */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 {  /* Some frequencies */          if( s2 > nlstate){ 
              /* i.e. if s2 is a death state and if the date of death is known 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;               then the contribution to the likelihood is the probability to 
   double ***freq; /* Frequencies */               die between last step unit time and current  step unit time, 
   double *pp;               which is also equal to probability to die before dh 
   double pos, k2;               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   pp=vector(1,nlstate);          as if date of death was unknown. Death was treated as any other
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          health state: the date of the interview describes the actual state
            and not the date of a change in health state. The former idea was
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          to consider that at each interview the state was recorded
   j1=0;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   j=cptcoveff;          the contribution of an exact death to the likelihood. This new
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
  for(k1=1; k1<=j;k1++){          and month of death but the probability to survive from last
     for(i1=1; i1<=ncodemax[k1];i1++){          interview up to one month before death multiplied by the
       j1++;          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
       for (i=-1; i<=nlstate+ndeath; i++)            mortality artificially. The bad side is that we add another loop
         for (jk=-1; jk<=nlstate+ndeath; jk++)            which slows down the processing. The difference can be up to 10%
           for(m=agemin; m <= agemax+3; m++)          lower mortality.
             freq[i][jk][m]=0;            */
                  lli=log(out[s1][s2] - savm[s1][s2]);
       for (i=1; i<=imx; i++) {  
         bool=1;  
         if  (cptcovn>0) {          } else if  (s2==-2) {
           for (z1=1; z1<=cptcoveff; z1++)            for (j=1,survp=0. ; j<=nlstate; j++) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])              survp += out[s1][j];
               bool=0;            lli= survp;
         }          }
         if (bool==1) {          
           for(m=firstpass; m<=lastpass; m++){          else if  (s2==-4) {
             k2=anint[m][i]+(mint[m][i]/12.);            for (j=3,survp=0. ; j<=nlstate; j++) 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {              survp += out[s1][j];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            lli= survp;
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               if (m<lastpass)          
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          else if  (s2==-5) {
               else            for (j=1,survp=0. ; j<=2; j++) 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              survp += out[s1][j];
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            lli= survp;
             }          }
           }  
         }  
       }          else{
         for(i=(int)agemin; i <= (int)agemax+3; i++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for(jk=1; jk <=nlstate ; jk++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          } 
               pp[jk] += freq[jk][m][i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           }          /*if(lli ==000.0)*/
           for(jk=1; jk <=nlstate ; jk++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
             for(m=-1, pos=0; m <=0 ; m++)          ipmx +=1;
             pos += freq[jk][m][i];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                } /* end of wave */
          for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }  else if(mle==2){
              pp[jk] += freq[jk][m][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                  for(mi=1; mi<= wav[i]-1; mi++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1; jk <=nlstate ; jk++){                        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            if( i <= (int) agemax){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if(pos>=1.e-5){            }
                probs[i][jk][j1]= pp[jk]/pos;          for(d=0; d<=dh[mi][i]; d++){
              }            newm=savm;
            }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          }            for (kk=1; kk<=cptcovage;kk++) {
                        cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
              oldm=newm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          } /* end mult */
   free_vector(pp,1,nlstate);        
            s1=s[mw[mi][i]][i];
 }  /* End of Freq */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************* Waves Concatenation ***************/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        } /* end of wave */
      Death is a valid wave (if date is known).      } /* end of individual */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    }  else if(mle==3){  /* exponential inter-extrapolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      and mw[mi+1][i]. dh depends on stepm.        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, mi, m;            for (j=1;j<=nlstate+ndeath;j++){
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      double sum=0., jmean=0.;*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   int j, k=0,jk, ju, jl;          for(d=0; d<dh[mi][i]; d++){
   double sum=0.;            newm=savm;
   jmin=1e+5;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
   jmean=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     mi=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     m=firstpass;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     while(s[m][i] <= nlstate){            savm=oldm;
       if(s[m][i]>=1)            oldm=newm;
         mw[++mi][i]=m;          } /* end mult */
       if(m >=lastpass)        
         break;          s1=s[mw[mi][i]][i];
       else          s2=s[mw[mi+1][i]][i];
         m++;          bbh=(double)bh[mi][i]/(double)stepm; 
     }/* end while */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (s[m][i] > nlstate){          ipmx +=1;
       mi++;     /* Death is another wave */          sw += weight[i];
       /* if(mi==0)  never been interviewed correctly before death */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /* Only death is a correct wave */        } /* end of wave */
       mw[mi][i]=m;      } /* end of individual */
     }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     wav[i]=mi;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */          
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j <= jmin) jmin=j;            savm=oldm;
           sum=sum+j;            oldm=newm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          } /* end mult */
           }        
         }          s1=s[mw[mi][i]][i];
         else{          s2=s[mw[mi+1][i]][i];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          if( s2 > nlstate){ 
           k=k+1;            lli=log(out[s1][s2] - savm[s1][s2]);
           if (j >= jmax) jmax=j;          }else{
           else if (j <= jmin)jmin=j;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;          ipmx +=1;
         }          sw += weight[i];
         jk= j/stepm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         jl= j -jk*stepm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         ju= j -(jk+1)*stepm;        } /* end of wave */
         if(jl <= -ju)      } /* end of individual */
           dh[mi][i]=jk;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           dh[mi][i]=jk+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         if(dh[mi][i]==0)        for(mi=1; mi<= wav[i]-1; mi++){
           dh[mi][i]=1; /* At least one step */          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   jmean=sum/k;            }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(d=0; d<dh[mi][i]; d++){
  }            newm=savm;
 /*********** Tricode ****************************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void tricode(int *Tvar, int **nbcode, int imx)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int Ndum[20],ij=1, k, j, i;            }
   int cptcode=0;          
   cptcoveff=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (k=0; k<19; k++) Ndum[k]=0;            savm=oldm;
   for (k=1; k<=7; k++) ncodemax[k]=0;            oldm=newm;
           } /* end mult */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        
     for (i=1; i<=imx; i++) {          s1=s[mw[mi][i]][i];
       ij=(int)(covar[Tvar[j]][i]);          s2=s[mw[mi+1][i]][i];
       Ndum[ij]++;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          ipmx +=1;
       if (ij > cptcode) cptcode=ij;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    } /* End of if */
     ij=1;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for (i=1; i<=ncodemax[j]; i++) {    return -l;
       for (k=0; k<=19; k++) {  }
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /*************** log-likelihood *************/
            double funcone( double *x)
           ij++;  {
         }    /* Same as likeli but slower because of a lot of printf and if */
         if (ij > ncodemax[j]) break;    int i, ii, j, k, mi, d, kk;
       }      double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
   }      double lli; /* Individual log likelihood */
     double llt;
  for (k=0; k<19; k++) Ndum[k]=0;    int s1, s2;
     double bbh, survp;
  for (i=1; i<=ncovmodel-2; i++) {    /*extern weight */
       ij=Tvar[i];    /* We are differentiating ll according to initial status */
       Ndum[ij]++;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
  ij=1;    */
  for (i=1; i<=10; i++) {    cov[1]=1.;
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;    for(k=1; k<=nlstate; k++) ll[k]=0.;
      ij++;  
    }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
        for(mi=1; mi<= wav[i]-1; mi++){
     cptcoveff=ij-1;        for (ii=1;ii<=nlstate+ndeath;ii++)
 }          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*********** Health Expectancies ****************/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Health expectancies */          for (kk=1; kk<=cptcovage;kk++) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double age, agelim, hf;          }
   double ***p3mat,***varhe;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;          savm=oldm;
   double **gp, **gm;          oldm=newm;
   double ***gradg, ***trgradg;        } /* end mult */
   int theta;        
         s1=s[mw[mi][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        s2=s[mw[mi+1][i]][i];
   xp=vector(1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
   dnewm=matrix(1,nlstate*2,1,npar);        /* bias is positive if real duration
   doldm=matrix(1,nlstate*2,1,nlstate*2);         * is higher than the multiple of stepm and negative otherwise.
           */
   fprintf(ficreseij,"# Health expectancies\n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   fprintf(ficreseij,"# Age");          lli=log(out[s1][s2] - savm[s1][s2]);
   for(i=1; i<=nlstate;i++)        } else if (mle==1){
     for(j=1; j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        } else if(mle==2){
   fprintf(ficreseij,"\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
   if(estepm < stepm){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf ("Problem %d lower than %d\n",estepm, stepm);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
   else  hstepm=estepm;          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   /* We compute the life expectancy from trapezoids spaced every estepm months          lli=log(out[s1][s2]); /* Original formula */
    * This is mainly to measure the difference between two models: for example        } /* End of if */
    * if stepm=24 months pijx are given only every 2 years and by summing them        ipmx +=1;
    * we are calculating an estimate of the Life Expectancy assuming a linear        sw += weight[i];
    * progression inbetween and thus overestimating or underestimating according        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    * to the curvature of the survival function. If, for the same date, we  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        if(globpr){
    * to compare the new estimate of Life expectancy with the same linear          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    * hypothesis. A more precise result, taking into account a more precise   %10.6f %10.6f %10.6f ", \
    * curvature will be obtained if estepm is as small as stepm. */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            llt +=ll[k]*gipmx/gsw;
      nhstepm is the number of hstepm from age to agelim            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      nstepm is the number of stepm from age to agelin.          }
      Look at hpijx to understand the reason of that which relies in memory size          fprintf(ficresilk," %10.6f\n", -llt);
      and note for a fixed period like estepm months */        }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      } /* end of wave */
      survival function given by stepm (the optimization length). Unfortunately it    } /* end of individual */
      means that if the survival funtion is printed only each two years of age and if    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      results. So we changed our mind and took the option of the best precision.    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   */    if(globpr==0){ /* First time we count the contributions and weights */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      gipmx=ipmx;
       gsw=sw;
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return -l;
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  /*************** function likelione ***********/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /* This routine should help understanding what is done with 
     gp=matrix(0,nhstepm,1,nlstate*2);       the selection of individuals/waves and
     gm=matrix(0,nhstepm,1,nlstate*2);       to check the exact contribution to the likelihood.
        Plotting could be done.
     /* Computed by stepm unit matrices, product of hstepm matrices, stored     */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    int k;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     /* Computing Variances of health expectancies */        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       cptj=0;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(j=1; j<= nlstate; j++){    }
         for(i=1; i<=nlstate; i++){  
           cptj=cptj+1;    *fretone=(*funcone)(p);
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    if(*globpri !=0){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fclose(ficresilk);
           }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         }      fflush(fichtm); 
       }    } 
          return;
        }
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    /*********** Maximum Likelihood Estimation ***************/
        
