Diff for /imach/src/imach.c between versions 1.120 and 1.125

version 1.120, 2006/03/16 15:10:38 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): refinements in the computation of lli if    Errors in calculation of health expectancies. Age was not initialized.
   status=-2 in order to have more reliable computation if stepm is    Forecasting file added.
   not 1 month. Version 0.98f  
     Revision 1.124  2006/03/22 17:13:53  lievre
   Revision 1.119  2006/03/15 17:42:26  brouard    Parameters are printed with %lf instead of %f (more numbers after the comma).
   (Module): Bug if status = -2, the loglikelihood was    The log-likelihood is printed in the log file
   computed as likelihood omitting the logarithm. Version O.98e  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.118  2006/03/14 18:20:07  brouard    * imach.c (Module): <title> changed, corresponds to .htm file
   (Module): varevsij Comments added explaining the second    name. <head> headers where missing.
   table of variances if popbased=1 .  
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    * imach.c (Module): Weights can have a decimal point as for
   (Module): Function pstamp added    English (a comma might work with a correct LC_NUMERIC environment,
   (Module): Version 0.98d    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.117  2006/03/14 17:16:22  brouard    1.
   (Module): varevsij Comments added explaining the second    Version 0.98g
   table of variances if popbased=1 .  
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Function pstamp added    (Module): Weights can have a decimal point as for
   (Module): Version 0.98d    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.116  2006/03/06 10:29:27  brouard    Modification of warning when the covariates values are not 0 or
   (Module): Variance-covariance wrong links and    1.
   varian-covariance of ej. is needed (Saito).    Version 0.98g
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   (Module): One freematrix added in mlikeli! 0.98c    * imach.c (Module): Comments concerning covariates added
   
   Revision 1.114  2006/02/26 12:57:58  brouard    * imach.c (Module): refinements in the computation of lli if
   (Module): Some improvements in processing parameter    status=-2 in order to have more reliable computation if stepm is
   filename with strsep.    not 1 month. Version 0.98f
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): Memory leaks checks with valgrind and:    (Module): refinements in the computation of lli if
   datafile was not closed, some imatrix were not freed and on matrix    status=-2 in order to have more reliable computation if stepm is
   allocation too.    not 1 month. Version 0.98f
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
   Revision 1.111  2006/01/25 20:38:18  brouard  
   (Module): Lots of cleaning and bugs added (Gompertz)    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): Comments can be added in data file. Missing date values    (Module): varevsij Comments added explaining the second
   can be a simple dot '.'.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.110  2006/01/25 00:51:50  brouard    (Module): Function pstamp added
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Version 0.98d
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   Revision 1.108  2006/01/19 18:05:42  lievre    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Gnuplot problem appeared...    (Module): Function pstamp added
   To be fixed    (Module): Version 0.98d
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   Test existence of gnuplot in imach path    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   Revision 1.106  2006/01/19 13:24:36  brouard  
   Some cleaning and links added in html output    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
   Revision 1.105  2006/01/05 20:23:19  lievre  
   *** empty log message ***    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
   Revision 1.104  2005/09/30 16:11:43  lievre    filename with strsep.
   (Module): sump fixed, loop imx fixed, and simplifications.  
   (Module): If the status is missing at the last wave but we know    Revision 1.113  2006/02/24 14:20:24  brouard
   that the person is alive, then we can code his/her status as -2    (Module): Memory leaks checks with valgrind and:
   (instead of missing=-1 in earlier versions) and his/her    datafile was not closed, some imatrix were not freed and on matrix
   contributions to the likelihood is 1 - Prob of dying from last    allocation too.
   health status (= 1-p13= p11+p12 in the easiest case of somebody in  
   the healthy state at last known wave). Version is 0.98    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
   Revision 1.103  2005/09/30 15:54:49  lievre  
   (Module): sump fixed, loop imx fixed, and simplifications.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.102  2004/09/15 17:31:30  brouard    (Module): Comments can be added in data file. Missing date values
   Add the possibility to read data file including tab characters.    can be a simple dot '.'.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   Fix on curr_time    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.108  2006/01/19 18:05:42  lievre
   *** empty log message ***    Gnuplot problem appeared...
     To be fixed
   Revision 1.98  2004/05/16 15:05:56  brouard  
   New version 0.97 . First attempt to estimate force of mortality    Revision 1.107  2006/01/19 16:20:37  brouard
   directly from the data i.e. without the need of knowing the health    Test existence of gnuplot in imach path
   state at each age, but using a Gompertz model: log u =a + b*age .  
   This is the basic analysis of mortality and should be done before any    Revision 1.106  2006/01/19 13:24:36  brouard
   other analysis, in order to test if the mortality estimated from the    Some cleaning and links added in html output
   cross-longitudinal survey is different from the mortality estimated  
   from other sources like vital statistic data.    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.104  2005/09/30 16:11:43  lievre
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): sump fixed, loop imx fixed, and simplifications.
   former routines in order to include the new code within the former code.    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
   The output is very simple: only an estimate of the intercept and of    (instead of missing=-1 in earlier versions) and his/her
   the slope with 95% confident intervals.    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
   Current limitations:    the healthy state at last known wave). Version is 0.98
   A) Even if you enter covariates, i.e. with the  
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    Revision 1.103  2005/09/30 15:54:49  lievre
   B) There is no computation of Life Expectancy nor Life Table.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.102  2004/09/15 17:31:30  brouard
   Version 0.96d. Population forecasting command line is (temporarily)    Add the possibility to read data file including tab characters.
   suppressed.  
     Revision 1.101  2004/09/15 10:38:38  brouard
   Revision 1.96  2003/07/15 15:38:55  brouard    Fix on curr_time
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is  
   rewritten within the same printf. Workaround: many printfs.    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   Revision 1.95  2003/07/08 07:54:34  brouard  
   * imach.c (Repository):    Revision 1.99  2004/06/05 08:57:40  brouard
   (Repository): Using imachwizard code to output a more meaningful covariance    *** empty log message ***
   matrix (cov(a12,c31) instead of numbers.  
     Revision 1.98  2004/05/16 15:05:56  brouard
   Revision 1.94  2003/06/27 13:00:02  brouard    New version 0.97 . First attempt to estimate force of mortality
   Just cleaning    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Revision 1.93  2003/06/25 16:33:55  brouard    This is the basic analysis of mortality and should be done before any
   (Module): On windows (cygwin) function asctime_r doesn't    other analysis, in order to test if the mortality estimated from the
   exist so I changed back to asctime which exists.    cross-longitudinal survey is different from the mortality estimated
   (Module): Version 0.96b    from other sources like vital statistic data.
   
   Revision 1.92  2003/06/25 16:30:45  brouard    The same imach parameter file can be used but the option for mle should be -3.
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
   Revision 1.91  2003/06/25 15:30:29  brouard  
   * imach.c (Repository): Duplicated warning errors corrected.    The output is very simple: only an estimate of the intercept and of
   (Repository): Elapsed time after each iteration is now output. It    the slope with 95% confident intervals.
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Current limitations:
   concerning matrix of covariance. It has extension -cov.htm.    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   Revision 1.90  2003/06/24 12:34:15  brouard    B) There is no computation of Life Expectancy nor Life Table.
   (Module): Some bugs corrected for windows. Also, when  
   mle=-1 a template is output in file "or"mypar.txt with the design    Revision 1.97  2004/02/20 13:25:42  lievre
   of the covariance matrix to be input.    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   Revision 1.89  2003/06/24 12:30:52  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.96  2003/07/15 15:38:55  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   of the covariance matrix to be input.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   Revision 1.87  2003/06/18 12:26:01  brouard    matrix (cov(a12,c31) instead of numbers.
   Version 0.96  
     Revision 1.94  2003/06/27 13:00:02  brouard
   Revision 1.86  2003/06/17 20:04:08  brouard    Just cleaning
   (Module): Change position of html and gnuplot routines and added  
   routine fileappend.    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   Revision 1.85  2003/06/17 13:12:43  brouard    exist so I changed back to asctime which exists.
   * imach.c (Repository): Check when date of death was earlier that    (Module): Version 0.96b
   current date of interview. It may happen when the death was just  
   prior to the death. In this case, dh was negative and likelihood    Revision 1.92  2003/06/25 16:30:45  brouard
   was wrong (infinity). We still send an "Error" but patch by    (Module): On windows (cygwin) function asctime_r doesn't
   assuming that the date of death was just one stepm after the    exist so I changed back to asctime which exists.
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.91  2003/06/25 15:30:29  brouard
   we changed int to long in num[] and we added a new lvector for    * imach.c (Repository): Duplicated warning errors corrected.
   memory allocation. But we also truncated to 8 characters (left    (Repository): Elapsed time after each iteration is now output. It
   truncation)    helps to forecast when convergence will be reached. Elapsed time
   (Repository): No more line truncation errors.    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.90  2003/06/24 12:34:15  brouard
   place. It differs from routine "prevalence" which may be called    (Module): Some bugs corrected for windows. Also, when
   many times. Probs is memory consuming and must be used with    mle=-1 a template is output in file "or"mypar.txt with the design
   parcimony.    of the covariance matrix to be input.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)  
     Revision 1.89  2003/06/24 12:30:52  brouard
   Revision 1.83  2003/06/10 13:39:11  lievre    (Module): Some bugs corrected for windows. Also, when
   *** empty log message ***    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   Revision 1.82  2003/06/05 15:57:20  brouard  
   Add log in  imach.c and  fullversion number is now printed.    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 */  
 /*    Revision 1.87  2003/06/18 12:26:01  brouard
    Interpolated Markov Chain    Version 0.96
   
   Short summary of the programme:    Revision 1.86  2003/06/17 20:04:08  brouard
       (Module): Change position of html and gnuplot routines and added
   This program computes Healthy Life Expectancies from    routine fileappend.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.85  2003/06/17 13:12:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Check when date of death was earlier that
   case of a health survey which is our main interest) -2- at least a    current date of interview. It may happen when the death was just
   second wave of interviews ("longitudinal") which measure each change    prior to the death. In this case, dh was negative and likelihood
   (if any) in individual health status.  Health expectancies are    was wrong (infinity). We still send an "Error" but patch by
   computed from the time spent in each health state according to a    assuming that the date of death was just one stepm after the
   model. More health states you consider, more time is necessary to reach the    interview.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Because some people have very long ID (first column)
   simplest model is the multinomial logistic model where pij is the    we changed int to long in num[] and we added a new lvector for
   probability to be observed in state j at the second wave    memory allocation. But we also truncated to 8 characters (left
   conditional to be observed in state i at the first wave. Therefore    truncation)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Repository): No more line truncation errors.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.84  2003/06/13 21:44:43  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Replace "freqsummary" at a correct
   you to do it.  More covariates you add, slower the    place. It differs from routine "prevalence" which may be called
   convergence.    many times. Probs is memory consuming and must be used with
     parcimony.
   The advantage of this computer programme, compared to a simple    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.83  2003/06/10 13:39:11  lievre
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.82  2003/06/05 15:57:20  brouard
   hPijx is the probability to be observed in state i at age x+h    Add log in  imach.c and  fullversion number is now printed.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate  */
   states. This elementary transition (by month, quarter,  /*
   semester or year) is modelled as a multinomial logistic.  The hPx     Interpolated Markov Chain
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Short summary of the programme:
   hPijx.   
     This program computes Healthy Life Expectancies from
   Also this programme outputs the covariance matrix of the parameters but also    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   of the life expectancies. It also computes the period (stable) prevalence.     first survey ("cross") where individuals from different ages are
       interviewed on their health status or degree of disability (in the
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    case of a health survey which is our main interest) -2- at least a
            Institut national d'études démographiques, Paris.    second wave of interviews ("longitudinal") which measure each change
   This software have been partly granted by Euro-REVES, a concerted action    (if any) in individual health status.  Health expectancies are
   from the European Union.    computed from the time spent in each health state according to a
   It is copyrighted identically to a GNU software product, ie programme and    model. More health states you consider, more time is necessary to reach the
   software can be distributed freely for non commercial use. Latest version    Maximum Likelihood of the parameters involved in the model.  The
   can be accessed at http://euroreves.ined.fr/imach .    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    conditional to be observed in state i at the first wave. Therefore
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       'age' is age and 'sex' is a covariate. If you want to have a more
   **********************************************************************/    complex model than "constant and age", you should modify the program
 /*    where the markup *Covariates have to be included here again* invites
   main    you to do it.  More covariates you add, slower the
   read parameterfile    convergence.
   read datafile  
   concatwav    The advantage of this computer programme, compared to a simple
   freqsummary    multinomial logistic model, is clear when the delay between waves is not
   if (mle >= 1)    identical for each individual. Also, if a individual missed an
     mlikeli    intermediate interview, the information is lost, but taken into
   print results files    account using an interpolation or extrapolation.  
   if mle==1   
      computes hessian    hPijx is the probability to be observed in state i at age x+h
   read end of parameter file: agemin, agemax, bage, fage, estepm    conditional to the observed state i at age x. The delay 'h' can be
       begin-prev-date,...    split into an exact number (nh*stepm) of unobserved intermediate
   open gnuplot file    states. This elementary transition (by month, quarter,
   open html file    semester or year) is modelled as a multinomial logistic.  The hPx
   period (stable) prevalence    matrix is simply the matrix product of nh*stepm elementary matrices
    for age prevalim()    and the contribution of each individual to the likelihood is simply
   h Pij x    hPijx.
   variance of p varprob  
   forecasting if prevfcast==1 prevforecast call prevalence()    Also this programme outputs the covariance matrix of the parameters but also
   health expectancies    of the life expectancies. It also computes the period (stable) prevalence.
   Variance-covariance of DFLE   
   prevalence()    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    movingaverage()             Institut national d'études démographiques, Paris.
   varevsij()     This software have been partly granted by Euro-REVES, a concerted action
   if popbased==1 varevsij(,popbased)    from the European Union.
   total life expectancies    It is copyrighted identically to a GNU software product, ie programme and
   Variance of period (stable) prevalence    software can be distributed freely for non commercial use. Latest version
  end    can be accessed at http://euroreves.ined.fr/imach .
 */  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    
      **********************************************************************/
 #include <math.h>  /*
 #include <stdio.h>    main
 #include <stdlib.h>    read parameterfile
 #include <string.h>    read datafile
 #include <unistd.h>    concatwav
     freqsummary
 #include <limits.h>    if (mle >= 1)
 #include <sys/types.h>      mlikeli
 #include <sys/stat.h>    print results files
 #include <errno.h>    if mle==1
 extern int errno;       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /* #include <sys/time.h> */        begin-prev-date,...
 #include <time.h>    open gnuplot file
 #include "timeval.h"    open html file
     period (stable) prevalence
 /* #include <libintl.h> */     for age prevalim()
 /* #define _(String) gettext (String) */    h Pij x
     variance of p varprob
 #define MAXLINE 256    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 #define GNUPLOTPROGRAM "gnuplot"    Variance-covariance of DFLE
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    prevalence()
 #define FILENAMELENGTH 132     movingaverage()
     varevsij()
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if popbased==1 varevsij(,popbased)
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    total life expectancies
     Variance of period (stable) prevalence
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */   end
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  */
   
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */   
 #define NCOVMAX 8 /* Maximum number of covariates */  #include <math.h>
 #define MAXN 20000  #include <stdio.h>
 #define YEARM 12. /* Number of months per year */  #include <stdlib.h>
 #define AGESUP 130  #include <string.h>
 #define AGEBASE 40  #include <unistd.h>
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  
 #ifdef UNIX  #include <limits.h>
 #define DIRSEPARATOR '/'  #include <sys/types.h>
 #define CHARSEPARATOR "/"  #include <sys/stat.h>
 #define ODIRSEPARATOR '\\'  #include <errno.h>
 #else  extern int errno;
 #define DIRSEPARATOR '\\'  
 #define CHARSEPARATOR "\\"  /* #include <sys/time.h> */
 #define ODIRSEPARATOR '/'  #include <time.h>
 #endif  #include "timeval.h"
   
 /* $Id$ */  /* #include <libintl.h> */
 /* $State$ */  /* #define _(String) gettext (String) */
   
 char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";  #define MAXLINE 256
 char fullversion[]="$Revision$ $Date$";   
 char strstart[80];  #define GNUPLOTPROGRAM "gnuplot"
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  #define FILENAMELENGTH 132
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int npar=NPARMAX;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int popbased=0;  
   #define NINTERVMAX 8
 int *wav; /* Number of waves for this individuual 0 is possible */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int maxwav; /* Maxim number of waves */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int jmin, jmax; /* min, max spacing between 2 waves */  #define NCOVMAX 8 /* Maximum number of covariates */
 int ijmin, ijmax; /* Individuals having jmin and jmax */   #define MAXN 20000
 int gipmx, gsw; /* Global variables on the number of contributions   #define YEARM 12. /* Number of months per year */
                    to the likelihood and the sum of weights (done by funcone)*/  #define AGESUP 130
 int mle, weightopt;  #define AGEBASE 40
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #ifdef UNIX
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define DIRSEPARATOR '/'
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define CHARSEPARATOR "/"
 double jmean; /* Mean space between 2 waves */  #define ODIRSEPARATOR '\\'
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #else
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define DIRSEPARATOR '\\'
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define CHARSEPARATOR "\\"
 FILE *ficlog, *ficrespow;  #define ODIRSEPARATOR '/'
 int globpr; /* Global variable for printing or not */  #endif
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */  /* $Id$ */
 double sw; /* Sum of weights */  /* $State$ */
 char filerespow[FILENAMELENGTH];  
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 FILE *ficresilk;  char fullversion[]="$Revision$ $Date$";
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  char strstart[80];
 FILE *ficresprobmorprev;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 FILE *fichtm, *fichtmcov; /* Html File */  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 FILE *ficreseij;  int nvar;
 char filerese[FILENAMELENGTH];  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 FILE *ficresstdeij;  int npar=NPARMAX;
 char fileresstde[FILENAMELENGTH];  int nlstate=2; /* Number of live states */
 FILE *ficrescveij;  int ndeath=1; /* Number of dead states */
 char filerescve[FILENAMELENGTH];  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 FILE  *ficresvij;  int popbased=0;
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;  int *wav; /* Number of waves for this individuual 0 is possible */
 char fileresvpl[FILENAMELENGTH];  int maxwav; /* Maxim number of waves */
 char title[MAXLINE];  int jmin, jmax; /* min, max spacing between 2 waves */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  int ijmin, ijmax; /* Individuals having jmin and jmax */
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  int gipmx, gsw; /* Global variables on the number of contributions
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];                      to the likelihood and the sum of weights (done by funcone)*/
 char command[FILENAMELENGTH];  int mle, weightopt;
 int  outcmd=0;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 char filelog[FILENAMELENGTH]; /* Log file */  double jmean; /* Mean space between 2 waves */
 char filerest[FILENAMELENGTH];  double **oldm, **newm, **savm; /* Working pointers to matrices */
 char fileregp[FILENAMELENGTH];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 char popfile[FILENAMELENGTH];  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog, *ficrespow;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  long ipmx; /* Number of contributions */
 struct timezone tzp;  double sw; /* Sum of weights */
 extern int gettimeofday();  char filerespow[FILENAMELENGTH];
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 long time_value;  FILE *ficresilk;
 extern long time();  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 char strcurr[80], strfor[80];  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 char *endptr;  FILE *ficreseij;
 long lval;  char filerese[FILENAMELENGTH];
   FILE *ficresstdeij;
 #define NR_END 1  char fileresstde[FILENAMELENGTH];
 #define FREE_ARG char*  FILE *ficrescveij;
 #define FTOL 1.0e-10  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 #define NRANSI   char fileresv[FILENAMELENGTH];
 #define ITMAX 200   FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 #define TOL 2.0e-4   char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define CGOLD 0.3819660   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 #define ZEPS 1.0e-10   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   char command[FILENAMELENGTH];
   int  outcmd=0;
 #define GOLD 1.618034   
 #define GLIMIT 100.0   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #define TINY 1.0e-20   
   char filelog[FILENAMELENGTH]; /* Log file */
 static double maxarg1,maxarg2;  char filerest[FILENAMELENGTH];
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char fileregp[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char popfile[FILENAMELENGTH];
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #define rint(a) floor(a+0.5)  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 static double sqrarg;  struct timezone tzp;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  extern int gettimeofday();
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 int agegomp= AGEGOMP;  long time_value;
   extern long time();
 int imx;   char strcurr[80], strfor[80];
 int stepm=1;  
 /* Stepm, step in month: minimum step interpolation*/  char *endptr;
   long lval;
 int estepm;  double dval;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   #define NR_END 1
 int m,nb;  #define FREE_ARG char*
 long *num;  #define FTOL 1.0e-10
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define NRANSI
 double **pmmij, ***probs;  #define ITMAX 200
 double *ageexmed,*agecens;  
 double dateintmean=0;  #define TOL 2.0e-4
   
