Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.115

version 1.41.2.2, 2003/06/13 07:45:28 version 1.115, 2006/02/27 12:17:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.115  2006/02/27 12:17:45  brouard
      (Module): One freematrix added in mlikeli! 0.98c
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.114  2006/02/26 12:57:58  brouard
   first survey ("cross") where individuals from different ages are    (Module): Some improvements in processing parameter
   interviewed on their health status or degree of disability (in the    filename with strsep.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.113  2006/02/24 14:20:24  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Memory leaks checks with valgrind and:
   computed from the time spent in each health state according to a    datafile was not closed, some imatrix were not freed and on matrix
   model. More health states you consider, more time is necessary to reach the    allocation too.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.112  2006/01/30 09:55:26  brouard
   probability to be observed in state j at the second wave    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.111  2006/01/25 20:38:18  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Lots of cleaning and bugs added (Gompertz)
   complex model than "constant and age", you should modify the program    (Module): Comments can be added in data file. Missing date values
   where the markup *Covariates have to be included here again* invites    can be a simple dot '.'.
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.109  2006/01/24 19:37:15  brouard
   identical for each individual. Also, if a individual missed an    (Module): Comments (lines starting with a #) are allowed in data.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
   hPijx is the probability to be observed in state i at age x+h    To be fixed
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.107  2006/01/19 16:20:37  brouard
   states. This elementary transition (by month or quarter trimester,    Test existence of gnuplot in imach path
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.106  2006/01/19 13:24:36  brouard
   and the contribution of each individual to the likelihood is simply    Some cleaning and links added in html output
   hPijx.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Also this programme outputs the covariance matrix of the parameters but also    *** empty log message ***
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.104  2005/09/30 16:11:43  lievre
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): sump fixed, loop imx fixed, and simplifications.
            Institut national d'études démographiques, Paris.    (Module): If the status is missing at the last wave but we know
   This software have been partly granted by Euro-REVES, a concerted action    that the person is alive, then we can code his/her status as -2
   from the European Union.    (instead of missing=-1 in earlier versions) and his/her
   It is copyrighted identically to a GNU software product, ie programme and    contributions to the likelihood is 1 - Prob of dying from last
   software can be distributed freely for non commercial use. Latest version    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   can be accessed at http://euroreves.ined.fr/imach .    the healthy state at last known wave). Version is 0.98
   **********************************************************************/  
      Revision 1.103  2005/09/30 15:54:49  lievre
 #include <math.h>    (Module): sump fixed, loop imx fixed, and simplifications.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.102  2004/09/15 17:31:30  brouard
 #include <unistd.h>    Add the possibility to read data file including tab characters.
   
 #define MAXLINE 256    Revision 1.101  2004/09/15 10:38:38  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    Fix on curr_time
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.100  2004/07/12 18:29:06  brouard
 /*#define DEBUG*/    Add version for Mac OS X. Just define UNIX in Makefile
   
 /*#define windows*/    Revision 1.99  2004/06/05 08:57:40  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    *** empty log message ***
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.98  2004/05/16 15:05:56  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    New version 0.97 . First attempt to estimate force of mortality
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #define NINTERVMAX 8    This is the basic analysis of mortality and should be done before any
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    other analysis, in order to test if the mortality estimated from the
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    cross-longitudinal survey is different from the mortality estimated
 #define NCOVMAX 8 /* Maximum number of covariates */    from other sources like vital statistic data.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    The same imach parameter file can be used but the option for mle should be -3.
 #define AGESUP 130  
 #define AGEBASE 40    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   
 int erreur; /* Error number */    The output is very simple: only an estimate of the intercept and of
 int nvar;    the slope with 95% confident intervals.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Current limitations:
 int nlstate=2; /* Number of live states */    A) Even if you enter covariates, i.e. with the
 int ndeath=1; /* Number of dead states */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    B) There is no computation of Life Expectancy nor Life Table.
 int popbased=0;  
     Revision 1.97  2004/02/20 13:25:42  lievre
 int *wav; /* Number of waves for this individuual 0 is possible */    Version 0.96d. Population forecasting command line is (temporarily)
 int maxwav; /* Maxim number of waves */    suppressed.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.96  2003/07/15 15:38:55  brouard
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    rewritten within the same printf. Workaround: many printfs.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.95  2003/07/08 07:54:34  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Repository):
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Repository): Using imachwizard code to output a more meaningful covariance
 FILE *ficgp,*ficresprob,*ficpop;    matrix (cov(a12,c31) instead of numbers.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.94  2003/06/27 13:00:02  brouard
  FILE  *ficresvij;    Just cleaning
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.93  2003/06/25 16:33:55  brouard
   char fileresvpl[FILENAMELENGTH];    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 #define NR_END 1    (Module): Version 0.96b
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define NRANSI    exist so I changed back to asctime which exists.
 #define ITMAX 200  
     Revision 1.91  2003/06/25 15:30:29  brouard
 #define TOL 2.0e-4    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 #define CGOLD 0.3819660    helps to forecast when convergence will be reached. Elapsed time
 #define ZEPS 1.0e-10    is stamped in powell.  We created a new html file for the graphs
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    concerning matrix of covariance. It has extension -cov.htm.
   
 #define GOLD 1.618034    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GLIMIT 100.0    (Module): Some bugs corrected for windows. Also, when
 #define TINY 1.0e-20    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.89  2003/06/24 12:30:52  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    of the covariance matrix to be input.
 #define rint(a) floor(a+0.5)  
     Revision 1.88  2003/06/23 17:54:56  brouard
 static double sqrarg;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 int imx;  
 int stepm;    Revision 1.86  2003/06/17 20:04:08  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 int m,nb;    current date of interview. It may happen when the death was just
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    prior to the death. In this case, dh was negative and likelihood
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    was wrong (infinity). We still send an "Error" but patch by
 double **pmmij, ***probs, ***mobaverage;    assuming that the date of death was just one stepm after the
 double dateintmean=0;    interview.
     (Repository): Because some people have very long ID (first column)
 double *weight;    we changed int to long in num[] and we added a new lvector for
 int **s; /* Status */    memory allocation. But we also truncated to 8 characters (left
 double *agedc, **covar, idx;    truncation)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Repository): No more line truncation errors.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.84  2003/06/13 21:44:43  brouard
 double ftolhess; /* Tolerance for computing hessian */    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /**************** split *************************/    many times. Probs is memory consuming and must be used with
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.82  2003/06/05 15:57:20  brouard
 #ifdef windows    Add log in  imach.c and  fullversion number is now printed.
    s = strrchr( path, '\\' );           /* find last / */  
 #else  */
    s = strrchr( path, '/' );            /* find last / */  /*
 #endif     Interpolated Markov Chain
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Short summary of the programme:
       extern char       *getwd( );    
     This program computes Healthy Life Expectancies from
       if ( getwd( dirc ) == NULL ) {    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #else    first survey ("cross") where individuals from different ages are
       extern char       *getcwd( );    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    second wave of interviews ("longitudinal") which measure each change
 #endif    (if any) in individual health status.  Health expectancies are
          return( GLOCK_ERROR_GETCWD );    computed from the time spent in each health state according to a
       }    model. More health states you consider, more time is necessary to reach the
       strcpy( name, path );             /* we've got it */    Maximum Likelihood of the parameters involved in the model.  The
    } else {                             /* strip direcotry from path */    simplest model is the multinomial logistic model where pij is the
       s++;                              /* after this, the filename */    probability to be observed in state j at the second wave
       l2 = strlen( s );                 /* length of filename */    conditional to be observed in state i at the first wave. Therefore
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       strcpy( name, s );                /* save file name */    'age' is age and 'sex' is a covariate. If you want to have a more
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    complex model than "constant and age", you should modify the program
       dirc[l1-l2] = 0;                  /* add zero */    where the markup *Covariates have to be included here again* invites
    }    you to do it.  More covariates you add, slower the
    l1 = strlen( dirc );                 /* length of directory */    convergence.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    The advantage of this computer programme, compared to a simple
 #else    multinomial logistic model, is clear when the delay between waves is not
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
    s = strrchr( name, '.' );            /* find last / */    account using an interpolation or extrapolation.  
    s++;  
    strcpy(ext,s);                       /* save extension */    hPijx is the probability to be observed in state i at age x+h
    l1= strlen( name);    conditional to the observed state i at age x. The delay 'h' can be
    l2= strlen( s)+1;    split into an exact number (nh*stepm) of unobserved intermediate
    strncpy( finame, name, l1-l2);    states. This elementary transition (by month, quarter,
    finame[l1-l2]= 0;    semester or year) is modelled as a multinomial logistic.  The hPx
    return( 0 );                         /* we're done */    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
   
 /******************************************/    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 void replace(char *s, char*t)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int i;             Institut national d'études démographiques, Paris.
   int lg=20;    This software have been partly granted by Euro-REVES, a concerted action
   i=0;    from the European Union.
   lg=strlen(t);    It is copyrighted identically to a GNU software product, ie programme and
   for(i=0; i<= lg; i++) {    software can be distributed freely for non commercial use. Latest version
     (s[i] = t[i]);    can be accessed at http://euroreves.ined.fr/imach .
     if (t[i]== '\\') s[i]='/';  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 int nbocc(char *s, char occ)    **********************************************************************/
 {  /*
   int i,j=0;    main
   int lg=20;    read parameterfile
   i=0;    read datafile
   lg=strlen(s);    concatwav
   for(i=0; i<= lg; i++) {    freqsummary
   if  (s[i] == occ ) j++;    if (mle >= 1)
   }      mlikeli
   return j;    print results files
 }    if mle==1 
        computes hessian
 void cutv(char *u,char *v, char*t, char occ)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   int i,lg,j,p=0;    open gnuplot file
   i=0;    open html file
   for(j=0; j<=strlen(t)-1; j++) {    stable prevalence
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;     for age prevalim()
   }    h Pij x
     variance of p varprob
   lg=strlen(t);    forecasting if prevfcast==1 prevforecast call prevalence()
   for(j=0; j<p; j++) {    health expectancies
     (u[j] = t[j]);    Variance-covariance of DFLE
   }    prevalence()
      u[p]='\0';     movingaverage()
     varevsij() 
    for(j=0; j<= lg; j++) {    if popbased==1 varevsij(,popbased)
     if (j>=(p+1))(v[j-p-1] = t[j]);    total life expectancies
   }    Variance of stable prevalence
 }   end
   */
 /********************** nrerror ********************/  
   
 void nrerror(char error_text[])  
 {   
   fprintf(stderr,"ERREUR ...\n");  #include <math.h>
   fprintf(stderr,"%s\n",error_text);  #include <stdio.h>
   exit(1);  #include <stdlib.h>
 }  #include <string.h>
 /*********************** vector *******************/  #include <unistd.h>
 double *vector(int nl, int nh)  
 {  #include <limits.h>
   double *v;  #include <sys/types.h>
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <sys/stat.h>
   if (!v) nrerror("allocation failure in vector");  #include <errno.h>
   return v-nl+NR_END;  extern int errno;
 }  
   /* #include <sys/time.h> */
 /************************ free vector ******************/  #include <time.h>
 void free_vector(double*v, int nl, int nh)  #include "timeval.h"
 {  
   free((FREE_ARG)(v+nl-NR_END));  /* #include <libintl.h> */
 }  /* #define _(String) gettext (String) */
   
 /************************ivector *******************************/  #define MAXLINE 256
 int *ivector(long nl,long nh)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   int *v;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define FILENAMELENGTH 132
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /******************free ivector **************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void free_ivector(int *v, long nl, long nh)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /******************* imatrix *******************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define MAXN 20000
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define AGEBASE 40
   int **m;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
    #ifdef UNIX
   /* allocate pointers to rows */  #define DIRSEPARATOR '/'
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define CHARSEPARATOR "/"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '\\'
   m += NR_END;  #else
   m -= nrl;  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
    #define ODIRSEPARATOR '/'
   /* allocate rows and set pointers to them */  #endif
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* $Id$ */
   m[nrl] += NR_END;  /* $State$ */
   m[nrl] -= ncl;  
    char version[]="Imach version 0.98c, February 2006, INED-EUROREVES ";
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fullversion[]="$Revision$ $Date$"; 
    int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   /* return pointer to array of pointers to rows */  int nvar;
   return m;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /****************** free_imatrix *************************/  int ndeath=1; /* Number of dead states */
 void free_imatrix(m,nrl,nrh,ncl,nch)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       int **m;  int popbased=0;
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int jmin, jmax; /* min, max spacing between 2 waves */
   free((FREE_ARG) (m+nrl-NR_END));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 }  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 /******************* matrix *******************************/  int mle, weightopt;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double **m;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double **oldm, **newm, **savm; /* Working pointers to matrices */
   if (!m) nrerror("allocation failure 1 in matrix()");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   m += NR_END;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m -= nrl;  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double fretone; /* Only one call to likelihood */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  long ipmx; /* Number of contributions */
   m[nrl] += NR_END;  double sw; /* Sum of weights */
   m[nrl] -= ncl;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficresilk;
   return m;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /*************************free matrix ************************/  FILE *ficreseij;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char filerese[FILENAMELENGTH];
 {  FILE  *ficresvij;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresv[FILENAMELENGTH];
   free((FREE_ARG)(m+nrl-NR_END));  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /******************* ma3x *******************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  char command[FILENAMELENGTH];
   double ***m;  int  outcmd=0;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m -= nrl;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char popfile[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   m[nrl] -= ncl;  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  struct timezone tzp;
   extern int gettimeofday();
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  long time_value;
   m[nrl][ncl] += NR_END;  extern long time();
   m[nrl][ncl] -= nll;  char strcurr[80], strfor[80];
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  char *endptr;
    long lval;
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #define NR_END 1
     for (j=ncl+1; j<=nch; j++)  #define FREE_ARG char*
       m[i][j]=m[i][j-1]+nlay;  #define FTOL 1.0e-10
   }  
   return m;  #define NRANSI 
 }  #define ITMAX 200 
   