       cptj=0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<= nlstate; j++){  {
         for(i=1;i<=nlstate;i++){    int i,j, iter;
           cptj=cptj+1;    double **xi;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double fret;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double fretone; /* Only one call to likelihood */
           }    /*  char filerespow[FILENAMELENGTH];*/
         }    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
            for (j=1;j<=npar;j++)
            xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(j=1; j<= nlstate*2; j++)    strcpy(filerespow,"pow"); 
         for(h=0; h<=nhstepm-1; h++){    strcat(filerespow,fileres);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }    }
        fprintf(ficrespow,"# Powell\n# iter -2*LL");
 /* End theta */    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         for(theta=1; theta <=npar; theta++)  
         trgradg[h][j][theta]=gradg[h][theta][j];    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      for(i=1;i<=nlstate*2;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;  }
   
     for(h=0;h<=nhstepm-1;h++){  /**** Computes Hessian and covariance matrix ***/
       for(k=0;k<=nhstepm-1;k++){  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double  **a,**y,*x,pd;
         for(i=1;i<=nlstate*2;i++)    double **hess;
           for(j=1;j<=nlstate*2;j++)    int i, j,jk;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    int *indx;
       }  
     }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
          void lubksb(double **a, int npar, int *indx, double b[]) ;
     /* Computing expectancies */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(i=1; i<=nlstate;i++)    double gompertz(double p[]);
       for(j=1; j<=nlstate;j++)    hess=matrix(1,npar,1,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    printf("\nCalculation of the hessian matrix. Wait...\n");
              fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
         }      fprintf(ficlog,"%d",i);fflush(ficlog);
      
     fprintf(ficreseij,"%3.0f",age );       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     cptj=0;      
     for(i=1; i<=nlstate;i++)      /*  printf(" %f ",p[i]);
       for(j=1; j<=nlstate;j++){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         cptj++;    }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    
       }    for (i=1;i<=npar;i++) {
     fprintf(ficreseij,"\n");      for (j=1;j<=npar;j++)  {
            if (j>i) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);          printf(".%d%d",i,j);fflush(stdout);
     free_matrix(gp,0,nhstepm,1,nlstate*2);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
   free_vector(xp,1,npar);        }
   free_matrix(dnewm,1,nlstate*2,1,npar);      }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    printf("\n");
 }    fprintf(ficlog,"\n");
   
 /************ Variance ******************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 {    
   /* Variance of health expectancies */    a=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    y=matrix(1,npar,1,npar);
   double **newm;    x=vector(1,npar);
   double **dnewm,**doldm;    indx=ivector(1,npar);
   int i, j, nhstepm, hstepm, h, nstepm ;    for (i=1;i<=npar;i++)
   int k, cptcode;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *xp;    ludcmp(a,npar,indx,&pd);
   double **gp, **gm;  
   double ***gradg, ***trgradg;    for (j=1;j<=npar;j++) {
   double ***p3mat;      for (i=1;i<=npar;i++) x[i]=0;
   double age,agelim, hf;      x[j]=1;
   int theta;      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        matcov[i][j]=x[i];
   fprintf(ficresvij,"# Age");      }
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    printf("\n#Hessian matrix#\n");
   fprintf(ficresvij,"\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
   xp=vector(1,npar);      for (j=1;j<=npar;j++) { 
   dnewm=matrix(1,nlstate,1,npar);        printf("%.3e ",hess[i][j]);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"%.3e ",hess[i][j]);
        }
   if(estepm < stepm){      printf("\n");
     printf ("Problem %d lower than %d\n",estepm, stepm);      fprintf(ficlog,"\n");
   }    }
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    /* Recompute Inverse */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++)
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      nstepm is the number of stepm from age to agelin.    ludcmp(a,npar,indx,&pd);
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    /*  printf("\n#Hessian matrix recomputed#\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    for (j=1;j<=npar;j++) {
      means that if the survival funtion is printed only each two years of age and if      for (i=1;i<=npar;i++) x[i]=0;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      x[j]=1;
      results. So we changed our mind and took the option of the best precision.      lubksb(a,npar,indx,x);
   */      for (i=1;i<=npar;i++){ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        y[i][j]=x[i];
   agelim = AGESUP;        printf("%.3e ",y[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",y[i][j]);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      printf("\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }
     gp=matrix(0,nhstepm,1,nlstate);    */
     gm=matrix(0,nhstepm,1,nlstate);  
     free_matrix(a,1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_vector(x,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
   }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*************** hessian matrix ****************/
           prlim[i][i]=probs[(int)age][i][ij];  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
      int i;
       for(j=1; j<= nlstate; j++){    int l=1, lmax=20;
         for(h=0; h<=nhstepm; h++){    double k1,k2;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double p2[NPARMAX+1];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       }    double fx;
        int k=0,kmax=10;
       for(i=1; i<=npar; i++) /* Computes gradient */    double l1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fx=func(x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (i=1;i<=npar;i++) p2[i]=x[i];
      for(l=0 ; l <=lmax; l++){
       if (popbased==1) {      l1=pow(10,l);
         for(i=1; i<=nlstate;i++)      delts=delt;
           prlim[i][i]=probs[(int)age][i][ij];      for(k=1 ; k <kmax; k=k+1){
       }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
       for(j=1; j<= nlstate; j++){        k1=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        p2[theta]=x[theta]-delt;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        k2=func(p2)-fx;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
   #ifdef DEBUG
       for(j=1; j<= nlstate; j++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     } /* End theta */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for(h=0; h<=nhstepm; h++)          k=kmax; l=lmax*10.;
       for(j=1; j<=nlstate;j++)        }
         for(theta=1; theta <=npar; theta++)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           trgradg[h][j][theta]=gradg[h][theta][j];          delts=delt;
         }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      }
     for(i=1;i<=nlstate;i++)    }
       for(j=1;j<=nlstate;j++)    delti[theta]=delts;
         vareij[i][j][(int)age] =0.;    return res; 
     
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  {
         for(i=1;i<=nlstate;i++)    int i;
           for(j=1;j<=nlstate;j++)    int l=1, l1, lmax=20;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double k1,k2,k3,k4,res,fx;
       }    double p2[NPARMAX+1];
     }    int k;
   
     fprintf(ficresvij,"%.0f ",age );    fx=func(x);
     for(i=1; i<=nlstate;i++)    for (k=1; k<=2; k++) {
       for(j=1; j<=nlstate;j++){      for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficresvij,"\n");      k1=func(p2)-fx;
     free_matrix(gp,0,nhstepm,1,nlstate);    
     free_matrix(gm,0,nhstepm,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      k2=func(p2)-fx;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   } /* End age */      p2[thetai]=x[thetai]-delti[thetai]/k;
        p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   free_vector(xp,1,npar);      k3=func(p2)-fx;
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 /************ Variance of prevlim ******************/  #ifdef DEBUG
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   /* Variance of prevalence limit */  #endif
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   double **newm;    return res;
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  /************** Inverse of matrix **************/
   double *xp;  void ludcmp(double **a, int n, int *indx, double *d) 
   double *gp, *gm;  { 
   double **gradg, **trgradg;    int i,imax,j,k; 
   double age,agelim;    double big,dum,sum,temp; 
   int theta;    double *vv; 
       