 double *weight;  #define CGOLD 0.3819660
 int **s; /* Status */  #define ZEPS 1.0e-10
 double *agedc, **covar, idx;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
 double *lsurv, *lpop, *tpop;  #define GOLD 1.618034
   #define GLIMIT 100.0
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define TINY 1.0e-20
 double ftolhess; /* Tolerance for computing hessian */  
   static double maxarg1,maxarg2;
 /**************** split *************************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 {   
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  #define rint(a) floor(a+0.5)
   */   
   char  *ss;                            /* pointer */  static double sqrarg;
   int   l1, l2;                         /* length counters */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   l1 = strlen(path );                   /* length of path */  int agegomp= AGEGOMP;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int imx;
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  int stepm=1;
     strcpy( name, path );               /* we got the fullname name because no directory */  /* Stepm, step in month: minimum step interpolation*/
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int estepm;
     /* get current working directory */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int m,nb;
       return( GLOCK_ERROR_GETCWD );  long *num;
     }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     /* got dirc from getcwd*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     printf(" DIRC = %s \n",dirc);  double **pmmij, ***probs;
   } else {                              /* strip direcotry from path */  double *ageexmed,*agecens;
     ss++;                               /* after this, the filename */  double dateintmean=0;
     l2 = strlen( ss );                  /* length of filename */  
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double *weight;
     strcpy( name, ss );         /* save file name */  int **s; /* Status */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double *agedc, **covar, idx;
     dirc[l1-l2] = 0;                    /* add zero */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     printf(" DIRC2 = %s \n",dirc);  double *lsurv, *lpop, *tpop;
   }  
   /* We add a separator at the end of dirc if not exists */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   l1 = strlen( dirc );                  /* length of directory */  double ftolhess; /* Tolerance for computing hessian */
   if( dirc[l1-1] != DIRSEPARATOR ){  
     dirc[l1] =  DIRSEPARATOR;  /**************** split *************************/
     dirc[l1+1] = 0;   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     printf(" DIRC3 = %s \n",dirc);  {
   }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   ss = strrchr( name, '.' );            /* find last / */       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   if (ss >0){    */
     ss++;    char  *ss;                            /* pointer */
     strcpy(ext,ss);                     /* save extension */    int   l1, l2;                         /* length counters */
     l1= strlen( name);  
     l2= strlen(ss)+1;    l1 = strlen(path );                   /* length of path */
     strncpy( finame, name, l1-l2);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     finame[l1-l2]= 0;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
   return( 0 );                          /* we're done */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
 /******************************************/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 void replace_back_to_slash(char *s, char*t)      }
 {      /* got dirc from getcwd*/
   int i;      printf(" DIRC = %s \n",dirc);
   int lg=0;    } else {                              /* strip direcotry from path */
   i=0;      ss++;                               /* after this, the filename */
   lg=strlen(t);      l2 = strlen( ss );                  /* length of filename */
   for(i=0; i<= lg; i++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     (s[i] = t[i]);      strcpy( name, ss );         /* save file name */
     if (t[i]== '\\') s[i]='/';      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   }      dirc[l1-l2] = 0;                    /* add zero */
 }      printf(" DIRC2 = %s \n",dirc);
     }
 int nbocc(char *s, char occ)    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   int i,j=0;    if( dirc[l1-1] != DIRSEPARATOR ){
   int lg=20;      dirc[l1] =  DIRSEPARATOR;
   i=0;      dirc[l1+1] = 0;
   lg=strlen(s);      printf(" DIRC3 = %s \n",dirc);
   for(i=0; i<= lg; i++) {    }
   if  (s[i] == occ ) j++;    ss = strrchr( name, '.' );            /* find last / */
   }    if (ss >0){
   return j;      ss++;
 }      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 void cutv(char *u,char *v, char*t, char occ)      l2= strlen(ss)+1;
 {      strncpy( finame, name, l1-l2);
   /* cuts string t into u and v where u ends before first occurence of char 'occ'       finame[l1-l2]= 0;
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')    }
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    return( 0 );                          /* we're done */
   i=0;  }
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  /******************************************/
   
   lg=strlen(t);  void replace_back_to_slash(char *s, char*t)
   for(j=0; j<p; j++) {  {
     (u[j] = t[j]);    int i;
   }    int lg=0;
      u[p]='\0';    i=0;
     lg=strlen(t);
    for(j=0; j<= lg; j++) {    for(i=0; i<= lg; i++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);      (s[i] = t[i]);
   }      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /********************** nrerror ********************/  
   int nbocc(char *s, char occ)
 void nrerror(char error_text[])  {
 {    int i,j=0;
   fprintf(stderr,"ERREUR ...\n");    int lg=20;
   fprintf(stderr,"%s\n",error_text);    i=0;
   exit(EXIT_FAILURE);    lg=strlen(s);
 }    for(i=0; i<= lg; i++) {
 /*********************** vector *******************/    if  (s[i] == occ ) j++;
 double *vector(int nl, int nh)    }
 {    return j;
   double *v;  }
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  void cutv(char *u,char *v, char*t, char occ)
   return v-nl+NR_END;  {
 }    /* cuts string t into u and v where u ends before first occurence of char 'occ'
        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 /************************ free vector ******************/       gives u="abcedf" and v="ghi2j" */
 void free_vector(double*v, int nl, int nh)    int i,lg,j,p=0;
 {    i=0;
   free((FREE_ARG)(v+nl-NR_END));    for(j=0; j<=strlen(t)-1; j++) {
 }      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    lg=strlen(t);
 {    for(j=0; j<p; j++) {
   int *v;      (u[j] = t[j]);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    }
   if (!v) nrerror("allocation failure in ivector");       u[p]='\0';
   return v-nl+NR_END;  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /******************free ivector **************************/    }
 void free_ivector(int *v, long nl, long nh)  }
 {  
   free((FREE_ARG)(v+nl-NR_END));  /********************** nrerror ********************/
 }  
   void nrerror(char error_text[])
 /************************lvector *******************************/  {
 long *lvector(long nl,long nh)    fprintf(stderr,"ERREUR ...\n");
 {    fprintf(stderr,"%s\n",error_text);
   long *v;    exit(EXIT_FAILURE);
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  }
   if (!v) nrerror("allocation failure in ivector");  /*********************** vector *******************/
   return v-nl+NR_END;  double *vector(int nl, int nh)
 }  {
     double *v;
 /******************free lvector **************************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 void free_lvector(long *v, long nl, long nh)    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   /************************ free vector ******************/
 /******************* imatrix *******************************/  void free_vector(double*v, int nl, int nh)
 int **imatrix(long nrl, long nrh, long ncl, long nch)   {
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     free((FREE_ARG)(v+nl-NR_END));
 {   }
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   /************************ivector *******************************/
     int *ivector(long nl,long nh)
   /* allocate pointers to rows */   {
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     int *v;
   if (!m) nrerror("allocation failure 1 in matrix()");     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m += NR_END;     if (!v) nrerror("allocation failure in ivector");
   m -= nrl;     return v-nl+NR_END;
     }
     
   /* allocate rows and set pointers to them */   /******************free ivector **************************/
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   void free_ivector(int *v, long nl, long nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   {
   m[nrl] += NR_END;     free((FREE_ARG)(v+nl-NR_END));
   m[nrl] -= ncl;   }
     
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   /************************lvector *******************************/
     long *lvector(long nl,long nh)
   /* return pointer to array of pointers to rows */   {
   return m;     long *v;
 }     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
 /****************** free_imatrix *************************/    return v-nl+NR_END;
 void free_imatrix(m,nrl,nrh,ncl,nch)  }
       int **m;  
       long nch,ncl,nrh,nrl;   /******************free lvector **************************/
      /* free an int matrix allocated by imatrix() */   void free_lvector(long *v, long nl, long nh)
 {   {
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG) (m+nrl-NR_END));   }
 }   
   /******************* imatrix *******************************/
 /******************* matrix *******************************/  int **imatrix(long nrl, long nrh, long ncl, long nch)
 double **matrix(long nrl, long nrh, long ncl, long nch)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 {  {
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
   double **m;    int **m;
    
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    /* allocate pointers to rows */
   if (!m) nrerror("allocation failure 1 in matrix()");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   m += NR_END;    if (!m) nrerror("allocation failure 1 in matrix()");
   m -= nrl;    m += NR_END;
     m -= nrl;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));   
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   
   m[nrl] += NR_END;    /* allocate rows and set pointers to them */
   m[nrl] -= ncl;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    m[nrl] += NR_END;
   return m;    m[nrl] -= ncl;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    
    */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 }   
     /* return pointer to array of pointers to rows */
 /*************************free matrix ************************/    return m;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  }
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /****************** free_imatrix *************************/
   free((FREE_ARG)(m+nrl-NR_END));  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl;
 /******************* ma3x *******************************/       /* free an int matrix allocated by imatrix() */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  {
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END));
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    free((FREE_ARG) (m+nrl-NR_END));
   double ***m;  }
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /******************* matrix *******************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  double **matrix(long nrl, long nrh, long ncl, long nch)
   m += NR_END;  {
   m -= nrl;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   m[nrl] += NR_END;    if (!m) nrerror("allocation failure 1 in matrix()");
   m[nrl] -= ncl;    m += NR_END;
     m -= nrl;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    m[nrl] += NR_END;
   m[nrl][ncl] += NR_END;    m[nrl] -= ncl;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     m[nrl][j]=m[nrl][j-1]+nlay;    return m;
       /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   for (i=nrl+1; i<=nrh; i++) {     */
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  }
     for (j=ncl+1; j<=nch; j++)   
       m[i][j]=m[i][j-1]+nlay;  /*************************free matrix ************************/
   }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   return m;   {
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])    free((FREE_ARG)(m[nrl]+ncl-NR_END));
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)    free((FREE_ARG)(m+nrl-NR_END));
   */  }
 }  
   /******************* ma3x *******************************/
 /*************************free ma3x ************************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    double ***m;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*************** function subdirf ***********/    m -= nrl;
 char *subdirf(char fileres[])  
 {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* Caution optionfilefiname is hidden */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   strcpy(tmpout,optionfilefiname);    m[nrl] += NR_END;
   strcat(tmpout,"/"); /* Add to the right */    m[nrl] -= ncl;
   strcat(tmpout,fileres);  
   return tmpout;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /*************** function subdirf2 ***********/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 char *subdirf2(char fileres[], char *preop)    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
       for (j=ncl+1; j<=nch; j++)
   /* Caution optionfilefiname is hidden */      m[nrl][j]=m[nrl][j-1]+nlay;
   strcpy(tmpout,optionfilefiname);   
   strcat(tmpout,"/");    for (i=nrl+1; i<=nrh; i++) {
   strcat(tmpout,preop);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   strcat(tmpout,fileres);      for (j=ncl+1; j<=nch; j++)
   return tmpout;        m[i][j]=m[i][j-1]+nlay;
 }    }
     return m;
 /*************** function subdirf3 ***********/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 char *subdirf3(char fileres[], char *preop, char *preop2)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
     }
   /* Caution optionfilefiname is hidden */  
   strcpy(tmpout,optionfilefiname);  /*************************free ma3x ************************/
   strcat(tmpout,"/");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   strcat(tmpout,preop);  {
   strcat(tmpout,preop2);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   strcat(tmpout,fileres);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   return tmpout;    free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /***************** f1dim *************************/  /*************** function subdirf ***********/
 extern int ncom;   char *subdirf(char fileres[])
 extern double *pcom,*xicom;  {
 extern double (*nrfunc)(double []);     /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
 double f1dim(double x)     strcat(tmpout,"/"); /* Add to the right */
 {     strcat(tmpout,fileres);
   int j;     return tmpout;
   double f;  }
   double *xt;   
    /*************** function subdirf2 ***********/
   xt=vector(1,ncom);   char *subdirf2(char fileres[], char *preop)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   {
   f=(*nrfunc)(xt);    
   free_vector(xt,1,ncom);     /* Caution optionfilefiname is hidden */
   return f;     strcpy(tmpout,optionfilefiname);
 }     strcat(tmpout,"/");
     strcat(tmpout,preop);
 /*****************brent *************************/    strcat(tmpout,fileres);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     return tmpout;
 {   }
   int iter;   
   double a,b,d,etemp;  /*************** function subdirf3 ***********/
   double fu,fv,fw,fx;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double ftemp;  {
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;     /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   a=(ax < cx ? ax : cx);     strcat(tmpout,"/");
   b=(ax > cx ? ax : cx);     strcat(tmpout,preop);
   x=w=v=bx;     strcat(tmpout,preop2);
   fw=fv=fx=(*f)(x);     strcat(tmpout,fileres);
   for (iter=1;iter<=ITMAX;iter++) {     return tmpout;
     xm=0.5*(a+b);   }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /***************** f1dim *************************/
     printf(".");fflush(stdout);  extern int ncom;
     fprintf(ficlog,".");fflush(ficlog);  extern double *pcom,*xicom;
 #ifdef DEBUG  extern double (*nrfunc)(double []);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);   
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double f1dim(double x)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    int j;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     double f;
       *xmin=x;     double *xt;
       return fx;    
     }     xt=vector(1,ncom);
     ftemp=fu;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
     if (fabs(e) > tol1) {     f=(*nrfunc)(xt);
       r=(x-w)*(fx-fv);     free_vector(xt,1,ncom);
       q=(x-v)*(fx-fw);     return f;
       p=(x-v)*q-(x-w)*r;   }
       q=2.0*(q-r);   
       if (q > 0.0) p = -p;   /*****************brent *************************/
       q=fabs(q);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
       etemp=e;   {
       e=d;     int iter;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     double a,b,d,etemp;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     double fu,fv,fw,fx;
       else {     double ftemp;
         d=p/q;     double p,q,r,tol1,tol2,u,v,w,x,xm;
         u=x+d;     double e=0.0;
         if (u-a < tol2 || b-u < tol2)    
           d=SIGN(tol1,xm-x);     a=(ax < cx ? ax : cx);
       }     b=(ax > cx ? ax : cx);
     } else {     x=w=v=bx;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     fw=fv=fx=(*f)(x);
     }     for (iter=1;iter<=ITMAX;iter++) {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       xm=0.5*(a+b);
     fu=(*f)(u);       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     if (fu <= fx) {       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       if (u >= x) a=x; else b=x;       printf(".");fflush(stdout);
       SHFT(v,w,x,u)       fprintf(ficlog,".");fflush(ficlog);
         SHFT(fv,fw,fx,fu)   #ifdef DEBUG
         } else {       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           if (u < x) a=u; else b=u;       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           if (fu <= fw || w == x) {       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
             v=w;   #endif
             w=u;       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
             fv=fw;         *xmin=x;
             fw=fu;         return fx;
           } else if (fu <= fv || v == x || v == w) {       }
             v=u;       ftemp=fu;
             fv=fu;       if (fabs(e) > tol1) {
           }         r=(x-w)*(fx-fv);
         }         q=(x-v)*(fx-fw);
   }         p=(x-v)*q-(x-w)*r;
   nrerror("Too many iterations in brent");         q=2.0*(q-r);
   *xmin=x;         if (q > 0.0) p = -p;
   return fx;         q=fabs(q);
 }         etemp=e;
         e=d;
 /****************** mnbrak ***********************/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
           d=CGOLD*(e=(x >= xm ? a-x : b-x));
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,         else {
             double (*func)(double))           d=p/q;
 {           u=x+d;
   double ulim,u,r,q, dum;          if (u-a < tol2 || b-u < tol2)
   double fu;             d=SIGN(tol1,xm-x);
          }
   *fa=(*func)(*ax);       } else {
   *fb=(*func)(*bx);         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   if (*fb > *fa) {       }
     SHFT(dum,*ax,*bx,dum)       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
       SHFT(dum,*fb,*fa,dum)       fu=(*f)(u);
       }       if (fu <= fx) {
   *cx=(*bx)+GOLD*(*bx-*ax);         if (u >= x) a=x; else b=x;
   *fc=(*func)(*cx);         SHFT(v,w,x,u)
   while (*fb > *fc) {           SHFT(fv,fw,fx,fu)
     r=(*bx-*ax)*(*fb-*fc);           } else {
     q=(*bx-*cx)*(*fb-*fa);             if (u < x) a=u; else b=u;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/             if (fu <= fw || w == x) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));               v=w;
     ulim=(*bx)+GLIMIT*(*cx-*bx);               w=u;
     if ((*bx-u)*(u-*cx) > 0.0) {               fv=fw;
       fu=(*func)(u);               fw=fu;
     } else if ((*cx-u)*(u-ulim) > 0.0) {             } else if (fu <= fv || v == x || v == w) {
       fu=(*func)(u);               v=u;
       if (fu < *fc) {               fv=fu;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))             }
           SHFT(*fb,*fc,fu,(*func)(u))           }
           }     }
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     nrerror("Too many iterations in brent");
       u=ulim;     *xmin=x;
       fu=(*func)(u);     return fx;
     } else {   }
       u=(*cx)+GOLD*(*cx-*bx);   
       fu=(*func)(u);   /****************** mnbrak ***********************/
     }   
     SHFT(*ax,*bx,*cx,u)   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
       SHFT(*fa,*fb,*fc,fu)               double (*func)(double))
       }   {
 }     double ulim,u,r,q, dum;
     double fu;
 /*************** linmin ************************/   
     *fa=(*func)(*ax);
 int ncom;     *fb=(*func)(*bx);
 double *pcom,*xicom;    if (*fb > *fa) {
 double (*nrfunc)(double []);       SHFT(dum,*ax,*bx,dum)
          SHFT(dum,*fb,*fa,dum)
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))         }
 {     *cx=(*bx)+GOLD*(*bx-*ax);
   double brent(double ax, double bx, double cx,     *fc=(*func)(*cx);
                double (*f)(double), double tol, double *xmin);     while (*fb > *fc) {
   double f1dim(double x);       r=(*bx-*ax)*(*fb-*fc);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,       q=(*bx-*cx)*(*fb-*fa);
               double *fc, double (*func)(double));       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   int j;         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
   double xx,xmin,bx,ax;       ulim=(*bx)+GLIMIT*(*cx-*bx);
   double fx,fb,fa;      if ((*bx-u)*(u-*cx) > 0.0) {
          fu=(*func)(u);
   ncom=n;       } else if ((*cx-u)*(u-ulim) > 0.0) {
   pcom=vector(1,n);         fu=(*func)(u);
   xicom=vector(1,n);         if (fu < *fc) {
   nrfunc=func;           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
   for (j=1;j<=n;j++) {             SHFT(*fb,*fc,fu,(*func)(u))
     pcom[j]=p[j];             }
     xicom[j]=xi[j];       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
   }         u=ulim;
   ax=0.0;         fu=(*func)(u);
   xx=1.0;       } else {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);         u=(*cx)+GOLD*(*cx-*bx);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);         fu=(*func)(u);
 #ifdef DEBUG      }
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      SHFT(*ax,*bx,*cx,u)
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        SHFT(*fa,*fb,*fc,fu)
 #endif        }
   for (j=1;j<=n;j++) {   }
     xi[j] *= xmin;   
     p[j] += xi[j];   /*************** linmin ************************/
   }   
   free_vector(xicom,1,n);   int ncom;
   free_vector(pcom,1,n);   double *pcom,*xicom;
 }   double (*nrfunc)(double []);
    