 /*************************free ma3x ************************/  #define TOL 2.0e-4 
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  #define CGOLD 0.3819660 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define ZEPS 1.0e-10 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 /***************** f1dim *************************/  #define TINY 1.0e-20 
 extern int ncom;  
 extern double *pcom,*xicom;  static double maxarg1,maxarg2;
 extern double (*nrfunc)(double []);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double f1dim(double x)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   int j;  #define rint(a) floor(a+0.5)
   double f;  
   double *xt;  static double sqrarg;
    #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   xt=vector(1,ncom);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  int agegomp= AGEGOMP;
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  int imx; 
   return f;  int stepm=1;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /*****************brent *************************/  int estepm;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   int iter;  int m,nb;
   double a,b,d,etemp;  long *num;
   double fu,fv,fw,fx;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double ftemp;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  double **pmmij, ***probs;
   double e=0.0;  double *ageexmed,*agecens;
    double dateintmean=0;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  double *weight;
   x=w=v=bx;  int **s; /* Status */
   fw=fv=fx=(*f)(x);  double *agedc, **covar, idx;
   for (iter=1;iter<=ITMAX;iter++) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     xm=0.5*(a+b);  double *lsurv, *lpop, *tpop;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     printf(".");fflush(stdout);  double ftolhess; /* Tolerance for computing hessian */
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /**************** split *************************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       *xmin=x;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       return fx;    */ 
     }    char  *ss;                            /* pointer */
     ftemp=fu;    int   l1, l2;                         /* length counters */
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    l1 = strlen(path );                   /* length of path */
       q=(x-v)*(fx-fw);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       p=(x-v)*q-(x-w)*r;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       q=2.0*(q-r);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       if (q > 0.0) p = -p;      strcpy( name, path );               /* we got the fullname name because no directory */
       q=fabs(q);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       etemp=e;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       e=d;      /* get current working directory */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      /*    extern  char* getcwd ( char *buf , int len);*/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       else {        return( GLOCK_ERROR_GETCWD );
         d=p/q;      }
         u=x+d;      /* got dirc from getcwd*/
         if (u-a < tol2 || b-u < tol2)      printf(" DIRC = %s \n",dirc);
           d=SIGN(tol1,xm-x);    } else {                              /* strip direcotry from path */
       }      ss++;                               /* after this, the filename */
     } else {      l2 = strlen( ss );                  /* length of filename */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     }      strcpy( name, ss );         /* save file name */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     fu=(*f)(u);      dirc[l1-l2] = 0;                    /* add zero */
     if (fu <= fx) {      printf(" DIRC2 = %s \n",dirc);
       if (u >= x) a=x; else b=x;    }
       SHFT(v,w,x,u)    /* We add a separator at the end of dirc if not exists */
         SHFT(fv,fw,fx,fu)    l1 = strlen( dirc );                  /* length of directory */
         } else {    if( dirc[l1-1] != DIRSEPARATOR ){
           if (u < x) a=u; else b=u;      dirc[l1] =  DIRSEPARATOR;
           if (fu <= fw || w == x) {      dirc[l1+1] = 0; 
             v=w;      printf(" DIRC3 = %s \n",dirc);
             w=u;    }
             fv=fw;    ss = strrchr( name, '.' );            /* find last / */
             fw=fu;    if (ss >0){
           } else if (fu <= fv || v == x || v == w) {      ss++;
             v=u;      strcpy(ext,ss);                     /* save extension */
             fv=fu;      l1= strlen( name);
           }      l2= strlen(ss)+1;
         }      strncpy( finame, name, l1-l2);
   }      finame[l1-l2]= 0;
   nrerror("Too many iterations in brent");    }
   *xmin=x;  
   return fx;    return( 0 );                          /* we're done */
 }  }
   
 /****************** mnbrak ***********************/  
   /******************************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  void replace_back_to_slash(char *s, char*t)
 {  {
   double ulim,u,r,q, dum;    int i;
   double fu;    int lg=0;
      i=0;
   *fa=(*func)(*ax);    lg=strlen(t);
   *fb=(*func)(*bx);    for(i=0; i<= lg; i++) {
   if (*fb > *fa) {      (s[i] = t[i]);
     SHFT(dum,*ax,*bx,dum)      if (t[i]== '\\') s[i]='/';
       SHFT(dum,*fb,*fa,dum)    }
       }  }
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  int nbocc(char *s, char occ)
   while (*fb > *fc) {  {
     r=(*bx-*ax)*(*fb-*fc);    int i,j=0;
     q=(*bx-*cx)*(*fb-*fa);    int lg=20;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    i=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    lg=strlen(s);
     ulim=(*bx)+GLIMIT*(*cx-*bx);    for(i=0; i<= lg; i++) {
     if ((*bx-u)*(u-*cx) > 0.0) {    if  (s[i] == occ ) j++;
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return j;
       fu=(*func)(u);  }
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void cutv(char *u,char *v, char*t, char occ)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       u=ulim;       gives u="abcedf" and v="ghi2j" */
       fu=(*func)(u);    int i,lg,j,p=0;
     } else {    i=0;
       u=(*cx)+GOLD*(*cx-*bx);    for(j=0; j<=strlen(t)-1; j++) {
       fu=(*func)(u);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }    }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    lg=strlen(t);
       }    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /*************** linmin ************************/       u[p]='\0';
   
 int ncom;     for(j=0; j<= lg; j++) {
 double *pcom,*xicom;      if (j>=(p+1))(v[j-p-1] = t[j]);
 double (*nrfunc)(double []);    }
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /********************** nrerror ********************/
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  void nrerror(char error_text[])
   double f1dim(double x);  {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    fprintf(stderr,"ERREUR ...\n");
               double *fc, double (*func)(double));    fprintf(stderr,"%s\n",error_text);
   int j;    exit(EXIT_FAILURE);
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  /*********************** vector *******************/
    double *vector(int nl, int nh)
   ncom=n;  {
   pcom=vector(1,n);    double *v;
   xicom=vector(1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   nrfunc=func;    if (!v) nrerror("allocation failure in vector");
   for (j=1;j<=n;j++) {    return v-nl+NR_END;
     pcom[j]=p[j];  }
     xicom[j]=xi[j];  
   }  /************************ free vector ******************/
   ax=0.0;  void free_vector(double*v, int nl, int nh)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    free((FREE_ARG)(v+nl-NR_END));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /************************ivector *******************************/
 #endif  int *ivector(long nl,long nh)
   for (j=1;j<=n;j++) {  {
     xi[j] *= xmin;    int *v;
     p[j] += xi[j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   }    if (!v) nrerror("allocation failure in ivector");
   free_vector(xicom,1,n);    return v-nl+NR_END;
   free_vector(pcom,1,n);  }
 }  
   /******************free ivector **************************/
 /*************** powell ************************/  void free_ivector(int *v, long nl, long nh)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /************************lvector *******************************/
   int i,ibig,j;  long *lvector(long nl,long nh)
   double del,t,*pt,*ptt,*xit;  {
   double fp,fptt;    long *v;
   double *xits;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   pt=vector(1,n);    if (!v) nrerror("allocation failure in ivector");
   ptt=vector(1,n);    return v-nl+NR_END;
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /******************free lvector **************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  void free_lvector(long *v, long nl, long nh)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    free((FREE_ARG)(v+nl-NR_END));
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************* imatrix *******************************/
     for (i=1;i<=n;i++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf(" %d %.12f",i, p[i]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     printf("\n");  { 
     for (i=1;i<=n;i++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    int **m; 
       fptt=(*fret);    
 #ifdef DEBUG    /* allocate pointers to rows */ 
       printf("fret=%lf \n",*fret);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 #endif    if (!m) nrerror("allocation failure 1 in matrix()"); 
       printf("%d",i);fflush(stdout);    m += NR_END; 
       linmin(p,xit,n,fret,func);    m -= nrl; 
       if (fabs(fptt-(*fret)) > del) {    
         del=fabs(fptt-(*fret));    
         ibig=i;    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 #ifdef DEBUG    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       printf("%d %.12e",i,(*fret));    m[nrl] += NR_END; 
       for (j=1;j<=n;j++) {    m[nrl] -= ncl; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    
         printf(" x(%d)=%.12e",j,xit[j]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       }    
       for(j=1;j<=n;j++)    /* return pointer to array of pointers to rows */ 
         printf(" p=%.12e",p[j]);    return m; 
       printf("\n");  } 
 #endif  
     }  /****************** free_imatrix *************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  void free_imatrix(m,nrl,nrh,ncl,nch)
 #ifdef DEBUG        int **m;
       int k[2],l;        long nch,ncl,nrh,nrl; 
       k[0]=1;       /* free an int matrix allocated by imatrix() */ 
       k[1]=-1;  { 
       printf("Max: %.12e",(*func)(p));    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (j=1;j<=n;j++)    free((FREE_ARG) (m+nrl-NR_END)); 
         printf(" %.12e",p[j]);  } 
       printf("\n");  
       for(l=0;l<=1;l++) {  /******************* matrix *******************************/
         for (j=1;j<=n;j++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         }    double **m;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     m -= nrl;
       free_vector(xit,1,n);  
       free_vector(xits,1,n);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       free_vector(ptt,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       free_vector(pt,1,n);    m[nrl] += NR_END;
       return;    m[nrl] -= ncl;
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (j=1;j<=n;j++) {    return m;
       ptt[j]=2.0*p[j]-pt[j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       xit[j]=p[j]-pt[j];     */
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  /*************************free matrix ************************/
     if (fptt < fp) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  {
       if (t < 0.0) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         linmin(p,xit,n,fret,func);    free((FREE_ARG)(m+nrl-NR_END));
         for (j=1;j<=n;j++) {  }
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /******************* ma3x *******************************/
         }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for(j=1;j<=n;j++)    double ***m;
           printf(" %.12e",xit[j]);  
         printf("\n");    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
       }    m += NR_END;
     }    m -= nrl;
   }  
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /**** Prevalence limit ****************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int i, ii,j,k;    m[nrl][ncl] += NR_END;
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl][ncl] -= nll;
   double **matprod2();    for (j=ncl+1; j<=nch; j++) 
   double **out, cov[NCOVMAX], **pmij();      m[nrl][j]=m[nrl][j-1]+nlay;
   double **newm;    
   double agefin, delaymax=50 ; /* Max number of years to converge */    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (ii=1;ii<=nlstate+ndeath;ii++)      for (j=ncl+1; j<=nch; j++) 
     for (j=1;j<=nlstate+ndeath;j++){        m[i][j]=m[i][j-1]+nlay;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
     }    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
    cov[1]=1.;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
      */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;  /*************************free ma3x ************************/
     /* Covariates have to be included here again */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
      cov[2]=agefin;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       for (k=1; k<=cptcovn;k++) {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(m+nrl-NR_END));
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  }
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** function subdirf ***********/
       for (k=1; k<=cptcovprod;k++)  char *subdirf(char fileres[])
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,"/"); /* Add to the right */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    strcat(tmpout,fileres);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    return tmpout;
   }
     savm=oldm;  
     oldm=newm;  /*************** function subdirf2 ***********/
     maxmax=0.;  char *subdirf2(char fileres[], char *preop)
     for(j=1;j<=nlstate;j++){  {
       min=1.;    
       max=0.;    /* Caution optionfilefiname is hidden */
       for(i=1; i<=nlstate; i++) {    strcpy(tmpout,optionfilefiname);
         sumnew=0;    strcat(tmpout,"/");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,preop);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,fileres);
         max=FMAX(max,prlim[i][j]);    return tmpout;
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /*************** function subdirf3 ***********/
       maxmax=FMAX(maxmax,maxmin);  char *subdirf3(char fileres[], char *preop, char *preop2)
     }  {
     if(maxmax < ftolpl){    
       return prlim;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /*************** transition probabilities ***************/    strcat(tmpout,fileres);
     return tmpout;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /***************** f1dim *************************/
   /*double t34;*/  extern int ncom; 
   int i,j,j1, nc, ii, jj;  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
     for(i=1; i<= nlstate; i++){   
     for(j=1; j<i;j++){  double f1dim(double x) 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  { 
         /*s2 += param[i][j][nc]*cov[nc];*/    int j; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double f;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double *xt; 
       }   
       ps[i][j]=s2;    xt=vector(1,ncom); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
     for(j=i+1; j<=nlstate+ndeath;j++){    free_vector(xt,1,ncom); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return f; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  /*****************brent *************************/
       ps[i][j]=s2;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     }  { 
   }    int iter; 
     /*ps[3][2]=1;*/    double a,b,d,etemp;
     double fu,fv,fw,fx;
   for(i=1; i<= nlstate; i++){    double ftemp;
      s1=0;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for(j=1; j<i; j++)    double e=0.0; 
       s1+=exp(ps[i][j]);   
     for(j=i+1; j<=nlstate+ndeath; j++)    a=(ax < cx ? ax : cx); 
       s1+=exp(ps[i][j]);    b=(ax > cx ? ax : cx); 
     ps[i][i]=1./(s1+1.);    x=w=v=bx; 
     for(j=1; j<i; j++)    fw=fv=fx=(*f)(x); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (iter=1;iter<=ITMAX;iter++) { 
     for(j=i+1; j<=nlstate+ndeath; j++)      xm=0.5*(a+b); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   } /* end i */      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #ifdef DEBUG
     for(jj=1; jj<= nlstate+ndeath; jj++){      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[ii][jj]=0;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       ps[ii][ii]=1;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
   }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
         return fx; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      } 
     for(jj=1; jj<= nlstate+ndeath; jj++){      ftemp=fu;
      printf("%lf ",ps[ii][jj]);      if (fabs(e) > tol1) { 
    }        r=(x-w)*(fx-fv); 
     printf("\n ");        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
     printf("\n ");printf("%lf ",cov[2]);*/        q=2.0*(q-r); 
 /*        if (q > 0.0) p = -p; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        q=fabs(q); 
   goto end;*/        etemp=e; 
     return ps;        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /**************** Product of 2 matrices ******************/        else { 
           d=p/q; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          u=x+d; 
 {          if (u-a < tol2 || b-u < tol2) 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            d=SIGN(tol1,xm-x); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        } 
   /* in, b, out are matrice of pointers which should have been initialized      } else { 
      before: only the contents of out is modified. The function returns        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      a pointer to pointers identical to out */      } 
   long i, j, k;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   for(i=nrl; i<= nrh; i++)      fu=(*f)(u); 
     for(k=ncolol; k<=ncoloh; k++)      if (fu <= fx) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        if (u >= x) a=x; else b=x; 
         out[i][k] +=in[i][j]*b[j][k];        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
   return out;          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
               v=w; 
 /************* Higher Matrix Product ***************/              w=u; 
               fv=fw; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )              fw=fu; 
 {            } else if (fu <= fv || v == x || v == w) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month              v=u; 
      duration (i.e. until              fv=fu; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          } 
      (typically every 2 years instead of every month which is too big).    } 
      Model is determined by parameters x and covariates have to be    nrerror("Too many iterations in brent"); 
      included manually here.    *xmin=x; 
     return fx; 
      */  } 
   
   int i, j, d, h, k;  /****************** mnbrak ***********************/
   double **out, cov[NCOVMAX];  
   double **newm;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
   /* Hstepm could be zero and should return the unit matrix */  { 
   for (i=1;i<=nlstate+ndeath;i++)    double ulim,u,r,q, dum;
     for (j=1;j<=nlstate+ndeath;j++){    double fu; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);   
       po[i][j][0]=(i==j ? 1.0 : 0.0);    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (*fb > *fa) { 
   for(h=1; h <=nhstepm; h++){      SHFT(dum,*ax,*bx,dum) 
     for(d=1; d <=hstepm; d++){        SHFT(dum,*fb,*fa,dum) 
       newm=savm;        } 
       /* Covariates have to be included here again */    *cx=(*bx)+GOLD*(*bx-*ax); 
       cov[1]=1.;    *fc=(*func)(*cx); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    while (*fb > *fc) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      r=(*bx-*ax)*(*fb-*fc); 
       for (k=1; k<=cptcovage;k++)      q=(*bx-*cx)*(*fb-*fa); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for (k=1; k<=cptcovprod;k++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fu=(*func)(u); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        if (fu < *fc) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       savm=oldm;            SHFT(*fb,*fc,fu,(*func)(u)) 
       oldm=newm;            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for(i=1; i<=nlstate+ndeath; i++)        u=ulim; 
       for(j=1;j<=nlstate+ndeath;j++) {        fu=(*func)(u); 
         po[i][j][h]=newm[i][j];      } else { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        u=(*cx)+GOLD*(*cx-*bx); 
          */        fu=(*func)(u); 
       }      } 
   } /* end h */      SHFT(*ax,*bx,*cx,u) 
   return po;        SHFT(*fa,*fb,*fc,fu) 
 }        } 
   } 
   