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    vv=vector(1,n); 
   fprintf(ficresvpl,"# Age");    *d=1.0; 
   for(i=1; i<=nlstate;i++)    for (i=1;i<=n;i++) { 
       fprintf(ficresvpl," %1d-%1d",i,i);      big=0.0; 
   fprintf(ficresvpl,"\n");      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
   xp=vector(1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   dnewm=matrix(1,nlstate,1,npar);      vv[i]=1.0/big; 
   doldm=matrix(1,nlstate,1,nlstate);    } 
      for (j=1;j<=n;j++) { 
   hstepm=1*YEARM; /* Every year of age */      for (i=1;i<j;i++) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        sum=a[i][j]; 
   agelim = AGESUP;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        a[i][j]=sum; 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } 
     if (stepm >= YEARM) hstepm=1;      big=0.0; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=j;i<=n;i++) { 
     gradg=matrix(1,npar,1,nlstate);        sum=a[i][j]; 
     gp=vector(1,nlstate);        for (k=1;k<j;k++) 
     gm=vector(1,nlstate);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     for(theta=1; theta <=npar; theta++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for(i=1; i<=npar; i++){ /* Computes gradient */          big=dum; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          imax=i; 
       }        } 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } 
       for(i=1;i<=nlstate;i++)      if (j != imax) { 
         gp[i] = prlim[i][i];        for (k=1;k<=n;k++) { 
              dum=a[imax][k]; 
       for(i=1; i<=npar; i++) /* Computes gradient */          a[imax][k]=a[j][k]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          a[j][k]=dum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } 
       for(i=1;i<=nlstate;i++)        *d = -(*d); 
         gm[i] = prlim[i][i];        vv[imax]=vv[j]; 
       } 
       for(i=1;i<=nlstate;i++)      indx[j]=imax; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      if (a[j][j] == 0.0) a[j][j]=TINY; 
     } /* End theta */      if (j != n) { 
         dum=1.0/(a[j][j]); 
     trgradg =matrix(1,nlstate,1,npar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     for(j=1; j<=nlstate;j++)    } 
       for(theta=1; theta <=npar; theta++)    free_vector(vv,1,n);  /* Doesn't work */
         trgradg[j][theta]=gradg[theta][j];  ;
   } 
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  void lubksb(double **a, int n, int *indx, double b[]) 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  { 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    int i,ii=0,ip,j; 
     for(i=1;i<=nlstate;i++)    double sum; 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */   
     for (i=1;i<=n;i++) { 
     fprintf(ficresvpl,"%.0f ",age );      ip=indx[i]; 
     for(i=1; i<=nlstate;i++)      sum=b[ip]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      b[ip]=b[i]; 
     fprintf(ficresvpl,"\n");      if (ii) 
     free_vector(gp,1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     free_vector(gm,1,nlstate);      else if (sum) ii=i; 
     free_matrix(gradg,1,npar,1,nlstate);      b[i]=sum; 
     free_matrix(trgradg,1,nlstate,1,npar);    } 
   } /* End age */    for (i=n;i>=1;i--) { 
       sum=b[i]; 
   free_vector(xp,1,npar);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   free_matrix(doldm,1,nlstate,1,npar);      b[i]=sum/a[i][i]; 
   free_matrix(dnewm,1,nlstate,1,nlstate);    } 
   } 
 }  
   /************ Frequencies ********************/
 /************ Variance of one-step probabilities  ******************/  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  {  /* Some frequencies */
 {    
   int i, j, i1, k1, j1, z1;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   int k=0, cptcode;    int first;
   double **dnewm,**doldm;    double ***freq; /* Frequencies */
   double *xp;    double *pp, **prop;
   double *gp, *gm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double **gradg, **trgradg;    FILE *ficresp;
   double age,agelim, cov[NCOVMAX];    char fileresp[FILENAMELENGTH];
   int theta;    
   char fileresprob[FILENAMELENGTH];    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   strcpy(fileresprob,"prob");    strcpy(fileresp,"p");
   strcat(fileresprob,fileres);    strcat(fileresp,fileres);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf("Problem with resultfile: %s\n", fileresprob);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      exit(0);
      }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   fprintf(ficresprob,"# Age");    j1=0;
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=(nlstate+ndeath);j++)    j=cptcoveff;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     first=1;
   fprintf(ficresprob,"\n");  
     for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   xp=vector(1,npar);        j1++;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          scanf("%d", i);*/
          for (i=-5; i<=nlstate+ndeath; i++)  
   cov[1]=1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   j=cptcoveff;            for(m=iagemin; m <= iagemax+3; m++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              freq[i][jk][m]=0;
   j1=0;  
   for(k1=1; k1<=1;k1++){      for (i=1; i<=nlstate; i++)  
     for(i1=1; i1<=ncodemax[k1];i1++){        for(m=iagemin; m <= iagemax+3; m++)
     j1++;          prop[i][m]=0;
         
     if  (cptcovn>0) {        dateintsum=0;
       fprintf(ficresprob, "\n#********** Variable ");        k2cpt=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (i=1; i<=imx; i++) {
       fprintf(ficresprob, "**********\n#");          bool=1;
     }          if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
       for (age=bage; age<=fage; age ++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         cov[2]=age;                bool=0;
         for (k=1; k<=cptcovn;k++) {          }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];          if (bool==1){
                      for(m=firstpass; m<=lastpass; m++){
         }              k2=anint[m][i]+(mint[m][i]/12.);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for (k=1; k<=cptcovprod;k++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         gradg=matrix(1,npar,1,9);                if (m<lastpass) {
         trgradg=matrix(1,9,1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));                }
                    
         for(theta=1; theta <=npar; theta++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for(i=1; i<=npar; i++)                  dateintsum=dateintsum+k2;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                  k2cpt++;
                          }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                /*}*/
                      }
           k=0;          }
           for(i=1; i<= (nlstate+ndeath); i++){        }
             for(j=1; j<=(nlstate+ndeath);j++){         
               k=k+1;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               gp[k]=pmmij[i][j];  fprintf(ficresp, "#Local time at start: %s", strstart);
             }        if  (cptcovn>0) {
           }          fprintf(ficresp, "\n#********** Variable "); 
                    for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1; i<=npar; i++)          fprintf(ficresp, "**********\n#");
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
            for(i=1; i<=nlstate;i++) 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           k=0;        fprintf(ficresp, "\n");
           for(i=1; i<=(nlstate+ndeath); i++){        
             for(j=1; j<=(nlstate+ndeath);j++){        for(i=iagemin; i <= iagemax+3; i++){
               k=k+1;          if(i==iagemax+3){
               gm[k]=pmmij[i][j];            fprintf(ficlog,"Total");
             }          }else{
           }            if(first==1){
                    first=0;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              printf("See log file for details...\n");
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }
         }            fprintf(ficlog,"Age %d", i);
           }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(jk=1; jk <=nlstate ; jk++){
           for(theta=1; theta <=npar; theta++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             trgradg[j][theta]=gradg[theta][j];              pp[jk] += freq[jk][m][i]; 
                  }
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for(jk=1; jk <=nlstate ; jk++){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            for(m=-1, pos=0; m <=0 ; m++)
                      pos += freq[jk][m][i];
         pmij(pmmij,cov,ncovmodel,x,nlstate);            if(pp[jk]>=1.e-10){
                      if(first==1){
         k=0;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(i=1; i<=(nlstate+ndeath); i++){              }
           for(j=1; j<=(nlstate+ndeath);j++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             k=k+1;            }else{
             gm[k]=pmmij[i][j];              if(first==1)
           }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  }
      /*printf("\n%d ",(int)age);          }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          for(jk=1; jk <=nlstate ; jk++){
      }*/            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
         fprintf(ficresprob,"\n%d ",(int)age);          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            pos += pp[jk];
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));            posprop += prop[jk][i];
            }
       }          for(jk=1; jk <=nlstate ; jk++){
     }            if(pos>=1.e-5){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }else{
   }              if(first==1)
   free_vector(xp,1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   fclose(ficresprob);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
              }
 }            if( i <= iagemax){
               if(pos>=1.e-5){
 /******************* Printing html file ***********/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                /*probs[i][jk][j1]= pp[jk]/pos;*/
  int lastpass, int stepm, int weightopt, char model[],\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\              else
  char version[], int popforecast, int estepm ){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;          }
   /*char optionfilehtm[FILENAMELENGTH];*/          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
   strcpy(optionfilehtm,optionfile);            for(m=-1; m <=nlstate+ndeath; m++)
   strcat(optionfilehtm,".htm");              if(freq[jk][m][i] !=0 ) {
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              if(first==1)
     printf("Problem with %s \n",optionfilehtm), exit(0);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          if(i <= iagemax)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            fprintf(ficresp,"\n");
 \n          if(first==1)
 Total number of observations=%d <br>\n            printf("Others in log...\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(ficlog,"\n");
 <hr  size=\"2\" color=\"#EC5E5E\">        }
  <ul><li>Outputs files<br>\n      }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    dateintmean=dateintsum/k2cpt; 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n   
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    fclose(ficresp);
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
  fprintf(fichtm,"\n    /* End of Freq */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  }
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  /************ Prevalence ********************/
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  if(popforecast==1) fprintf(fichtm,"\n       in each health status at the date of interview (if between dateprev1 and dateprev2).
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       We still use firstpass and lastpass as another selection.
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    */
         <br>",fileres,fileres,fileres,fileres);   
  else    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    double ***freq; /* Frequencies */
 fprintf(fichtm," <li>Graphs</li><p>");    double *pp, **prop;
     double pos,posprop; 
  m=cptcoveff;    double  y2; /* in fractional years */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int iagemin, iagemax;
   