 char *asc_diff_time(long time_sec, char ascdiff[])  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
 {  {
   long sec_left, days, hours, minutes;    double brent(double ax, double bx, double cx,
   days = (time_sec) / (60*60*24);                 double (*f)(double), double tol, double *xmin);
   sec_left = (time_sec) % (60*60*24);    double f1dim(double x);
   hours = (sec_left) / (60*60) ;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
   sec_left = (sec_left) %(60*60);                double *fc, double (*func)(double));
   minutes = (sec_left) /60;    int j;
   sec_left = (sec_left) % (60);    double xx,xmin,bx,ax;
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      double fx,fb,fa;
   return ascdiff;   
 }    ncom=n;
     pcom=vector(1,n);
 /*************** powell ************************/    xicom=vector(1,n);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     nrfunc=func;
             double (*func)(double []))     for (j=1;j<=n;j++) {
 {       pcom[j]=p[j];
   void linmin(double p[], double xi[], int n, double *fret,       xicom[j]=xi[j];
               double (*func)(double []));     }
   int i,ibig,j;     ax=0.0;
   double del,t,*pt,*ptt,*xit;    xx=1.0;
   double fp,fptt;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
   double *xits;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   int niterf, itmp;  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   pt=vector(1,n);     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   ptt=vector(1,n);   #endif
   xit=vector(1,n);     for (j=1;j<=n;j++) {
   xits=vector(1,n);       xi[j] *= xmin;
   *fret=(*func)(p);       p[j] += xi[j];
   for (j=1;j<=n;j++) pt[j]=p[j];     }
   for (*iter=1;;++(*iter)) {     free_vector(xicom,1,n);
     fp=(*fret);     free_vector(pcom,1,n);
     ibig=0;   }
     del=0.0;   
     last_time=curr_time;  char *asc_diff_time(long time_sec, char ascdiff[])
     (void) gettimeofday(&curr_time,&tzp);  {
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    long sec_left, days, hours, minutes;
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    days = (time_sec) / (60*60*24);
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    sec_left = (time_sec) % (60*60*24);
     */    hours = (sec_left) / (60*60) ;
    for (i=1;i<=n;i++) {    sec_left = (sec_left) %(60*60);
       printf(" %d %.12f",i, p[i]);    minutes = (sec_left) /60;
       fprintf(ficlog," %d %.12lf",i, p[i]);    sec_left = (sec_left) % (60);
       fprintf(ficrespow," %.12lf", p[i]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     }    return ascdiff;
     printf("\n");  }
     fprintf(ficlog,"\n");  
     fprintf(ficrespow,"\n");fflush(ficrespow);  /*************** powell ************************/
     if(*iter <=3){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       tm = *localtime(&curr_time.tv_sec);              double (*func)(double []))
       strcpy(strcurr,asctime(&tm));  {
 /*       asctime_r(&tm,strcurr); */    void linmin(double p[], double xi[], int n, double *fret,
       forecast_time=curr_time;                 double (*func)(double []));
       itmp = strlen(strcurr);    int i,ibig,j;
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    double del,t,*pt,*ptt,*xit;
         strcurr[itmp-1]='\0';    double fp,fptt;
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    double *xits;
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    int niterf, itmp;
       for(niterf=10;niterf<=30;niterf+=10){  
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    pt=vector(1,n);
         tmf = *localtime(&forecast_time.tv_sec);    ptt=vector(1,n);
 /*      asctime_r(&tmf,strfor); */    xit=vector(1,n);
         strcpy(strfor,asctime(&tmf));    xits=vector(1,n);
         itmp = strlen(strfor);    *fret=(*func)(p);
         if(strfor[itmp-1]=='\n')    for (j=1;j<=n;j++) pt[j]=p[j];
         strfor[itmp-1]='\0';    for (*iter=1;;++(*iter)) {
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      fp=(*fret);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);      ibig=0;
       }      del=0.0;
     }      last_time=curr_time;
     for (i=1;i<=n;i++) {       (void) gettimeofday(&curr_time,&tzp);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fptt=(*fret);       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 #ifdef DEBUG  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       printf("fret=%lf \n",*fret);     for (i=1;i<=n;i++) {
       fprintf(ficlog,"fret=%lf \n",*fret);        printf(" %d %.12f",i, p[i]);
 #endif        fprintf(ficlog," %d %.12lf",i, p[i]);
       printf("%d",i);fflush(stdout);        fprintf(ficrespow," %.12lf", p[i]);
       fprintf(ficlog,"%d",i);fflush(ficlog);      }
       linmin(p,xit,n,fret,func);       printf("\n");
       if (fabs(fptt-(*fret)) > del) {       fprintf(ficlog,"\n");
         del=fabs(fptt-(*fret));       fprintf(ficrespow,"\n");fflush(ficrespow);
         ibig=i;       if(*iter <=3){
       }         tm = *localtime(&curr_time.tv_sec);
 #ifdef DEBUG        strcpy(strcurr,asctime(&tm));
       printf("%d %.12e",i,(*fret));  /*       asctime_r(&tm,strcurr); */
       fprintf(ficlog,"%d %.12e",i,(*fret));        forecast_time=curr_time;
       for (j=1;j<=n;j++) {        itmp = strlen(strcurr);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         printf(" x(%d)=%.12e",j,xit[j]);          strcurr[itmp-1]='\0';
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       for(j=1;j<=n;j++) {        for(niterf=10;niterf<=30;niterf+=10){
         printf(" p=%.12e",p[j]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog," p=%.12e",p[j]);          tmf = *localtime(&forecast_time.tv_sec);
       }  /*      asctime_r(&tmf,strfor); */
       printf("\n");          strcpy(strfor,asctime(&tmf));
       fprintf(ficlog,"\n");          itmp = strlen(strfor);
 #endif          if(strfor[itmp-1]=='\n')
     }           strfor[itmp-1]='\0';
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 #ifdef DEBUG          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       int k[2],l;        }
       k[0]=1;      }
       k[1]=-1;      for (i=1;i<=n;i++) {
       printf("Max: %.12e",(*func)(p));        for (j=1;j<=n;j++) xit[j]=xi[j][i];
       fprintf(ficlog,"Max: %.12e",(*func)(p));        fptt=(*fret);
       for (j=1;j<=n;j++) {  #ifdef DEBUG
         printf(" %.12e",p[j]);        printf("fret=%lf \n",*fret);
         fprintf(ficlog," %.12e",p[j]);        fprintf(ficlog,"fret=%lf \n",*fret);
       }  #endif
       printf("\n");        printf("%d",i);fflush(stdout);
       fprintf(ficlog,"\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(l=0;l<=1;l++) {        linmin(p,xit,n,fret,func);
         for (j=1;j<=n;j++) {        if (fabs(fptt-(*fret)) > del) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          del=fabs(fptt-(*fret));
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          ibig=i;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        }
         }  #ifdef DEBUG
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
 #endif          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       free_vector(xit,1,n);         }
       free_vector(xits,1,n);         for(j=1;j<=n;j++) {
       free_vector(ptt,1,n);           printf(" p=%.12e",p[j]);
       free_vector(pt,1,n);           fprintf(ficlog," p=%.12e",p[j]);
       return;         }
     }         printf("\n");
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");         fprintf(ficlog,"\n");
     for (j=1;j<=n;j++) {   #endif
       ptt[j]=2.0*p[j]-pt[j];       }
       xit[j]=p[j]-pt[j];       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       pt[j]=p[j];   #ifdef DEBUG
     }         int k[2],l;
     fptt=(*func)(ptt);         k[0]=1;
     if (fptt < fp) {         k[1]=-1;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);         printf("Max: %.12e",(*func)(p));
       if (t < 0.0) {         fprintf(ficlog,"Max: %.12e",(*func)(p));
         linmin(p,xit,n,fret,func);         for (j=1;j<=n;j++) {
         for (j=1;j<=n;j++) {           printf(" %.12e",p[j]);
           xi[j][ibig]=xi[j][n];           fprintf(ficlog," %.12e",p[j]);
           xi[j][n]=xit[j];         }
         }        printf("\n");
 #ifdef DEBUG        fprintf(ficlog,"\n");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        for(l=0;l<=1;l++) {
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          for (j=1;j<=n;j++) {
         for(j=1;j<=n;j++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           printf(" %.12e",xit[j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           fprintf(ficlog," %.12e",xit[j]);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         printf("\n");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficlog,"\n");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 #endif        }
       }  #endif
     }   
   }   
 }         free_vector(xit,1,n);
         free_vector(xits,1,n);
 /**** Prevalence limit (stable or period prevalence)  ****************/        free_vector(ptt,1,n);
         free_vector(pt,1,n);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        return;
 {      }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
      matrix by transitions matrix until convergence is reached */      for (j=1;j<=n;j++) {
         ptt[j]=2.0*p[j]-pt[j];
   int i, ii,j,k;        xit[j]=p[j]-pt[j];
   double min, max, maxmin, maxmax,sumnew=0.;        pt[j]=p[j];
   double **matprod2();      }
   double **out, cov[NCOVMAX], **pmij();      fptt=(*func)(ptt);
   double **newm;      if (fptt < fp) {
   double agefin, delaymax=50 ; /* Max number of years to converge */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
         if (t < 0.0) {
   for (ii=1;ii<=nlstate+ndeath;ii++)          linmin(p,xit,n,fret,func);
     for (j=1;j<=nlstate+ndeath;j++){          for (j=1;j<=n;j++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);            xi[j][ibig]=xi[j][n];
     }            xi[j][n]=xit[j];
           }
    cov[1]=1.;  #ifdef DEBUG
            printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          for(j=1;j<=n;j++){
     newm=savm;            printf(" %.12e",xit[j]);
     /* Covariates have to be included here again */            fprintf(ficlog," %.12e",xit[j]);
      cov[2]=agefin;          }
             printf("\n");
       for (k=1; k<=cptcovn;k++) {          fprintf(ficlog,"\n");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #endif
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        }
       }      }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /**** Prevalence limit (stable or period prevalence)  ****************/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  {
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
     savm=oldm;  
     oldm=newm;    int i, ii,j,k;
     maxmax=0.;    double min, max, maxmin, maxmax,sumnew=0.;
     for(j=1;j<=nlstate;j++){    double **matprod2();
       min=1.;    double **out, cov[NCOVMAX], **pmij();
       max=0.;    double **newm;
       for(i=1; i<=nlstate; i++) {    double agefin, delaymax=50 ; /* Max number of years to converge */
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (ii=1;ii<=nlstate+ndeath;ii++)
         prlim[i][j]= newm[i][j]/(1-sumnew);      for (j=1;j<=nlstate+ndeath;j++){
         max=FMAX(max,prlim[i][j]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         min=FMIN(min,prlim[i][j]);      }
       }  
       maxmin=max-min;     cov[1]=1.;
       maxmax=FMAX(maxmax,maxmin);   
     }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if(maxmax < ftolpl){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       return prlim;      newm=savm;
     }      /* Covariates have to be included here again */
   }       cov[2]=agefin;
 }   
         for (k=1; k<=cptcovn;k++) {
 /*************** transition probabilities ***************/           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        }
 {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double s1, s2;        for (k=1; k<=cptcovprod;k++)
   /*double t34;*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,j,j1, nc, ii, jj;  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(i=1; i<= nlstate; i++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       for(j=1; j<i;j++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           /*s2 += param[i][j][nc]*cov[nc];*/  
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      savm=oldm;
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */      oldm=newm;
         }      maxmax=0.;
         ps[i][j]=s2;      for(j=1;j<=nlstate;j++){
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */        min=1.;
       }        max=0.;
       for(j=i+1; j<=nlstate+ndeath;j++){        for(i=1; i<=nlstate; i++) {
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          sumnew=0;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          max=FMAX(max,prlim[i][j]);
         ps[i][j]=s2;          min=FMIN(min,prlim[i][j]);
       }        }
     }        maxmin=max-min;
     /*ps[3][2]=1;*/        maxmax=FMAX(maxmax,maxmin);
           }
     for(i=1; i<= nlstate; i++){      if(maxmax < ftolpl){
       s1=0;        return prlim;
       for(j=1; j<i; j++)      }
         s1+=exp(ps[i][j]);    }
       for(j=i+1; j<=nlstate+ndeath; j++)  }
         s1+=exp(ps[i][j]);  
       ps[i][i]=1./(s1+1.);  /*************** transition probabilities ***************/
       for(j=1; j<i; j++)  
         ps[i][j]= exp(ps[i][j])*ps[i][i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for(j=i+1; j<=nlstate+ndeath; j++)  {
         ps[i][j]= exp(ps[i][j])*ps[i][i];    double s1, s2;
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    /*double t34;*/
     } /* end i */    int i,j,j1, nc, ii, jj;
       
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for(i=1; i<= nlstate; i++){
       for(jj=1; jj<= nlstate+ndeath; jj++){        for(j=1; j<i;j++){
         ps[ii][jj]=0;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         ps[ii][ii]=1;            /*s2 += param[i][j][nc]*cov[nc];*/
       }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
               }
           ps[i][j]=s2;
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        }
 /*         printf("ddd %lf ",ps[ii][jj]); */        for(j=i+1; j<=nlstate+ndeath;j++){
 /*       } */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /*       printf("\n "); */            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /*        } */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 /*        printf("\n ");printf("%lf ",cov[2]); */          }
        /*          ps[i][j]=s2;
       for(i=1; i<= npar; i++) printf("%f ",x[i]);        }
       goto end;*/      }
     return ps;      /*ps[3][2]=1;*/
 }     
       for(i=1; i<= nlstate; i++){
 /**************** Product of 2 matrices ******************/        s1=0;
         for(j=1; j<i; j++)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          s1+=exp(ps[i][j]);
 {        for(j=i+1; j<=nlstate+ndeath; j++)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          s1+=exp(ps[i][j]);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        ps[i][i]=1./(s1+1.);
   /* in, b, out are matrice of pointers which should have been initialized         for(j=1; j<i; j++)
      before: only the contents of out is modified. The function returns          ps[i][j]= exp(ps[i][j])*ps[i][i];
      a pointer to pointers identical to out */        for(j=i+1; j<=nlstate+ndeath; j++)
   long i, j, k;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(i=nrl; i<= nrh; i++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     for(k=ncolol; k<=ncoloh; k++)      } /* end i */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)     
         out[i][k] +=in[i][j]*b[j][k];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
   return out;          ps[ii][jj]=0;
 }          ps[ii][ii]=1;
         }
       }
 /************* Higher Matrix Product ***************/     
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 {  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /* Computes the transition matrix starting at age 'age' over   /*         printf("ddd %lf ",ps[ii][jj]); */
      'nhstepm*hstepm*stepm' months (i.e. until  /*       } */
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   /*       printf("\n "); */
      nhstepm*hstepm matrices.   /*        } */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step   /*        printf("\n ");printf("%lf ",cov[2]); */
      (typically every 2 years instead of every month which is too big          /*
      for the memory).        for(i=1; i<= npar; i++) printf("%f ",x[i]);
      Model is determined by parameters x and covariates have to be         goto end;*/
      included manually here.       return ps;
   }
      */  
   /**************** Product of 2 matrices ******************/
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double **newm;  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   /* Hstepm could be zero and should return the unit matrix */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=nlstate+ndeath;i++)    /* in, b, out are matrice of pointers which should have been initialized
     for (j=1;j<=nlstate+ndeath;j++){       before: only the contents of out is modified. The function returns
       oldm[i][j]=(i==j ? 1.0 : 0.0);       a pointer to pointers identical to out */
       po[i][j][0]=(i==j ? 1.0 : 0.0);    long i, j, k;
     }    for(i=nrl; i<= nrh; i++)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for(k=ncolol; k<=ncoloh; k++)
   for(h=1; h <=nhstepm; h++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for(d=1; d <=hstepm; d++){          out[i][k] +=in[i][j]*b[j][k];
       newm=savm;  
       /* Covariates have to be included here again */    return out;
       cov[1]=1.;  }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  /************* Higher Matrix Product ***************/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     /* Computes the transition matrix starting at age 'age' over
        'nhstepm*hstepm*stepm' months (i.e. until
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/       nhstepm*hstepm matrices.
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        Output is stored in matrix po[i][j][h] for h every 'hstepm' step
                    pmij(pmmij,cov,ncovmodel,x,nlstate));       (typically every 2 years instead of every month which is too big
       savm=oldm;       for the memory).
       oldm=newm;       Model is determined by parameters x and covariates have to be
     }       included manually here.
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {       */
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    int i, j, d, h, k;
          */    double **out, cov[NCOVMAX];
       }    double **newm;
   } /* end h */  
   return po;    /* Hstepm could be zero and should return the unit matrix */
 }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 /*************** log-likelihood *************/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 double func( double *x)      }
 {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, ii, j, k, mi, d, kk;    for(h=1; h <=nhstepm; h++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(d=1; d <=hstepm; d++){
   double **out;        newm=savm;
   double sw; /* Sum of weights */        /* Covariates have to be included here again */
   double lli; /* Individual log likelihood */        cov[1]=1.;
   int s1, s2;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double bbh, survp;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   long ipmx;        for (k=1; k<=cptcovage;k++)
   /*extern weight */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   /* We are differentiating ll according to initial status */        for (k=1; k<=cptcovprod;k++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /*for(i=1;i<imx;i++)   
     printf(" %d\n",s[4][i]);  
   */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   cov[1]=1.;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
   for(k=1; k<=nlstate; k++) ll[k]=0.;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   if(mle==1){        oldm=newm;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      for(i=1; i<=nlstate+ndeath; i++)
       for(mi=1; mi<= wav[i]-1; mi++){        for(j=1;j<=nlstate+ndeath;j++) {
         for (ii=1;ii<=nlstate+ndeath;ii++)          po[i][j][h]=newm[i][j];
           for (j=1;j<=nlstate+ndeath;j++){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        }
           }    } /* end h */
         for(d=0; d<dh[mi][i]; d++){    return po;
           newm=savm;  }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** log-likelihood *************/
           }  double func( double *x)
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int i, ii, j, k, mi, d, kk;
           savm=oldm;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           oldm=newm;    double **out;
         } /* end mult */    double sw; /* Sum of weights */
           double lli; /* Individual log likelihood */
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    int s1, s2;
         /* But now since version 0.9 we anticipate for bias at large stepm.    double bbh, survp;
          * If stepm is larger than one month (smallest stepm) and if the exact delay     long ipmx;
          * (in months) between two waves is not a multiple of stepm, we rounded to     /*extern weight */
          * the nearest (and in case of equal distance, to the lowest) interval but now    /* We are differentiating ll according to initial status */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the    /*for(i=1;i<imx;i++)
          * probability in order to take into account the bias as a fraction of the way      printf(" %d\n",s[4][i]);
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies    */
          * -stepm/2 to stepm/2 .    cov[1]=1.;
          * For stepm=1 the results are the same as for previous versions of Imach.  
          * For stepm > 1 the results are less biased than in previous versions.     for(k=1; k<=nlstate; k++) ll[k]=0.;
          */  
         s1=s[mw[mi][i]][i];    if(mle==1){
         s2=s[mw[mi+1][i]][i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         bbh=(double)bh[mi][i]/(double)stepm;         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         /* bias bh is positive if real duration        for(mi=1; mi<= wav[i]-1; mi++){
          * is higher than the multiple of stepm and negative otherwise.          for (ii=1;ii<=nlstate+ndeath;ii++)
          */            for (j=1;j<=nlstate+ndeath;j++){
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if( s2 > nlstate){               savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /* i.e. if s2 is a death state and if the date of death is known             }
              then the contribution to the likelihood is the probability to           for(d=0; d<dh[mi][i]; d++){
              die between last step unit time and current  step unit time,             newm=savm;
              which is also equal to probability to die before dh             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              minus probability to die before dh-stepm .             for (kk=1; kk<=cptcovage;kk++) {
              In version up to 0.92 likelihood was computed              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         as if date of death was unknown. Death was treated as any other            }
         health state: the date of the interview describes the actual state            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         and not the date of a change in health state. The former idea was                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         to consider that at each interview the state was recorded            savm=oldm;
         (healthy, disable or death) and IMaCh was corrected; but when we            oldm=newm;
         introduced the exact date of death then we should have modified          } /* end mult */
         the contribution of an exact death to the likelihood. This new       
         contribution is smaller and very dependent of the step unit          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         stepm. It is no more the probability to die between last interview          /* But now since version 0.9 we anticipate for bias at large stepm.
         and month of death but the probability to survive from last           * If stepm is larger than one month (smallest stepm) and if the exact delay
         interview up to one month before death multiplied by the           * (in months) between two waves is not a multiple of stepm, we rounded to
         probability to die within a month. Thanks to Chris           * the nearest (and in case of equal distance, to the lowest) interval but now
         Jackson for correcting this bug.  Former versions increased           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         mortality artificially. The bad side is that we add another loop           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         which slows down the processing. The difference can be up to 10%           * probability in order to take into account the bias as a fraction of the way
         lower mortality.           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
           */           * -stepm/2 to stepm/2 .
           lli=log(out[s1][s2] - savm[s1][s2]);           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions.
            */
         } else if  (s2==-2) {          s1=s[mw[mi][i]][i];
           for (j=1,survp=0. ; j<=nlstate; j++)           s2=s[mw[mi+1][i]][i];
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          bbh=(double)bh[mi][i]/(double)stepm;
           /*survp += out[s1][j]; */          /* bias bh is positive if real duration
           lli= log(survp);           * is higher than the multiple of stepm and negative otherwise.
         }           */
                   /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         else if  (s2==-4) {           if( s2 > nlstate){
           for (j=3,survp=0. ; j<=nlstate; j++)              /* i.e. if s2 is a death state and if the date of death is known
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];               then the contribution to the likelihood is the probability to
           lli= log(survp);                die between last step unit time and current  step unit time,
         }                which is also equal to probability to die before dh
                minus probability to die before dh-stepm .
         else if  (s2==-5) {                In version up to 0.92 likelihood was computed
           for (j=1,survp=0. ; j<=2; j++)            as if date of death was unknown. Death was treated as any other
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          health state: the date of the interview describes the actual state
           lli= log(survp);           and not the date of a change in health state. The former idea was
         }           to consider that at each interview the state was recorded
                   (healthy, disable or death) and IMaCh was corrected; but when we
         else{          introduced the exact date of death then we should have modified
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          the contribution of an exact death to the likelihood. This new
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          contribution is smaller and very dependent of the step unit
         }           stepm. It is no more the probability to die between last interview
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          and month of death but the probability to survive from last
         /*if(lli ==000.0)*/          interview up to one month before death multiplied by the
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          probability to die within a month. Thanks to Chris
         ipmx +=1;          Jackson for correcting this bug.  Former versions increased
         sw += weight[i];          mortality artificially. The bad side is that we add another loop
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          which slows down the processing. The difference can be up to 10%
       } /* end of wave */          lower mortality.
     } /* end of individual */            */
   }  else if(mle==2){            lli=log(out[s1][s2] - savm[s1][s2]);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){          } else if  (s2==-2) {
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (j=1,survp=0. ; j<=nlstate; j++)
           for (j=1;j<=nlstate+ndeath;j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            /*survp += out[s1][j]; */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            lli= log(survp);
           }          }
         for(d=0; d<=dh[mi][i]; d++){         
           newm=savm;          else if  (s2==-4) {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=3,survp=0. ; j<=nlstate; j++)  
           for (kk=1; kk<=cptcovage;kk++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            lli= log(survp);
           }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          else if  (s2==-5) {
           savm=oldm;            for (j=1,survp=0. ; j<=2; j++)  
           oldm=newm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         } /* end mult */            lli= log(survp);
                 }
         s1=s[mw[mi][i]][i];         
         s2=s[mw[mi+1][i]][i];          else{
         bbh=(double)bh[mi][i]/(double)stepm;             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         ipmx +=1;          }
         sw += weight[i];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          /*if(lli ==000.0)*/
       } /* end of wave */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     } /* end of individual */          ipmx +=1;
   }  else if(mle==3){  /* exponential inter-extrapolation */          sw += weight[i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } /* end of wave */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end of individual */
         for (ii=1;ii<=nlstate+ndeath;ii++)    }  else if(mle==2){
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<=dh[mi][i]; d++){
           }            newm=savm;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            for (kk=1; kk<=cptcovage;kk++) {
           savm=oldm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           oldm=newm;            }
         } /* end mult */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         s1=s[mw[mi][i]][i];            savm=oldm;
         s2=s[mw[mi+1][i]][i];            oldm=newm;
         bbh=(double)bh[mi][i]/(double)stepm;           } /* end mult */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */       
         ipmx +=1;          s1=s[mw[mi][i]][i];
         sw += weight[i];          s2=s[mw[mi+1][i]][i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          bbh=(double)bh[mi][i]/(double)stepm;
       } /* end of wave */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     } /* end of individual */          ipmx +=1;
   }else if (mle==4){  /* ml=4 no inter-extrapolation */          sw += weight[i];
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        } /* end of wave */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end of individual */
         for (ii=1;ii<=nlstate+ndeath;ii++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           for (j=1;j<=nlstate+ndeath;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(d=0; d<dh[mi][i]; d++){            for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {            }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
                     cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            for (kk=1; kk<=cptcovage;kk++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           savm=oldm;            }
           oldm=newm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         } /* end mult */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   savm=oldm;
         s1=s[mw[mi][i]][i];            oldm=newm;
         s2=s[mw[mi+1][i]][i];          } /* end mult */
         if( s2 > nlstate){        
           lli=log(out[s1][s2] - savm[s1][s2]);          s1=s[mw[mi][i]][i];
         }else{          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          bbh=(double)bh[mi][i]/(double)stepm;
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         ipmx +=1;          ipmx +=1;
         sw += weight[i];          sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        } /* end of wave */
       } /* end of wave */      } /* end of individual */
     } /* end of individual */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for(mi=1; mi<= wav[i]-1; mi++){
       for(mi=1; mi<= wav[i]-1; mi++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (ii=1;ii<=nlstate+ndeath;ii++)            for (j=1;j<=nlstate+ndeath;j++){
           for (j=1;j<=nlstate+ndeath;j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            }
           }          for(d=0; d<dh[mi][i]; d++){
         for(d=0; d<dh[mi][i]; d++){            newm=savm;
           newm=savm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (kk=1; kk<=cptcovage;kk++) {
           for (kk=1; kk<=cptcovage;kk++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            }
           }         
                     out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            savm=oldm;
           savm=oldm;            oldm=newm;
           oldm=newm;          } /* end mult */
         } /* end mult */       
                 s1=s[mw[mi][i]][i];
         s1=s[mw[mi][i]][i];          s2=s[mw[mi+1][i]][i];
         s2=s[mw[mi+1][i]][i];          if( s2 > nlstate){
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            lli=log(out[s1][s2] - savm[s1][s2]);
         ipmx +=1;          }else{
         sw += weight[i];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          ipmx +=1;
       } /* end of wave */          sw += weight[i];
     } /* end of individual */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   } /* End of if */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        } /* end of wave */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      } /* end of individual */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   return -l;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /*************** log-likelihood *************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 double funcone( double *x)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Same as likeli but slower because of a lot of printf and if */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, ii, j, k, mi, d, kk;            }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          for(d=0; d<dh[mi][i]; d++){
   double **out;            newm=savm;
   double lli; /* Individual log likelihood */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double llt;            for (kk=1; kk<=cptcovage;kk++) {
   int s1, s2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double bbh, survp;            }
   /*extern weight */         
   /* We are differentiating ll according to initial status */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*for(i=1;i<imx;i++)             savm=oldm;
     printf(" %d\n",s[4][i]);            oldm=newm;
   */          } /* end mult */
   cov[1]=1.;       
           s1=s[mw[mi][i]][i];
   for(k=1; k<=nlstate; k++) ll[k]=0.;          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ipmx +=1;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          sw += weight[i];
     for(mi=1; mi<= wav[i]-1; mi++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (ii=1;ii<=nlstate+ndeath;ii++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for (j=1;j<=nlstate+ndeath;j++){        } /* end of wave */
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } /* end of individual */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(d=0; d<dh[mi][i]; d++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         newm=savm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return -l;
         for (kk=1; kk<=cptcovage;kk++) {  }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  /*************** log-likelihood *************/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double funcone( double *x)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    /* Same as likeli but slower because of a lot of printf and if */
         oldm=newm;    int i, ii, j, k, mi, d, kk;
       } /* end mult */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           double **out;
       s1=s[mw[mi][i]][i];    double lli; /* Individual log likelihood */
       s2=s[mw[mi+1][i]][i];    double llt;
       bbh=(double)bh[mi][i]/(double)stepm;     int s1, s2;
       /* bias is positive if real duration    double bbh, survp;
        * is higher than the multiple of stepm and negative otherwise.    /*extern weight */
        */    /* We are differentiating ll according to initial status */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         lli=log(out[s1][s2] - savm[s1][s2]);    /*for(i=1;i<imx;i++)
       } else if  (s2==-2) {      printf(" %d\n",s[4][i]);
         for (j=1,survp=0. ; j<=nlstate; j++)     */
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    cov[1]=1.;
         lli= log(survp);  
       }else if (mle==1){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  
       } else if(mle==2){    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       } else if(mle==3){  /* exponential inter-extrapolation */      for(mi=1; mi<= wav[i]-1; mi++){
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */        for (ii=1;ii<=nlstate+ndeath;ii++)
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          for (j=1;j<=nlstate+ndeath;j++){
         lli=log(out[s1][s2]); /* Original formula */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         lli=log(out[s1][s2]); /* Original formula */          }
       } /* End of if */        for(d=0; d<dh[mi][i]; d++){
       ipmx +=1;          newm=savm;
       sw += weight[i];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          for (kk=1; kk<=cptcovage;kk++) {
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if(globpr){          }
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  %11.6f %11.6f %11.6f ", \                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          savm=oldm;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          oldm=newm;
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){        } /* end mult */
           llt +=ll[k]*gipmx/gsw;       
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);        s1=s[mw[mi][i]][i];
         }        s2=s[mw[mi+1][i]][i];
         fprintf(ficresilk," %10.6f\n", -llt);        bbh=(double)bh[mi][i]/(double)stepm;
       }        /* bias is positive if real duration
     } /* end of wave */         * is higher than the multiple of stepm and negative otherwise.
   } /* end of individual */         */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          lli=log(out[s1][s2] - savm[s1][s2]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        } else if  (s2==-2) {
   if(globpr==0){ /* First time we count the contributions and weights */          for (j=1,survp=0. ; j<=nlstate; j++)
     gipmx=ipmx;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gsw=sw;          lli= log(survp);
   }        }else if (mle==1){
   return -l;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 /*************** function likelione ***********/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))        } else if (mle==4){  /* mle=4 no inter-extrapolation */
 {          lli=log(out[s1][s2]); /* Original formula */
   /* This routine should help understanding what is done with         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
      the selection of individuals/waves and          lli=log(out[s1][s2]); /* Original formula */
      to check the exact contribution to the likelihood.        } /* End of if */
      Plotting could be done.        ipmx +=1;
    */        sw += weight[i];
   int k;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   if(*globpri !=0){ /* Just counts and sums, no printings */        if(globpr){
     strcpy(fileresilk,"ilk");           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     strcat(fileresilk,fileres);   %11.6f %11.6f %11.6f ", \
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       printf("Problem with resultfile: %s\n", fileresilk);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     }            llt +=ll[k]*gipmx/gsw;
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");          }
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          fprintf(ficresilk," %10.6f\n", -llt);
     for(k=1; k<=nlstate; k++)         }
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);      } /* end of wave */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   *fretone=(*funcone)(p);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(*globpri !=0){    if(globpr==0){ /* First time we count the contributions and weights */
     fclose(ficresilk);      gipmx=ipmx;
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));      gsw=sw;
     fflush(fichtm);     }
   }     return -l;
   return;  }
 }  
   