 /*************** log-likelihood *************/  /*************** linmin ************************/
 double func( double *x)  
 {  int ncom; 
   int i, ii, j, k, mi, d, kk;  double *pcom,*xicom;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double (*nrfunc)(double []); 
   double **out;   
   double sw; /* Sum of weights */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   double lli; /* Individual log likelihood */  { 
   int s1, s2;    double brent(double ax, double bx, double cx, 
   long ipmx;                 double (*f)(double), double tol, double *xmin); 
   /*extern weight */    double f1dim(double x); 
   /* We are differentiating ll according to initial status */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/                double *fc, double (*func)(double)); 
   /*for(i=1;i<imx;i++)    int j; 
     printf(" %d\n",s[4][i]);    double xx,xmin,bx,ax; 
   */    double fx,fb,fa;
   cov[1]=1.;   
     ncom=n; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    pcom=vector(1,n); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    xicom=vector(1,n); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    nrfunc=func; 
     for(mi=1; mi<= wav[i]-1; mi++){    for (j=1;j<=n;j++) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)      pcom[j]=p[j]; 
         for (j=1;j<=nlstate+ndeath;j++){      xicom[j]=xi[j]; 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    ax=0.0; 
         }    xx=1.0; 
       for(d=0; d<dh[mi][i]; d++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         newm=savm;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #ifdef DEBUG
         for (kk=1; kk<=cptcovage;kk++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         }  #endif
            for (j=1;j<=n;j++) { 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      xi[j] *= xmin; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      p[j] += xi[j]; 
         savm=oldm;    } 
         oldm=newm;    free_vector(xicom,1,n); 
            free_vector(pcom,1,n); 
          } 
       } /* end mult */  
        char *asc_diff_time(long time_sec, char ascdiff[])
       s1=s[mw[mi][i]][i];  {
       s2=s[mw[mi+1][i]][i];    long sec_left, days, hours, minutes;
       if( s2 > nlstate){    days = (time_sec) / (60*60*24);
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    sec_left = (time_sec) % (60*60*24);
            to the likelihood is the probability to die between last step unit time and current    hours = (sec_left) / (60*60) ;
            step unit time, which is also the differences between probability to die before dh    sec_left = (sec_left) %(60*60);
            and probability to die before dh-stepm .    minutes = (sec_left) /60;
            In version up to 0.92 likelihood was computed    sec_left = (sec_left) % (60);
            as if date of death was unknown. Death was treated as any other    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
            health state: the date of the interview describes the actual state    return ascdiff;
            and not the date of a change in health state. The former idea was  }
            to consider that at each interview the state was recorded  
            (healthy, disable or death) and IMaCh was corrected; but when we  /*************** powell ************************/
            introduced the exact date of death then we should have modified  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
            the contribution of an exact death to the likelihood. This new              double (*func)(double [])) 
            contribution is smaller and very dependent of the step unit  { 
            stepm. It is no more the probability to die between last interview    void linmin(double p[], double xi[], int n, double *fret, 
            and month of death but the probability to survive from last                double (*func)(double [])); 
            interview up to one month before death multiplied by the    int i,ibig,j; 
            probability to die within a month. Thanks to Chris    double del,t,*pt,*ptt,*xit;
            Jackson for correcting this bug.  Former versions increased    double fp,fptt;
            mortality artificially. The bad side is that we add another loop    double *xits;
            which slows down the processing. The difference can be up to 10%    int niterf, itmp;
            lower mortality.  
         */    pt=vector(1,n); 
         lli=log(out[s1][s2] - savm[s1][s2]);    ptt=vector(1,n); 
       }else{    xit=vector(1,n); 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    xits=vector(1,n); 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ipmx +=1;    for (*iter=1;;++(*iter)) { 
       sw += weight[i];      fp=(*fret); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      ibig=0; 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/      del=0.0; 
     } /* end of wave */      last_time=curr_time;
   } /* end of individual */      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      */
   /*exit(0);*/     for (i=1;i<=n;i++) {
   return -l;        printf(" %d %.12f",i, p[i]);
 }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
       }
 /*********** Maximum Likelihood Estimation ***************/      printf("\n");
       fprintf(ficlog,"\n");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      fprintf(ficrespow,"\n");fflush(ficrespow);
 {      if(*iter <=3){
   int i,j, iter;        tm = *localtime(&curr_time.tv_sec);
   double **xi,*delti;        strcpy(strcurr,asctime(&tm));
   double fret;  /*       asctime_r(&tm,strcurr); */
   xi=matrix(1,npar,1,npar);        forecast_time=curr_time; 
   for (i=1;i<=npar;i++)        itmp = strlen(strcurr);
     for (j=1;j<=npar;j++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       xi[i][j]=(i==j ? 1.0 : 0.0);          strcurr[itmp-1]='\0';
   printf("Powell\n");        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   powell(p,xi,npar,ftol,&iter,&fret,func);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 /**** Computes Hessian and covariance matrix ***/          if(strfor[itmp-1]=='\n')
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          strfor[itmp-1]='\0';
 {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double  **a,**y,*x,pd;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   double **hess;        }
   int i, j,jk;      }
   int *indx;      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double hessii(double p[], double delta, int theta, double delti[]);        fptt=(*fret); 
   double hessij(double p[], double delti[], int i, int j);  #ifdef DEBUG
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf("fret=%lf \n",*fret);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   hess=matrix(1,npar,1,npar);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
   printf("\nCalculation of the hessian matrix. Wait...\n");        linmin(p,xit,n,fret,func); 
   for (i=1;i<=npar;i++){        if (fabs(fptt-(*fret)) > del) { 
     printf("%d",i);fflush(stdout);          del=fabs(fptt-(*fret)); 
     hess[i][i]=hessii(p,ftolhess,i,delti);          ibig=i; 
     /*printf(" %f ",p[i]);*/        } 
     /*printf(" %lf ",hess[i][i]);*/  #ifdef DEBUG
   }        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++) {        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++)  {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       if (j>i) {          printf(" x(%d)=%.12e",j,xit[j]);
         printf(".%d%d",i,j);fflush(stdout);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];            for(j=1;j<=n;j++) {
         /*printf(" %lf ",hess[i][j]);*/          printf(" p=%.12e",p[j]);
       }          fprintf(ficlog," p=%.12e",p[j]);
     }        }
   }        printf("\n");
   printf("\n");        fprintf(ficlog,"\n");
   #endif
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);        int k[2],l;
   x=vector(1,npar);        k[0]=1;
   indx=ivector(1,npar);        k[1]=-1;
   for (i=1;i<=npar;i++)        printf("Max: %.12e",(*func)(p));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        fprintf(ficlog,"Max: %.12e",(*func)(p));
   ludcmp(a,npar,indx,&pd);        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
   for (j=1;j<=npar;j++) {          fprintf(ficlog," %.12e",p[j]);
     for (i=1;i<=npar;i++) x[i]=0;        }
     x[j]=1;        printf("\n");
     lubksb(a,npar,indx,x);        fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++){        for(l=0;l<=1;l++) {
       matcov[i][j]=x[i];          for (j=1;j<=n;j++) {
     }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   printf("\n#Hessian matrix#\n");          }
   for (i=1;i<=npar;i++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for (j=1;j<=npar;j++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       printf("%.3e ",hess[i][j]);        }
     }  #endif
     printf("\n");  
   }  
         free_vector(xit,1,n); 
   /* Recompute Inverse */        free_vector(xits,1,n); 
   for (i=1;i<=npar;i++)        free_vector(ptt,1,n); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        free_vector(pt,1,n); 
   ludcmp(a,npar,indx,&pd);        return; 
       } 
   /*  printf("\n#Hessian matrix recomputed#\n");      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   for (j=1;j<=npar;j++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (i=1;i<=npar;i++) x[i]=0;        xit[j]=p[j]-pt[j]; 
     x[j]=1;        pt[j]=p[j]; 
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){      fptt=(*func)(ptt); 
       y[i][j]=x[i];      if (fptt < fp) { 
       printf("%.3e ",y[i][j]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
     printf("\n");          linmin(p,xit,n,fret,func); 
   }          for (j=1;j<=n;j++) { 
   */            xi[j][ibig]=xi[j][n]; 
             xi[j][n]=xit[j]; 
   free_matrix(a,1,npar,1,npar);          }
   free_matrix(y,1,npar,1,npar);  #ifdef DEBUG
   free_vector(x,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_ivector(indx,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(hess,1,npar,1,npar);          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
 }          }
           printf("\n");
 /*************** hessian matrix ****************/          fprintf(ficlog,"\n");
 double hessii( double x[], double delta, int theta, double delti[])  #endif
 {        }
   int i;      } 
   int l=1, lmax=20;    } 
   double k1,k2;  } 
   double p2[NPARMAX+1];  
   double res;  /**** Prevalence limit (stable prevalence)  ****************/
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int k=0,kmax=10;  {
   double l1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    int i, ii,j,k;
   for(l=0 ; l <=lmax; l++){    double min, max, maxmin, maxmax,sumnew=0.;
     l1=pow(10,l);    double **matprod2();
     delts=delt;    double **out, cov[NCOVMAX], **pmij();
     for(k=1 ; k <kmax; k=k+1){    double **newm;
       delt = delta*(l1*k);    double agefin, delaymax=50 ; /* Max number of years to converge */
       p2[theta]=x[theta] +delt;  
       k1=func(p2)-fx;    for (ii=1;ii<=nlstate+ndeath;ii++)
       p2[theta]=x[theta]-delt;      for (j=1;j<=nlstate+ndeath;j++){
       k2=func(p2)-fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*res= (k1-2.0*fx+k2)/delt/delt; */      }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
           cov[1]=1.;
 #ifdef DEBUG   
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 #endif    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      newm=savm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      /* Covariates have to be included here again */
         k=kmax;       cov[2]=agefin;
       }    
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for (k=1; k<=cptcovn;k++) {
         k=kmax; l=lmax*10.;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }  
   delti[theta]=delts;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   return res;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
          /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
 double hessij( double x[], double delti[], int thetai,int thetaj)      savm=oldm;
 {      oldm=newm;
   int i;      maxmax=0.;
   int l=1, l1, lmax=20;      for(j=1;j<=nlstate;j++){
   double k1,k2,k3,k4,res,fx;        min=1.;
   double p2[NPARMAX+1];        max=0.;
   int k;        for(i=1; i<=nlstate; i++) {
           sumnew=0;
   fx=func(x);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   for (k=1; k<=2; k++) {          prlim[i][j]= newm[i][j]/(1-sumnew);
     for (i=1;i<=npar;i++) p2[i]=x[i];          max=FMAX(max,prlim[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          min=FMIN(min,prlim[i][j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k1=func(p2)-fx;        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      if(maxmax < ftolpl){
     k2=func(p2)-fx;        return prlim;
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  }
     k3=func(p2)-fx;  
    /*************** transition probabilities ***************/ 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     k4=func(p2)-fx;  {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double s1, s2;
 #ifdef DEBUG    /*double t34;*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    int i,j,j1, nc, ii, jj;
 #endif  
   }      for(i=1; i<= nlstate; i++){
   return res;        for(j=1; j<i;j++){
 }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 /************** Inverse of matrix **************/            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 void ludcmp(double **a, int n, int *indx, double *d)  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 {          }
   int i,imax,j,k;          ps[i][j]=s2;
   double big,dum,sum,temp;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   double *vv;        }
          for(j=i+1; j<=nlstate+ndeath;j++){
   vv=vector(1,n);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   *d=1.0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=1;i<=n;i++) {  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     big=0.0;          }
     for (j=1;j<=n;j++)          ps[i][j]=s2;
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      }
     vv[i]=1.0/big;      /*ps[3][2]=1;*/
   }      
   for (j=1;j<=n;j++) {      for(i=1; i<= nlstate; i++){
     for (i=1;i<j;i++) {        s1=0;
       sum=a[i][j];        for(j=1; j<i; j++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          s1+=exp(ps[i][j]);
       a[i][j]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
     }          s1+=exp(ps[i][j]);
     big=0.0;        ps[i][i]=1./(s1+1.);
     for (i=j;i<=n;i++) {        for(j=1; j<i; j++)
       sum=a[i][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1;k<j;k++)        for(j=i+1; j<=nlstate+ndeath; j++)
         sum -= a[i][k]*a[k][j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
       a[i][j]=sum;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       if ( (dum=vv[i]*fabs(sum)) >= big) {      } /* end i */
         big=dum;      
         imax=i;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       }        for(jj=1; jj<= nlstate+ndeath; jj++){
     }          ps[ii][jj]=0;
     if (j != imax) {          ps[ii][ii]=1;
       for (k=1;k<=n;k++) {        }
         dum=a[imax][k];      }
         a[imax][k]=a[j][k];      
         a[j][k]=dum;  
       }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
       *d = -(*d);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       vv[imax]=vv[j];  /*         printf("ddd %lf ",ps[ii][jj]); */
     }  /*       } */
     indx[j]=imax;  /*       printf("\n "); */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*        } */
     if (j != n) {  /*        printf("\n ");printf("%lf ",cov[2]); */
       dum=1.0/(a[j][j]);         /*
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }        goto end;*/
   }      return ps;
   free_vector(vv,1,n);  /* Doesn't work */  }
 ;  
 }  /**************** Product of 2 matrices ******************/
   
 void lubksb(double **a, int n, int *indx, double b[])  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   int i,ii=0,ip,j;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double sum;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
   for (i=1;i<=n;i++) {       before: only the contents of out is modified. The function returns
     ip=indx[i];       a pointer to pointers identical to out */
     sum=b[ip];    long i, j, k;
     b[ip]=b[i];    for(i=nrl; i<= nrh; i++)
     if (ii)      for(k=ncolol; k<=ncoloh; k++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     else if (sum) ii=i;          out[i][k] +=in[i][j]*b[j][k];
     b[i]=sum;  
   }    return out;
   for (i=n;i>=1;i--) {  }
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];  /************* Higher Matrix Product ***************/
   }  
 }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 /************ Frequencies ********************/    /* Computes the transition matrix starting at age 'age' over 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)       'nhstepm*hstepm*stepm' months (i.e. until
 {  /* Some frequencies */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         nhstepm*hstepm matrices. 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double ***freq; /* Frequencies */       (typically every 2 years instead of every month which is too big 
   double *pp;       for the memory).
   double pos, k2, dateintsum=0,k2cpt=0;       Model is determined by parameters x and covariates have to be 
   FILE *ficresp;       included manually here. 
   char fileresp[FILENAMELENGTH];  
         */
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, j, d, h, k;
   strcpy(fileresp,"p");    double **out, cov[NCOVMAX];
   strcat(fileresp,fileres);    double **newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Hstepm could be zero and should return the unit matrix */
     exit(0);    for (i=1;i<=nlstate+ndeath;i++)
   }      for (j=1;j<=nlstate+ndeath;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   j1=0;        po[i][j][0]=(i==j ? 1.0 : 0.0);
        }
   j=cptcoveff;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(h=1; h <=nhstepm; h++){
        for(d=1; d <=hstepm; d++){
   for(k1=1; k1<=j;k1++){        newm=savm;
     for(i1=1; i1<=ncodemax[k1];i1++){        /* Covariates have to be included here again */
       j1++;        cov[1]=1.;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         scanf("%d", i);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (i=-1; i<=nlstate+ndeath; i++)          for (k=1; k<=cptcovage;k++)
         for (jk=-1; jk<=nlstate+ndeath; jk++)            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(m=agemin; m <= agemax+3; m++)        for (k=1; k<=cptcovprod;k++)
             freq[i][jk][m]=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
       dateintsum=0;  
       k2cpt=0;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for (i=1; i<=imx; i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         bool=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if  (cptcovn>0) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           for (z1=1; z1<=cptcoveff; z1++)        savm=oldm;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        oldm=newm;
               bool=0;      }
         }      for(i=1; i<=nlstate+ndeath; i++)
         if (bool==1) {        for(j=1;j<=nlstate+ndeath;j++) {
           for(m=firstpass; m<=lastpass; m++){          po[i][j][h]=newm[i][j];
             k2=anint[m][i]+(mint[m][i]/12.);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        }
               if(agev[m][i]==1) agev[m][i]=agemax+2;    } /* end h */
               if (m<lastpass) {    return po;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }  
                /*************** log-likelihood *************/
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  double func( double *x)
                 dateintsum=dateintsum+k2;  {
                 k2cpt++;    int i, ii, j, k, mi, d, kk;
               }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             }    double **out;
           }    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
       }    int s1, s2;
            double bbh, survp;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    long ipmx;
     /*extern weight */
       if  (cptcovn>0) {    /* We are differentiating ll according to initial status */
         fprintf(ficresp, "\n#********** Variable ");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*for(i=1;i<imx;i++) 
         fprintf(ficresp, "**********\n#");      printf(" %d\n",s[4][i]);
       }    */
       for(i=1; i<=nlstate;i++)    cov[1]=1.;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){    if(mle==1){
         if(i==(int)agemax+3)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Total");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else        for(mi=1; mi<= wav[i]-1; mi++){
           printf("Age %d", i);          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<dh[mi][i]; d++){
           for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
             pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           if(pp[jk]>=1.e-10)            for (kk=1; kk<=cptcovage;kk++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else            }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){            oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } /* end mult */
             pp[jk] += freq[jk][m][i];        
         }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
         for(jk=1,pos=0; jk <=nlstate ; jk++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           pos += pp[jk];           * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           if(pos>=1.e-5)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           else           * probability in order to take into account the bias as a fraction of the way
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           if( i <= (int) agemax){           * -stepm/2 to stepm/2 .
             if(pos>=1.e-5){           * For stepm=1 the results are the same as for previous versions of Imach.
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * For stepm > 1 the results are less biased than in previous versions. 
               probs[i][jk][j1]= pp[jk]/pos;           */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          s1=s[mw[mi][i]][i];
             }          s2=s[mw[mi+1][i]][i];
             else          bbh=(double)bh[mi][i]/(double)stepm; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          /* bias bh is positive if real duration
           }           * is higher than the multiple of stepm and negative otherwise.
         }           */
                  /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)          if( s2 > nlstate){ 
           for(m=-1; m <=nlstate+ndeath; m++)            /* i.e. if s2 is a death state and if the date of death is known 
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);               then the contribution to the likelihood is the probability to 
         if(i <= (int) agemax)               die between last step unit time and current  step unit time, 
           fprintf(ficresp,"\n");               which is also equal to probability to die before dh 
         printf("\n");               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
     }          as if date of death was unknown. Death was treated as any other
   }          health state: the date of the interview describes the actual state
   dateintmean=dateintsum/k2cpt;          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   fclose(ficresp);          (healthy, disable or death) and IMaCh was corrected; but when we
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          introduced the exact date of death then we should have modified
   free_vector(pp,1,nlstate);          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   /* End of Freq */          stepm. It is no more the probability to die between last interview
 }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /************ Prevalence ********************/          probability to die within a month. Thanks to Chris
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          Jackson for correcting this bug.  Former versions increased
 {  /* Some frequencies */          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          lower mortality.
   double ***freq; /* Frequencies */            */
   double *pp;            lli=log(out[s1][s2] - savm[s1][s2]);
   double pos, k2;  
   