  jj1=0;    iagemin= (int) agemin;
  for(k1=1; k1<=m;k1++){    iagemax= (int) agemax;
    for(i1=1; i1<=ncodemax[k1];i1++){    /*pp=vector(1,nlstate);*/
        jj1++;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
        if (cptcovn > 0) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    j1=0;
          for (cpt=1; cpt<=cptcoveff;cpt++)    
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    j=cptcoveff;
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        }    
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    for(k1=1; k1<=j;k1++){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          for(i1=1; i1<=ncodemax[k1];i1++){
        for(cpt=1; cpt<nlstate;cpt++){        j1++;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (i=1; i<=nlstate; i++)  
        }          for(m=iagemin; m <= iagemax+3; m++)
     for(cpt=1; cpt<=nlstate;cpt++) {            prop[i][m]=0.0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       
 interval) in state (%d): v%s%d%d.gif <br>        for (i=1; i<=imx; i++) { /* Each individual */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            bool=1;
      }          if  (cptcovn>0) {
      for(cpt=1; cpt<=nlstate;cpt++) {            for (z1=1; z1<=cptcoveff; z1++) 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                bool=0;
      }          } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          if (bool==1) { 
 health expectancies in states (1) and (2): e%s%d.gif<br>            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 fprintf(fichtm,"\n</body>");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 fclose(fichtm);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 /******************* Gnuplot file **************/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              }
             } /* end selection of waves */
   strcpy(optionfilegnuplot,optionfilefiname);          }
   strcat(optionfilegnuplot,".gp.txt");        }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        for(i=iagemin; i <= iagemax+3; i++){  
     printf("Problem with file %s",optionfilegnuplot);          
   }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
 #ifdef windows          } 
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif          for(jk=1; jk <=nlstate ; jk++){     
 m=pow(2,cptcoveff);            if( i <=  iagemax){ 
                if(posprop>=1.e-5){ 
  /* 1eme*/                probs[i][jk][j1]= prop[jk][i]/posprop;
   for (cpt=1; cpt<= nlstate ; cpt ++) {              } 
    for (k1=1; k1<= m ; k1 ++) {            } 
           }/* end jk */ 
 #ifdef windows        }/* end i */ 
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      } /* end i1 */
 #endif    } /* end k1 */
 #ifdef unix    
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 #endif    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 for (i=1; i<= nlstate ; i ++) {  }  /* End of prevalence */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   else fprintf(ficgp," \%%*lf (\%%*lf)");       Death is a valid wave (if date is known).
 }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      for (i=1; i<= nlstate ; i ++) {       and mw[mi+1][i]. dh depends on stepm.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      int i, mi, m;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 #ifdef unix       double sum=0., jmean=0.;*/
 fprintf(ficgp,"\nset ter gif small size 400,300");    int first;
 #endif    int j, k=0,jk, ju, jl;
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double sum=0.;
    }    first=0;
   }    jmin=1e+5;
   /*2 eme*/    jmax=-1;
     jmean=0.;
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      mi=0;
          m=firstpass;
     for (i=1; i<= nlstate+1 ; i ++) {      while(s[m][i] <= nlstate){
       k=2*i;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          mw[++mi][i]=m;
       for (j=1; j<= nlstate+1 ; j ++) {        if(m >=lastpass)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          break;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else
 }            m++;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      }/* end while */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      if (s[m][i] > nlstate){
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        mi++;     /* Death is another wave */
       for (j=1; j<= nlstate+1 ; j ++) {        /* if(mi==0)  never been interviewed correctly before death */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");           /* Only death is a correct wave */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        mw[mi][i]=m;
 }        }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      wav[i]=mi;
       for (j=1; j<= nlstate+1 ; j ++) {      if(mi==0){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        nbwarn++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if(first==0){
 }            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          first=1;
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }        if(first==1){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   }        }
        } /* end mi==0 */
   /*3eme*/    } /* End individuals */
   
   for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=imx; i++){
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for(mi=1; mi<wav[i];mi++){
       k=2+nlstate*(2*cpt-2);        if (stepm <=0)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          dh[mi][i]=1;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        else{
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if (agedc[i] < 2*AGESUP) {
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if(j==0) j=1;  /* Survives at least one month after exam */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              else if(j<0){
                 nberr++;
 */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (i=1; i< nlstate ; i ++) {                j=1; /* Temporary Dangerous patch */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
     }              k=k+1;
     }              if (j >= jmax){
                  jmax=j;
   /* CV preval stat */                ijmax=i;
     for (k1=1; k1<= m ; k1 ++) {              }
     for (cpt=1; cpt<nlstate ; cpt ++) {              if (j <= jmin){
       k=3;                jmin=j;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                ijmin=i;
               }
       for (i=1; i< nlstate ; i ++)              sum=sum+j;
         fprintf(ficgp,"+$%d",k+i+1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  }
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          else{
       for (i=1; i< nlstate ; i ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         l=3+(nlstate+ndeath)*cpt;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         fprintf(ficgp,"+$%d",l+i+1);  
       }            k=k+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              if (j >= jmax) {
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              jmax=j;
     }              ijmax=i;
   }              }
              else if (j <= jmin){
   /* proba elementaires */              jmin=j;
    for(i=1,jk=1; i <=nlstate; i++){              ijmin=i;
     for(k=1; k <=(nlstate+ndeath); k++){            }
       if (k != i) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(j=1; j <=ncovmodel; j++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                    if(j<0){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              nberr++;
           jk++;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
       }            sum=sum+j;
     }          }
     }          jk= j/stepm;
           jl= j -jk*stepm;
     for(jk=1; jk <=m; jk++) {          ju= j -(jk+1)*stepm;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    i=1;            if(jl==0){
    for(k2=1; k2<=nlstate; k2++) {              dh[mi][i]=jk;
      k3=i;              bh[mi][i]=0;
      for(k=1; k<=(nlstate+ndeath); k++) {            }else{ /* We want a negative bias in order to only have interpolation ie
        if (k != k2){                    * at the price of an extra matrix product in likelihood */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              dh[mi][i]=jk+1;
 ij=1;              bh[mi][i]=ju;
         for(j=3; j <=ncovmodel; j++) {            }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          }else{
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(jl <= -ju){
             ij++;              dh[mi][i]=jk;
           }              bh[mi][i]=jl;       /* bias is positive if real duration
           else                                   * is higher than the multiple of stepm and negative otherwise.
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                                   */
         }            }
           fprintf(ficgp,")/(1");            else{
                      dh[mi][i]=jk+1;
         for(k1=1; k1 <=nlstate; k1++){                bh[mi][i]=ju;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }
 ij=1;            if(dh[mi][i]==0){
           for(j=3; j <=ncovmodel; j++){              dh[mi][i]=1; /* At least one step */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              bh[mi][i]=ju; /* At least one step */
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             ij++;            }
           }          } /* end if mle */
           else        }
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      } /* end wave */
           }    }
           fprintf(ficgp,")");    jmean=sum/k;
         }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   }
         i=i+ncovmodel;  
        }  /*********** Tricode ****************************/
      }  void tricode(int *Tvar, int **nbcode, int imx)
    }  {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
    }    int Ndum[20],ij=1, k, j, i, maxncov=19;
        int cptcode=0;
   fclose(ficgp);    cptcoveff=0; 
 }  /* end gnuplot */   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   int i, cpt, cptcod;                                 modality*/ 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for (i=1; i<=nlstate;i++)        Ndum[ij]++; /*store the modality */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                             Tvar[j]. If V=sex and male is 0 and 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                                         female is 1, then  cptcode=1.*/
       for (i=1; i<=nlstate;i++){      }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){      for (i=0; i<=cptcode; i++) {
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           }      }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }      ij=1; 
       }      for (i=1; i<=ncodemax[j]; i++) {
     }        for (k=0; k<= maxncov; k++) {
              if (Ndum[k] != 0) {
 }            nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
 /************** Forecasting ******************/            ij++;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          }
            if (ij > ncodemax[j]) break; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }  
   int *popage;      } 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }  
   double *popeffectif,*popcount;  
   double ***p3mat;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   char fileresf[FILENAMELENGTH];  
    for (i=1; i<=ncovmodel-2; i++) { 
  agelim=AGESUP;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     ij=Tvar[i];
      Ndum[ij]++;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   }
    
     ij=1;
   strcpy(fileresf,"f");   for (i=1; i<= maxncov; i++) {
   strcat(fileresf,fileres);     if((Ndum[i]!=0) && (i<=ncovcol)){
   if((ficresf=fopen(fileresf,"w"))==NULL) {       Tvaraff[ij]=i; /*For printing */
     printf("Problem with forecast resultfile: %s\n", fileresf);       ij++;
   }     }
   printf("Computing forecasting: result on file '%s' \n", fileresf);   }
    