   /*************** function likelione ***********/
 /*********** Maximum Likelihood Estimation ***************/  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* This routine should help understanding what is done with
 {       the selection of individuals/waves and
   int i,j, iter;       to check the exact contribution to the likelihood.
   double **xi;       Plotting could be done.
   double fret;     */
   double fretone; /* Only one call to likelihood */    int k;
   /*  char filerespow[FILENAMELENGTH];*/  
   xi=matrix(1,npar,1,npar);    if(*globpri !=0){ /* Just counts and sums, no printings */
   for (i=1;i<=npar;i++)      strcpy(fileresilk,"ilk");
     for (j=1;j<=npar;j++)      strcat(fileresilk,fileres);
       xi[i][j]=(i==j ? 1.0 : 0.0);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        printf("Problem with resultfile: %s\n", fileresilk);
   strcpy(filerespow,"pow");         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   strcat(filerespow,fileres);      }
   if((ficrespow=fopen(filerespow,"w"))==NULL) {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     printf("Problem with resultfile: %s\n", filerespow);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   }      for(k=1; k<=nlstate; k++)
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for (i=1;i<=nlstate;i++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(j=1;j<=nlstate+ndeath;j++)    }
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);  
   fprintf(ficrespow,"\n");    *fretone=(*funcone)(p);
     if(*globpri !=0){
   powell(p,xi,npar,ftol,&iter,&fret,func);      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   free_matrix(xi,1,npar,1,npar);      fflush(fichtm);
   fclose(ficrespow);    }
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return;
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   
 }  /*********** Maximum Likelihood Estimation ***************/
   
 /**** Computes Hessian and covariance matrix ***/  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  {
 {    int i,j, iter;
   double  **a,**y,*x,pd;    double **xi;
   double **hess;    double fret;
   int i, j,jk;    double fretone; /* Only one call to likelihood */
   int *indx;    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    for (i=1;i<=npar;i++)
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);      for (j=1;j<=npar;j++)
   void lubksb(double **a, int npar, int *indx, double b[]) ;        xi[i][j]=(i==j ? 1.0 : 0.0);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   double gompertz(double p[]);    strcpy(filerespow,"pow");
   hess=matrix(1,npar,1,npar);    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
   printf("\nCalculation of the hessian matrix. Wait...\n");      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   for (i=1;i<=npar;i++){    }
     printf("%d",i);fflush(stdout);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fprintf(ficlog,"%d",i);fflush(ficlog);    for (i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate+ndeath;j++)
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficrespow,"\n");
     /*  printf(" %f ",p[i]);  
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/    powell(p,xi,npar,ftol,&iter,&fret,func);
   }  
       free_matrix(xi,1,npar,1,npar);
   for (i=1;i<=npar;i++) {    fclose(ficrespow);
     for (j=1;j<=npar;j++)  {    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       if (j>i) {     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         printf(".%d%d",i,j);fflush(stdout);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  
         hess[i][j]=hessij(p,delti,i,j,func,npar);  }
           
         hess[j][i]=hess[i][j];      /**** Computes Hessian and covariance matrix ***/
         /*printf(" %lf ",hess[i][j]);*/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     }    double  **a,**y,*x,pd;
   }    double **hess;
   printf("\n");    int i, j,jk;
   fprintf(ficlog,"\n");    int *indx;
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
       void lubksb(double **a, int npar, int *indx, double b[]) ;
   a=matrix(1,npar,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   y=matrix(1,npar,1,npar);    double gompertz(double p[]);
   x=vector(1,npar);    hess=matrix(1,npar,1,npar);
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   ludcmp(a,npar,indx,&pd);    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   for (j=1;j<=npar;j++) {      fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1;i<=npar;i++) x[i]=0;     
     x[j]=1;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     lubksb(a,npar,indx,x);     
     for (i=1;i<=npar;i++){       /*  printf(" %f ",p[i]);
       matcov[i][j]=x[i];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }    }
   }   
     for (i=1;i<=npar;i++) {
   printf("\n#Hessian matrix#\n");      for (j=1;j<=npar;j++)  {
   fprintf(ficlog,"\n#Hessian matrix#\n");        if (j>i) {
   for (i=1;i<=npar;i++) {           printf(".%d%d",i,j);fflush(stdout);
     for (j=1;j<=npar;j++) {           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       printf("%.3e ",hess[i][j]);          hess[i][j]=hessij(p,delti,i,j,func,npar);
       fprintf(ficlog,"%.3e ",hess[i][j]);         
     }          hess[j][i]=hess[i][j];    
     printf("\n");          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficlog,"\n");        }
   }      }
     }
   /* Recompute Inverse */    printf("\n");
   for (i=1;i<=npar;i++)    fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   /*  printf("\n#Hessian matrix recomputed#\n");   
     a=matrix(1,npar,1,npar);
   for (j=1;j<=npar;j++) {    y=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++) x[i]=0;    x=vector(1,npar);
     x[j]=1;    indx=ivector(1,npar);
     lubksb(a,npar,indx,x);    for (i=1;i<=npar;i++)
     for (i=1;i<=npar;i++){       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       y[i][j]=x[i];    ludcmp(a,npar,indx,&pd);
       printf("%.3e ",y[i][j]);  
       fprintf(ficlog,"%.3e ",y[i][j]);    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
     printf("\n");      x[j]=1;
     fprintf(ficlog,"\n");      lubksb(a,npar,indx,x);
   }      for (i=1;i<=npar;i++){
   */        matcov[i][j]=x[i];
       }
   free_matrix(a,1,npar,1,npar);    }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    printf("\n#Hessian matrix#\n");
   free_ivector(indx,1,npar);    fprintf(ficlog,"\n#Hessian matrix#\n");
   free_matrix(hess,1,npar,1,npar);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++) {
         printf("%.3e ",hess[i][j]);
 }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
 /*************** hessian matrix ****************/      printf("\n");
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)      fprintf(ficlog,"\n");
 {    }
   int i;  
   int l=1, lmax=20;    /* Recompute Inverse */
   double k1,k2;    for (i=1;i<=npar;i++)
   double p2[NPARMAX+1];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double res;    ludcmp(a,npar,indx,&pd);
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;    /*  printf("\n#Hessian matrix recomputed#\n");
   int k=0,kmax=10;  
   double l1;    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   fx=func(x);      x[j]=1;
   for (i=1;i<=npar;i++) p2[i]=x[i];      lubksb(a,npar,indx,x);
   for(l=0 ; l <=lmax; l++){      for (i=1;i<=npar;i++){
     l1=pow(10,l);        y[i][j]=x[i];
     delts=delt;        printf("%.3e ",y[i][j]);
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"%.3e ",y[i][j]);
       delt = delta*(l1*k);      }
       p2[theta]=x[theta] +delt;      printf("\n");
       k1=func(p2)-fx;      fprintf(ficlog,"\n");
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;    */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    free_matrix(a,1,npar,1,npar);
           free_matrix(y,1,npar,1,npar);
 #ifdef DEBUG    free_vector(x,1,npar);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free_ivector(indx,1,npar);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free_matrix(hess,1,npar,1,npar);
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  }
         k=kmax;  
       }  /*************** hessian matrix ****************/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         k=kmax; l=lmax*10.;  {
       }    int i;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     int l=1, lmax=20;
         delts=delt;    double k1,k2;
       }    double p2[NPARMAX+1];
     }    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   delti[theta]=delts;    double fx;
   return res;     int k=0,kmax=10;
       double l1;
 }  
     fx=func(x);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    for (i=1;i<=npar;i++) p2[i]=x[i];
 {    for(l=0 ; l <=lmax; l++){
   int i;      l1=pow(10,l);
   int l=1, l1, lmax=20;      delts=delt;
   double k1,k2,k3,k4,res,fx;      for(k=1 ; k <kmax; k=k+1){
   double p2[NPARMAX+1];        delt = delta*(l1*k);
   int k;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   fx=func(x);        p2[theta]=x[theta]-delt;
   for (k=1; k<=2; k++) {        k2=func(p2)-fx;
     for (i=1;i<=npar;i++) p2[i]=x[i];        /*res= (k1-2.0*fx+k2)/delt/delt; */
     p2[thetai]=x[thetai]+delti[thetai]/k;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       
     k1=func(p2)-fx;  #ifdef DEBUG
           printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k2=func(p2)-fx;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     p2[thetai]=x[thetai]-delti[thetai]/k;          k=kmax;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        }
     k3=func(p2)-fx;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             k=kmax; l=lmax*10.;
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
     k4=func(p2)-fx;          delts=delt;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    delti[theta]=delts;
 #endif    return res;
   }   
   return res;  }
 }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 /************** Inverse of matrix **************/  {
 void ludcmp(double **a, int n, int *indx, double *d)     int i;
 {     int l=1, l1, lmax=20;
   int i,imax,j,k;     double k1,k2,k3,k4,res,fx;
   double big,dum,sum,temp;     double p2[NPARMAX+1];
   double *vv;     int k;
    
   vv=vector(1,n);     fx=func(x);
   *d=1.0;     for (k=1; k<=2; k++) {
   for (i=1;i<=n;i++) {       for (i=1;i<=npar;i++) p2[i]=x[i];
     big=0.0;       p2[thetai]=x[thetai]+delti[thetai]/k;
     for (j=1;j<=n;j++)       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if ((temp=fabs(a[i][j])) > big) big=temp;       k1=func(p2)-fx;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    
     vv[i]=1.0/big;       p2[thetai]=x[thetai]+delti[thetai]/k;
   }       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for (j=1;j<=n;j++) {       k2=func(p2)-fx;
     for (i=1;i<j;i++) {    
       sum=a[i][j];       p2[thetai]=x[thetai]-delti[thetai]/k;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       a[i][j]=sum;       k3=func(p2)-fx;
     }    
     big=0.0;       p2[thetai]=x[thetai]-delti[thetai]/k;
     for (i=j;i<=n;i++) {       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       sum=a[i][j];       k4=func(p2)-fx;
       for (k=1;k<j;k++)       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         sum -= a[i][k]*a[k][j];   #ifdef DEBUG
       a[i][j]=sum;       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       if ( (dum=vv[i]*fabs(sum)) >= big) {       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         big=dum;   #endif
         imax=i;     }
       }     return res;
     }   }
     if (j != imax) {   
       for (k=1;k<=n;k++) {   /************** Inverse of matrix **************/
         dum=a[imax][k];   void ludcmp(double **a, int n, int *indx, double *d)
         a[imax][k]=a[j][k];   {
         a[j][k]=dum;     int i,imax,j,k;
       }     double big,dum,sum,temp;
       *d = -(*d);     double *vv;
       vv[imax]=vv[j];    
     }     vv=vector(1,n);
     indx[j]=imax;     *d=1.0;
     if (a[j][j] == 0.0) a[j][j]=TINY;     for (i=1;i<=n;i++) {
     if (j != n) {       big=0.0;
       dum=1.0/(a[j][j]);       for (j=1;j<=n;j++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;         if ((temp=fabs(a[i][j])) > big) big=temp;
     }       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
   }       vv[i]=1.0/big;
   free_vector(vv,1,n);  /* Doesn't work */    }
 ;    for (j=1;j<=n;j++) {
 }       for (i=1;i<j;i++) {
         sum=a[i][j];
 void lubksb(double **a, int n, int *indx, double b[])         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
 {         a[i][j]=sum;
   int i,ii=0,ip,j;       }
   double sum;       big=0.0;
        for (i=j;i<=n;i++) {
   for (i=1;i<=n;i++) {         sum=a[i][j];
     ip=indx[i];         for (k=1;k<j;k++)
     sum=b[ip];           sum -= a[i][k]*a[k][j];
     b[ip]=b[i];         a[i][j]=sum;
     if (ii)         if ( (dum=vv[i]*fabs(sum)) >= big) {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           big=dum;
     else if (sum) ii=i;           imax=i;
     b[i]=sum;         }
   }       }
   for (i=n;i>=1;i--) {       if (j != imax) {
     sum=b[i];         for (k=1;k<=n;k++) {
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           dum=a[imax][k];
     b[i]=sum/a[i][i];           a[imax][k]=a[j][k];
   }           a[j][k]=dum;
 }         }
         *d = -(*d);
 void pstamp(FILE *fichier)        vv[imax]=vv[j];
 {      }
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      indx[j]=imax;
 }      if (a[j][j] == 0.0) a[j][j]=TINY;
       if (j != n) {
 /************ Frequencies ********************/        dum=1.0/(a[j][j]);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])        for (i=j+1;i<=n;i++) a[i][j] *= dum;
 {  /* Some frequencies */      }
       }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    free_vector(vv,1,n);  /* Doesn't work */
   int first;  ;
   double ***freq; /* Frequencies */  }
   double *pp, **prop;  
   double pos,posprop, k2, dateintsum=0,k2cpt=0;  void lubksb(double **a, int n, int *indx, double b[])
   char fileresp[FILENAMELENGTH];  {
       int i,ii=0,ip,j;
   pp=vector(1,nlstate);    double sum;
   prop=matrix(1,nlstate,iagemin,iagemax+3);   
   strcpy(fileresp,"p");    for (i=1;i<=n;i++) {
   strcat(fileresp,fileres);      ip=indx[i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {      sum=b[ip];
     printf("Problem with prevalence resultfile: %s\n", fileresp);      b[ip]=b[i];
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);      if (ii)
     exit(0);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
   }      else if (sum) ii=i;
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);      b[i]=sum;
   j1=0;    }
       for (i=n;i>=1;i--) {
   j=cptcoveff;      sum=b[i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       b[i]=sum/a[i][i];
   first=1;    }
   }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  void pstamp(FILE *fichier)
       j1++;  {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         scanf("%d", i);*/  }
       for (i=-5; i<=nlstate+ndeath; i++)    
         for (jk=-5; jk<=nlstate+ndeath; jk++)    /************ Frequencies ********************/
           for(m=iagemin; m <= iagemax+3; m++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             freq[i][jk][m]=0;  {  /* Some frequencies */
    
     for (i=1; i<=nlstate; i++)      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       for(m=iagemin; m <= iagemax+3; m++)    int first;
         prop[i][m]=0;    double ***freq; /* Frequencies */
           double *pp, **prop;
       dateintsum=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       k2cpt=0;    char fileresp[FILENAMELENGTH];
       for (i=1; i<=imx; i++) {   
         bool=1;    pp=vector(1,nlstate);
         if  (cptcovn>0) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
           for (z1=1; z1<=cptcoveff; z1++)     strcpy(fileresp,"p");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     strcat(fileresp,fileres);
               bool=0;    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
         if (bool==1){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           for(m=firstpass; m<=lastpass; m++){      exit(0);
             k2=anint[m][i]+(mint[m][i]/12.);    }
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    j1=0;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;   
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    j=cptcoveff;
               if (m<lastpass) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    first=1;
               }  
                   for(k1=1; k1<=j;k1++){
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {      for(i1=1; i1<=ncodemax[k1];i1++){
                 dateintsum=dateintsum+k2;        j1++;
                 k2cpt++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
               }          scanf("%d", i);*/
               /*}*/        for (i=-5; i<=nlstate+ndeath; i++)  
           }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
       }              freq[i][jk][m]=0;
          