   pp=vector(1,nlstate);          } else if  (s2==-2) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            lli= survp;
   j1=0;          }
            
   j=cptcoveff;          else if  (s2==-4) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (j=3,survp=0. ; j<=nlstate; j++) 
                survp += out[s1][j];
  for(k1=1; k1<=j;k1++){            lli= survp;
     for(i1=1; i1<=ncodemax[k1];i1++){          }
       j1++;          
            else if  (s2==-5) {
       for (i=-1; i<=nlstate+ndeath; i++)              for (j=1,survp=0. ; j<=2; j++) 
         for (jk=-1; jk<=nlstate+ndeath; jk++)                survp += out[s1][j];
           for(m=agemin; m <= agemax+3; m++)            lli= survp;
             freq[i][jk][m]=0;          }
        
       for (i=1; i<=imx; i++) {  
         bool=1;          else{
         if  (cptcovn>0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           for (z1=1; z1<=cptcoveff; z1++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } 
               bool=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         }          /*if(lli ==000.0)*/
         if (bool==1) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           for(m=firstpass; m<=lastpass; m++){          ipmx +=1;
             k2=anint[m][i]+(mint[m][i]/12.);          sw += weight[i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               if(agev[m][i]==0) agev[m][i]=agemax+1;        } /* end of wave */
               if(agev[m][i]==1) agev[m][i]=agemax+2;      } /* end of individual */
               if (m<lastpass)    }  else if(mle==2){
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
             }            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
         for(i=(int)agemin; i <= (int)agemax+3; i++){          for(d=0; d<=dh[mi][i]; d++){
           for(jk=1; jk <=nlstate ; jk++){            newm=savm;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           for(jk=1; jk <=nlstate ; jk++){            }
             for(m=-1, pos=0; m <=0 ; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pos += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
                    oldm=newm;
          for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        
              pp[jk] += freq[jk][m][i];          s1=s[mw[mi][i]][i];
          }          s2=s[mw[mi+1][i]][i];
                    bbh=(double)bh[mi][i]/(double)stepm; 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
          for(jk=1; jk <=nlstate ; jk++){                    sw += weight[i];
            if( i <= (int) agemax){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              if(pos>=1.e-5){        } /* end of wave */
                probs[i][jk][j1]= pp[jk]/pos;      } /* end of individual */
              }    }  else if(mle==3){  /* exponential inter-extrapolation */
            }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                  for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          for(d=0; d<dh[mi][i]; d++){
   free_vector(pp,1,nlstate);            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }  /* End of Freq */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************* Waves Concatenation ***************/            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            oldm=newm;
      Death is a valid wave (if date is known).          } /* end mult */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          s1=s[mw[mi][i]][i];
      and mw[mi+1][i]. dh depends on stepm.          s2=s[mw[mi+1][i]][i];
      */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   int i, mi, m;          ipmx +=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          sw += weight[i];
      double sum=0., jmean=0.;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   int j, k=0,jk, ju, jl;      } /* end of individual */
   double sum=0.;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   jmin=1e+5;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmean=0.;        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     mi=0;            for (j=1;j<=nlstate+ndeath;j++){
     m=firstpass;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;          for(d=0; d<dh[mi][i]; d++){
       if(m >=lastpass)            newm=savm;
         break;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         m++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }/* end while */            }
     if (s[m][i] > nlstate){          
       mi++;     /* Death is another wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       /* if(mi==0)  never been interviewed correctly before death */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          /* Only death is a correct wave */            savm=oldm;
       mw[mi][i]=m;            oldm=newm;
     }          } /* end mult */
         
     wav[i]=mi;          s1=s[mw[mi][i]][i];
     if(mi==0)          s2=s[mw[mi+1][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          if( s2 > nlstate){ 
   }            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   for(i=1; i<=imx; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(mi=1; mi<wav[i];mi++){          }
       if (stepm <=0)          ipmx +=1;
         dh[mi][i]=1;          sw += weight[i];
       else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (s[mw[mi+1][i]][i] > nlstate) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if (agedc[i] < 2*AGESUP) {        } /* end of wave */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } /* end of individual */
           if(j==0) j=1;  /* Survives at least one month after exam */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           k=k+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (j >= jmax) jmax=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j <= jmin) jmin=j;        for(mi=1; mi<= wav[i]-1; mi++){
           sum=sum+j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         else{            }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for(d=0; d<dh[mi][i]; d++){
           k=k+1;            newm=savm;
           if (j >= jmax) jmax=j;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           else if (j <= jmin)jmin=j;            for (kk=1; kk<=cptcovage;kk++) {
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           sum=sum+j;            }
         }          
         jk= j/stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         jl= j -jk*stepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         ju= j -(jk+1)*stepm;            savm=oldm;
         if(jl <= -ju)            oldm=newm;
           dh[mi][i]=jk;          } /* end mult */
         else        
           dh[mi][i]=jk+1;          s1=s[mw[mi][i]][i];
         if(dh[mi][i]==0)          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=1; /* At least one step */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
     }          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmean=sum/k;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        } /* end of wave */
  }      } /* end of individual */
 /*********** Tricode ****************************/    } /* End of if */
 void tricode(int *Tvar, int **nbcode, int imx)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int Ndum[20],ij=1, k, j, i;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int cptcode=0;    return -l;
   cptcoveff=0;  }
    
   for (k=0; k<19; k++) Ndum[k]=0;  /*************** log-likelihood *************/
   for (k=1; k<=7; k++) ncodemax[k]=0;  double funcone( double *x)
   {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* Same as likeli but slower because of a lot of printf and if */
     for (i=1; i<=imx; i++) {    int i, ii, j, k, mi, d, kk;
       ij=(int)(covar[Tvar[j]][i]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       Ndum[ij]++;    double **out;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double lli; /* Individual log likelihood */
       if (ij > cptcode) cptcode=ij;    double llt;
     }    int s1, s2;
     double bbh, survp;
     for (i=0; i<=cptcode; i++) {    /*extern weight */
       if(Ndum[i]!=0) ncodemax[j]++;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     ij=1;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     */
     for (i=1; i<=ncodemax[j]; i++) {    cov[1]=1.;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           nbcode[Tvar[j]][ij]=k;  
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;        for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
  for (k=0; k<19; k++) Ndum[k]=0;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ij=Tvar[i];          for (kk=1; kk<=cptcovage;kk++) {
       Ndum[ij]++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  ij=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=10; i++) {          savm=oldm;
    if((Ndum[i]!=0) && (i<=ncovcol)){          oldm=newm;
      Tvaraff[ij]=i;        } /* end mult */
      ij++;        
    }        s1=s[mw[mi][i]][i];
  }        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
     cptcoveff=ij-1;        /* bias is positive if real duration
 }         * is higher than the multiple of stepm and negative otherwise.
          */
 /*********** Health Expectancies ****************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 {        } else if(mle==2){
   /* Health expectancies */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        } else if(mle==3){  /* exponential inter-extrapolation */
   double age, agelim, hf;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double ***p3mat,***varhe;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **dnewm,**doldm;          lli=log(out[s1][s2]); /* Original formula */
   double *xp;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double **gp, **gm;          lli=log(out[s1][s2]); /* Original formula */
   double ***gradg, ***trgradg;        } /* End of if */
   int theta;        ipmx +=1;
         sw += weight[i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   xp=vector(1,npar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   dnewm=matrix(1,nlstate*2,1,npar);        if(globpr){
   doldm=matrix(1,nlstate*2,1,nlstate*2);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     %10.6f %10.6f %10.6f ", \
   fprintf(ficreseij,"# Health expectancies\n");                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficreseij,"# Age");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(j=1; j<=nlstate;j++)            llt +=ll[k]*gipmx/gsw;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   fprintf(ficreseij,"\n");          }
           fprintf(ficresilk," %10.6f\n", -llt);
   if(estepm < stepm){        }
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end of wave */
   }    } /* end of individual */
   else  hstepm=estepm;      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* We compute the life expectancy from trapezoids spaced every estepm months    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * This is mainly to measure the difference between two models: for example    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * if stepm=24 months pijx are given only every 2 years and by summing them    if(globpr==0){ /* First time we count the contributions and weights */
    * we are calculating an estimate of the Life Expectancy assuming a linear      gipmx=ipmx;
    * progression inbetween and thus overestimating or underestimating according      gsw=sw;
    * to the curvature of the survival function. If, for the same date, we    }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    return -l;
    * to compare the new estimate of Life expectancy with the same linear  }
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  
   /*************** function likelione ***********/
   /* For example we decided to compute the life expectancy with the smallest unit */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  {
      nhstepm is the number of hstepm from age to agelim    /* This routine should help understanding what is done with 
      nstepm is the number of stepm from age to agelin.       the selection of individuals/waves and
      Look at hpijx to understand the reason of that which relies in memory size       to check the exact contribution to the likelihood.
      and note for a fixed period like estepm months */       Plotting could be done.
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the     */
      survival function given by stepm (the optimization length). Unfortunately it    int k;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    if(*globpri !=0){ /* Just counts and sums, no printings */
      results. So we changed our mind and took the option of the best precision.      strcpy(fileresilk,"ilk"); 
   */      strcat(fileresilk,fileres);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   agelim=AGESUP;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     /* nhstepm age range expressed in number of stepm */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     /* if (stepm >= YEARM) hstepm=1;*/      for(k=1; k<=nlstate; k++) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    }
     gp=matrix(0,nhstepm,1,nlstate*2);  
     gm=matrix(0,nhstepm,1,nlstate*2);    *fretone=(*funcone)(p);
     if(*globpri !=0){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      fclose(ficresilk);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fflush(fichtm); 
      } 
     return;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
   
     /* Computing Variances of health expectancies */  
   /*********** Maximum Likelihood Estimation ***************/
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  {
       }    int i,j, iter;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double **xi;
      double fret;
       cptj=0;    double fretone; /* Only one call to likelihood */
       for(j=1; j<= nlstate; j++){    /*  char filerespow[FILENAMELENGTH];*/
         for(i=1; i<=nlstate; i++){    xi=matrix(1,npar,1,npar);
           cptj=cptj+1;    for (i=1;i<=npar;i++)
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (j=1;j<=npar;j++)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        xi[i][j]=(i==j ? 1.0 : 0.0);
           }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
          if((ficrespow=fopen(filerespow,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", filerespow);
       for(i=1; i<=npar; i++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
          for (i=1;i<=nlstate;i++)
       cptj=0;      for(j=1;j<=nlstate+ndeath;j++)
       for(j=1; j<= nlstate; j++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1;i<=nlstate;i++){    fprintf(ficrespow,"\n");
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    powell(p,xi,npar,ftol,&iter,&fret,func);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }    free_matrix(xi,1,npar,1,npar);
         }    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
          fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
       for(j=1; j<= nlstate*2; j++)  }
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
      }    double  **a,**y,*x,pd;
        double **hess;
 /* End theta */    int i, j,jk;
     int *indx;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      for(h=0; h<=nhstepm-1; h++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       for(j=1; j<=nlstate*2;j++)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         for(theta=1; theta <=npar; theta++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
         trgradg[h][j][theta]=gradg[h][theta][j];    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
   