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*********** Health Expectancies ****************/
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   if (stepm<=12) stepsize=1;    /* Health expectancies */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   agelim=AGESUP;    double age, agelim, hf;
      double ***p3mat,***varhe;
   hstepm=1;    double **dnewm,**doldm;
   hstepm=hstepm/stepm;    double *xp;
   yp1=modf(dateintmean,&yp);    double **gp, **gm;
   anprojmean=yp;    double ***gradg, ***trgradg;
   yp2=modf((yp1*12),&yp);    int theta;
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   jprojmean=yp;    xp=vector(1,npar);
   if(jprojmean==0) jprojmean=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   if(mprojmean==0) jprojmean=1;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(ficreseij,"# Local time at start: %s", strstart);
      fprintf(ficreseij,"# Health expectancies\n");
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficreseij,"# Age");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    for(i=1; i<=nlstate;i++)
       k=k+1;      for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"\n#******");        fprintf(ficreseij," %1d-%1d (SE)",i,j);
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficreseij,"\n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    if(estepm < stepm){
       fprintf(ficresf,"******\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficresf,"# StartingAge FinalAge");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    else  hstepm=estepm;   
          /* We compute the life expectancy from trapezoids spaced every estepm months
           * This is mainly to measure the difference between two models: for example
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {     * if stepm=24 months pijx are given only every 2 years and by summing them
         fprintf(ficresf,"\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);       * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * to compare the new estimate of Life expectancy with the same linear 
           nhstepm = nhstepm/hstepm;     * hypothesis. A more precise result, taking into account a more precise
               * curvature will be obtained if estepm is as small as stepm. */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    /* For example we decided to compute the life expectancy with the smallest unit */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
           for (h=0; h<=nhstepm; h++){       nstepm is the number of stepm from age to agelin. 
             if (h==(int) (calagedate+YEARM*cpt)) {       Look at hpijx to understand the reason of that which relies in memory size
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             for(j=1; j<=nlstate+ndeath;j++) {       survival function given by stepm (the optimization length). Unfortunately it
               kk1=0.;kk2=0;       means that if the survival funtion is printed only each two years of age and if
               for(i=1; i<=nlstate;i++) {                     you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 if (mobilav==1)       results. So we changed our mind and took the option of the best precision.
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    */
                 else {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    agelim=AGESUP;
                    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               }      /* nhstepm age range expressed in number of stepm */
               if (h==(int)(calagedate+12*cpt)){      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                 fprintf(ficresf," %.3f", kk1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                              /* if (stepm >= YEARM) hstepm=1;*/
               }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
         }      gm=matrix(0,nhstepm,1,nlstate*nlstate);
       }  
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
              hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   
   fclose(ficresf);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 }  
 /************** Forecasting ******************/      /* Computing  Variances of health expectancies */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
         for(theta=1; theta <=npar; theta++){
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(i=1; i<=npar; i++){ 
   int *popage;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   double ***p3mat,***tabpop,***tabpopprev;    
   char filerespop[FILENAMELENGTH];        cptj=0;
         for(j=1; j<= nlstate; j++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate; i++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            cptj=cptj+1;
   agelim=AGESUP;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
          }
         
   strcpy(filerespop,"pop");       
   strcat(filerespop,fileres);        for(i=1; i<=npar; i++) 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     printf("Problem with forecast resultfile: %s\n", filerespop);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        
   printf("Computing forecasting: result on file '%s' \n", filerespop);        cptj=0;
         for(j=1; j<= nlstate; j++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
   if (mobilav==1) {            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   }            }
           }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;        for(j=1; j<= nlstate*nlstate; j++)
            for(h=0; h<=nhstepm-1; h++){
   agelim=AGESUP;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
   hstepm=1;       } 
   hstepm=hstepm/stepm;     
    /* End theta */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }       for(h=0; h<=nhstepm-1; h++)
     popage=ivector(0,AGESUP);        for(j=1; j<=nlstate*nlstate;j++)
     popeffectif=vector(0,AGESUP);          for(theta=1; theta <=npar; theta++)
     popcount=vector(0,AGESUP);            trgradg[h][j][theta]=gradg[h][theta][j];
           
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;       for(i=1;i<=nlstate*nlstate;i++)
            for(j=1;j<=nlstate*nlstate;j++)
     imx=i;          varhe[i][j][(int)age] =0.;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   for(cptcov=1;cptcov<=i2;cptcov++){       for(h=0;h<=nhstepm-1;h++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(k=0;k<=nhstepm-1;k++){
       k=k+1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficrespop,"\n#******");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       for(j=1;j<=cptcoveff;j++) {          for(i=1;i<=nlstate*nlstate;i++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for(j=1;j<=nlstate*nlstate;j++)
       }              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficrespop,"******\n");        }
       fprintf(ficrespop,"# Age");      }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* Computing expectancies */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      for(i=1; i<=nlstate;i++)
              for(j=1; j<=nlstate;j++)
       for (cpt=0; cpt<=0;cpt++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficreseij,"%3.0f",age );
           oldm=oldms;savm=savms;      cptj=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++){
           for (h=0; h<=nhstepm; h++){          cptj++;
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        }
             }      fprintf(ficreseij,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {     
               kk1=0.;kk2=0;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               for(i=1; i<=nlstate;i++) {                    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                 if (mobilav==1)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                 else {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    }
                 }    printf("\n");
               }    fprintf(ficlog,"\n");
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    free_vector(xp,1,npar);
                   /*fprintf(ficrespop," %.3f", kk1);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             }  }
             for(i=1; i<=nlstate;i++){  
               kk1=0.;  /************ Variance ******************/
                 for(j=1; j<=nlstate;j++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  {
                 }    /* Variance of health expectancies */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
             }    /* double **newm;*/
     double **dnewm,**doldm;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    double **dnewmp,**doldmp;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int i, j, nhstepm, hstepm, h, nstepm ;
           }    int k, cptcode;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double *xp;
         }    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   /******/    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double ***p3mat;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double age,agelim, hf;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double ***mobaverage;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int theta;
           nhstepm = nhstepm/hstepm;    char digit[4];
              char digitp[25];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    char fileresprobmorprev[FILENAMELENGTH];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){    if(popbased==1){
             if (h==(int) (calagedate+YEARM*cpt)) {      if(mobilav!=0)
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        strcpy(digitp,"-populbased-mobilav-");
             }      else strcpy(digitp,"-populbased-nomobil-");
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    else 
               for(i=1; i<=nlstate;i++) {                    strcpy(digitp,"-stablbased-");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }    if (mobilav!=0) {
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
       }    }
    }  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (popforecast==1) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     free_ivector(popage,0,AGESUP);    strcat(fileresprobmorprev,fileres);
     free_vector(popeffectif,0,AGESUP);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     free_vector(popcount,0,AGESUP);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   fclose(ficrespop);   
 }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
 /***********************************************/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 /**************** Main Program *****************/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
 /***********************************************/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
 int main(int argc, char *argv[])      for(i=1; i<=nlstate;i++)
 {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficresprobmorprev,"\n");
   double agedeb, agefin,hf;    fprintf(ficgp,"\n# Routine varevsij");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double fret;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   double **xi,tmp,delta;  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double dum; /* Dummy variable */   fprintf(ficresvij, "#Local time at start: %s", strstart);
   double ***p3mat;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
   int *indx;    fprintf(ficresvij,"# Age");
   char line[MAXLINE], linepar[MAXLINE];    for(i=1; i<=nlstate;i++)
   char title[MAXLINE];      for(j=1; j<=nlstate;j++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    fprintf(ficresvij,"\n");
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   char filerest[FILENAMELENGTH];    doldm=matrix(1,nlstate,1,nlstate);
   char fileregp[FILENAMELENGTH];    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   char popfile[FILENAMELENGTH];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   int sdeb, sfin; /* Status at beginning and end */    gpp=vector(nlstate+1,nlstate+ndeath);
   int c,  h , cpt,l;    gmp=vector(nlstate+1,nlstate+ndeath);
   int ju,jl, mi;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    if(estepm < stepm){
   int mobilav=0,popforecast=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int hstepm, nhstepm;    }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
   double bage, fage, age, agelim, agebase;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double ftolpl=FTOL;       nhstepm is the number of hstepm from age to agelim 
   double **prlim;       nstepm is the number of stepm from age to agelin. 
   double *severity;       Look at hpijx to understand the reason of that which relies in memory size
   double ***param; /* Matrix of parameters */       and note for a fixed period like k years */
   double  *p;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double **matcov; /* Matrix of covariance */       survival function given by stepm (the optimization length). Unfortunately it
   double ***delti3; /* Scale */       means that if the survival funtion is printed every two years of age and if
   double *delti; /* Scale */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double ***eij, ***vareij;       results. So we changed our mind and took the option of the best precision.
   double **varpl; /* Variances of prevalence limits by age */    */
   double *epj, vepp;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double kk1, kk2;    agelim = AGESUP;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char *alph[]={"a","a","b","c","d","e"}, str[4];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   char z[1]="c", occ;  
 #include <sys/time.h>  
 #include <time.h>      for(theta=1; theta <=npar; theta++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /* long total_usecs;        }
   struct timeval start_time, end_time;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);        if (popbased==1) {
           if(mobilav ==0){
   printf("\n%s",version);            for(i=1; i<=nlstate;i++)
   if(argc <=1){              prlim[i][i]=probs[(int)age][i][ij];
     printf("\nEnter the parameter file name: ");          }else{ /* mobilav */ 
     scanf("%s",pathtot);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
   else{          }
     strcpy(pathtot,argv[1]);        }
   }    
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        for(j=1; j<= nlstate; j++){
   /*cygwin_split_path(pathtot,path,optionfile);          for(h=0; h<=nhstepm; h++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        /* This for computing probability of death (h=1 means
   chdir(path);           computed over hstepm matrices product = hstepm*stepm months) 
   replace(pathc,path);           as a weighted average of prlim.
         */
 /*-------- arguments in the command line --------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
   strcpy(fileres,"r");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   strcat(fileres, optionfilefiname);        }    
   strcat(fileres,".txt");    /* Other files have txt extension */        /* end probability of death */
   