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      for (i=1; i<=nlstate; i++)  
       pstamp(ficresp);        for(m=iagemin; m <= iagemax+3; m++)
       if  (cptcovn>0) {          prop[i][m]=0;
         fprintf(ficresp, "\n#********** Variable ");        
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        dateintsum=0;
         fprintf(ficresp, "**********\n#");        k2cpt=0;
       }        for (i=1; i<=imx; i++) {
       for(i=1; i<=nlstate;i++)           bool=1;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          if  (cptcovn>0) {
       fprintf(ficresp, "\n");            for (z1=1; z1<=cptcoveff; z1++)
                     if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       for(i=iagemin; i <= iagemax+3; i++){                bool=0;
         if(i==iagemax+3){          }
           fprintf(ficlog,"Total");          if (bool==1){
         }else{            for(m=firstpass; m<=lastpass; m++){
           if(first==1){              k2=anint[m][i]+(mint[m][i]/12.);
             first=0;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             printf("See log file for details...\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           fprintf(ficlog,"Age %d", i);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         }                if (m<lastpass) {
         for(jk=1; jk <=nlstate ; jk++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             pp[jk] += freq[jk][m][i];                 }
         }               
         for(jk=1; jk <=nlstate ; jk++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for(m=-1, pos=0; m <=0 ; m++)                  dateintsum=dateintsum+k2;
             pos += freq[jk][m][i];                  k2cpt++;
           if(pp[jk]>=1.e-10){                }
             if(first==1){                /*}*/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            }
             }          }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           }else{         
             if(first==1)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        pstamp(ficresp);
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        if  (cptcovn>0) {
           }          fprintf(ficresp, "\n#********** Variable ");
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(i=1; i<=nlstate;i++)
             pp[jk] += freq[jk][m][i];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         }               fprintf(ficresp, "\n");
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){       
           pos += pp[jk];        for(i=iagemin; i <= iagemax+3; i++){
           posprop += prop[jk][i];          if(i==iagemax+3){
         }            fprintf(ficlog,"Total");
         for(jk=1; jk <=nlstate ; jk++){          }else{
           if(pos>=1.e-5){            if(first==1){
             if(first==1)              first=0;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              printf("See log file for details...\n");
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            }
           }else{            fprintf(ficlog,"Age %d", i);
             if(first==1)          }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           }              pp[jk] += freq[jk][m][i];
           if( i <= iagemax){          }
             if(pos>=1.e-5){          for(jk=1; jk <=nlstate ; jk++){
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);            for(m=-1, pos=0; m <=0 ; m++)
               /*probs[i][jk][j1]= pp[jk]/pos;*/              pos += freq[jk][m][i];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            if(pp[jk]>=1.e-10){
             }              if(first==1){
             else              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);              }
           }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
                       if(first==1)
         for(jk=-1; jk <=nlstate+ndeath; jk++)                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           for(m=-1; m <=nlstate+ndeath; m++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             if(freq[jk][m][i] !=0 ) {            }
             if(first==1)          }
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          for(jk=1; jk <=nlstate ; jk++){
             }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         if(i <= iagemax)              pp[jk] += freq[jk][m][i];
           fprintf(ficresp,"\n");          }      
         if(first==1)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           printf("Others in log...\n");            pos += pp[jk];
         fprintf(ficlog,"\n");            posprop += prop[jk][i];
       }          }
     }          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
   dateintmean=dateintsum/k2cpt;               if(first==1)
                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(ficresp);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);            }else{
   free_vector(pp,1,nlstate);              if(first==1)
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* End of Freq */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }            }
             if( i <= iagemax){
 /************ Prevalence ********************/              if(pos>=1.e-5){
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 {                  /*probs[i][jk][j1]= pp[jk]/pos;*/
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      in each health status at the date of interview (if between dateprev1 and dateprev2).              }
      We still use firstpass and lastpass as another selection.              else
   */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
              }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          }
   double ***freq; /* Frequencies */         
   double *pp, **prop;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double pos,posprop;             for(m=-1; m <=nlstate+ndeath; m++)
   double  y2; /* in fractional years */              if(freq[jk][m][i] !=0 ) {
   int iagemin, iagemax;              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   iagemin= (int) agemin;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   iagemax= (int) agemax;              }
   /*pp=vector(1,nlstate);*/          if(i <= iagemax)
   prop=matrix(1,nlstate,iagemin,iagemax+3);             fprintf(ficresp,"\n");
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/          if(first==1)
   j1=0;            printf("Others in log...\n");
             fprintf(ficlog,"\n");
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
       }
   for(k1=1; k1<=j;k1++){    dateintmean=dateintsum/k2cpt;
     for(i1=1; i1<=ncodemax[k1];i1++){   
       j1++;    fclose(ficresp);
           free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       for (i=1; i<=nlstate; i++)      free_vector(pp,1,nlstate);
         for(m=iagemin; m <= iagemax+3; m++)    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
           prop[i][m]=0.0;    /* End of Freq */
        }
       for (i=1; i<=imx; i++) { /* Each individual */  
         bool=1;  /************ Prevalence ********************/
         if  (cptcovn>0) {  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           for (z1=1; z1<=cptcoveff; z1++)   {  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               bool=0;       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }        We still use firstpass and lastpass as another selection.
         if (bool==1) {     */
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/   
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */    double ***freq; /* Frequencies */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    double *pp, **prop;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    double pos,posprop;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);     double  y2; /* in fractional years */
               if (s[m][i]>0 && s[m][i]<=nlstate) {     int iagemin, iagemax;
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/  
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    iagemin= (int) agemin;
                 prop[s[m][i]][iagemax+3] += weight[i];     iagemax= (int) agemax;
               }     /*pp=vector(1,nlstate);*/
             }    prop=matrix(1,nlstate,iagemin,iagemax+3);
           } /* end selection of waves */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
         }    j1=0;
       }   
       for(i=iagemin; i <= iagemax+3; i++){      j=cptcoveff;
             if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {    
           posprop += prop[jk][i];     for(k1=1; k1<=j;k1++){
         }       for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         for(jk=1; jk <=nlstate ; jk++){            
           if( i <=  iagemax){         for (i=1; i<=nlstate; i++)  
             if(posprop>=1.e-5){           for(m=iagemin; m <= iagemax+3; m++)
               probs[i][jk][j1]= prop[jk][i]/posprop;            prop[i][m]=0.0;
             }        
           }         for (i=1; i<=imx; i++) { /* Each individual */
         }/* end jk */           bool=1;
       }/* end i */           if  (cptcovn>0) {
     } /* end i1 */            for (z1=1; z1<=cptcoveff; z1++)
   } /* end k1 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                   bool=0;
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/          }
   /*free_vector(pp,1,nlstate);*/          if (bool==1) {
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }  /* End of prevalence */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 /************* Waves Concatenation ***************/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
 {                if (s[m][i]>0 && s[m][i]<=nlstate) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      Death is a valid wave (if date is known).                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i                  prop[s[m][i]][iagemax+3] += weight[i];
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]                }
      and mw[mi+1][i]. dh depends on stepm.              }
      */            } /* end selection of waves */
           }
   int i, mi, m;        }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for(i=iagemin; i <= iagemax+3; i++){  
      double sum=0., jmean=0.;*/         
   int first;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   int j, k=0,jk, ju, jl;            posprop += prop[jk][i];
   double sum=0.;          }
   first=0;  
   jmin=1e+5;          for(jk=1; jk <=nlstate ; jk++){    
   jmax=-1;            if( i <=  iagemax){
   jmean=0.;              if(posprop>=1.e-5){
   for(i=1; i<=imx; i++){                probs[i][jk][j1]= prop[jk][i]/posprop;
     mi=0;              }
     m=firstpass;            }
     while(s[m][i] <= nlstate){          }/* end jk */
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        }/* end i */
         mw[++mi][i]=m;      } /* end i1 */
       if(m >=lastpass)    } /* end k1 */
         break;   
       else    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         m++;    /*free_vector(pp,1,nlstate);*/
     }/* end while */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     if (s[m][i] > nlstate){  }  /* End of prevalence */
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  /************* Waves Concatenation ***************/
          /* Only death is a correct wave */  
       mw[mi][i]=m;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     wav[i]=mi;       Death is a valid wave (if date is known).
     if(mi==0){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       nbwarn++;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       if(first==0){       and mw[mi+1][i]. dh depends on stepm.
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);       */
         first=1;  
       }    int i, mi, m;
       if(first==1){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);       double sum=0., jmean=0.;*/
       }    int first;
     } /* end mi==0 */    int j, k=0,jk, ju, jl;
   } /* End individuals */    double sum=0.;
     first=0;
   for(i=1; i<=imx; i++){    jmin=1e+5;
     for(mi=1; mi<wav[i];mi++){    jmax=-1;
       if (stepm <=0)    jmean=0.;
         dh[mi][i]=1;    for(i=1; i<=imx; i++){
       else{      mi=0;
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */      m=firstpass;
           if (agedc[i] < 2*AGESUP) {      while(s[m][i] <= nlstate){
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
             if(j==0) j=1;  /* Survives at least one month after exam */          mw[++mi][i]=m;
             else if(j<0){        if(m >=lastpass)
               nberr++;          break;
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        else
               j=1; /* Temporary Dangerous patch */          m++;
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);      }/* end while */
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      if (s[m][i] > nlstate){
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);        mi++;     /* Death is another wave */
             }        /* if(mi==0)  never been interviewed correctly before death */
             k=k+1;           /* Only death is a correct wave */
             if (j >= jmax){        mw[mi][i]=m;
               jmax=j;      }
               ijmax=i;  
             }      wav[i]=mi;
             if (j <= jmin){      if(mi==0){
               jmin=j;        nbwarn++;
               ijmin=i;        if(first==0){
             }          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             sum=sum+j;          first=1;
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/        }
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        if(first==1){
           }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }        }
         else{      } /* end mi==0 */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    } /* End individuals */
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  
     for(i=1; i<=imx; i++){
           k=k+1;      for(mi=1; mi<wav[i];mi++){
           if (j >= jmax) {        if (stepm <=0)
             jmax=j;          dh[mi][i]=1;
             ijmax=i;        else{
           }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           else if (j <= jmin){            if (agedc[i] < 2*AGESUP) {
             jmin=j;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
             ijmin=i;              if(j==0) j=1;  /* Survives at least one month after exam */
           }              else if(j<0){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                nberr++;
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(j<0){                j=1; /* Temporary Dangerous patch */
             nberr++;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           }              }
           sum=sum+j;              k=k+1;
         }              if (j >= jmax){
         jk= j/stepm;                jmax=j;
         jl= j -jk*stepm;                ijmax=i;
         ju= j -(jk+1)*stepm;              }
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              if (j <= jmin){
           if(jl==0){                jmin=j;
             dh[mi][i]=jk;                ijmin=i;
             bh[mi][i]=0;              }
           }else{ /* We want a negative bias in order to only have interpolation ie              sum=sum+j;
                   * at the price of an extra matrix product in likelihood */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
             dh[mi][i]=jk+1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             bh[mi][i]=ju;            }
           }          }
         }else{          else{
           if(jl <= -ju){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             dh[mi][i]=jk;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
             bh[mi][i]=jl;       /* bias is positive if real duration  
                                  * is higher than the multiple of stepm and negative otherwise.            k=k+1;
                                  */            if (j >= jmax) {
           }              jmax=j;
           else{              ijmax=i;
             dh[mi][i]=jk+1;            }
             bh[mi][i]=ju;            else if (j <= jmin){
           }              jmin=j;
           if(dh[mi][i]==0){              ijmin=i;
             dh[mi][i]=1; /* At least one step */            }
             bh[mi][i]=ju; /* At least one step */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           }            if(j<0){
         } /* end if mle */              nberr++;
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     } /* end wave */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }            }
   jmean=sum/k;            sum=sum+j;
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);          }
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);          jk= j/stepm;
  }          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
 /*********** Tricode ****************************/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 void tricode(int *Tvar, int **nbcode, int imx)            if(jl==0){
 {              dh[mi][i]=jk;
                 bh[mi][i]=0;
   int Ndum[20],ij=1, k, j, i, maxncov=19;            }else{ /* We want a negative bias in order to only have interpolation ie
   int cptcode=0;                    * at the price of an extra matrix product in likelihood */
   cptcoveff=0;               dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   for (k=0; k<maxncov; k++) Ndum[k]=0;            }
   for (k=1; k<=7; k++) ncodemax[k]=0;          }else{
             if(jl <= -ju){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              dh[mi][i]=jk;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum               bh[mi][i]=jl;       /* bias is positive if real duration
                                modality*/                                    * is higher than the multiple of stepm and negative otherwise.
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/                                   */
       Ndum[ij]++; /*store the modality */            }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            else{
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable               dh[mi][i]=jk+1;
                                        Tvar[j]. If V=sex and male is 0 and               bh[mi][i]=ju;
                                        female is 1, then  cptcode=1.*/            }
     }            if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
     for (i=0; i<=cptcode; i++) {              bh[mi][i]=ju; /* At least one step */
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     }            }
           } /* end if mle */
     ij=1;         }
     for (i=1; i<=ncodemax[j]; i++) {      } /* end wave */
       for (k=0; k<= maxncov; k++) {    }
         if (Ndum[k] != 0) {    jmean=sum/k;
           nbcode[Tvar[j]][ij]=k;     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
              }
           ij++;  
         }  /*********** Tricode ****************************/
         if (ij > ncodemax[j]) break;   void tricode(int *Tvar, int **nbcode, int imx)
       }    {
     }    
   }      int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
  for (k=0; k< maxncov; k++) Ndum[k]=0;    cptcoveff=0;
    
  for (i=1; i<=ncovmodel-2; i++) {     for (k=0; k<maxncov; k++) Ndum[k]=0;
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    for (k=1; k<=7; k++) ncodemax[k]=0;
    ij=Tvar[i];  
    Ndum[ij]++;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
  }      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
                                  modality*/
  ij=1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
  for (i=1; i<= maxncov; i++) {        Ndum[ij]++; /*store the modality */
    if((Ndum[i]!=0) && (i<=ncovcol)){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
      Tvaraff[ij]=i; /*For printing */        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
      ij++;                                         Tvar[j]. If V=sex and male is 0 and
    }                                         female is 1, then  cptcode=1.*/
  }      }
    
  cptcoveff=ij-1; /*Number of simple covariates*/      for (i=0; i<=cptcode; i++) {
 }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
 /*********** Health Expectancies ****************/  
       ij=1;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
 {          if (Ndum[k] != 0) {
   /* Health expectancies, no variances */            nbcode[Tvar[j]][ij]=k;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double age, agelim, hf;           
   double ***p3mat;            ij++;
   double eip;          }
           if (ij > ncodemax[j]) break;
   pstamp(ficreseij);        }  
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");      }
   fprintf(ficreseij,"# Age");    }  
   for(i=1; i<=nlstate;i++){  
     for(j=1; j<=nlstate;j++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
       fprintf(ficreseij," e%1d%1d ",i,j);  
     }   for (i=1; i<=ncovmodel-2; i++) {
     fprintf(ficreseij," e%1d. ",i);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   }     ij=Tvar[i];
   fprintf(ficreseij,"\n");     Ndum[ij]++;
    }
     
   if(estepm < stepm){   ij=1;
     printf ("Problem %d lower than %d\n",estepm, stepm);   for (i=1; i<= maxncov; i++) {
   }     if((Ndum[i]!=0) && (i<=ncovcol)){
   else  hstepm=estepm;          Tvaraff[ij]=i; /*For printing */
   /* We compute the life expectancy from trapezoids spaced every estepm months       ij++;
    * This is mainly to measure the difference between two models: for example     }
    * if stepm=24 months pijx are given only every 2 years and by summing them   }
    * we are calculating an estimate of the Life Expectancy assuming a linear    
    * progression in between and thus overestimating or underestimating according   cptcoveff=ij-1; /*Number of simple covariates*/
    * to the curvature of the survival function. If, for the same date, we   }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear   /*********** Health Expectancies ****************/
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* Health expectancies, no variances */
      nhstepm is the number of hstepm from age to agelim     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      nstepm is the number of stepm from age to agelin.     double age, agelim, hf;
      Look at hpijx to understand the reason of that which relies in memory size    double ***p3mat;
      and note for a fixed period like estepm months */    double eip;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    pstamp(ficreseij);
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fprintf(ficreseij,"# Age");
      results. So we changed our mind and took the option of the best precision.    for(i=1; i<=nlstate;i++){
   */      for(j=1; j<=nlstate;j++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */         fprintf(ficreseij," e%1d%1d ",i,j);
       }
   agelim=AGESUP;      fprintf(ficreseij," e%1d. ",i);
   /* nhstepm age range expressed in number of stepm */    }
   nstepm=(int) rint((agelim-age)*YEARM/stepm);     fprintf(ficreseij,"\n");
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */   
   /* if (stepm >= YEARM) hstepm=1;*/   
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    if(estepm < stepm){
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    else  hstepm=estepm;  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* We compute the life expectancy from trapezoids spaced every estepm months
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */     * This is mainly to measure the difference between two models: for example
          * if stepm=24 months pijx are given only every 2 years and by summing them
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);       * we are calculating an estimate of the Life Expectancy assuming a linear
          * progression in between and thus overestimating or underestimating according
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     * to the curvature of the survival function. If, for the same date, we
          * estimate the model with stepm=1 month, we can keep estepm to 24 months
     printf("%d|",(int)age);fflush(stdout);     * to compare the new estimate of Life expectancy with the same linear
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);     * hypothesis. A more precise result, taking into account a more precise
          * curvature will be obtained if estepm is as small as stepm. */
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1; j<=nlstate;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){       nhstepm is the number of hstepm from age to agelim
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;       nstepm is the number of stepm from age to agelin.
                  Look at hpijx to understand the reason of that which relies in memory size
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
     fprintf(ficreseij,"%3.0f",age );       you sum them up and add 1 year (area under the trapezoids) you won't get the same
     for(i=1; i<=nlstate;i++){       results. So we changed our mind and took the option of the best precision.
       eip=0;    */
       for(j=1; j<=nlstate;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         eip +=eij[i][j][(int)age];  
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );    agelim=AGESUP;
       }    /* If stepm=6 months */
       fprintf(ficreseij,"%9.4f", eip );      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     fprintf(ficreseij,"\n");     
       /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   printf("\n");    /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficlog,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }  
     for (age=bage; age<=fage; age ++){
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )  
   