      for(i=1;i<=nlstate*2;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(j=1;j<=nlstate*2;j++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         varhe[i][j][(int)age] =0.;    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
     for(h=0;h<=nhstepm-1;h++){      fprintf(ficlog,"%d",i);fflush(ficlog);
       for(k=0;k<=nhstepm-1;k++){     
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      
         for(i=1;i<=nlstate*2;i++)      /*  printf(" %f ",p[i]);
           for(j=1;j<=nlstate*2;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    }
       }    
     }    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
              if (j>i) { 
     /* Computing expectancies */          printf(".%d%d",i,j);fflush(stdout);
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1; j<=nlstate;j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          hess[j][i]=hess[i][j];    
                    /*printf(" %lf ",hess[i][j]);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        }
       }
         }    }
     printf("\n");
     fprintf(ficreseij,"%3.0f",age );    fprintf(ficlog,"\n");
     cptj=0;  
     for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         cptj++;    
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    a=matrix(1,npar,1,npar);
       }    y=matrix(1,npar,1,npar);
     fprintf(ficreseij,"\n");    x=vector(1,npar);
        indx=ivector(1,npar);
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    ludcmp(a,npar,indx,&pd);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (j=1;j<=npar;j++) {
   }      for (i=1;i<=npar;i++) x[i]=0;
   free_vector(xp,1,npar);      x[j]=1;
   free_matrix(dnewm,1,nlstate*2,1,npar);      lubksb(a,npar,indx,x);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      for (i=1;i<=npar;i++){ 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        matcov[i][j]=x[i];
 }      }
     }
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    printf("\n#Hessian matrix#\n");
 {    fprintf(ficlog,"\n#Hessian matrix#\n");
   /* Variance of health expectancies */    for (i=1;i<=npar;i++) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++) { 
   double **newm;        printf("%.3e ",hess[i][j]);
   double **dnewm,**doldm;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int i, j, nhstepm, hstepm, h, nstepm ;      }
   int k, cptcode;      printf("\n");
   double *xp;      fprintf(ficlog,"\n");
   double **gp, **gm;    }
   double ***gradg, ***trgradg;  
   double ***p3mat;    /* Recompute Inverse */
   double age,agelim, hf;    for (i=1;i<=npar;i++)
   int theta;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");    /*  printf("\n#Hessian matrix recomputed#\n");
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficresvij,"\n");      x[j]=1;
       lubksb(a,npar,indx,x);
   xp=vector(1,npar);      for (i=1;i<=npar;i++){ 
   dnewm=matrix(1,nlstate,1,npar);        y[i][j]=x[i];
   doldm=matrix(1,nlstate,1,nlstate);        printf("%.3e ",y[i][j]);
          fprintf(ficlog,"%.3e ",y[i][j]);
   if(estepm < stepm){      }
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf("\n");
   }      fprintf(ficlog,"\n");
   else  hstepm=estepm;      }
   /* For example we decided to compute the life expectancy with the smallest unit */    */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim    free_matrix(a,1,npar,1,npar);
      nstepm is the number of stepm from age to agelin.    free_matrix(y,1,npar,1,npar);
      Look at hpijx to understand the reason of that which relies in memory size    free_vector(x,1,npar);
      and note for a fixed period like k years */    free_ivector(indx,1,npar);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    free_matrix(hess,1,npar,1,npar);
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  }
      results. So we changed our mind and took the option of the best precision.  
   */  /*************** hessian matrix ****************/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   agelim = AGESUP;  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int l=1, lmax=20;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double k1,k2;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double p2[NPARMAX+1];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double res;
     gp=matrix(0,nhstepm,1,nlstate);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     gm=matrix(0,nhstepm,1,nlstate);    double fx;
     int k=0,kmax=10;
     for(theta=1; theta <=npar; theta++){    double l1;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fx=func(x);
       }    for (i=1;i<=npar;i++) p2[i]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for(l=0 ; l <=lmax; l++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      l1=pow(10,l);
       delts=delt;
       if (popbased==1) {      for(k=1 ; k <kmax; k=k+1){
         for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
           prlim[i][i]=probs[(int)age][i][ij];        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;
          p2[theta]=x[theta]-delt;
       for(j=1; j<= nlstate; j++){        k2=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        
         }  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(i=1; i<=npar; i++) /* Computes gradient */  #endif
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          k=kmax;
          }
       if (popbased==1) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         for(i=1; i<=nlstate;i++)          k=kmax; l=lmax*10.;
           prlim[i][i]=probs[(int)age][i][ij];        }
       }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           delts=delt;
       for(j=1; j<= nlstate; j++){        }
         for(h=0; h<=nhstepm; h++){      }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    delti[theta]=delts;
         }    return res; 
       }    
   }
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {
         }    int i;
     } /* End theta */    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double p2[NPARMAX+1];
     int k;
     for(h=0; h<=nhstepm; h++)  
       for(j=1; j<=nlstate;j++)    fx=func(x);
         for(theta=1; theta <=npar; theta++)    for (k=1; k<=2; k++) {
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     for(i=1;i<=nlstate;i++)      k1=func(p2)-fx;
       for(j=1;j<=nlstate;j++)    
         vareij[i][j][(int)age] =0.;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(h=0;h<=nhstepm;h++){      k2=func(p2)-fx;
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      p2[thetai]=x[thetai]-delti[thetai]/k;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(i=1;i<=nlstate;i++)      k3=func(p2)-fx;
           for(j=1;j<=nlstate;j++)    
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     }      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fprintf(ficresvij,"%.0f ",age );  #ifdef DEBUG
     for(i=1; i<=nlstate;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  #endif
       }    }
     fprintf(ficresvij,"\n");    return res;
     free_matrix(gp,0,nhstepm,1,nlstate);  }
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  /************** Inverse of matrix **************/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  { 
   } /* End age */    int i,imax,j,k; 
      double big,dum,sum,temp; 
   free_vector(xp,1,npar);    double *vv; 
   free_matrix(doldm,1,nlstate,1,npar);   
   free_matrix(dnewm,1,nlstate,1,nlstate);    vv=vector(1,n); 
     *d=1.0; 
 }    for (i=1;i<=n;i++) { 
       big=0.0; 
 /************ Variance of prevlim ******************/      for (j=1;j<=n;j++) 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        if ((temp=fabs(a[i][j])) > big) big=temp; 
 {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   /* Variance of prevalence limit */      vv[i]=1.0/big; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    } 
   double **newm;    for (j=1;j<=n;j++) { 
   double **dnewm,**doldm;      for (i=1;i<j;i++) { 
   int i, j, nhstepm, hstepm;        sum=a[i][j]; 
   int k, cptcode;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   double *xp;        a[i][j]=sum; 
   double *gp, *gm;      } 
   double **gradg, **trgradg;      big=0.0; 
   double age,agelim;      for (i=j;i<=n;i++) { 
   int theta;        sum=a[i][j]; 
            for (k=1;k<j;k++) 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          sum -= a[i][k]*a[k][j]; 
   fprintf(ficresvpl,"# Age");        a[i][j]=sum; 
   for(i=1; i<=nlstate;i++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficresvpl," %1d-%1d",i,i);          big=dum; 
   fprintf(ficresvpl,"\n");          imax=i; 
         } 
   xp=vector(1,npar);      } 
   dnewm=matrix(1,nlstate,1,npar);      if (j != imax) { 
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1;k<=n;k++) { 
            dum=a[imax][k]; 
   hstepm=1*YEARM; /* Every year of age */          a[imax][k]=a[j][k]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          a[j][k]=dum; 
   agelim = AGESUP;        } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        *d = -(*d); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        vv[imax]=vv[j]; 
     if (stepm >= YEARM) hstepm=1;      } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      indx[j]=imax; 
     gradg=matrix(1,npar,1,nlstate);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     gp=vector(1,nlstate);      if (j != n) { 
     gm=vector(1,nlstate);        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(theta=1; theta <=npar; theta++){      } 
       for(i=1; i<=npar; i++){ /* Computes gradient */    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_vector(vv,1,n);  /* Doesn't work */
       }  ;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  } 
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  void lubksb(double **a, int n, int *indx, double b[]) 
      { 
       for(i=1; i<=npar; i++) /* Computes gradient */    int i,ii=0,ip,j; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double sum; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   
       for(i=1;i<=nlstate;i++)    for (i=1;i<=n;i++) { 
         gm[i] = prlim[i][i];      ip=indx[i]; 
       sum=b[ip]; 
       for(i=1;i<=nlstate;i++)      b[ip]=b[i]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      if (ii) 
     } /* End theta */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
     trgradg =matrix(1,nlstate,1,npar);      b[i]=sum; 
     } 
     for(j=1; j<=nlstate;j++)    for (i=n;i>=1;i--) { 
       for(theta=1; theta <=npar; theta++)      sum=b[i]; 
         trgradg[j][theta]=gradg[theta][j];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     for(i=1;i<=nlstate;i++)    } 
       varpl[i][(int)age] =0.;  } 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /************ Frequencies ********************/
     for(i=1;i<=nlstate;i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  {  /* Some frequencies */
     
     fprintf(ficresvpl,"%.0f ",age );    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     for(i=1; i<=nlstate;i++)    int first;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double ***freq; /* Frequencies */
     fprintf(ficresvpl,"\n");    double *pp, **prop;
     free_vector(gp,1,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     free_vector(gm,1,nlstate);    FILE *ficresp;
     free_matrix(gradg,1,npar,1,nlstate);    char fileresp[FILENAMELENGTH];
     free_matrix(trgradg,1,nlstate,1,npar);    
   } /* End age */    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   free_vector(xp,1,npar);    strcpy(fileresp,"p");
   free_matrix(doldm,1,nlstate,1,npar);    strcat(fileresp,fileres);
   free_matrix(dnewm,1,nlstate,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
 }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 {    j1=0;
   int i, j, i1, k1, j1, z1;    
   int k=0, cptcode;    j=cptcoveff;
   double **dnewm,**doldm;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   double *xp;  
   double *gp, *gm;    first=1;
   double **gradg, **trgradg;  
   double age,agelim, cov[NCOVMAX];    for(k1=1; k1<=j;k1++){
   int theta;      for(i1=1; i1<=ncodemax[k1];i1++){
   char fileresprob[FILENAMELENGTH];        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   strcpy(fileresprob,"prob");          scanf("%d", i);*/
   strcat(fileresprob,fileres);        for (i=-5; i<=nlstate+ndeath; i++)  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     printf("Problem with resultfile: %s\n", fileresprob);            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
        for (i=1; i<=nlstate; i++)  
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprob,"# Age");          prop[i][m]=0;
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=(nlstate+ndeath);j++)        dateintsum=0;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        k2cpt=0;
         for (i=1; i<=imx; i++) {
           bool=1;
   fprintf(ficresprob,"\n");          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   xp=vector(1,npar);                bool=0;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   cov[1]=1;              k2=anint[m][i]+(mint[m][i]/12.);
   j=cptcoveff;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   j1=0;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   for(k1=1; k1<=1;k1++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(i1=1; i1<=ncodemax[k1];i1++){                if (m<lastpass) {
     j1++;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     if  (cptcovn>0) {                }
       fprintf(ficresprob, "\n#********** Variable ");                
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficresprob, "**********\n#");                  dateintsum=dateintsum+k2;
     }                  k2cpt++;
                    }
       for (age=bage; age<=fage; age ++){                /*}*/
         cov[2]=age;            }
         for (k=1; k<=cptcovn;k++) {          }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        }
                   
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  fprintf(ficresp, "#Local time at start: %s", strstart);
         for (k=1; k<=cptcovprod;k++)        if  (cptcovn>0) {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficresp, "\n#********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         gradg=matrix(1,npar,1,9);          fprintf(ficresp, "**********\n#");
         trgradg=matrix(1,9,1,npar);        }
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for(i=1; i<=nlstate;i++) 
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            fprintf(ficresp, "\n");
         for(theta=1; theta <=npar; theta++){        
           for(i=1; i<=npar; i++)        for(i=iagemin; i <= iagemax+3; i++){
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          if(i==iagemax+3){
                      fprintf(ficlog,"Total");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }else{
                      if(first==1){
           k=0;              first=0;
           for(i=1; i<= (nlstate+ndeath); i++){              printf("See log file for details...\n");
             for(j=1; j<=(nlstate+ndeath);j++){            }
               k=k+1;            fprintf(ficlog,"Age %d", i);
               gp[k]=pmmij[i][j];          }
             }          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                        pp[jk] += freq[jk][m][i]; 
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pos=0; m <=0 ; m++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);              pos += freq[jk][m][i];
           k=0;            if(pp[jk]>=1.e-10){
           for(i=1; i<=(nlstate+ndeath); i++){              if(first==1){
             for(j=1; j<=(nlstate+ndeath);j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               k=k+1;              }
               gm[k]=pmmij[i][j];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }            }else{
           }              if(first==1)
                      printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }
         }          }
   
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(jk=1; jk <=nlstate ; jk++){
           for(theta=1; theta <=npar; theta++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
             trgradg[j][theta]=gradg[theta][j];              pp[jk] += freq[jk][m][i];
                  }       
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            pos += pp[jk];
                    posprop += prop[jk][i];
         pmij(pmmij,cov,ncovmodel,x,nlstate);          }
                  for(jk=1; jk <=nlstate ; jk++){
         k=0;            if(pos>=1.e-5){
         for(i=1; i<=(nlstate+ndeath); i++){              if(first==1)
           for(j=1; j<=(nlstate+ndeath);j++){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             k=k+1;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             gm[k]=pmmij[i][j];            }else{
           }              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                    fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      /*printf("\n%d ",(int)age);            }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            if( i <= iagemax){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              if(pos>=1.e-5){
      }*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficresprob,"\n%d ",(int)age);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              else
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
              }
       }          }
     }          
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=-1; m <=nlstate+ndeath; m++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if(freq[jk][m][i] !=0 ) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              if(first==1)
   }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   free_vector(xp,1,npar);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   fclose(ficresprob);              }
            if(i <= iagemax)
 }            fprintf(ficresp,"\n");
           if(first==1)
 /******************* Printing html file ***********/            printf("Others in log...\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          fprintf(ficlog,"\n");
  int lastpass, int stepm, int weightopt, char model[],\        }
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      }
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    }
  char version[], int popforecast, int estepm ){    dateintmean=dateintsum/k2cpt; 
   int jj1, k1, i1, cpt;   
   FILE *fichtm;    fclose(ficresp);
   /*char optionfilehtm[FILENAMELENGTH];*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   strcpy(optionfilehtm,optionfile);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   strcat(optionfilehtm,".htm");    /* End of Freq */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
   }  /************ Prevalence ********************/
   void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  {  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 \n       in each health status at the date of interview (if between dateprev1 and dateprev2).
 Total number of observations=%d <br>\n       We still use firstpass and lastpass as another selection.
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    */
 <hr  size=\"2\" color=\"#EC5E5E\">   
  <ul><li>Outputs files<br>\n    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double ***freq; /* Frequencies */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    double *pp, **prop;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    double pos,posprop; 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    double  y2; /* in fractional years */
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n    int iagemin, iagemax;
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     iagemin= (int) agemin;
  fprintf(fichtm,"\n    iagemax= (int) agemax;
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    /*pp=vector(1,nlstate);*/
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    j1=0;
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    
     j=cptcoveff;
  if(popforecast==1) fprintf(fichtm,"\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for(k1=1; k1<=j;k1++){
         <br>",fileres,fileres,fileres,fileres);      for(i1=1; i1<=ncodemax[k1];i1++){
  else        j1++;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        
 fprintf(fichtm," <li>Graphs</li><p>");        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
  m=cptcoveff;            prop[i][m]=0.0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       
         for (i=1; i<=imx; i++) { /* Each individual */
  jj1=0;          bool=1;
  for(k1=1; k1<=m;k1++){          if  (cptcovn>0) {
    for(i1=1; i1<=ncodemax[k1];i1++){            for (z1=1; z1<=cptcoveff; z1++) 
        jj1++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
        if (cptcovn > 0) {                bool=0;
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          } 
          for (cpt=1; cpt<=cptcoveff;cpt++)          if (bool==1) { 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
        }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
        for(cpt=1; cpt<nlstate;cpt++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(cpt=1; cpt<=nlstate;cpt++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                } 
 interval) in state (%d): v%s%d%d.gif <br>              }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              } /* end selection of waves */
      }          }
      for(cpt=1; cpt<=nlstate;cpt++) {        }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for(i=iagemin; i <= iagemax+3; i++){  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          
      }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            posprop += prop[jk][i]; 
 health expectancies in states (1) and (2): e%s%d.gif<br>          } 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
 fprintf(fichtm,"\n</body>");          for(jk=1; jk <=nlstate ; jk++){     
    }            if( i <=  iagemax){ 
    }              if(posprop>=1.e-5){ 
 fclose(fichtm);                probs[i][jk][j1]= prop[jk][i]/posprop;
 }              } 
             } 
 /******************* Gnuplot file **************/          }/* end jk */ 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }/* end i */ 
       } /* end i1 */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    } /* end k1 */
     