   /*---------arguments file --------*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     printf("Problem with optionfile %s\n",optionfile);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     goto end;   
   }        if (popbased==1) {
           if(mobilav ==0){
   strcpy(filereso,"o");            for(i=1; i<=nlstate;i++)
   strcat(filereso,fileres);              prlim[i][i]=probs[(int)age][i][ij];
   if((ficparo=fopen(filereso,"w"))==NULL) {          }else{ /* mobilav */ 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);        for(j=1; j<= nlstate; j++){
     fgets(line, MAXLINE, ficpar);          for(h=0; h<=nhstepm; h++){
     puts(line);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fputs(line,ficparo);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
   ungetc(c,ficpar);        }
         /* This for computing probability of death (h=1 means
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);           computed over hstepm matrices product = hstepm*stepm months) 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);           as a weighted average of prlim.
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        */
 while((c=getc(ficpar))=='#' && c!= EOF){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     ungetc(c,ficpar);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fgets(line, MAXLINE, ficpar);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     puts(line);        }    
     fputs(line,ficparo);        /* end probability of death */
   }  
   ungetc(c,ficpar);        for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   covar=matrix(0,NCOVMAX,1,n);          }
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        } /* End theta */
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(h=0; h<=nhstepm; h++) /* veij */
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++)
     puts(line);          for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   ungetc(c,ficpar);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          trgradgp[j][theta]=gradgp[theta][j];
     for(i=1; i <=nlstate; i++)    
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficparo,"%1d%1d",i1,j1);      for(i=1;i<=nlstate;i++)
       printf("%1d%1d",i,j);        for(j=1;j<=nlstate;j++)
       for(k=1; k<=ncovmodel;k++){          vareij[i][j][(int)age] =0.;
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);      for(h=0;h<=nhstepm;h++){
         fprintf(ficparo," %lf",param[i][j][k]);        for(k=0;k<=nhstepm;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       fscanf(ficpar,"\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       printf("\n");          for(i=1;i<=nlstate;i++)
       fprintf(ficparo,"\n");            for(j=1;j<=nlstate;j++)
     }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      }
     
   p=param[1][1];      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     ungetc(c,ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     fgets(line, MAXLINE, ficpar);          varppt[j][i]=doldmp[j][i];
     puts(line);      /* end ppptj */
     fputs(line,ficparo);      /*  x centered again */
   }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      if (popbased==1) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        if(mobilav ==0){
   for(i=1; i <=nlstate; i++){          for(i=1; i<=nlstate;i++)
     for(j=1; j <=nlstate+ndeath-1; j++){            prlim[i][i]=probs[(int)age][i][ij];
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }else{ /* mobilav */ 
       printf("%1d%1d",i,j);          for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);            prlim[i][i]=mobaverage[(int)age][i][ij];
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);      }
         printf(" %le",delti3[i][j][k]);               
         fprintf(ficparo," %le",delti3[i][j][k]);      /* This for computing probability of death (h=1 means
       }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fscanf(ficpar,"\n");         as a weighted average of prlim.
       printf("\n");      */
       fprintf(ficparo,"\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   delti=delti3[1][1];      }    
        /* end probability of death */
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     ungetc(c,ficpar);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     puts(line);        for(i=1; i<=nlstate;i++){
     fputs(line,ficparo);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   }        }
   ungetc(c,ficpar);      } 
        fprintf(ficresprobmorprev,"\n");
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){      fprintf(ficresvij,"%.0f ",age );
     fscanf(ficpar,"%s",&str);      for(i=1; i<=nlstate;i++)
     printf("%s",str);        for(j=1; j<=nlstate;j++){
     fprintf(ficparo,"%s",str);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     for(j=1; j <=i; j++){        }
       fscanf(ficpar," %le",&matcov[i][j]);      fprintf(ficresvij,"\n");
       printf(" %.5le",matcov[i][j]);      free_matrix(gp,0,nhstepm,1,nlstate);
       fprintf(ficparo," %.5le",matcov[i][j]);      free_matrix(gm,0,nhstepm,1,nlstate);
     }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     fscanf(ficpar,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     printf("\n");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficparo,"\n");    } /* End age */
   }    free_vector(gpp,nlstate+1,nlstate+ndeath);
   for(i=1; i <=npar; i++)    free_vector(gmp,nlstate+1,nlstate+ndeath);
     for(j=i+1;j<=npar;j++)    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       matcov[i][j]=matcov[j][i];    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   printf("\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     /*-------- Rewriting paramater file ----------*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      strcpy(rfileres,"r");    /* "Rparameterfile */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
      strcat(rfileres,".");    /* */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     fprintf(ficres,"#%s\n",version);  */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     /*-------- data file ----------*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     n= lastobs;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     severity = vector(1,maxwav);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     outcome=imatrix(1,maxwav+1,1,n);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     num=ivector(1,n);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     moisnais=vector(1,n);    fclose(ficresprobmorprev);
     annais=vector(1,n);    fflush(ficgp);
     moisdc=vector(1,n);    fflush(fichtm); 
     andc=vector(1,n);  }  /* end varevsij */
     agedc=vector(1,n);  
     cod=ivector(1,n);  /************ Variance of prevlim ******************/
     weight=vector(1,n);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  {
     mint=matrix(1,maxwav,1,n);    /* Variance of prevalence limit */
     anint=matrix(1,maxwav,1,n);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     s=imatrix(1,maxwav+1,1,n);    double **newm;
     adl=imatrix(1,maxwav+1,1,n);        double **dnewm,**doldm;
     tab=ivector(1,NCOVMAX);    int i, j, nhstepm, hstepm;
     ncodemax=ivector(1,8);    int k, cptcode;
     double *xp;
     i=1;    double *gp, *gm;
     while (fgets(line, MAXLINE, fic) != NULL)    {    double **gradg, **trgradg;
       if ((i >= firstobs) && (i <=lastobs)) {    double age,agelim;
            int theta;
         for (j=maxwav;j>=1;j--){    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
           strcpy(line,stra);    fprintf(ficresvpl,"# Age");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficresvpl," %1d-%1d",i,i);
         }    fprintf(ficresvpl,"\n");
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    xp=vector(1,npar);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    agelim = AGESUP;
         for (j=ncovcol;j>=1;j--){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         }      if (stepm >= YEARM) hstepm=1;
         num[i]=atol(stra);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
              gradg=matrix(1,npar,1,nlstate);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      gp=vector(1,nlstate);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      gm=vector(1,nlstate);
   
         i=i+1;      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /* printf("ii=%d", ij);        }
        scanf("%d",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   imx=i-1; /* Number of individuals */        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
   /* for (i=1; i<=imx; i++){      
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(i=1; i<=npar; i++) /* Computes gradient */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }*/        for(i=1;i<=nlstate;i++)
    /*  for (i=1; i<=imx; i++){          gm[i] = prlim[i][i];
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        } /* End theta */
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);      trgradg =matrix(1,nlstate,1,npar);
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);      for(j=1; j<=nlstate;j++)
   Tvard=imatrix(1,15,1,2);        for(theta=1; theta <=npar; theta++)
   Tage=ivector(1,15);                trgradg[j][theta]=gradg[theta][j];
      
   if (strlen(model) >1){      for(i=1;i<=nlstate;i++)
     j=0, j1=0, k1=1, k2=1;        varpl[i][(int)age] =0.;
     j=nbocc(model,'+');      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     j1=nbocc(model,'*');      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     cptcovn=j+1;      for(i=1;i<=nlstate;i++)
     cptcovprod=j1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      
     strcpy(modelsav,model);      fprintf(ficresvpl,"%.0f ",age );
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(i=1; i<=nlstate;i++)
       printf("Error. Non available option model=%s ",model);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       goto end;      fprintf(ficresvpl,"\n");
     }      free_vector(gp,1,nlstate);
          free_vector(gm,1,nlstate);
     for(i=(j+1); i>=1;i--){      free_matrix(gradg,1,npar,1,nlstate);
       cutv(stra,strb,modelsav,'+');      free_matrix(trgradg,1,nlstate,1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    } /* End age */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/    free_vector(xp,1,npar);
       if (strchr(strb,'*')) {    free_matrix(doldm,1,nlstate,1,npar);
         cutv(strd,strc,strb,'*');    free_matrix(dnewm,1,nlstate,1,nlstate);
         if (strcmp(strc,"age")==0) {  
           cptcovprod--;  }
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);  /************ Variance of one-step probabilities  ******************/
           cptcovage++;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             Tage[cptcovage]=i;  {
             /*printf("stre=%s ", stre);*/    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
         else if (strcmp(strd,"age")==0) {    int k=0,l, cptcode;
           cptcovprod--;    int first=1, first1;
           cutv(strb,stre,strc,'V');    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           Tvar[i]=atoi(stre);    double **dnewm,**doldm;
           cptcovage++;    double *xp;
           Tage[cptcovage]=i;    double *gp, *gm;
         }    double **gradg, **trgradg;
         else {    double **mu;
           cutv(strb,stre,strc,'V');    double age,agelim, cov[NCOVMAX];
           Tvar[i]=ncovcol+k1;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           cutv(strb,strc,strd,'V');    int theta;
           Tprod[k1]=i;    char fileresprob[FILENAMELENGTH];
           Tvard[k1][1]=atoi(strc);    char fileresprobcov[FILENAMELENGTH];
           Tvard[k1][2]=atoi(stre);    char fileresprobcor[FILENAMELENGTH];
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double ***varpij;
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    strcpy(fileresprob,"prob"); 
           k1++;    strcat(fileresprob,fileres);
           k2=k2+2;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprob);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       else {    }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    strcpy(fileresprobcov,"probcov"); 
        /*  scanf("%d",i);*/    strcat(fileresprobcov,fileres);
       cutv(strd,strc,strb,'V');    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       Tvar[i]=atoi(strc);      printf("Problem with resultfile: %s\n", fileresprobcov);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       strcpy(modelsav,stra);      }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    strcpy(fileresprobcor,"probcor"); 
         scanf("%d",i);*/    strcat(fileresprobcor,fileres);
     }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", fileresprobcor);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    }
   printf("cptcovprod=%d ", cptcovprod);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   scanf("%d ",i);*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fclose(fic);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     /*  if(mle==1){*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficresprob, "#Local time at start: %s", strstart);
     }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficresprob,"# Age");
     agev=matrix(1,maxwav,1,imx);    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     for (i=1; i<=imx; i++) {    fprintf(ficresprobcov,"# Age");
       for(m=2; (m<= maxwav); m++) {    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
          anint[m][i]=9999;    fprintf(ficresprobcov,"# Age");
          s[m][i]=-1;  
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
     for (i=1; i<=imx; i++)  {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      }  
       for(m=1; (m<= maxwav); m++){   /* fprintf(ficresprob,"\n");
         if(s[m][i] >0){    fprintf(ficresprobcov,"\n");
           if (s[m][i] >= nlstate+1) {    fprintf(ficresprobcor,"\n");
             if(agedc[i]>0)   */
               if(moisdc[i]!=99 && andc[i]!=9999)   xp=vector(1,npar);
                 agev[m][i]=agedc[i];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            else {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
               if (andc[i]!=9999){    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    first=1;
               agev[m][i]=-1;    fprintf(ficgp,"\n# Routine varprob");
               }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             }    fprintf(fichtm,"\n");
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
             if(mint[m][i]==99 || anint[m][i]==9999)    file %s<br>\n",optionfilehtmcov);
               agev[m][i]=1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
             else if(agev[m][i] <agemin){  and drawn. It helps understanding how is the covariance between two incidences.\
               agemin=agev[m][i];   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
             }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
             else if(agev[m][i] >agemax){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               agemax=agev[m][i];  standard deviations wide on each axis. <br>\
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
             }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
             /*agev[m][i]=anint[m][i]-annais[i];*/  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             /*   agev[m][i] = age[i]+2*m;*/  
           }    cov[1]=1;
           else { /* =9 */    tj=cptcoveff;
             agev[m][i]=1;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
             s[m][i]=-1;    j1=0;
           }    for(t=1; t<=tj;t++){
         }      for(i1=1; i1<=ncodemax[t];i1++){ 
         else /*= 0 Unknown */        j1++;
           agev[m][i]=1;        if  (cptcovn>0) {
       }          fprintf(ficresprob, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresprob, "**********\n#\n");
     for (i=1; i<=imx; i++)  {          fprintf(ficresprobcov, "\n#********** Variable "); 
       for(m=1; (m<= maxwav); m++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         if (s[m][i] > (nlstate+ndeath)) {          fprintf(ficresprobcov, "**********\n#\n");
           printf("Error: Wrong value in nlstate or ndeath\n");            
           goto end;          fprintf(ficgp, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficgp, "**********\n#\n");
     }          
           