 {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /* Covariances of health expectancies eij and of total life expectancies according     
    to initial status i, ei. .      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   */     
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;      printf("%d|",(int)age);fflush(stdout);
   double age, agelim, hf;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double ***p3matp, ***p3matm, ***varhe;     
   double **dnewm,**doldm;  
   double *xp, *xm;      /* Computing expectancies */
   double **gp, **gm;      for(i=1; i<=nlstate;i++)
   double ***gradg, ***trgradg;        for(j=1; j<=nlstate;j++)
   int theta;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double eip, vip;           
             /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);  
   xp=vector(1,npar);          }
   xm=vector(1,npar);     
   dnewm=matrix(1,nlstate*nlstate,1,npar);      fprintf(ficreseij,"%3.0f",age );
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);      for(i=1; i<=nlstate;i++){
           eip=0;
   pstamp(ficresstdeij);        for(j=1; j<=nlstate;j++){
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");          eip +=eij[i][j][(int)age];
   fprintf(ficresstdeij,"# Age");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   for(i=1; i<=nlstate;i++){        }
     for(j=1; j<=nlstate;j++)        fprintf(ficreseij,"%9.4f", eip );
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);      }
     fprintf(ficresstdeij," e%1d. ",i);      fprintf(ficreseij,"\n");
   }     
   fprintf(ficresstdeij,"\n");    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   pstamp(ficrescveij);    printf("\n");
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");    fprintf(ficlog,"\n");
   fprintf(ficrescveij,"# Age");   
   for(i=1; i<=nlstate;i++)  }
     for(j=1; j<=nlstate;j++){  
       cptj= (j-1)*nlstate+i;  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       for(i2=1; i2<=nlstate;i2++)  
         for(j2=1; j2<=nlstate;j2++){  {
           cptj2= (j2-1)*nlstate+i2;    /* Covariances of health expectancies eij and of total life expectancies according
           if(cptj2 <= cptj)     to initial status i, ei. .
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     }    double age, agelim, hf;
   fprintf(ficrescveij,"\n");    double ***p3matp, ***p3matm, ***varhe;
       double **dnewm,**doldm;
   if(estepm < stepm){    double *xp, *xm;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double **gp, **gm;
   }    double ***gradg, ***trgradg;
   else  hstepm=estepm;       int theta;
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    double eip, vip;
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    * progression in between and thus overestimating or underestimating according    xp=vector(1,npar);
    * to the curvature of the survival function. If, for the same date, we     xm=vector(1,npar);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    dnewm=matrix(1,nlstate*nlstate,1,npar);
    * to compare the new estimate of Life expectancy with the same linear     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
    * hypothesis. A more precise result, taking into account a more precise   
    * curvature will be obtained if estepm is as small as stepm. */    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   /* For example we decided to compute the life expectancy with the smallest unit */    fprintf(ficresstdeij,"# Age");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     for(i=1; i<=nlstate;i++){
      nhstepm is the number of hstepm from age to agelim       for(j=1; j<=nlstate;j++)
      nstepm is the number of stepm from age to agelin.         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficresstdeij," e%1d. ",i);
      and note for a fixed period like estepm months */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficresstdeij,"\n");
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if    pstamp(ficrescveij);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      results. So we changed our mind and took the option of the best precision.    fprintf(ficrescveij,"# Age");
   */    for(i=1; i<=nlstate;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   /* If stepm=6 months */        for(i2=1; i2<=nlstate;i2++)
   /* nhstepm age range expressed in number of stepm */          for(j2=1; j2<=nlstate;j2++){
   agelim=AGESUP;            cptj2= (j2-1)*nlstate+i2;
   nstepm=(int) rint((agelim-age)*YEARM/stepm);             if(cptj2 <= cptj)
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   /* if (stepm >= YEARM) hstepm=1;*/          }
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
       fprintf(ficrescveij,"\n");
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(estepm < stepm){
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);      printf ("Problem %d lower than %d\n",estepm, stepm);
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    }
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    else  hstepm=estepm;  
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   for (age=bage; age<=fage; age ++){      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear
     /* Computed by stepm unit matrices, product of hstepm matrices, stored     * progression in between and thus overestimating or underestimating according
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */     * to the curvature of the survival function. If, for the same date, we
       * estimate the model with stepm=1 month, we can keep estepm to 24 months
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */     * to compare the new estimate of Life expectancy with the same linear
      * hypothesis. A more precise result, taking into account a more precise
     /* Computing  Variances of health expectancies */     * curvature will be obtained if estepm is as small as stepm. */
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to  
        decrease memory allocation */    /* For example we decided to compute the life expectancy with the smallest unit */
     for(theta=1; theta <=npar; theta++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       for(i=1; i<=npar; i++){        nhstepm is the number of hstepm from age to agelim
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       nstepm is the number of stepm from age to agelin.
         xm[i] = x[i] - (i==theta ?delti[theta]:0);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);         survival function given by stepm (the optimization length). Unfortunately it
          means that if the survival funtion is printed only each two years of age and if
       for(j=1; j<= nlstate; j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same
         for(i=1; i<=nlstate; i++){       results. So we changed our mind and took the option of the best precision.
           for(h=0; h<=nhstepm-1; h++){    */
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;  
           }    /* If stepm=6 months */
         }    /* nhstepm age range expressed in number of stepm */
       }    agelim=AGESUP;
          nstepm=(int) rint((agelim-bage)*YEARM/stepm);
       for(ij=1; ij<= nlstate*nlstate; ij++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         for(h=0; h<=nhstepm-1; h++){    /* if (stepm >= YEARM) hstepm=1;*/
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }   
     }/* End theta */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     for(h=0; h<=nhstepm-1; h++)    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for(j=1; j<=nlstate*nlstate;j++)    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for(theta=1; theta <=npar; theta++)    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           trgradg[h][j][theta]=gradg[h][theta][j];  
         for (age=bage; age<=fage; age ++){
   
      for(ij=1;ij<=nlstate*nlstate;ij++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(ji=1;ji<=nlstate*nlstate;ji++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         varhe[ij][ji][(int)age] =0.;   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      printf("%d|",(int)age);fflush(stdout);  
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      /* Computing  Variances of health expectancies */
      for(h=0;h<=nhstepm-1;h++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       for(k=0;k<=nhstepm-1;k++){         decrease memory allocation */
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);      for(theta=1; theta <=npar; theta++){
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);        for(i=1; i<=npar; i++){
         for(ij=1;ij<=nlstate*nlstate;ij++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           for(ji=1;ji<=nlstate*nlstate;ji++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;        }
       }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     /* Computing expectancies */   
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);          for(j=1; j<= nlstate; j++){
     for(i=1; i<=nlstate;i++)          for(i=1; i<=nlstate; i++){
       for(j=1; j<=nlstate;j++)            for(h=0; h<=nhstepm-1; h++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                       }
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          }
         }
         }       
         for(ij=1; ij<= nlstate*nlstate; ij++)
     fprintf(ficresstdeij,"%3.0f",age );          for(h=0; h<=nhstepm-1; h++){
     for(i=1; i<=nlstate;i++){            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       eip=0.;          }
       vip=0.;      }/* End theta */
       for(j=1; j<=nlstate;j++){     
         eip += eij[i][j][(int)age];     
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */      for(h=0; h<=nhstepm-1; h++)
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];        for(j=1; j<=nlstate*nlstate;j++)
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );          for(theta=1; theta <=npar; theta++)
       }            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));     
     }  
     fprintf(ficresstdeij,"\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
     fprintf(ficrescveij,"%3.0f",age );          varhe[ij][ji][(int)age] =0.;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){       printf("%d|",(int)age);fflush(stdout);
         cptj= (j-1)*nlstate+i;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         for(i2=1; i2<=nlstate;i2++)       for(h=0;h<=nhstepm-1;h++){
           for(j2=1; j2<=nlstate;j2++){        for(k=0;k<=nhstepm-1;k++){
             cptj2= (j2-1)*nlstate+i2;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
             if(cptj2 <= cptj)          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);          for(ij=1;ij<=nlstate*nlstate;ij++)
           }            for(ji=1;ji<=nlstate*nlstate;ji++)
       }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     fprintf(ficrescveij,"\n");        }
          }
   }  
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);      /* Computing expectancies */
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);      for(i=1; i<=nlstate;i++)
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);        for(j=1; j<=nlstate;j++)
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   printf("\n");           
   fprintf(ficlog,"\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   free_vector(xm,1,npar);          }
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);      fprintf(ficresstdeij,"%3.0f",age );
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);      for(i=1; i<=nlstate;i++){
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        eip=0.;
 }        vip=0.;
         for(j=1; j<=nlstate;j++){
 /************ Variance ******************/          eip += eij[i][j][(int)age];
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
 {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   /* Variance of health expectancies */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   /* double **newm;*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double **dnewm,**doldm;      }
   double **dnewmp,**doldmp;      fprintf(ficresstdeij,"\n");
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;      fprintf(ficrescveij,"%3.0f",age );
   double *xp;      for(i=1; i<=nlstate;i++)
   double **gp, **gm;  /* for var eij */        for(j=1; j<=nlstate;j++){
   double ***gradg, ***trgradg; /*for var eij */          cptj= (j-1)*nlstate+i;
   double **gradgp, **trgradgp; /* for var p point j */          for(i2=1; i2<=nlstate;i2++)
   double *gpp, *gmp; /* for var p point j */            for(j2=1; j2<=nlstate;j2++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              cptj2= (j2-1)*nlstate+i2;
   double ***p3mat;              if(cptj2 <= cptj)
   double age,agelim, hf;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double ***mobaverage;            }
   int theta;        }
   char digit[4];      fprintf(ficrescveij,"\n");
   char digitp[25];     
     }
   char fileresprobmorprev[FILENAMELENGTH];    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   if(popbased==1){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     if(mobilav!=0)    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       strcpy(digitp,"-populbased-mobilav-");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else strcpy(digitp,"-populbased-nomobil-");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
   else     fprintf(ficlog,"\n");
     strcpy(digitp,"-stablbased-");  
     free_vector(xm,1,npar);
   if (mobilav!=0) {    free_vector(xp,1,npar);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  }
     }  
   }  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcpy(fileresprobmorprev,"prmorprev");   {
   sprintf(digit,"%-d",ij);    /* Variance of health expectancies */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    /* double **newm;*/
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    double **dnewm,**doldm;
   strcat(fileresprobmorprev,fileres);    double **dnewmp,**doldmp;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm ;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    int k, cptcode;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double *gpp, *gmp; /* for var p point j */
   pstamp(ficresprobmorprev);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);    double ***p3mat;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    double age,agelim, hf;
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double ***mobaverage;
     fprintf(ficresprobmorprev," p.%-d SE",j);    int theta;
     for(i=1; i<=nlstate;i++)    char digit[4];
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    char digitp[25];
   }    
   fprintf(ficresprobmorprev,"\n");    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficgp,"\n# Routine varevsij");  
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/    if(popbased==1){
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      if(mobilav!=0)
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);        strcpy(digitp,"-populbased-mobilav-");
 /*   } */      else strcpy(digitp,"-populbased-nomobil-");
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    }
   pstamp(ficresvij);    else
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");      strcpy(digitp,"-stablbased-");
   if(popbased==1)  
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    if (mobilav!=0) {
   else      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficresvij,"# Age");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   for(i=1; i<=nlstate;i++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    }
   fprintf(ficresvij,"\n");  
     strcpy(fileresprobmorprev,"prmorprev");
   xp=vector(1,npar);    sprintf(digit,"%-d",ij);
   dnewm=matrix(1,nlstate,1,npar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   doldm=matrix(1,nlstate,1,nlstate);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   gpp=vector(nlstate+1,nlstate+ndeath);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   gmp=vector(nlstate+1,nlstate+ndeath);    }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      
   if(estepm < stepm){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf ("Problem %d lower than %d\n",estepm, stepm);    pstamp(ficresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   else  hstepm=estepm;       fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   /* For example we decided to compute the life expectancy with the smallest unit */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.       fprintf(ficresprobmorprev," p.%-d SE",j);
      nhstepm is the number of hstepm from age to agelim       for(i=1; i<=nlstate;i++)
      nstepm is the number of stepm from age to agelin.         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      Look at hpijx to understand the reason of that which relies in memory size    }  
      and note for a fixed period like k years */    fprintf(ficresprobmorprev,"\n");
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fprintf(ficgp,"\n# Routine varevsij");
      survival function given by stepm (the optimization length). Unfortunately it    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      means that if the survival funtion is printed every two years of age and if    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      results. So we changed our mind and took the option of the best precision.  /*   } */
   */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     pstamp(ficresvij);
   agelim = AGESUP;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    if(popbased==1)
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    else
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    fprintf(ficresvij,"# Age");
     gp=matrix(0,nhstepm,1,nlstate);    for(i=1; i<=nlstate;i++)
     gm=matrix(0,nhstepm,1,nlstate);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    xp=vector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
       if (popbased==1) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         if(mobilav ==0){    gpp=vector(nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    gmp=vector(nlstate+1,nlstate+ndeath);
             prlim[i][i]=probs[(int)age][i][ij];    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }else{ /* mobilav */    
           for(i=1; i<=nlstate;i++)    if(estepm < stepm){
             prlim[i][i]=mobaverage[(int)age][i][ij];      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;  
       /* For example we decided to compute the life expectancy with the smallest unit */
       for(j=1; j<= nlstate; j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         for(h=0; h<=nhstepm; h++){       nhstepm is the number of hstepm from age to agelim
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       nstepm is the number of stepm from age to agelin.
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       Look at hpijx to understand the reason of that which relies in memory size
         }       and note for a fixed period like k years */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       /* This for computing probability of death (h=1 means       survival function given by stepm (the optimization length). Unfortunately it
          computed over hstepm matrices product = hstepm*stepm months)        means that if the survival funtion is printed every two years of age and if
          as a weighted average of prlim.       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       */       results. So we changed our mind and took the option of the best precision.
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    */
         for(i=1,gpp[j]=0.; i<= nlstate; i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    agelim = AGESUP;
       }        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* end probability of death */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        gp=matrix(0,nhstepm,1,nlstate);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gm=matrix(0,nhstepm,1,nlstate);
    
       if (popbased==1) {  
         if(mobilav ==0){      for(theta=1; theta <=npar; theta++){
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
             prlim[i][i]=probs[(int)age][i][ij];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }else{ /* mobilav */         }
           for(i=1; i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             prlim[i][i]=mobaverage[(int)age][i][ij];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }  
       }        if (popbased==1) {
           if(mobilav ==0){
       for(j=1; j<= nlstate; j++){            for(i=1; i<=nlstate;i++)
         for(h=0; h<=nhstepm; h++){              prlim[i][i]=probs[(int)age][i][ij];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }else{ /* mobilav */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            for(i=1; i<=nlstate;i++)
         }              prlim[i][i]=mobaverage[(int)age][i][ij];
       }          }
       /* This for computing probability of death (h=1 means        }
          computed over hstepm matrices product = hstepm*stepm months)    
          as a weighted average of prlim.        for(j=1; j<= nlstate; j++){
       */          for(h=0; h<=nhstepm; h++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         for(i=1,gmp[j]=0.; i<= nlstate; i++)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }            }
       /* end probability of death */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months)
       for(j=1; j<= nlstate; j++) /* vareij */           as a weighted average of prlim.
         for(h=0; h<=nhstepm; h++){        */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        }    
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        /* end probability of death */
       }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     } /* End theta */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
     for(h=0; h<=nhstepm; h++) /* veij */        if (popbased==1) {
       for(j=1; j<=nlstate;j++)          if(mobilav ==0){
         for(theta=1; theta <=npar; theta++)            for(i=1; i<=nlstate;i++)
           trgradg[h][j][theta]=gradg[h][theta][j];              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            for(i=1; i<=nlstate;i++)
       for(theta=1; theta <=npar; theta++)              prlim[i][i]=mobaverage[(int)age][i][ij];
         trgradgp[j][theta]=gradgp[theta][j];          }
           }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        for(j=1; j<= nlstate; j++){
     for(i=1;i<=nlstate;i++)          for(h=0; h<=nhstepm; h++){
       for(j=1;j<=nlstate;j++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         vareij[i][j][(int)age] =0.;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){        /* This for computing probability of death (h=1 means
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           computed over hstepm matrices product = hstepm*stepm months)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);           as a weighted average of prlim.
         for(i=1;i<=nlstate;i++)        */
           for(j=1;j<=nlstate;j++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
           /* end probability of death */
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        for(j=1; j<= nlstate; j++) /* vareij */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          for(h=0; h<=nhstepm; h++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          }
         varppt[j][i]=doldmp[j][i];  
     /* end ppptj */        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     /*  x centered again */          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          }
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
        } /* End theta */
     if (popbased==1) {  
       if(mobilav ==0){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];      for(h=0; h<=nhstepm; h++) /* veij */
       }else{ /* mobilav */         for(j=1; j<=nlstate;j++)
         for(i=1; i<=nlstate;i++)          for(theta=1; theta <=npar; theta++)
           prlim[i][i]=mobaverage[(int)age][i][ij];            trgradg[h][j][theta]=gradg[h][theta][j];
       }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                      for(theta=1; theta <=npar; theta++)
     /* This for computing probability of death (h=1 means          trgradgp[j][theta]=gradgp[theta][j];
        computed over hstepm (estepm) matrices product = hstepm*stepm months)    
        as a weighted average of prlim.  
     */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      for(i=1;i<=nlstate;i++)
       for(i=1,gmp[j]=0.;i<= nlstate; i++)         for(j=1;j<=nlstate;j++)
         gmp[j] += prlim[i][i]*p3mat[i][j][1];           vareij[i][j][(int)age] =0.;
     }      
     /* end probability of death */      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          for(i=1;i<=nlstate;i++)
       for(i=1; i<=nlstate;i++){            for(j=1;j<=nlstate;j++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       }        }
     }       }
     fprintf(ficresprobmorprev,"\n");   
       /* pptj */
     fprintf(ficresvij,"%.0f ",age );      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     for(i=1; i<=nlstate;i++)      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=1; j<=nlstate;j++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       }          varppt[j][i]=doldmp[j][i];
     fprintf(ficresvij,"\n");      /* end ppptj */
     free_matrix(gp,0,nhstepm,1,nlstate);      /*  x centered again */
     free_matrix(gm,0,nhstepm,1,nlstate);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);   
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (popbased==1) {
   } /* End age */        if(mobilav ==0){
   free_vector(gpp,nlstate+1,nlstate+ndeath);          for(i=1; i<=nlstate;i++)
   free_vector(gmp,nlstate+1,nlstate+ndeath);            prlim[i][i]=probs[(int)age][i][ij];
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        }else{ /* mobilav */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            prlim[i][i]=mobaverage[(int)age][i][ij];
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */               
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */      /* This for computing probability of death (h=1 means
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */         computed over hstepm (estepm) matrices product = hstepm*stepm months)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));         as a weighted average of prlim.
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));      */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));        for(i=1,gmp[j]=0.;i<= nlstate; i++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      }    
 */      /* end probability of death */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */  
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_vector(xp,1,npar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_matrix(doldm,1,nlstate,1,nlstate);        for(i=1; i<=nlstate;i++){
   free_matrix(dnewm,1,nlstate,1,npar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      }
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresprobmorprev,"\n");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   fclose(ficresprobmorprev);      fprintf(ficresvij,"%.0f ",age );
   fflush(ficgp);      for(i=1; i<=nlstate;i++)
   fflush(fichtm);         for(j=1; j<=nlstate;j++){
 }  /* end varevsij */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
 /************ Variance of prevlim ******************/      fprintf(ficresvij,"\n");
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])      free_matrix(gp,0,nhstepm,1,nlstate);
 {      free_matrix(gm,0,nhstepm,1,nlstate);
   /* Variance of prevalence limit */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   double **newm;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **dnewm,**doldm;    } /* End age */
   int i, j, nhstepm, hstepm;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   int k, cptcode;    free_vector(gmp,nlstate+1,nlstate+ndeath);
   double *xp;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   double *gp, *gm;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   double **gradg, **trgradg;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   double age,agelim;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   int theta;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   pstamp(ficresvpl);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficresvpl,"# Age");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
   for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   fprintf(ficresvpl,"\n");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   xp=vector(1,npar);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   dnewm=matrix(1,nlstate,1,npar);  */
   doldm=matrix(1,nlstate,1,nlstate);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */     free_vector(xp,1,npar);
   agelim = AGESUP;    free_matrix(doldm,1,nlstate,1,nlstate);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    free_matrix(dnewm,1,nlstate,1,npar);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (stepm >= YEARM) hstepm=1;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     gradg=matrix(1,npar,1,nlstate);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     gp=vector(1,nlstate);    fclose(ficresprobmorprev);
     gm=vector(1,nlstate);    fflush(ficgp);
     fflush(fichtm);
     for(theta=1; theta <=npar; theta++){  }  /* end varevsij */
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  /************ Variance of prevlim ******************/
       }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    /* Variance of prevalence limit */
         gp[i] = prlim[i][i];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         double **newm;
       for(i=1; i<=npar; i++) /* Computes gradient */    double **dnewm,**doldm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int i, j, nhstepm, hstepm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int k, cptcode;
       for(i=1;i<=nlstate;i++)    double *xp;
         gm[i] = prlim[i][i];    double *gp, *gm;
     double **gradg, **trgradg;
       for(i=1;i<=nlstate;i++)    double age,agelim;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int theta;
     } /* End theta */   
     pstamp(ficresvpl);
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(j=1; j<=nlstate;j++)    for(i=1; i<=nlstate;i++)
       for(theta=1; theta <=npar; theta++)        fprintf(ficresvpl," %1d-%1d",i,i);
         trgradg[j][theta]=gradg[theta][j];    fprintf(ficresvpl,"\n");
   
     for(i=1;i<=nlstate;i++)    xp=vector(1,npar);
       varpl[i][(int)age] =0.;    dnewm=matrix(1,nlstate,1,npar);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    doldm=matrix(1,nlstate,1,nlstate);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);   
     for(i=1;i<=nlstate;i++)    hstepm=1*YEARM; /* Every year of age */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
     agelim = AGESUP;
     fprintf(ficresvpl,"%.0f ",age );    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(i=1; i<=nlstate;i++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      if (stepm >= YEARM) hstepm=1;
     fprintf(ficresvpl,"\n");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     free_vector(gp,1,nlstate);      gradg=matrix(1,npar,1,nlstate);
     free_vector(gm,1,nlstate);      gp=vector(1,nlstate);
     free_matrix(gradg,1,npar,1,nlstate);      gm=vector(1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   free_vector(xp,1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
 }          gp[i] = prlim[i][i];
      