   strcpy(optionfilegnuplot,optionfilefiname);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   strcat(optionfilegnuplot,".gp.txt");    /*free_vector(pp,1,nlstate);*/
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     printf("Problem with file %s",optionfilegnuplot);  }  /* End of prevalence */
   }  
   /************* Waves Concatenation ***************/
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 #endif  {
 m=pow(2,cptcoveff);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
  /* 1eme*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for (cpt=1; cpt<= nlstate ; cpt ++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
    for (k1=1; k1<= m ; k1 ++) {       and mw[mi+1][i]. dh depends on stepm.
        */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
     int i, mi, m;
 for (i=1; i<= nlstate ; i ++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       double sum=0., jmean=0.;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int first;
 }    int j, k=0,jk, ju, jl;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double sum=0.;
     for (i=1; i<= nlstate ; i ++) {    first=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    jmin=1e+5;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    jmax=-1;
 }    jmean=0.;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for(i=1; i<=imx; i++){
      for (i=1; i<= nlstate ; i ++) {      mi=0;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      m=firstpass;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      while(s[m][i] <= nlstate){
 }          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          mw[++mi][i]=m;
         if(m >=lastpass)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          break;
    }        else
   }          m++;
   /*2 eme*/      }/* end while */
       if (s[m][i] > nlstate){
   for (k1=1; k1<= m ; k1 ++) {        mi++;     /* Death is another wave */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        /* if(mi==0)  never been interviewed correctly before death */
               /* Only death is a correct wave */
     for (i=1; i<= nlstate+1 ; i ++) {        mw[mi][i]=m;
       k=2*i;      }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      wav[i]=mi;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if(mi==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        nbwarn++;
 }          if(first==0){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          first=1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {        if(first==1){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        } /* end mi==0 */
       fprintf(ficgp,"\" t\"\" w l 0,");    } /* End individuals */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    for(i=1; i<=imx; i++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(mi=1; mi<wav[i];mi++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (stepm <=0)
 }            dh[mi][i]=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        else{
       else fprintf(ficgp,"\" t\"\" w l 0,");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   }              if(j==0) j=1;  /* Survives at least one month after exam */
                else if(j<0){
   /*3eme*/                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (k1=1; k1<= m ; k1 ++) {                j=1; /* Temporary Dangerous patch */
     for (cpt=1; cpt<= nlstate ; cpt ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       k=2+nlstate*(2*cpt-2);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              k=k+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              if (j >= jmax){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                jmax=j;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                ijmax=i;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              }
               if (j <= jmin){
 */                jmin=j;
       for (i=1; i< nlstate ; i ++) {                ijmin=i;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              }
               sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }            }
     }          }
            else{
   /* CV preval stat */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for (k1=1; k1<= m ; k1 ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;            k=k+1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            if (j >= jmax) {
               jmax=j;
       for (i=1; i< nlstate ; i ++)              ijmax=i;
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            else if (j <= jmin){
                    jmin=j;
       l=3+(nlstate+ndeath)*cpt;              ijmin=i;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         l=3+(nlstate+ndeath)*cpt;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficgp,"+$%d",l+i+1);            if(j<0){
       }              nberr++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }            }
   }              sum=sum+j;
            }
   /* proba elementaires */          jk= j/stepm;
    for(i=1,jk=1; i <=nlstate; i++){          jl= j -jk*stepm;
     for(k=1; k <=(nlstate+ndeath); k++){          ju= j -(jk+1)*stepm;
       if (k != i) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         for(j=1; j <=ncovmodel; j++){            if(jl==0){
                      dh[mi][i]=jk;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              bh[mi][i]=0;
           jk++;            }else{ /* We want a negative bias in order to only have interpolation ie
           fprintf(ficgp,"\n");                    * at the price of an extra matrix product in likelihood */
         }              dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     }            }
     }          }else{
             if(jl <= -ju){
     for(jk=1; jk <=m; jk++) {              dh[mi][i]=jk;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              bh[mi][i]=jl;       /* bias is positive if real duration
    i=1;                                   * is higher than the multiple of stepm and negative otherwise.
    for(k2=1; k2<=nlstate; k2++) {                                   */
      k3=i;            }
      for(k=1; k<=(nlstate+ndeath); k++) {            else{
        if (k != k2){              dh[mi][i]=jk+1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              bh[mi][i]=ju;
 ij=1;            }
         for(j=3; j <=ncovmodel; j++) {            if(dh[mi][i]==0){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              dh[mi][i]=1; /* At least one step */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              bh[mi][i]=ju; /* At least one step */
             ij++;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           }            }
           else          } /* end if mle */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
         }      } /* end wave */
           fprintf(ficgp,")/(1");    }
            jmean=sum/k;
         for(k1=1; k1 <=nlstate; k1++){      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 ij=1;   }
           for(j=3; j <=ncovmodel; j++){  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /*********** Tricode ****************************/
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void tricode(int *Tvar, int **nbcode, int imx)
             ij++;  {
           }    
           else    int Ndum[20],ij=1, k, j, i, maxncov=19;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int cptcode=0;
           }    cptcoveff=0; 
           fprintf(ficgp,")");   
         }    for (k=0; k<maxncov; k++) Ndum[k]=0;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    for (k=1; k<=7; k++) ncodemax[k]=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
      }                                 modality*/ 
    }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        Ndum[ij]++; /*store the modality */
    }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
            if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   fclose(ficgp);                                         Tvar[j]. If V=sex and male is 0 and 
 }  /* end gnuplot */                                         female is 1, then  cptcode=1.*/
       }
   
 /*************** Moving average **************/      for (i=0; i<=cptcode; i++) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      ij=1; 
       for (i=1; i<=nlstate;i++)      for (i=1; i<=ncodemax[j]; i++) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        for (k=0; k<= maxncov; k++) {
           mobaverage[(int)agedeb][i][cptcod]=0.;          if (Ndum[k] != 0) {
                nbcode[Tvar[j]][ij]=k; 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       for (i=1; i<=nlstate;i++){            
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            ij++;
           for (cpt=0;cpt<=4;cpt++){          }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          if (ij > ncodemax[j]) break; 
           }        }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      } 
         }    }  
       }  
     }   for (k=0; k< maxncov; k++) Ndum[k]=0;
      
 }   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
 /************** Forecasting ******************/     Ndum[ij]++;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   }
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   ij=1;
   int *popage;   for (i=1; i<= maxncov; i++) {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double *popeffectif,*popcount;       Tvaraff[ij]=i; /*For printing */
   double ***p3mat;       ij++;
   char fileresf[FILENAMELENGTH];     }
    }
  agelim=AGESUP;   
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;   cptcoveff=ij-1; /*Number of simple covariates*/
   }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    /*********** Health Expectancies ****************/
    
   strcpy(fileresf,"f");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov,char strstart[] )
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {  {
     printf("Problem with forecast resultfile: %s\n", fileresf);    /* Health expectancies */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double age, agelim, hf;
     double ***p3mat,***varhe;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double **dnewm,**doldm;
     double *xp;
   if (mobilav==1) {    double **gp, **gm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***gradg, ***trgradg;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int theta;
   }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    xp=vector(1,npar);
   if (stepm<=12) stepsize=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   agelim=AGESUP;    
      fprintf(ficreseij,"# Local time at start: %s", strstart);
   hstepm=1;    fprintf(ficreseij,"# Health expectancies\n");
   hstepm=hstepm/stepm;    fprintf(ficreseij,"# Age");
   yp1=modf(dateintmean,&yp);    for(i=1; i<=nlstate;i++)
   anprojmean=yp;      for(j=1; j<=nlstate;j++)
   yp2=modf((yp1*12),&yp);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   mprojmean=yp;    fprintf(ficreseij,"\n");
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;    if(estepm < stepm){
   if(jprojmean==0) jprojmean=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
   if(mprojmean==0) jprojmean=1;    }
      else  hstepm=estepm;   
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   for(cptcov=1;cptcov<=i2;cptcov++){     * if stepm=24 months pijx are given only every 2 years and by summing them
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
       k=k+1;     * progression in between and thus overestimating or underestimating according
       fprintf(ficresf,"\n#******");     * to the curvature of the survival function. If, for the same date, we 
       for(j=1;j<=cptcoveff;j++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficresf,"******\n");     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresf,"\n");       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       means that if the survival funtion is printed only each two years of age and if
           nhstepm = nhstepm/hstepm;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 results. So we changed our mind and took the option of the best precision.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
           oldm=oldms;savm=savms;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            agelim=AGESUP;
           for (h=0; h<=nhstepm; h++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             if (h==(int) (calagedate+YEARM*cpt)) {      /* nhstepm age range expressed in number of stepm */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             for(j=1; j<=nlstate+ndeath;j++) {      /* if (stepm >= YEARM) hstepm=1;*/
               kk1=0.;kk2=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               for(i=1; i<=nlstate;i++) {                    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 if (mobilav==1)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      gp=matrix(0,nhstepm,1,nlstate*nlstate);
                 else {      gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
                         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
               if (h==(int)(calagedate+12*cpt)){   
                 fprintf(ficresf," %.3f", kk1);  
                              hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               }  
             }      /* Computing  Variances of health expectancies */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        cptj=0;
         for(j=1; j<= nlstate; j++){
   fclose(ficresf);          for(i=1; i<=nlstate; i++){
 }            cptj=cptj+1;
 /************** Forecasting ******************/            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          }
   int *popage;        }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       
   double *popeffectif,*popcount;       
   double ***p3mat,***tabpop,***tabpopprev;        for(i=1; i<=npar; i++) 
   char filerespop[FILENAMELENGTH];          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        cptj=0;
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for(i=1;i<=nlstate;i++){
              cptj=cptj+1;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    
                gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   strcpy(filerespop,"pop");            }
   strcat(filerespop,fileres);          }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        }
     printf("Problem with forecast resultfile: %s\n", filerespop);        for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
   printf("Computing forecasting: result on file '%s' \n", filerespop);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       } 
      
   if (mobilav==1) {  /* End theta */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }  
        for(h=0; h<=nhstepm-1; h++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<=nlstate*nlstate;j++)
   if (stepm<=12) stepsize=1;          for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
   agelim=AGESUP;       
    
   hstepm=1;       for(i=1;i<=nlstate*nlstate;i++)
   hstepm=hstepm/stepm;        for(j=1;j<=nlstate*nlstate;j++)
            varhe[i][j][(int)age] =0.;
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {       printf("%d|",(int)age);fflush(stdout);
       printf("Problem with population file : %s\n",popfile);exit(0);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }       for(h=0;h<=nhstepm-1;h++){
     popage=ivector(0,AGESUP);        for(k=0;k<=nhstepm-1;k++){
     popeffectif=vector(0,AGESUP);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     popcount=vector(0,AGESUP);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
              for(i=1;i<=nlstate*nlstate;i++)
     i=1;              for(j=1;j<=nlstate*nlstate;j++)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
     imx=i;      }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   for(cptcov=1;cptcov<=i2;cptcov++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       k=k+1;            
       fprintf(ficrespop,"\n#******");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }  
       fprintf(ficrespop,"******\n");      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficrespop,"# Age");      cptj=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      for(i=1; i<=nlstate;i++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");        for(j=1; j<=nlstate;j++){
                cptj++;
       for (cpt=0; cpt<=0;cpt++) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          }
              fprintf(ficreseij,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           nhstepm = nhstepm/hstepm;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           oldm=oldms;savm=savms;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            printf("\n");
           for (h=0; h<=nhstepm; h++){    fprintf(ficlog,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    free_vector(xp,1,npar);
             }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
               kk1=0.;kk2=0;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               for(i=1; i<=nlstate;i++) {                }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  /************ Variance ******************/
                 else {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  {
                 }    /* Variance of health expectancies */
               }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
               if (h==(int)(calagedate+12*cpt)){    /* double **newm;*/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double **dnewm,**doldm;
                   /*fprintf(ficrespop," %.3f", kk1);    double **dnewmp,**doldmp;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    int i, j, nhstepm, hstepm, h, nstepm ;
               }    int k, cptcode;
             }    double *xp;
             for(i=1; i<=nlstate;i++){    double **gp, **gm;  /* for var eij */
               kk1=0.;    double ***gradg, ***trgradg; /*for var eij */
                 for(j=1; j<=nlstate;j++){    double **gradgp, **trgradgp; /* for var p point j */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    double *gpp, *gmp; /* for var p point j */
                 }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double ***p3mat;
             }    double age,agelim, hf;
     double ***mobaverage;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    int theta;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    char digit[4];
           }    char digitp[25];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    char fileresprobmorprev[FILENAMELENGTH];
       }  
      if(popbased==1){
   /******/      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      else strcpy(digitp,"-populbased-nomobil-");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    else 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      strcpy(digitp,"-stablbased-");
           nhstepm = nhstepm/hstepm;  
              if (mobilav!=0) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           oldm=oldms;savm=savms;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           for (h=0; h<=nhstepm; h++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             if (h==(int) (calagedate+YEARM*cpt)) {      }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    }
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    strcpy(fileresprobmorprev,"prmorprev"); 
               kk1=0.;kk2=0;    sprintf(digit,"%-d",ij);
               for(i=1; i<=nlstate;i++) {                  /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        strcat(fileresprobmorprev,digit); /* Tvar to be done */
               }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    strcat(fileresprobmorprev,fileres);
             }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         }    }
       }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    }   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficresprobmorprev, "#Local time at start: %s", strstart);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if (popforecast==1) {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     free_ivector(popage,0,AGESUP);      fprintf(ficresprobmorprev," p.%-d SE",j);
     free_vector(popeffectif,0,AGESUP);      for(i=1; i<=nlstate;i++)
     free_vector(popcount,0,AGESUP);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficresprobmorprev,"\n");
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\n# Routine varevsij");
   fclose(ficrespop);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
 }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 /***********************************************/  /*   } */
 /**************** Main Program *****************/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /***********************************************/   fprintf(ficresvij, "#Local time at start: %s", strstart);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
 int main(int argc, char *argv[])    fprintf(ficresvij,"# Age");
 {    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   double agedeb, agefin,hf;    fprintf(ficresvij,"\n");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     xp=vector(1,npar);
   double fret;    dnewm=matrix(1,nlstate,1,npar);
   double **xi,tmp,delta;    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   double dum; /* Dummy variable */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   double ***p3mat;  
   int *indx;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   char line[MAXLINE], linepar[MAXLINE];    gpp=vector(nlstate+1,nlstate+ndeath);
   char title[MAXLINE];    gmp=vector(nlstate+1,nlstate+ndeath);
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    
      if(estepm < stepm){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   char filerest[FILENAMELENGTH];    else  hstepm=estepm;   
   char fileregp[FILENAMELENGTH];    /* For example we decided to compute the life expectancy with the smallest unit */
   char popfile[FILENAMELENGTH];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];       nhstepm is the number of hstepm from age to agelim 
   int firstobs=1, lastobs=10;       nstepm is the number of stepm from age to agelin. 
   int sdeb, sfin; /* Status at beginning and end */       Look at hpijx to understand the reason of that which relies in memory size
   int c,  h , cpt,l;       and note for a fixed period like k years */
   int ju,jl, mi;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;       survival function given by stepm (the optimization length). Unfortunately it
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;       means that if the survival funtion is printed every two years of age and if
   int mobilav=0,popforecast=0;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   int hstepm, nhstepm;       results. So we changed our mind and took the option of the best precision.
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double bage, fage, age, agelim, agebase;    agelim = AGESUP;
   double ftolpl=FTOL;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double **prlim;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   double *severity;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   double ***param; /* Matrix of parameters */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double  *p;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   double **matcov; /* Matrix of covariance */      gp=matrix(0,nhstepm,1,nlstate);
   double ***delti3; /* Scale */      gm=matrix(0,nhstepm,1,nlstate);
   double *delti; /* Scale */  
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */      for(theta=1; theta <=npar; theta++){
   double *epj, vepp;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   double kk1, kk2;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];        if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   char z[1]="c", occ;              prlim[i][i]=probs[(int)age][i][ij];
 #include <sys/time.h>          }else{ /* mobilav */ 
 #include <time.h>            for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              prlim[i][i]=mobaverage[(int)age][i][ij];
            }
   /* long total_usecs;        }
   struct timeval start_time, end_time;    
          for(j=1; j<= nlstate; j++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for(h=0; h<=nhstepm; h++){
   getcwd(pathcd, size);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   printf("\n%s",version);          }
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");        /* This for computing probability of death (h=1 means
     scanf("%s",pathtot);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   else{        */
     strcpy(pathtot,argv[1]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /*cygwin_split_path(pathtot,path,optionfile);        }    
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        /* end probability of death */
   /* cutv(path,optionfile,pathtot,'\\');*/  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   chdir(path);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   replace(pathc,path);   
         if (popbased==1) {
 /*-------- arguments in the command line --------*/          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   strcpy(fileres,"r");              prlim[i][i]=probs[(int)age][i][ij];
   strcat(fileres, optionfilefiname);          }else{ /* mobilav */ 
   strcat(fileres,".txt");    /* Other files have txt extension */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
   /*---------arguments file --------*/          }
         }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);        for(j=1; j<= nlstate; j++){
     goto end;          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcpy(filereso,"o");          }
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {        /* This for computing probability of death (h=1 means
     printf("Problem with Output resultfile: %s\n", filereso);goto end;           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
         */
   /* Reads comments: lines beginning with '#' */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     ungetc(c,ficpar);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fgets(line, MAXLINE, ficpar);        }    
     puts(line);        /* end probability of death */
     fputs(line,ficparo);  
   }        for(j=1; j<= nlstate; j++) /* vareij */
   ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          }
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 while((c=getc(ficpar))=='#' && c!= EOF){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);  
     puts(line);      } /* End theta */
     fputs(line,ficparo);  
   }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   ungetc(c,ficpar);  
        for(h=0; h<=nhstepm; h++) /* veij */
            for(j=1; j<=nlstate;j++)
   covar=matrix(0,NCOVMAX,1,n);          for(theta=1; theta <=npar; theta++)
   cptcovn=0;            trgradg[h][j][theta]=gradg[h][theta][j];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   ncovmodel=2+cptcovn;        for(theta=1; theta <=npar; theta++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          trgradgp[j][theta]=gradgp[theta][j];
      