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_vector(severity,1,maxwav);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_imatrix(outcome,1,maxwav+1,1,n);          
     free_vector(moisnais,1,n);          fprintf(ficresprobcor, "\n#********** Variable ");    
     free_vector(annais,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     /* free_matrix(mint,1,maxwav,1,n);          fprintf(ficresprobcor, "**********\n#");    
        free_matrix(anint,1,maxwav,1,n);*/        }
     free_vector(moisdc,1,n);        
     free_vector(andc,1,n);        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
              for (k=1; k<=cptcovn;k++) {
     wav=ivector(1,imx);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
     /* Concatenates waves */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       Tcode=ivector(1,100);          gp=vector(1,(nlstate)*(nlstate+ndeath));
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       ncodemax[1]=1;      
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          for(theta=1; theta <=npar; theta++){
                  for(i=1; i<=npar; i++)
    codtab=imatrix(1,100,1,10);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    h=0;            
    m=pow(2,cptcoveff);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              
    for(k=1;k<=cptcoveff; k++){            k=0;
      for(i=1; i <=(m/pow(2,k));i++){            for(i=1; i<= (nlstate); i++){
        for(j=1; j <= ncodemax[k]; j++){              for(j=1; j<=(nlstate+ndeath);j++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                k=k+1;
            h++;                gp[k]=pmmij[i][j];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            }
          }            
        }            for(i=1; i<=npar; i++)
      }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    }      
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */            k=0;
    /* for(i=1; i <=m ;i++){            for(i=1; i<=(nlstate); i++){
       for(k=1; k <=cptcovn; k++){              for(j=1; j<=(nlstate+ndeath);j++){
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                k=k+1;
       }                gm[k]=pmmij[i][j];
       printf("\n");              }
       }            }
       scanf("%d",i);*/       
                for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
    /* Calculates basic frequencies. Computes observed prevalence at single age              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        and prints on file fileres'p'. */          }
   
              for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              trgradg[j][theta]=gradg[theta][j];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     /* For Powell, parameters are in a vector p[] starting at p[1]          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
     if(mle==1){          
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          k=0;
     }          for(i=1; i<=(nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
     /*--------- results files --------------*/              k=k+1;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              mu[k][(int) age]=pmmij[i][j];
              }
           }
    jk=1;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              varpij[i][j][(int)age] = doldm[i][j];
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){          /*printf("\n%d ",(int)age);
        if (k != i)            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            printf("%d%d ",i,k);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
            fprintf(ficres,"%1d%1d ",i,k);            }*/
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);          fprintf(ficresprob,"\n%d ",(int)age);
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficresprobcov,"\n%d ",(int)age);
              jk++;          fprintf(ficresprobcor,"\n%d ",(int)age);
            }  
            printf("\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
            fprintf(ficres,"\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
          }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
    }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
  if(mle==1){          }
     /* Computing hessian and covariance matrix */          i=0;
     ftolhess=ftol; /* Usually correct */          for (k=1; k<=(nlstate);k++){
     hesscov(matcov, p, npar, delti, ftolhess, func);            for (l=1; l<=(nlstate+ndeath);l++){ 
  }              i=i++;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("# Scales (for hessian or gradient estimation)\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      for(i=1,jk=1; i <=nlstate; i++){              for (j=1; j<=i;j++){
       for(j=1; j <=nlstate+ndeath; j++){                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         if (j!=i) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           fprintf(ficres,"%1d%1d",i,j);              }
           printf("%1d%1d",i,j);            }
           for(k=1; k<=ncovmodel;k++){          }/* end of loop for state */
             printf(" %.5e",delti[jk]);        } /* end of loop for age */
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;        /* Confidence intervalle of pij  */
           }        /*
           printf("\n");          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficres,"\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
      }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     k=1;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     for(i=1;i<=npar;i++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       /*  if (k>nlstate) k=1;        first1=1;
       i1=(i-1)/(ncovmodel*nlstate)+1;        for (k2=1; k2<=(nlstate);k2++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       printf("%s%d%d",alph[k],i1,tab[i]);*/            if(l2==k2) continue;
       fprintf(ficres,"%3d",i);            j=(k2-1)*(nlstate+ndeath)+l2;
       printf("%3d",i);            for (k1=1; k1<=(nlstate);k1++){
       for(j=1; j<=i;j++){              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fprintf(ficres," %.5e",matcov[i][j]);                if(l1==k1) continue;
         printf(" %.5e",matcov[i][j]);                i=(k1-1)*(nlstate+ndeath)+l1;
       }                if(i<=j) continue;
       fprintf(ficres,"\n");                for (age=bage; age<=fage; age ++){ 
       printf("\n");                  if ((int)age %5==0){
       k++;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                        cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
     while((c=getc(ficpar))=='#' && c!= EOF){                    mu1=mu[i][(int) age]/stepm*YEARM ;
       ungetc(c,ficpar);                    mu2=mu[j][(int) age]/stepm*YEARM;
       fgets(line, MAXLINE, ficpar);                    c12=cv12/sqrt(v1*v2);
       puts(line);                    /* Computing eigen value of matrix of covariance */
       fputs(line,ficparo);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     ungetc(c,ficpar);                    /* Eigen vectors */
     estepm=0;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                    /*v21=sqrt(1.-v11*v11); *//* error */
     if (estepm==0 || estepm < stepm) estepm=stepm;                    v21=(lc1-v1)/cv12*v11;
     if (fage <= 2) {                    v12=-v21;
       bage = ageminpar;                    v22=v11;
       fage = agemaxpar;                    tnalp=v21/v11;
     }                    if(first1==1){
                          first1=0;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                      /*printf(fignu*/
     while((c=getc(ficpar))=='#' && c!= EOF){                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     ungetc(c,ficpar);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     fgets(line, MAXLINE, ficpar);                    if(first==1){
     puts(line);                      first=0;
     fputs(line,ficparo);                      fprintf(ficgp,"\nset parametric;unset label");
   }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   ungetc(c,ficpar);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                        fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                    subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     puts(line);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fputs(line,ficparo);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                      first=0;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(ficparo,"pop_based=%d\n",popbased);                        fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficres,"pop_based=%d\n",popbased);                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   while((c=getc(ficpar))=='#' && c!= EOF){                    }/* if first */
     ungetc(c,ficpar);                  } /* age mod 5 */
     fgets(line, MAXLINE, ficpar);                } /* end loop age */
     puts(line);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fputs(line,ficparo);                first=1;
   }              } /*l12 */
   ungetc(c,ficpar);            } /* k12 */
           } /*l1 */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        }/* k1 */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      } /* loop covariates */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
     ungetc(c,ficpar);    fclose(ficresprob);
     fgets(line, MAXLINE, ficpar);    fclose(ficresprobcov);
     puts(line);    fclose(ficresprobcor);
     fputs(line,ficparo);    fflush(ficgp);
   }    fflush(fichtmcov);
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  /******************* Printing html file ***********/
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
 /*------------ gnuplot -------------*/                    double jprev1, double mprev1,double anprev1, \
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);                    double jprev2, double mprev2,double anprev2){
      int jj1, k1, i1, cpt;
 /*------------ free_vector  -------------*/  
  chdir(path);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
  free_ivector(wav,1,imx);  </ul>");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);     - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
  free_ivector(num,1,n);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  free_vector(agedc,1,n);     fprintf(fichtm,"\
  /*free_matrix(covar,1,NCOVMAX,1,n);*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
  fclose(ficparo);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  fclose(ficres);     fprintf(fichtm,"\
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
 /*--------- index.htm --------*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);   - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   /*--------------- Prevalence limit --------------*/  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);   m=cptcoveff;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }   jj1=0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);   for(k1=1; k1<=m;k1++){
   fprintf(ficrespl,"#Prevalence limit\n");     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficrespl,"#Age ");       jj1++;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       if (cptcovn > 0) {
   fprintf(ficrespl,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   prlim=matrix(1,nlstate,1,nlstate);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       /* Pij */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   k=0;       /* Quasi-incidences */
   agebase=ageminpar;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   agelim=agemaxpar;   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   ftolpl=1.e-10;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   i1=cptcoveff;         /* Stable prevalence in each health state */
   if (cptcovn < 1){i1=1;}         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         }
         k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
         fprintf(ficrespl,"\n#******");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         for(j=1;j<=cptcoveff;j++)       }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     } /* end i1 */
         fprintf(ficrespl,"******\n");   }/* End k1 */
           fprintf(fichtm,"</ul>");
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );   fprintf(fichtm,"\
           for(i=1; i<=nlstate;i++)  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
           fprintf(ficrespl," %.5f", prlim[i][i]);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
           fprintf(ficrespl,"\n");  
         }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     }   fprintf(fichtm,"\
   fclose(ficrespl);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   /*------------- h Pij x at various ages ------------*/  
     fprintf(fichtm,"\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if((ficrespij=fopen(filerespij,"w"))==NULL) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   fprintf(fichtm,"\
   }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   printf("Computing pij: result on file '%s' \n", filerespij);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     fprintf(fichtm,"\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
   /*if (stepm<=24) stepsize=2;*/           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
   agelim=AGESUP;   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   hstepm=stepsize*YEARM; /* Every year of age */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
    /*  if(popforecast==1) fprintf(fichtm,"\n */
   k=0;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*      <br>",fileres,fileres,fileres,fileres); */
       k=k+1;  /*  else  */
         fprintf(ficrespij,"\n#****** ");  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
         for(j=1;j<=cptcoveff;j++)   fflush(fichtm);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficrespij,"******\n");  
           m=cptcoveff;
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   jj1=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   for(k1=1; k1<=m;k1++){
           oldm=oldms;savm=savms;     for(i1=1; i1<=ncodemax[k1];i1++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         jj1++;
           fprintf(ficrespij,"# Age");       if (cptcovn > 0) {
           for(i=1; i<=nlstate;i++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             for(j=1; j<=nlstate+ndeath;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
               fprintf(ficrespij," %1d-%1d",i,j);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficrespij,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
            for (h=0; h<=nhstepm; h++){       }
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       for(cpt=1; cpt<=nlstate;cpt++) {
             for(i=1; i<=nlstate;i++)         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
               for(j=1; j<=nlstate+ndeath;j++)  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
             fprintf(ficrespij,"\n");       }
              }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  health expectancies in states (1) and (2): %s%d.png<br>\
           fprintf(ficrespij,"\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
         }     } /* end i1 */
     }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
    fflush(fichtm);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  }
   