 /************ Variance of one-step probabilities  ******************/        for(i=1; i<=npar; i++) /* Computes gradient */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int i, j=0,  i1, k1, l1, t, tj;        for(i=1;i<=nlstate;i++)
   int k2, l2, j1,  z1;          gm[i] = prlim[i][i];
   int k=0,l, cptcode;  
   int first=1, first1;        for(i=1;i<=nlstate;i++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double **dnewm,**doldm;      } /* End theta */
   double *xp;  
   double *gp, *gm;      trgradg =matrix(1,nlstate,1,npar);
   double **gradg, **trgradg;  
   double **mu;      for(j=1; j<=nlstate;j++)
   double age,agelim, cov[NCOVMAX];        for(theta=1; theta <=npar; theta++)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          trgradg[j][theta]=gradg[theta][j];
   int theta;  
   char fileresprob[FILENAMELENGTH];      for(i=1;i<=nlstate;i++)
   char fileresprobcov[FILENAMELENGTH];        varpl[i][(int)age] =0.;
   char fileresprobcor[FILENAMELENGTH];      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   double ***varpij;      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);      fprintf(ficresvpl,"%.0f ",age );
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with resultfile: %s\n", fileresprob);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      fprintf(ficresvpl,"\n");
   }      free_vector(gp,1,nlstate);
   strcpy(fileresprobcov,"probcov");       free_vector(gm,1,nlstate);
   strcat(fileresprobcov,fileres);      free_matrix(gradg,1,npar,1,nlstate);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      free_matrix(trgradg,1,nlstate,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobcov);    } /* End age */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  
   }    free_vector(xp,1,npar);
   strcpy(fileresprobcor,"probcor");     free_matrix(doldm,1,nlstate,1,npar);
   strcat(fileresprobcor,fileres);    free_matrix(dnewm,1,nlstate,1,nlstate);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);  }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  
   }  /************ Variance of one-step probabilities  ******************/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  {
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    int i, j=0,  i1, k1, l1, t, tj;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    int k2, l2, j1,  z1;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int k=0,l, cptcode;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int first=1, first1;
   pstamp(ficresprob);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    double **dnewm,**doldm;
   fprintf(ficresprob,"# Age");    double *xp;
   pstamp(ficresprobcov);    double *gp, *gm;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double **gradg, **trgradg;
   fprintf(ficresprobcov,"# Age");    double **mu;
   pstamp(ficresprobcor);    double age,agelim, cov[NCOVMAX];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficresprobcor,"# Age");    int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
   for(i=1; i<=nlstate;i++)    char fileresprobcor[FILENAMELENGTH];
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double ***varpij;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    strcpy(fileresprob,"prob");
     }      strcat(fileresprob,fileres);
  /* fprintf(ficresprob,"\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   fprintf(ficresprobcov,"\n");      printf("Problem with resultfile: %s\n", fileresprob);
   fprintf(ficresprobcor,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  */    }
  xp=vector(1,npar);    strcpy(fileresprobcov,"probcov");
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    strcat(fileresprobcov,fileres);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      printf("Problem with resultfile: %s\n", fileresprobcov);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   first=1;    }
   fprintf(ficgp,"\n# Routine varprob");    strcpy(fileresprobcor,"probcor");
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    strcat(fileresprobcor,fileres);
   fprintf(fichtm,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    }
   file %s<br>\n",optionfilehtmcov);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
 and drawn. It helps understanding how is the covariance between two incidences.\    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    pstamp(ficresprob);
 standard deviations wide on each axis. <br>\    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    fprintf(ficresprob,"# Age");
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    pstamp(ficresprobcov);
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
   cov[1]=1;    pstamp(ficresprobcor);
   tj=cptcoveff;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    fprintf(ficresprobcor,"# Age");
   j1=0;  
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){     for(i=1; i<=nlstate;i++)
       j1++;      for(j=1; j<=(nlstate+ndeath);j++){
       if  (cptcovn>0) {        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprob, "\n#********** Variable ");         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         fprintf(ficresprob, "**********\n#\n");      }  
         fprintf(ficresprobcov, "\n#********** Variable ");    /* fprintf(ficresprob,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficresprobcov,"\n");
         fprintf(ficresprobcov, "**********\n#\n");    fprintf(ficresprobcor,"\n");
            */
         fprintf(ficgp, "\n#********** Variable ");    xp=vector(1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficgp, "**********\n#\n");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
             varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     first=1;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficgp,"\n# Routine varprob");
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             fprintf(fichtm,"\n");
         fprintf(ficresprobcor, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         fprintf(ficresprobcor, "**********\n#");        fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       }    file %s<br>\n",optionfilehtmcov);
           fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       for (age=bage; age<=fage; age ++){   and drawn. It helps understanding how is the covariance between two incidences.\
         cov[2]=age;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         for (k=1; k<=cptcovn;k++) {    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  standard deviations wide on each axis. <br>\
         for (k=1; k<=cptcovprod;k++)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    cov[1]=1;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    tj=cptcoveff;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         j1=0;
         for(theta=1; theta <=npar; theta++){    for(t=1; t<=tj;t++){
           for(i=1; i<=npar; i++)      for(i1=1; i1<=ncodemax[t];i1++){
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        j1++;
                   if  (cptcovn>0) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficresprob, "\n#********** Variable ");
                     for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           k=0;          fprintf(ficresprob, "**********\n#\n");
           for(i=1; i<= (nlstate); i++){          fprintf(ficresprobcov, "\n#********** Variable ");
             for(j=1; j<=(nlstate+ndeath);j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               k=k+1;          fprintf(ficresprobcov, "**********\n#\n");
               gp[k]=pmmij[i][j];         
             }          fprintf(ficgp, "\n#********** Variable ");
           }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                     fprintf(ficgp, "**********\n#\n");
           for(i=1; i<=npar; i++)         
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);         
               fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           k=0;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(i=1; i<=(nlstate); i++){         
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresprobcor, "\n#********** Variable ");    
               k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               gm[k]=pmmij[i][j];          fprintf(ficresprobcor, "**********\n#");    
             }        }
           }       
              for (age=bage; age<=fage; age ++){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)           cov[2]=age;
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];            for (k=1; k<=cptcovn;k++) {
         }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(theta=1; theta <=npar; theta++)          for (k=1; k<=cptcovprod;k++)
             trgradg[j][theta]=gradg[theta][j];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                  
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          gp=vector(1,(nlstate)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          gm=vector(1,(nlstate)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                    
         k=0;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         for(i=1; i<=(nlstate); i++){           
           for(j=1; j<=(nlstate+ndeath);j++){            k=0;
             k=k+1;            for(i=1; i<= (nlstate); i++){
             mu[k][(int) age]=pmmij[i][j];              for(j=1; j<=(nlstate+ndeath);j++){
           }                k=k+1;
         }                gp[k]=pmmij[i][j];
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            }
             varpij[i][j][(int)age] = doldm[i][j];           
             for(i=1; i<=npar; i++)
         /*printf("\n%d ",(int)age);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){     
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            k=0;
           }*/            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob,"\n%d ",(int)age);                k=k+1;
         fprintf(ficresprobcov,"\n%d ",(int)age);                gm[k]=pmmij[i][j];
         fprintf(ficresprobcor,"\n%d ",(int)age);              }
             }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)       
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
         i=0;            for(theta=1; theta <=npar; theta++)
         for (k=1; k<=(nlstate);k++){              trgradg[j][theta]=gradg[theta][j];
           for (l=1; l<=(nlstate+ndeath);l++){          
             i=i++;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             for (j=1; j<=i;j++){          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }  
           }          pmij(pmmij,cov,ncovmodel,x,nlstate);
         }/* end of loop for state */         
       } /* end of loop for age */          k=0;
           for(i=1; i<=(nlstate); i++){
       /* Confidence intervalle of pij  */            for(j=1; j<=(nlstate+ndeath);j++){
       /*              k=k+1;
         fprintf(ficgp,"\nset noparametric;unset label");              mu[k][(int) age]=pmmij[i][j];
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            }
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          }
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);              varpij[i][j][(int)age] = doldm[i][j];
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       first1=1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       for (k2=1; k2<=(nlstate);k2++){            }*/
         for (l2=1; l2<=(nlstate+ndeath);l2++){   
           if(l2==k2) continue;          fprintf(ficresprob,"\n%d ",(int)age);
           j=(k2-1)*(nlstate+ndeath)+l2;          fprintf(ficresprobcov,"\n%d ",(int)age);
           for (k1=1; k1<=(nlstate);k1++){          fprintf(ficresprobcor,"\n%d ",(int)age);
             for (l1=1; l1<=(nlstate+ndeath);l1++){   
               if(l1==k1) continue;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
               i=(k1-1)*(nlstate+ndeath)+l1;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
               if(i<=j) continue;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               for (age=bage; age<=fage; age ++){             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                 if ((int)age %5==0){            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          i=0;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          for (k=1; k<=(nlstate);k++){
                   mu1=mu[i][(int) age]/stepm*YEARM ;            for (l=1; l<=(nlstate+ndeath);l++){
                   mu2=mu[j][(int) age]/stepm*YEARM;              i=i++;
                   c12=cv12/sqrt(v1*v2);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   /* Computing eigen value of matrix of covariance */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              for (j=1; j<=i;j++){
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   /* Eigen vectors */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              }
                   /*v21=sqrt(1.-v11*v11); *//* error */            }
                   v21=(lc1-v1)/cv12*v11;          }/* end of loop for state */
                   v12=-v21;        } /* end of loop for age */
                   v22=v11;  
                   tnalp=v21/v11;        /* Confidence intervalle of pij  */
                   if(first1==1){        /*
                     first1=0;          fprintf(ficgp,"\nset noparametric;unset label");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   /*printf(fignu*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   if(first==1){        */
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        first1=1;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for (k2=1; k2<=(nlstate);k2++){
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\          for (l2=1; l2<=(nlstate+ndeath);l2++){
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\            if(l2==k2) continue;
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\            j=(k2-1)*(nlstate+ndeath)+l2;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\            for (k1=1; k1<=(nlstate);k1++){
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);              for (l1=1; l1<=(nlstate+ndeath);l1++){
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                if(l1==k1) continue;
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);                i=(k1-1)*(nlstate+ndeath)+l1;
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                if(i<=j) continue;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                for (age=bage; age<=fage; age ++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                  if ((int)age %5==0){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   }else{                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     first=0;                    mu2=mu[j][(int) age]/stepm*YEARM;
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);                    c12=cv12/sqrt(v1*v2);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                    /* Computing eigen value of matrix of covariance */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                    /* Eigen vectors */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   }/* if first */                    /*v21=sqrt(1.-v11*v11); *//* error */
                 } /* age mod 5 */                    v21=(lc1-v1)/cv12*v11;
               } /* end loop age */                    v12=-v21;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);                    v22=v11;
               first=1;                    tnalp=v21/v11;
             } /*l12 */                    if(first1==1){
           } /* k12 */                      first1=0;
         } /*l1 */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }/* k1 */                    }
     } /* loop covariates */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    /*printf(fignu*/
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));                    if(first==1){
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);                      first=0;
   free_vector(xp,1,npar);                      fprintf(ficgp,"\nset parametric;unset label");
   fclose(ficresprob);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fclose(ficresprobcov);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresprobcor);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   fflush(ficgp);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fflush(fichtmcov);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
 }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 /******************* Printing html file ***********/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   int lastpass, int stepm, int weightopt, char model[],\                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   int popforecast, int estepm ,\                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   double jprev1, double mprev1,double anprev1, \                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   double jprev2, double mprev2,double anprev2){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   int jj1, k1, i1, cpt;                    }else{
                       first=0;
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 </ul>");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    fprintf(fichtm,"\                    }/* if first */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",                  } /* age mod 5 */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));                } /* end loop age */
    fprintf(fichtm,"\                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",                first=1;
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));              } /*l12 */
    fprintf(fichtm,"\            } /* k12 */
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \          } /*l1 */
    <a href=\"%s\">%s</a> <br>\n</li>",        }/* k1 */
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));      } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  m=cptcoveff;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    free_vector(xp,1,npar);
     fclose(ficresprob);
  jj1=0;    fclose(ficresprobcov);
  for(k1=1; k1<=m;k1++){    fclose(ficresprobcor);
    for(i1=1; i1<=ncodemax[k1];i1++){    fflush(ficgp);
      jj1++;    fflush(fichtmcov);
      if (cptcovn > 0) {  }
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /******************* Printing html file ***********/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
      }                    int lastpass, int stepm, int weightopt, char model[],\
      /* Pij */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \                    int popforecast, int estepm ,\
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);                         double jprev1, double mprev1,double anprev1, \
      /* Quasi-incidences */                    double jprev2, double mprev2,double anprev2){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    int jj1, k1, i1, cpt;
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
        /* Period (stable) prevalence in each health state */     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
        for(cpt=1; cpt<nlstate;cpt++){  </ul>");
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
        }             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      for(cpt=1; cpt<=nlstate;cpt++) {     fprintf(fichtm,"\
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      }     fprintf(fichtm,"\
    } /* end i1 */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  }/* End k1 */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  fprintf(fichtm,"</ul>");     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
  fprintf(fichtm,"\             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\     fprintf(fichtm,"\
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
  fprintf(fichtm,"\  
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   m=cptcoveff;
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  fprintf(fichtm,"\   jj1=0;
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",   for(k1=1; k1<=m;k1++){
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));     for(i1=1; i1<=ncodemax[k1];i1++){
  fprintf(fichtm,"\       jj1++;
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \       if (cptcovn > 0) {
    <a href=\"%s\">%s</a> <br>\n</li>",         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));         for (cpt=1; cpt<=cptcoveff;cpt++)
  fprintf(fichtm,"\           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
    <a href=\"%s\">%s</a> <br>\n</li>",       }
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));       /* Pij */
  fprintf(fichtm,"\       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));       /* Quasi-incidences */
  fprintf(fichtm,"\       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
  fprintf(fichtm,"\         /* Period (stable) prevalence in each health state */
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\         for(cpt=1; cpt<nlstate;cpt++){
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
 /*  if(popforecast==1) fprintf(fichtm,"\n */         }
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */       for(cpt=1; cpt<=nlstate;cpt++) {
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
 /*      <br>",fileres,fileres,fileres,fileres); */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
 /*  else  */       }
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */     } /* end i1 */
  fflush(fichtm);   }/* End k1 */
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");   fprintf(fichtm,"</ul>");
   
  m=cptcoveff;  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  jj1=0;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      jj1++;           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
      if (cptcovn > 0) {   fprintf(fichtm,"\
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
        for (cpt=1; cpt<=cptcoveff;cpt++)            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");   fprintf(fichtm,"\
      }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
      for(cpt=1; cpt<=nlstate;cpt++) {           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \   fprintf(fichtm,"\
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);       <a href=\"%s\">%s</a> <br>\n</li>",
      }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \   fprintf(fichtm,"\
 health expectancies in states (1) and (2): %s%d.png<br>\   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);     <a href=\"%s\">%s</a> <br>\n</li>",
    } /* end i1 */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
  }/* End k1 */   fprintf(fichtm,"\
  fprintf(fichtm,"</ul>");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
  fflush(fichtm);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
 }   fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
 /******************* Gnuplot file **************/           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   char dirfileres[132],optfileres[132];           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;  /*  if(popforecast==1) fprintf(fichtm,"\n */
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 /*     printf("Problem with file %s",optionfilegnuplot); */  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */  /*      <br>",fileres,fileres,fileres,fileres); */
 /*   } */  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   /*#ifdef windows */   fflush(fichtm);
   fprintf(ficgp,"cd \"%s\" \n",pathc);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     /*#endif */  
   m=pow(2,cptcoveff);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcpy(dirfileres,optionfilefiname);  
   strcpy(optfileres,"vpl");   jj1=0;
  /* 1eme*/   for(k1=1; k1<=m;k1++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {     for(i1=1; i1<=ncodemax[k1];i1++){
    for (k1=1; k1<= m ; k1 ++) {       jj1++;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);       if (cptcovn > 0) {
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
      fprintf(ficgp,"set xlabel \"Age\" \n\         for (cpt=1; cpt<=cptcoveff;cpt++)
 set ylabel \"Probability\" \n\           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 set ter png small\n\         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 set size 0.65,0.65\n\       }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
      for (i=1; i<= nlstate ; i ++) {  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        else fprintf(ficgp," \%%*lf (\%%*lf)");       }
      }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);  health expectancies in states (1) and (2): %s%d.png<br>\
      for (i=1; i<= nlstate ; i ++) {  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");     } /* end i1 */
        else fprintf(ficgp," \%%*lf (\%%*lf)");   }/* End k1 */
      }    fprintf(fichtm,"</ul>");
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    fflush(fichtm);
      for (i=1; i<= nlstate ; i ++) {  }
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
        else fprintf(ficgp," \%%*lf (\%%*lf)");  /******************* Gnuplot file **************/
      }    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));  
    }    char dirfileres[132],optfileres[132];
   }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   /*2 eme*/    int ng;
     /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   for (k1=1; k1<= m ; k1 ++) {   /*     printf("Problem with file %s",optionfilegnuplot); */
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  /*   } */
       
     for (i=1; i<= nlstate+1 ; i ++) {    /*#ifdef windows */
       k=2*i;    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);      /*#endif */
       for (j=1; j<= nlstate+1 ; j ++) {    m=pow(2,cptcoveff);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    strcpy(dirfileres,optionfilefiname);
       }       strcpy(optfileres,"vpl");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");   /* 1eme*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);     for (k1=1; k1<= m ; k1 ++) {
       for (j=1; j<= nlstate+1 ; j ++) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
         else fprintf(ficgp," \%%*lf (\%%*lf)");       fprintf(ficgp,"set xlabel \"Age\" \n\
       }     set ylabel \"Probability\" \n\
       fprintf(ficgp,"\" t\"\" w l 0,");  set ter png small\n\
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  set size 0.65,0.65\n\
       for (j=1; j<= nlstate+1 ; j ++) {  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");       for (i=1; i<= nlstate ; i ++) {
       }            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");         else fprintf(ficgp," \%%*lf (\%%*lf)");
       else fprintf(ficgp,"\" t\"\" w l 0,");       }
     }       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   }       for (i=1; i<= nlstate ; i ++) {
            if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*3eme*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
          }
   for (k1=1; k1<= m ; k1 ++) {        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     for (cpt=1; cpt<= nlstate ; cpt ++) {       for (i=1; i<= nlstate ; i ++) {
       /*       k=2+nlstate*(2*cpt-2); */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       k=2+(nlstate+1)*(cpt-1);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);       }  
       fprintf(ficgp,"set ter png small\n\       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
 set size 0.65,0.65\n\     }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);    }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*2 eme*/
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);     
               for (i=1; i<= nlstate+1 ; i ++) {
       */        k=2*i;
       for (i=1; i< nlstate ; i ++) {        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);        for (j=1; j<= nlstate+1 ; j ++) {
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   else fprintf(ficgp," \%%*lf (\%%*lf)");
       }         }  
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
           for (j=1; j<= nlstate+1 ; j ++) {
   /* CV preval stable (period) */          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   for (k1=1; k1<= m ; k1 ++) {           else fprintf(ficgp," \%%*lf (\%%*lf)");
     for (cpt=1; cpt<=nlstate ; cpt ++) {        }  
       k=3;        fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        for (j=1; j<= nlstate+1 ; j ++) {
 set ter png small\nset size 0.65,0.65\n\          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
 unset log y\n\          else fprintf(ficgp," \%%*lf (\%%*lf)");
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);        }  
               if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       for (i=1; i< nlstate ; i ++)        else fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"+$%d",k+i+1);      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          
       l=3+(nlstate+ndeath)*cpt;    /*3eme*/
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);   
       for (i=1; i< nlstate ; i ++) {    for (k1=1; k1<= m ; k1 ++) {
         l=3+(nlstate+ndeath)*cpt;      for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"+$%d",l+i+1);        /*       k=2+nlstate*(2*cpt-2); */
       }        k=2+(nlstate+1)*(cpt-1);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     }         fprintf(ficgp,"set ter png small\n\
   }    set size 0.65,0.65\n\
     plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   /* proba elementaires */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   for(i=1,jk=1; i <=nlstate; i++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       if (k != i) {          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         for(j=1; j <=ncovmodel; j++){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           jk++;          
           fprintf(ficgp,"\n");        */
         }        for (i=1; i< nlstate ; i ++) {
       }          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     }          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
    }         
         }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
      for(jk=1; jk <=m; jk++) {      }
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);     }
        if (ng==2)   
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    /* CV preval stable (period) */
        else    for (k1=1; k1<= m ; k1 ++) {
          fprintf(ficgp,"\nset title \"Probability\"\n");      for (cpt=1; cpt<=nlstate ; cpt ++) {
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        k=3;
        i=1;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
        for(k2=1; k2<=nlstate; k2++) {        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
          k3=i;  set ter png small\nset size 0.65,0.65\n\
          for(k=1; k<=(nlstate+ndeath); k++) {  unset log y\n\
            if (k != k2){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
              if(ng==2)       
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        for (i=1; i< nlstate ; i ++)
              else          fprintf(ficgp,"+$%d",k+i+1);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
              ij=1;       
              for(j=3; j <=ncovmodel; j++) {        l=3+(nlstate+ndeath)*cpt;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (i=1; i< nlstate ; i ++) {
                  ij++;          l=3+(nlstate+ndeath)*cpt;
                }          fprintf(ficgp,"+$%d",l+i+1);
                else        }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
              }      }
              fprintf(ficgp,")/(1");    }  
                 