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);        for(j=1;j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);          vareij[i][j][(int)age] =0.;
     puts(line);  
     fputs(line,ficparo);      for(h=0;h<=nhstepm;h++){
   }        for(k=0;k<=nhstepm;k++){
   ungetc(c,ficpar);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          for(i=1;i<=nlstate;i++)
     for(i=1; i <=nlstate; i++)            for(j=1;j<=nlstate;j++)
     for(j=1; j <=nlstate+ndeath-1; j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        }
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       printf("%1d%1d",i,j);    
       for(k=1; k<=ncovmodel;k++){      /* pptj */
         fscanf(ficpar," %lf",&param[i][j][k]);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         printf(" %lf",param[i][j][k]);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         fprintf(ficparo," %lf",param[i][j][k]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       fscanf(ficpar,"\n");          varppt[j][i]=doldmp[j][i];
       printf("\n");      /* end ppptj */
       fprintf(ficparo,"\n");      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   
       if (popbased==1) {
   p=param[1][1];        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */            prlim[i][i]=probs[(int)age][i][ij];
   while((c=getc(ficpar))=='#' && c!= EOF){        }else{ /* mobilav */ 
     ungetc(c,ficpar);          for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);            prlim[i][i]=mobaverage[(int)age][i][ij];
     puts(line);        }
     fputs(line,ficparo);      }
   }               
   ungetc(c,ficpar);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         as a weighted average of prlim.
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      */
   for(i=1; i <=nlstate; i++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(j=1; j <=nlstate+ndeath-1; j++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       printf("%1d%1d",i,j);      }    
       fprintf(ficparo,"%1d%1d",i1,j1);      /* end probability of death */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         printf(" %le",delti3[i][j][k]);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficparo," %le",delti3[i][j][k]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       }        for(i=1; i<=nlstate;i++){
       fscanf(ficpar,"\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       printf("\n");        }
       fprintf(ficparo,"\n");      } 
     }      fprintf(ficresprobmorprev,"\n");
   }  
   delti=delti3[1][1];      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        for(j=1; j<=nlstate;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"\n");
     puts(line);      free_matrix(gp,0,nhstepm,1,nlstate);
     fputs(line,ficparo);      free_matrix(gm,0,nhstepm,1,nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   ungetc(c,ficpar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   matcov=matrix(1,npar,1,npar);    } /* End age */
   for(i=1; i <=npar; i++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fscanf(ficpar,"%s",&str);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("%s",str);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fprintf(ficparo,"%s",str);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for(j=1; j <=i; j++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       fscanf(ficpar," %le",&matcov[i][j]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       printf(" %.5le",matcov[i][j]);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fprintf(ficparo," %.5le",matcov[i][j]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fscanf(ficpar,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("\n");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficparo,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   for(i=1; i <=npar; i++)    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     for(j=i+1;j<=npar;j++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       matcov[i][j]=matcov[j][i];    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
   printf("\n");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     /*-------- Rewriting paramater file ----------*/    free_vector(xp,1,npar);
      strcpy(rfileres,"r");    /* "Rparameterfile */    free_matrix(doldm,1,nlstate,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    free_matrix(dnewm,1,nlstate,1,npar);
      strcat(rfileres,".");    /* */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     if((ficres =fopen(rfileres,"w"))==NULL) {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }    fclose(ficresprobmorprev);
     fprintf(ficres,"#%s\n",version);    fflush(ficgp);
        fflush(fichtm); 
     /*-------- data file ----------*/  }  /* end varevsij */
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;  /************ Variance of prevlim ******************/
     }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     n= lastobs;    /* Variance of prevalence limit */
     severity = vector(1,maxwav);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     outcome=imatrix(1,maxwav+1,1,n);    double **newm;
     num=ivector(1,n);    double **dnewm,**doldm;
     moisnais=vector(1,n);    int i, j, nhstepm, hstepm;
     annais=vector(1,n);    int k, cptcode;
     moisdc=vector(1,n);    double *xp;
     andc=vector(1,n);    double *gp, *gm;
     agedc=vector(1,n);    double **gradg, **trgradg;
     cod=ivector(1,n);    double age,agelim;
     weight=vector(1,n);    int theta;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    fprintf(ficresvpl, "#Local time at start: %s", strstart); 
     mint=matrix(1,maxwav,1,n);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     anint=matrix(1,maxwav,1,n);    fprintf(ficresvpl,"# Age");
     s=imatrix(1,maxwav+1,1,n);    for(i=1; i<=nlstate;i++)
     adl=imatrix(1,maxwav+1,1,n);            fprintf(ficresvpl," %1d-%1d",i,i);
     tab=ivector(1,NCOVMAX);    fprintf(ficresvpl,"\n");
     ncodemax=ivector(1,8);  
     xp=vector(1,npar);
     i=1;    dnewm=matrix(1,nlstate,1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    doldm=matrix(1,nlstate,1,nlstate);
       if ((i >= firstobs) && (i <=lastobs)) {    
            hstepm=1*YEARM; /* Every year of age */
         for (j=maxwav;j>=1;j--){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    agelim = AGESUP;
           strcpy(line,stra);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if (stepm >= YEARM) hstepm=1;
         }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
              gradg=matrix(1,npar,1,nlstate);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);      gp=vector(1,nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      gm=vector(1,nlstate);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(theta=1; theta <=npar; theta++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1;i<=nlstate;i++)
         }          gp[i] = prlim[i][i];
         num[i]=atol(stra);      
                for(i=1; i<=npar; i++) /* Computes gradient */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
         i=i+1;          gm[i] = prlim[i][i];
       }  
     }        for(i=1;i<=nlstate;i++)
     /* printf("ii=%d", ij);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        scanf("%d",i);*/      } /* End theta */
   imx=i-1; /* Number of individuals */  
       trgradg =matrix(1,nlstate,1,npar);
   /* for (i=1; i<=imx; i++){  
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(j=1; j<=nlstate;j++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(theta=1; theta <=npar; theta++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          trgradg[j][theta]=gradg[theta][j];
     }*/  
    /*  for (i=1; i<=imx; i++){      for(i=1;i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;        varpl[i][(int)age] =0.;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        for(i=1;i<=nlstate;i++)
   /* Calculation of the number of parameter from char model*/        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);      fprintf(ficresvpl,"%.0f ",age );
   Tvaraff=ivector(1,15);      for(i=1; i<=nlstate;i++)
   Tvard=imatrix(1,15,1,2);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   Tage=ivector(1,15);            fprintf(ficresvpl,"\n");
          free_vector(gp,1,nlstate);
   if (strlen(model) >1){      free_vector(gm,1,nlstate);
     j=0, j1=0, k1=1, k2=1;      free_matrix(gradg,1,npar,1,nlstate);
     j=nbocc(model,'+');      free_matrix(trgradg,1,nlstate,1,npar);
     j1=nbocc(model,'*');    } /* End age */
     cptcovn=j+1;  
     cptcovprod=j1;    free_vector(xp,1,npar);
        free_matrix(doldm,1,nlstate,1,npar);
     strcpy(modelsav,model);    free_matrix(dnewm,1,nlstate,1,nlstate);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  
       printf("Error. Non available option model=%s ",model);  }
       goto end;  
     }  /************ Variance of one-step probabilities  ******************/
      void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     for(i=(j+1); i>=1;i--){  {
       cutv(stra,strb,modelsav,'+');    int i, j=0,  i1, k1, l1, t, tj;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    int k2, l2, j1,  z1;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    int k=0,l, cptcode;
       /*scanf("%d",i);*/    int first=1, first1;
       if (strchr(strb,'*')) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
         cutv(strd,strc,strb,'*');    double **dnewm,**doldm;
         if (strcmp(strc,"age")==0) {    double *xp;
           cptcovprod--;    double *gp, *gm;
           cutv(strb,stre,strd,'V');    double **gradg, **trgradg;
           Tvar[i]=atoi(stre);    double **mu;
           cptcovage++;    double age,agelim, cov[NCOVMAX];
             Tage[cptcovage]=i;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
             /*printf("stre=%s ", stre);*/    int theta;
         }    char fileresprob[FILENAMELENGTH];
         else if (strcmp(strd,"age")==0) {    char fileresprobcov[FILENAMELENGTH];
           cptcovprod--;    char fileresprobcor[FILENAMELENGTH];
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    double ***varpij;
           cptcovage++;  
           Tage[cptcovage]=i;    strcpy(fileresprob,"prob"); 
         }    strcat(fileresprob,fileres);
         else {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           cutv(strb,stre,strc,'V');      printf("Problem with resultfile: %s\n", fileresprob);
           Tvar[i]=ncovcol+k1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           cutv(strb,strc,strd,'V');    }
           Tprod[k1]=i;    strcpy(fileresprobcov,"probcov"); 
           Tvard[k1][1]=atoi(strc);    strcat(fileresprobcov,fileres);
           Tvard[k1][2]=atoi(stre);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           Tvar[cptcovn+k2]=Tvard[k1][1];      printf("Problem with resultfile: %s\n", fileresprobcov);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           for (k=1; k<=lastobs;k++)    }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    strcpy(fileresprobcor,"probcor"); 
           k1++;    strcat(fileresprobcor,fileres);
           k2=k2+2;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobcor);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       else {    }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        /*  scanf("%d",i);*/    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       cutv(strd,strc,strb,'V');    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       Tvar[i]=atoi(strc);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       strcpy(modelsav,stra);      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    fprintf(ficresprob, "#Local time at start: %s", strstart);
         scanf("%d",i);*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     }    fprintf(ficresprob,"# Age");
 }    fprintf(ficresprobcov, "#Local time at start: %s", strstart);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fprintf(ficresprobcov,"# Age");
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficresprobcor, "#Local time at start: %s", strstart);
   scanf("%d ",i);*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fclose(fic);    fprintf(ficresprobcov,"# Age");
   
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    for(i=1; i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;      for(j=1; j<=(nlstate+ndeath);j++){
     }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     /*-calculation of age at interview from date of interview and age at death -*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     agev=matrix(1,maxwav,1,imx);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
     for (i=1; i<=imx; i++) {   /* fprintf(ficresprob,"\n");
       for(m=2; (m<= maxwav); m++) {    fprintf(ficresprobcov,"\n");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficresprobcor,"\n");
          anint[m][i]=9999;   */
          s[m][i]=-1;   xp=vector(1,npar);
        }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     for (i=1; i<=imx; i++)  {    fprintf(ficgp,"\n# Routine varprob");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       for(m=1; (m<= maxwav); m++){    fprintf(fichtm,"\n");
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
             if(agedc[i]>0)    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
               if(moisdc[i]!=99 && andc[i]!=9999)    file %s<br>\n",optionfilehtmcov);
                 agev[m][i]=agedc[i];    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  and drawn. It helps understanding how is the covariance between two incidences.\
            else {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               if (andc[i]!=9999){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
               agev[m][i]=-1;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
               }  standard deviations wide on each axis. <br>\
             }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           else if(s[m][i] !=9){ /* Should no more exist */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    cov[1]=1;
               agev[m][i]=1;    tj=cptcoveff;
             else if(agev[m][i] <agemin){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
               agemin=agev[m][i];    j1=0;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    for(t=1; t<=tj;t++){
             }      for(i1=1; i1<=ncodemax[t];i1++){ 
             else if(agev[m][i] >agemax){        j1++;
               agemax=agev[m][i];        if  (cptcovn>0) {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          fprintf(ficresprob, "\n#********** Variable "); 
             }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             /*agev[m][i]=anint[m][i]-annais[i];*/          fprintf(ficresprob, "**********\n#\n");
             /*   agev[m][i] = age[i]+2*m;*/          fprintf(ficresprobcov, "\n#********** Variable "); 
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           else { /* =9 */          fprintf(ficresprobcov, "**********\n#\n");
             agev[m][i]=1;          
             s[m][i]=-1;          fprintf(ficgp, "\n#********** Variable "); 
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficgp, "**********\n#\n");
         else /*= 0 Unknown */          
           agev[m][i]=1;          
       }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (i=1; i<=imx; i++)  {          
       for(m=1; (m<= maxwav); m++){          fprintf(ficresprobcor, "\n#********** Variable ");    
         if (s[m][i] > (nlstate+ndeath)) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           printf("Error: Wrong value in nlstate or ndeath\n");            fprintf(ficresprobcor, "**********\n#");    
           goto end;        }
         }        
       }        for (age=bage; age<=fage; age ++){ 
     }          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
     free_vector(severity,1,maxwav);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     free_imatrix(outcome,1,maxwav+1,1,n);          for (k=1; k<=cptcovprod;k++)
     free_vector(moisnais,1,n);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     free_vector(annais,1,n);          
     /* free_matrix(mint,1,maxwav,1,n);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        free_matrix(anint,1,maxwav,1,n);*/          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(moisdc,1,n);          gp=vector(1,(nlstate)*(nlstate+ndeath));
     free_vector(andc,1,n);          gm=vector(1,(nlstate)*(nlstate+ndeath));
       
              for(theta=1; theta <=npar; theta++){
     wav=ivector(1,imx);            for(i=1; i<=npar; i++)
     dh=imatrix(1,lastpass-firstpass+1,1,imx);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
     /* Concatenates waves */            
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
       Tcode=ivector(1,100);                k=k+1;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                gp[k]=pmmij[i][j];
       ncodemax[1]=1;              }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            }
                  