   fclose(ficrespij);  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
   /*---------- Forecasting ------------------*/    char dirfileres[132],optfileres[132];
   if((stepm == 1) && (strcmp(model,".")==0)){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    int ng;
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   }  /*     printf("Problem with file %s",optionfilegnuplot); */
   else{  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     erreur=108;  /*   } */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
   }    /*#ifdef windows */
      fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   /*---------- Health expectancies and variances ------------*/    m=pow(2,cptcoveff);
   
   strcpy(filerest,"t");    strcpy(dirfileres,optionfilefiname);
   strcat(filerest,fileres);    strcpy(optfileres,"vpl");
   if((ficrest=fopen(filerest,"w"))==NULL) {   /* 1eme*/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    for (cpt=1; cpt<= nlstate ; cpt ++) {
   }     for (k1=1; k1<= m ; k1 ++) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   strcpy(filerese,"e");  set ylabel \"Probability\" \n\
   strcat(filerese,fileres);  set ter png small\n\
   if((ficreseij=fopen(filerese,"w"))==NULL) {  set size 0.65,0.65\n\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  strcpy(fileresv,"v");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(fileresv,fileres);       }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   calagedate=-1;       } 
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
   k=0;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       }  
       k=k+1;       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficrest,"\n#****** ");     }
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*2 eme*/
       fprintf(ficrest,"******\n");    
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficreseij,"\n#****** ");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficreseij,"******\n");      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
       fprintf(ficresvij,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvij,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       oldm=oldms;savm=savms;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       oldm=oldms;savm=savms;          else fprintf(ficgp," \%%*lf (\%%*lf)");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        }   
            fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrest,"\n");        }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       epj=vector(1,nlstate+1);        else fprintf(ficgp,"\" t\"\" w l 0,");
       for(age=bage; age <=fage ;age++){      }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }
         if (popbased==1) {    
           for(i=1; i<=nlstate;i++)    /*3eme*/
             prlim[i][i]=probs[(int)age][i][k];    
         }    for (k1=1; k1<= m ; k1 ++) { 
              for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficrest," %4.0f",age);        k=2+nlstate*(2*cpt-2);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficgp,"set ter png small\n\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  set size 0.65,0.65\n\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           epj[nlstate+1] +=epj[j];          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         for(i=1, vepp=0.;i <=nlstate;i++)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           for(j=1;j <=nlstate;j++)          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
             vepp += vareij[i][j][(int)age];          
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        */
         for(j=1;j <=nlstate;j++){        for (i=1; i< nlstate ; i ++) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         }          
         fprintf(ficrest,"\n");        } 
       }      }
     }    }
   }    
 free_matrix(mint,1,maxwav,1,n);    /* CV preval stable (period) */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    for (k1=1; k1<= m ; k1 ++) { 
     free_vector(weight,1,n);      for (cpt=1; cpt<=nlstate ; cpt ++) {
   fclose(ficreseij);        k=3;
   fclose(ficresvij);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fclose(ficrest);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   fclose(ficpar);  set ter png small\nset size 0.65,0.65\n\
   free_vector(epj,1,nlstate+1);  unset log y\n\
    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   /*------- Variance limit prevalence------*/          
         for (i=1; i< nlstate ; i ++)
   strcpy(fileresvpl,"vpl");          fprintf(ficgp,"+$%d",k+i+1);
   strcat(fileresvpl,fileres);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        l=3+(nlstate+ndeath)*cpt;
     exit(0);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
   k=0;        }
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      } 
       k=k+1;    }  
       fprintf(ficresvpl,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    /* proba elementaires */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficresvpl,"******\n");      for(k=1; k <=(nlstate+ndeath); k++){
              if (k != i) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(j=1; j <=ncovmodel; j++){
       oldm=oldms;savm=savms;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            jk++; 
     }            fprintf(ficgp,"\n");
  }          }
         }
   fclose(ficresvpl);      }
      }
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         if (ng==2)
             fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           else
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           fprintf(ficgp,"\nset title \"Probability\"\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         i=1;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         for(k2=1; k2<=nlstate; k2++) {
             k3=i;
   free_matrix(matcov,1,npar,1,npar);           for(k=1; k<=(nlstate+ndeath); k++) {
   free_vector(delti,1,npar);             if (k != k2){
   free_matrix(agev,1,maxwav,1,imx);               if(ng==2)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
   if(erreur >0)                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     printf("End of Imach with error or warning %d\n",erreur);               ij=1;
   else   printf("End of Imach\n");               for(j=3; j <=ncovmodel; j++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                   ij++;
   /*printf("Total time was %d uSec.\n", total_usecs);*/                 }
   /*------ End -----------*/                 else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
  end:               fprintf(ficgp,")/(1");
 #ifdef windows               
   /* chdir(pathcd);*/               for(k1=1; k1 <=nlstate; k1++){   
 #endif                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
  /*system("wgnuplot graph.plt");*/                 ij=1;
  /*system("../gp37mgw/wgnuplot graph.plt");*/                 for(j=3; j <=ncovmodel; j++){
  /*system("cd ../gp37mgw");*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  strcpy(plotcmd,GNUPLOTPROGRAM);                     ij++;
  strcat(plotcmd," ");                   }
  strcat(plotcmd,optionfilegnuplot);                   else
  system(plotcmd);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
 #ifdef windows                 fprintf(ficgp,")");
   while (z[0] != 'q') {               }
     /* chdir(path); */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     scanf("%s",z);               i=i+ncovmodel;
     if (z[0] == 'c') system("./imach");             }
     else if (z[0] == 'e') system(optionfilehtm);           } /* end k */
     else if (z[0] == 'g') system(plotcmd);         } /* end k2 */
     else if (z[0] == 'q') exit(0);       } /* end jk */
   }     } /* end ng */
 #endif     fflush(ficgp); 
 }  }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%swgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41  
changed lines
  Added in v.1.111


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>