    codtab=imatrix(1,100,1,10);            for(i=1; i<=npar; i++)
    h=0;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    m=pow(2,cptcoveff);      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
    for(k=1;k<=cptcoveff; k++){            k=0;
      for(i=1; i <=(m/pow(2,k));i++){            for(i=1; i<=(nlstate); i++){
        for(j=1; j <= ncodemax[k]; j++){              for(j=1; j<=(nlstate+ndeath);j++){
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                k=k+1;
            h++;                gm[k]=pmmij[i][j];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;              }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            }
          }       
        }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
      }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    }          }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
    /* for(i=1; i <=m ;i++){            for(theta=1; theta <=npar; theta++)
       for(k=1; k <=cptcovn; k++){              trgradg[j][theta]=gradg[theta][j];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          
       }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       printf("\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       scanf("%d",i);*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
              free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    /* Calculates basic frequencies. Computes observed prevalence at single age          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        and prints on file fileres'p'. */  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
              
              k=0;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=(nlstate); i++){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(j=1; j<=(nlstate+ndeath);j++){
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              k=k+1;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              mu[k][(int) age]=pmmij[i][j];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            }
                }
     /* For Powell, parameters are in a vector p[] starting at p[1]          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              varpij[i][j][(int)age] = doldm[i][j];
   
     if(mle==1){          /*printf("\n%d ",(int)age);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     }            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     /*--------- results files --------------*/            }*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
            fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
    jk=1;          fprintf(ficresprobcor,"\n%d ",(int)age);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
    for(i=1,jk=1; i <=nlstate; i++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
      for(k=1; k <=(nlstate+ndeath); k++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        if (k != i)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
          {            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            printf("%d%d ",i,k);          }
            fprintf(ficres,"%1d%1d ",i,k);          i=0;
            for(j=1; j <=ncovmodel; j++){          for (k=1; k<=(nlstate);k++){
              printf("%f ",p[jk]);            for (l=1; l<=(nlstate+ndeath);l++){ 
              fprintf(ficres,"%f ",p[jk]);              i=i++;
              jk++;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
            }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
            printf("\n");              for (j=1; j<=i;j++){
            fprintf(ficres,"\n");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
          }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      }              }
    }            }
  if(mle==1){          }/* end of loop for state */
     /* Computing hessian and covariance matrix */        } /* end of loop for age */
     ftolhess=ftol; /* Usually correct */  
     hesscov(matcov, p, npar, delti, ftolhess, func);        /* Confidence intervalle of pij  */
  }        /*
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          fprintf(ficgp,"\nset noparametric;unset label");
     printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for(j=1; j <=nlstate+ndeath; j++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         if (j!=i) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficres,"%1d%1d",i,j);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           printf("%1d%1d",i,j);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           for(k=1; k<=ncovmodel;k++){        */
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             jk++;        first1=1;
           }        for (k2=1; k2<=(nlstate);k2++){
           printf("\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           fprintf(ficres,"\n");            if(l2==k2) continue;
         }            j=(k2-1)*(nlstate+ndeath)+l2;
       }            for (k1=1; k1<=(nlstate);k1++){
      }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                    if(l1==k1) continue;
     k=1;                i=(k1-1)*(nlstate+ndeath)+l1;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                if(i<=j) continue;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                for (age=bage; age<=fage; age ++){ 
     for(i=1;i<=npar;i++){                  if ((int)age %5==0){
       /*  if (k>nlstate) k=1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       i1=(i-1)/(ncovmodel*nlstate)+1;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       printf("%s%d%d",alph[k],i1,tab[i]);*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
       fprintf(ficres,"%3d",i);                    mu2=mu[j][(int) age]/stepm*YEARM;
       printf("%3d",i);                    c12=cv12/sqrt(v1*v2);
       for(j=1; j<=i;j++){                    /* Computing eigen value of matrix of covariance */
         fprintf(ficres," %.5e",matcov[i][j]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         printf(" %.5e",matcov[i][j]);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    /* Eigen vectors */
       fprintf(ficres,"\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       printf("\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
       k++;                    v21=(lc1-v1)/cv12*v11;
     }                    v12=-v21;
                        v22=v11;
     while((c=getc(ficpar))=='#' && c!= EOF){                    tnalp=v21/v11;
       ungetc(c,ficpar);                    if(first1==1){
       fgets(line, MAXLINE, ficpar);                      first1=0;
       puts(line);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fputs(line,ficparo);                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     ungetc(c,ficpar);                    /*printf(fignu*/
     estepm=0;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     if (estepm==0 || estepm < stepm) estepm=stepm;                    if(first==1){
     if (fage <= 2) {                      first=0;
       bage = ageminpar;                      fprintf(ficgp,"\nset parametric;unset label");
       fage = agemaxpar;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                          fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     ungetc(c,ficpar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     fgets(line, MAXLINE, ficpar);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     puts(line);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     fputs(line,ficparo);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ungetc(c,ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                    }else{
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      first=0;
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                            fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   while((c=getc(ficpar))=='#' && c!= EOF){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     ungetc(c,ficpar);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     fgets(line, MAXLINE, ficpar);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     puts(line);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fputs(line,ficparo);                    }/* if first */
   }                  } /* age mod 5 */
   ungetc(c,ficpar);                } /* end loop age */
                  fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;              } /*l12 */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            } /* k12 */
           } /*l1 */
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }/* k1 */
   fprintf(ficparo,"pop_based=%d\n",popbased);        } /* loop covariates */
   fprintf(ficres,"pop_based=%d\n",popbased);      }
      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     ungetc(c,ficpar);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     puts(line);    free_vector(xp,1,npar);
     fputs(line,ficparo);    fclose(ficresprob);
   }    fclose(ficresprobcov);
   ungetc(c,ficpar);    fclose(ficresprobcor);
     fflush(ficgp);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    fflush(fichtmcov);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
   
   /******************* Printing html file ***********/
 while((c=getc(ficpar))=='#' && c!= EOF){  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     ungetc(c,ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
     fgets(line, MAXLINE, ficpar);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
     puts(line);                    int popforecast, int estepm ,\
     fputs(line,ficparo);                    double jprev1, double mprev1,double anprev1, \
   }                    double jprev2, double mprev2,double anprev2){
   ungetc(c,ficpar);    int jj1, k1, i1, cpt;
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
 /*------------ gnuplot -------------*/     fprintf(fichtm,"\
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 /*------------ free_vector  -------------*/     fprintf(fichtm,"\
  chdir(path);   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  free_ivector(wav,1,imx);     fprintf(fichtm,"\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   - Life expectancies by age and initial health status (estepm=%2d months): \
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       <a href=\"%s\">%s</a> <br>\n</li>",
  free_ivector(num,1,n);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  fclose(ficparo);  
  fclose(ficres);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 /*--------- index.htm --------*/  
    jj1=0;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   /*--------------- Prevalence limit --------------*/       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcpy(filerespl,"pl");         for (cpt=1; cpt<=cptcoveff;cpt++) 
   strcat(filerespl,fileres);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       }
   }       /* Pij */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   fprintf(ficrespl,"#Prevalence limit\n");  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   fprintf(ficrespl,"#Age ");       /* Quasi-incidences */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fprintf(ficrespl,"\n");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
    <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   prlim=matrix(1,nlstate,1,nlstate);         /* Stable prevalence in each health state */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         for(cpt=1; cpt<nlstate;cpt++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */       for(cpt=1; cpt<=nlstate;cpt++) {
   k=0;          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   agebase=ageminpar;  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   agelim=agemaxpar;       }
   ftolpl=1.e-10;     } /* end i1 */
   i1=cptcoveff;   }/* End k1 */
   if (cptcovn < 1){i1=1;}   fprintf(fichtm,"</ul>");
   
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm,"\
         k=k+1;  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         fprintf(ficrespl,"\n#******");  
         for(j=1;j<=cptcoveff;j++)   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         fprintf(ficrespl,"******\n");   fprintf(fichtm,"\
           - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         for (age=agebase; age<=agelim; age++){           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );   fprintf(fichtm,"\
           for(i=1; i<=nlstate;i++)   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespl," %.5f", prlim[i][i]);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(ficrespl,"\n");   fprintf(fichtm,"\
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     }   fprintf(fichtm,"\
   fclose(ficrespl);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   /*------------- h Pij x at various ages ------------*/   fprintf(fichtm,"\
     - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   printf("Computing pij: result on file '%s' \n", filerespij);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /*      <br>",fileres,fileres,fileres,fileres); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*  else  */
   /*if (stepm<=24) stepsize=2;*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
   agelim=AGESUP;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   m=cptcoveff;
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){   jj1=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   for(k1=1; k1<=m;k1++){
       k=k+1;     for(i1=1; i1<=ncodemax[k1];i1++){
         fprintf(ficrespij,"\n#****** ");       jj1++;
         for(j=1;j<=cptcoveff;j++)       if (cptcovn > 0) {
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficrespij,"******\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
                   fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       for(cpt=1; cpt<=nlstate;cpt++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
           oldm=oldms;savm=savms;  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
           fprintf(ficrespij,"# Age");       }
           for(i=1; i<=nlstate;i++)       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
             for(j=1; j<=nlstate+ndeath;j++)  health expectancies in states (1) and (2): %s%d.png<br>\
               fprintf(ficrespij," %1d-%1d",i,j);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           fprintf(ficrespij,"\n");     } /* end i1 */
            for (h=0; h<=nhstepm; h++){   }/* End k1 */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   fprintf(fichtm,"</ul>");
             for(i=1; i<=nlstate;i++)   fflush(fichtm);
               for(j=1; j<=nlstate+ndeath;j++)  }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  /******************* Gnuplot file **************/
              }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");    char dirfileres[132],optfileres[132];
         }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     }    int ng;
   }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   fclose(ficrespij);  
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*---------- Forecasting ------------------*/      /*#endif */
   if((stepm == 1) && (strcmp(model,".")==0)){    m=pow(2,cptcoveff);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    strcpy(dirfileres,optionfilefiname);
   }    strcpy(optfileres,"vpl");
   else{   /* 1eme*/
     erreur=108;    for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);     for (k1=1; k1<= m ; k1 ++) {
   }       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   /*---------- Health expectancies and variances ------------*/  set ylabel \"Probability\" \n\
   set ter png small\n\
   strcpy(filerest,"t");  set size 0.65,0.65\n\
   strcat(filerest,fileres);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   strcpy(filerese,"e");       for (i=1; i<= nlstate ; i ++) {
   strcat(filerese,fileres);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if((ficreseij=fopen(filerese,"w"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       } 
   }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  strcpy(fileresv,"v");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(fileresv,fileres);       }  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);     }
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /*2 eme*/
   calagedate=-1;    
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   k=0;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   for(cptcov=1;cptcov<=i1;cptcov++){      
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (i=1; i<= nlstate+1 ; i ++) {
       k=k+1;        k=2*i;
       fprintf(ficrest,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficrest,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
       fprintf(ficreseij,"\n#****** ");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       for(j=1;j<=cptcoveff;j++)        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficreseij,"******\n");        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvij,"\n#****** ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
       for(j=1;j<=cptcoveff;j++)        }   
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficresvij,"******\n");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       oldm=oldms;savm=savms;          else fprintf(ficgp," \%%*lf (\%%*lf)");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        else fprintf(ficgp,"\" t\"\" w l 0,");
       oldm=oldms;savm=savms;      }
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    }
        
     /*3eme*/
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    for (k1=1; k1<= m ; k1 ++) { 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficrest,"\n");        k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
       epj=vector(1,nlstate+1);        fprintf(ficgp,"set ter png small\n\
       for(age=bage; age <=fage ;age++){  set size 0.65,0.65\n\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         if (popbased==1) {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for(i=1; i<=nlstate;i++)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
             prlim[i][i]=probs[(int)age][i][k];          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         }          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         fprintf(ficrest," %4.0f",age);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        for (i=1; i< nlstate ; i ++) {
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           }          
           epj[nlstate+1] +=epj[j];        } 
         }      }
     }
         for(i=1, vepp=0.;i <=nlstate;i++)    
           for(j=1;j <=nlstate;j++)    /* CV preval stable (period) */
             vepp += vareij[i][j][(int)age];    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));      for (cpt=1; cpt<=nlstate ; cpt ++) {
         for(j=1;j <=nlstate;j++){        k=3;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
         fprintf(ficrest,"\n");  set ter png small\nset size 0.65,0.65\n\
       }  unset log y\n\
     }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   }        
 free_matrix(mint,1,maxwav,1,n);        for (i=1; i< nlstate ; i ++)
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficgp,"+$%d",k+i+1);
     free_vector(weight,1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   fclose(ficreseij);        
   fclose(ficresvij);        l=3+(nlstate+ndeath)*cpt;
   fclose(ficrest);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   fclose(ficpar);        for (i=1; i< nlstate ; i ++) {
   free_vector(epj,1,nlstate+1);          l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,"+$%d",l+i+1);
   /*------- Variance limit prevalence------*/          }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   strcpy(fileresvpl,"vpl");      } 
   strcat(fileresvpl,fileres);    }  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    /* proba elementaires */
     exit(0);    for(i=1,jk=1; i <=nlstate; i++){
   }      for(k=1; k <=(nlstate+ndeath); k++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
   k=0;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   for(cptcov=1;cptcov<=i1;cptcov++){            jk++; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficgp,"\n");
       k=k+1;          }
       fprintf(ficresvpl,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     }
       fprintf(ficresvpl,"******\n");  
           for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       for(jk=1; jk <=m; jk++) {
       oldm=oldms;savm=savms;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         if (ng==2)
     }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
  }         else
            fprintf(ficgp,"\nset title \"Probability\"\n");
   fclose(ficresvpl);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
   /*---------- End : free ----------------*/         for(k2=1; k2<=nlstate; k2++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);           k3=i;
             for(k=1; k<=(nlstate+ndeath); k++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);             if (k != k2){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);               if(ng==2)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);               ij=1;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);               for(j=3; j <=ncovmodel; j++) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                     fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   free_matrix(matcov,1,npar,1,npar);                   ij++;
   free_vector(delti,1,npar);                 }
   free_matrix(agev,1,maxwav,1,imx);                 else
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
   if(erreur >0)               fprintf(ficgp,")/(1");
     printf("End of Imach with error or warning %d\n",erreur);               
   else   printf("End of Imach\n");               for(k1=1; k1 <=nlstate; k1++){   
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                 for(j=3; j <=ncovmodel; j++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   /*------ End -----------*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
  end:                   else
   /* chdir(pathcd);*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  /*system("wgnuplot graph.plt");*/                 }
  /*system("../gp37mgw/wgnuplot graph.plt");*/                 fprintf(ficgp,")");
  /*system("cd ../gp37mgw");*/               }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  strcpy(plotcmd,GNUPLOTPROGRAM);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
  strcat(plotcmd," ");               i=i+ncovmodel;
  strcat(plotcmd,optionfilegnuplot);             }
  system(plotcmd);           } /* end k */
          } /* end k2 */
  /*#ifdef windows*/       } /* end jk */
   while (z[0] != 'q') {     } /* end ng */
     /* chdir(path); */     fflush(ficgp); 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  }  /* end gnuplot */
     scanf("%s",z);  
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);  /*************** Moving average **************/
     else if (z[0] == 'g') system(plotcmd);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     else if (z[0] == 'q') exit(0);  
   }    int i, cpt, cptcod;
   /*#endif */    int modcovmax =1;
 }    int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Un peu sale */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl, "#Local time at start: %s", strstart);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       fprintf(ficrespij, "#Local time at start: %s", strstart);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           fprintf(ficrest, "#Local time at start: %s", strstart);
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.115


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>