              for(k1=1; k1 <=nlstate; k1++){       /* proba elementaires */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    for(i=1,jk=1; i <=nlstate; i++){
                ij=1;      for(k=1; k <=(nlstate+ndeath); k++){
                for(j=3; j <=ncovmodel; j++){        if (k != i) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(j=1; j <=ncovmodel; j++){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                    ij++;            jk++;
                  }            fprintf(ficgp,"\n");
                  else          }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
                }      }
                fprintf(ficgp,")");     }
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");       for(jk=1; jk <=m; jk++) {
              i=i+ncovmodel;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
            }         if (ng==2)
          } /* end k */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
        } /* end k2 */         else
      } /* end jk */           fprintf(ficgp,"\nset title \"Probability\"\n");
    } /* end ng */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
    fflush(ficgp);          i=1;
 }  /* end gnuplot */         for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
 /*************** Moving average **************/             if (k != k2){
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
   int i, cpt, cptcod;               else
   int modcovmax =1;                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
   int mobilavrange, mob;               ij=1;
   double age;               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                            a covariate has 2 modalities */                   ij++;
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                 }
                  else
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if(mobilav==1) mobilavrange=5; /* default */               }
     else mobilavrange=mobilav;               fprintf(ficgp,")/(1");
     for (age=bage; age<=fage; age++)               
       for (i=1; i<=nlstate;i++)               for(k1=1; k1 <=nlstate; k1++){  
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                 ij=1;
     /* We keep the original values on the extreme ages bage, fage and for                  for(j=3; j <=ncovmodel; j++){
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
        we use a 5 terms etc. until the borders are no more concerned.                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     */                      ij++;
     for (mob=3;mob <=mobilavrange;mob=mob+2){                   }
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                   else
         for (i=1; i<=nlstate;i++){                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                 }
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                 fprintf(ficgp,")");
               for (cpt=1;cpt<=(mob-1)/2;cpt++){               }
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
               }               i=i+ncovmodel;
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;             }
           }           } /* end k */
         }         } /* end k2 */
       }/* end age */       } /* end jk */
     }/* end mob */     } /* end ng */
   }else return -1;     fflush(ficgp);
   return 0;  }  /* end gnuplot */
 }/* End movingaverage */  
   
   /*************** Moving average **************/
 /************** Forecasting ******************/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  
   /* proj1, year, month, day of starting projection     int i, cpt, cptcod;
      agemin, agemax range of age    int modcovmax =1;
      dateprev1 dateprev2 range of dates during which prevalence is computed    int mobilavrange, mob;
      anproj2 year of en of projection (same day and month as proj1).    double age;
   */  
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   int *popage;                             a covariate has 2 modalities */
   double agec; /* generic age */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   double ***p3mat;      if(mobilav==1) mobilavrange=5; /* default */
   double ***mobaverage;      else mobilavrange=mobilav;
   char fileresf[FILENAMELENGTH];      for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
   agelim=AGESUP;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for
   strcpy(fileresf,"f");          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   strcat(fileresf,fileres);         we use a 5 terms etc. until the borders are no more concerned.
   if((ficresf=fopen(fileresf,"w"))==NULL) {      */
     printf("Problem with forecast resultfile: %s\n", fileresf);      for (mob=3;mob <=mobilavrange;mob=mob+2){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   }          for (i=1; i<=nlstate;i++){
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   if (mobilav!=0) {                }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){            }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        }/* end age */
     }      }/* end mob */
   }    }else return -1;
     return 0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;  }/* End movingaverage */
   if (stepm<=12) stepsize=1;  
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);  /************** Forecasting ******************/
   }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   else  hstepm=estepm;       /* proj1, year, month, day of starting projection
        agemin, agemax range of age
   hstepm=hstepm/stepm;        dateprev1 dateprev2 range of dates during which prevalence is computed
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and       anproj2 year of en of projection (same day and month as proj1).
                                fractional in yp1 */    */
   anprojmean=yp;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   yp2=modf((yp1*12),&yp);    int *popage;
   mprojmean=yp;    double agec; /* generic age */
   yp1=modf((yp2*30.5),&yp);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   jprojmean=yp;    double *popeffectif,*popcount;
   if(jprojmean==0) jprojmean=1;    double ***p3mat;
   if(mprojmean==0) jprojmean=1;    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    agelim=AGESUP;
       prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    
       strcpy(fileresf,"f");
   fprintf(ficresf,"#****** Routine prevforecast **\n");    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
 /*            if (h==(int)(YEARM*yearp)){ */      printf("Problem with forecast resultfile: %s\n", fileresf);
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    printf("Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficresf,"\n#******");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       }  
       fprintf(ficresf,"******\n");    if (mobilav!=0) {
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1; j<=nlstate+ndeath;j++){       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         for(i=1; i<=nlstate;i++)                      fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficresf," p%d%d",i,j);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficresf," p.%d",j);      }
       }    }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   
         fprintf(ficresf,"\n");    stepsize=(int) (stepm+YEARM-1)/YEARM;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);       if (stepm<=12) stepsize=1;
     if(estepm < stepm){
         for (agec=fage; agec>=(ageminpar-1); agec--){       printf ("Problem %d lower than %d\n",estepm, stepm);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     }
           nhstepm = nhstepm/hstepm;     else  hstepm=estepm;  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    hstepm=hstepm/stepm;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                          fractional in yp1 */
           for (h=0; h<=nhstepm; h++){    anprojmean=yp;
             if (h*hstepm/YEARM*stepm ==yearp) {    yp2=modf((yp1*12),&yp);
               fprintf(ficresf,"\n");    mprojmean=yp;
               for(j=1;j<=cptcoveff;j++)     yp1=modf((yp2*30.5),&yp);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    jprojmean=yp;
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    if(jprojmean==0) jprojmean=1;
             }     if(mprojmean==0) jprojmean=1;
             for(j=1; j<=nlstate+ndeath;j++) {  
               ppij=0.;    i1=cptcoveff;
               for(i=1; i<=nlstate;i++) {    if (cptcovn < 1){i1=1;}
                 if (mobilav==1)    
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
                 else {   
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    fprintf(ficresf,"#****** Routine prevforecast **\n");
                 }  
                 if (h*hstepm/YEARM*stepm== yearp) {  /*            if (h==(int)(YEARM*yearp)){ */
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
                 }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
               } /* end i */        k=k+1;
               if (h*hstepm/YEARM*stepm==yearp) {        fprintf(ficresf,"\n#******");
                 fprintf(ficresf," %.3f", ppij);        for(j=1;j<=cptcoveff;j++) {
               }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             }/* end j */        }
           } /* end h */        fprintf(ficresf,"******\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         } /* end agec */        for(j=1; j<=nlstate+ndeath;j++){
       } /* end yearp */          for(i=1; i<=nlstate;i++)              
     } /* end cptcod */            fprintf(ficresf," p%d%d",i,j);
   } /* end  cptcov */          fprintf(ficresf," p.%d",j);
                }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           fprintf(ficresf,"\n");
   fclose(ficresf);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
 }  
           for (agec=fage; agec>=(ageminpar-1); agec--){
 /************** Forecasting *****not tested NB*************/            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            nhstepm = nhstepm/hstepm;
               p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            oldm=oldms;savm=savms;
   int *popage;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   double calagedatem, agelim, kk1, kk2;         
   double *popeffectif,*popcount;            for (h=0; h<=nhstepm; h++){
   double ***p3mat,***tabpop,***tabpopprev;              if (h*hstepm/YEARM*stepm ==yearp) {
   double ***mobaverage;                fprintf(ficresf,"\n");
   char filerespop[FILENAMELENGTH];                for(j=1;j<=cptcoveff;j++)
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
   agelim=AGESUP;              for(j=1; j<=nlstate+ndeath;j++) {
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                ppij=0.;
                   for(i=1; i<=nlstate;i++) {
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                  if (mobilav==1)
                       ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                     else {
   strcpy(filerespop,"pop");                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   strcat(filerespop,fileres);                  }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                  if (h*hstepm/YEARM*stepm== yearp) {
     printf("Problem with forecast resultfile: %s\n", filerespop);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);                  }
   }                } /* end i */
   printf("Computing forecasting: result on file '%s' \n", filerespop);                if (h*hstepm/YEARM*stepm==yearp) {
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                  fprintf(ficresf," %.3f", ppij);
                 }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              }/* end j */
             } /* end h */
   if (mobilav!=0) {            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          } /* end agec */
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        } /* end yearp */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      } /* end cptcod */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    } /* end  cptcov */
     }         
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fclose(ficresf);
   if (stepm<=12) stepsize=1;  }
     
   agelim=AGESUP;  /************** Forecasting *****not tested NB*************/
     populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   hstepm=1;   
   hstepm=hstepm/stepm;     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       int *popage;
   if (popforecast==1) {    double calagedatem, agelim, kk1, kk2;
     if((ficpop=fopen(popfile,"r"))==NULL) {    double *popeffectif,*popcount;
       printf("Problem with population file : %s\n",popfile);exit(0);    double ***p3mat,***tabpop,***tabpopprev;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    double ***mobaverage;
     }     char filerespop[FILENAMELENGTH];
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     popcount=vector(0,AGESUP);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         agelim=AGESUP;
     i=1;       calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   
        prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     imx=i;   
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];   
   }    strcpy(filerespop,"pop");
     strcat(filerespop,fileres);
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      printf("Problem with forecast resultfile: %s\n", filerespop);
       k=k+1;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficrespop,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    printf("Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       }  
       fprintf(ficrespop,"******\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    if (mobilav!=0) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       for (cpt=0; cpt<=0;cpt++) {         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           printf(" Error in movingaverage mobilav=%d\n",mobilav);
               }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   
           nhstepm = nhstepm/hstepm;     stepsize=(int) (stepm+YEARM-1)/YEARM;
               if (stepm<=12) stepsize=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
           oldm=oldms;savm=savms;    agelim=AGESUP;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     
             hstepm=1;
           for (h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm;
             if (h==(int) (calagedatem+YEARM*cpt)) {   
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    if (popforecast==1) {
             }       if((ficpop=fopen(popfile,"r"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++) {        printf("Problem with population file : %s\n",popfile);exit(0);
               kk1=0.;kk2=0;        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)       popage=ivector(0,AGESUP);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      popeffectif=vector(0,AGESUP);
                 else {      popcount=vector(0,AGESUP);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     
                 }      i=1;  
               }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
               if (h==(int)(calagedatem+12*cpt)){     
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      imx=i;
                   /*fprintf(ficrespop," %.3f", kk1);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    }
               }  
             }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
             for(i=1; i<=nlstate;i++){     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
               kk1=0.;        k=k+1;
                 for(j=1; j<=nlstate;j++){        fprintf(ficrespop,"\n#******");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];         for(j=1;j<=cptcoveff;j++) {
                 }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];        }
             }        fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        if (popforecast==1)  fprintf(ficrespop," [Population]");
           }       
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (cpt=0; cpt<=0;cpt++) {
         }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
       }         
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   /******/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);               p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){             oldm=oldms;savm=savms;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           nhstepm = nhstepm/hstepm;          
                       for (h=0; h<=nhstepm; h++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (h==(int) (calagedatem+YEARM*cpt)) {
           oldm=oldms;savm=savms;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                }
           for (h=0; h<=nhstepm; h++){              for(j=1; j<=nlstate+ndeath;j++) {
             if (h==(int) (calagedatem+YEARM*cpt)) {                kk1=0.;kk2=0;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                for(i=1; i<=nlstate;i++) {              
             }                   if (mobilav==1)
             for(j=1; j<=nlstate+ndeath;j++) {                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
               kk1=0.;kk2=0;                  else {
               for(i=1; i<=nlstate;i++) {                                  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                      }
               }                }
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                        if (h==(int)(calagedatem+12*cpt)){
             }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
           }                    /*fprintf(ficrespop," %.3f", kk1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
         }                }
       }              }
    }               for(i=1; i<=nlstate;i++){
   }                kk1=0.;
                    for(j=1; j<=nlstate;j++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
                   }
   if (popforecast==1) {                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     free_ivector(popage,0,AGESUP);              }
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   }                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespop);          }
 } /* End of popforecast */        }
    
 int fileappend(FILE *fichier, char *optionfich)    /******/
 {  
   if((fichier=fopen(optionfich,"a"))==NULL) {        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
     printf("Problem with file: %s\n", optionfich);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     fprintf(ficlog,"Problem with file: %s\n", optionfich);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
     return (0);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   }            nhstepm = nhstepm/hstepm;
   fflush(fichier);           
   return (1);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 }            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
 /**************** function prwizard **********************/              if (h==(int) (calagedatem+YEARM*cpt)) {
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 {              }
               for(j=1; j<=nlstate+ndeath;j++) {
   /* Wizard to print covariance matrix template */                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   char ca[32], cb[32], cc[32];                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;                }
   int numlinepar;                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            }
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=nlstate; i++){          }
     jj=0;        }
     for(j=1; j <=nlstate+ndeath; j++){     }
       if(j==i) continue;    }
       jj++;   
       /*ca[0]= k+'a'-1;ca[1]='\0';*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i,j);    if (popforecast==1) {
       for(k=1; k<=ncovmodel;k++){      free_ivector(popage,0,AGESUP);
         /*        printf(" %lf",param[i][j][k]); */      free_vector(popeffectif,0,AGESUP);
         /*        fprintf(ficparo," %lf",param[i][j][k]); */      free_vector(popcount,0,AGESUP);
         printf(" 0.");    }
         fprintf(ficparo," 0.");    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       printf("\n");    fclose(ficrespop);
       fprintf(ficparo,"\n");  } /* End of popforecast */
     }  
   }  int fileappend(FILE *fichier, char *optionfich)
   printf("# Scales (for hessian or gradient estimation)\n");  {
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");    if((fichier=fopen(optionfich,"a"))==NULL) {
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/       printf("Problem with file: %s\n", optionfich);
   for(i=1; i <=nlstate; i++){      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     jj=0;      return (0);
     for(j=1; j <=nlstate+ndeath; j++){    }
       if(j==i) continue;    fflush(fichier);
       jj++;    return (1);
       fprintf(ficparo,"%1d%1d",i,j);  }
       printf("%1d%1d",i,j);  
       fflush(stdout);  
       for(k=1; k<=ncovmodel;k++){  /**************** function prwizard **********************/
         /*      printf(" %le",delti3[i][j][k]); */  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */  {
         printf(" 0.");  
         fprintf(ficparo," 0.");    /* Wizard to print covariance matrix template */
       }  
       numlinepar++;    char ca[32], cb[32], cc[32];
       printf("\n");    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
       fprintf(ficparo,"\n");    int numlinepar;
     }  
   }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   printf("# Covariance matrix\n");    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
 /* # 121 Var(a12)\n\ */    for(i=1; i <=nlstate; i++){
 /* # 122 Cov(b12,a12) Var(b12)\n\ */      jj=0;
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      for(j=1; j <=nlstate+ndeath; j++){
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        if(j==i) continue;
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        jj++;
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        /*ca[0]= k+'a'-1;ca[1]='\0';*/
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */        printf("%1d%1d",i,j);
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */        fprintf(ficparo,"%1d%1d",i,j);
   fflush(stdout);        for(k=1; k<=ncovmodel;k++){
   fprintf(ficparo,"# Covariance matrix\n");          /*        printf(" %lf",param[i][j][k]); */
   /* # 121 Var(a12)\n\ */          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */          printf(" 0.");
   /* #   ...\n\ */          fprintf(ficparo," 0.");
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */        }
           printf("\n");
   for(itimes=1;itimes<=2;itimes++){        fprintf(ficparo,"\n");
     jj=0;      }
     for(i=1; i <=nlstate; i++){    }
       for(j=1; j <=nlstate+ndeath; j++){    printf("# Scales (for hessian or gradient estimation)\n");
         if(j==i) continue;    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
         for(k=1; k<=ncovmodel;k++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           jj++;    for(i=1; i <=nlstate; i++){
           ca[0]= k+'a'-1;ca[1]='\0';      jj=0;
           if(itimes==1){      for(j=1; j <=nlstate+ndeath; j++){
             printf("#%1d%1d%d",i,j,k);        if(j==i) continue;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);        jj++;
           }else{        fprintf(ficparo,"%1d%1d",i,j);
             printf("%1d%1d%d",i,j,k);        printf("%1d%1d",i,j);
             fprintf(ficparo,"%1d%1d%d",i,j,k);        fflush(stdout);
             /*  printf(" %.5le",matcov[i][j]); */        for(k=1; k<=ncovmodel;k++){
           }          /*      printf(" %le",delti3[i][j][k]); */
           ll=0;          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           for(li=1;li <=nlstate; li++){          printf(" 0.");
             for(lj=1;lj <=nlstate+ndeath; lj++){          fprintf(ficparo," 0.");
               if(lj==li) continue;        }
               for(lk=1;lk<=ncovmodel;lk++){        numlinepar++;
                 ll++;        printf("\n");
                 if(ll<=jj){        fprintf(ficparo,"\n");
                   cb[0]= lk +'a'-1;cb[1]='\0';      }
                   if(ll<jj){    }
                     if(itimes==1){    printf("# Covariance matrix\n");
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  /* # 121 Var(a12)\n\ */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
                     }else{  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                       printf(" 0.");  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                       fprintf(ficparo," 0.");  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                     }  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   }else{  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                     if(itimes==1){  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                       printf(" Var(%s%1d%1d)",ca,i,j);    fflush(stdout);
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);    fprintf(ficparo,"# Covariance matrix\n");
                     }else{    /* # 121 Var(a12)\n\ */
                       printf(" 0.");    /* # 122 Cov(b12,a12) Var(b12)\n\ */
                       fprintf(ficparo," 0.");    /* #   ...\n\ */
                     }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   }   
                 }    for(itimes=1;itimes<=2;itimes++){
               } /* end lk */      jj=0;
             } /* end lj */      for(i=1; i <=nlstate; i++){
           } /* end li */        for(j=1; j <=nlstate+ndeath; j++){
           printf("\n");          if(j==i) continue;
           fprintf(ficparo,"\n");          for(k=1; k<=ncovmodel;k++){
           numlinepar++;            jj++;
         } /* end k*/            ca[0]= k+'a'-1;ca[1]='\0';
       } /*end j */            if(itimes==1){
     } /* end i */              printf("#%1d%1d%d",i,j,k);
   } /* end itimes */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
 } /* end of prwizard */              printf("%1d%1d%d",i,j,k);
 /******************* Gompertz Likelihood ******************************/              fprintf(ficparo,"%1d%1d%d",i,j,k);
 double gompertz(double x[])              /*  printf(" %.5le",matcov[i][j]); */
 {             }
   double A,B,L=0.0,sump=0.,num=0.;            ll=0;
   int i,n=0; /* n is the size of the sample */            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
   for (i=0;i<=imx-1 ; i++) {                if(lj==li) continue;
     sump=sump+weight[i];                for(lk=1;lk<=ncovmodel;lk++){
     /*    sump=sump+1;*/                  ll++;
     num=num+1;                  if(ll<=jj){
   }                    cb[0]= lk +'a'-1;cb[1]='\0';
                      if(ll<jj){
                        if(itimes==1){
   /* for (i=0; i<=imx; i++)                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
   for (i=1;i<=imx ; i++)                        printf(" 0.");
     {                        fprintf(ficparo," 0.");
       if (cens[i] == 1 && wav[i]>1)                      }
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));                    }else{
                             if(itimes==1){
       if (cens[i] == 0 && wav[i]>1)                        printf(" Var(%s%1d%1d)",ca,i,j);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);                        }else{
                               printf(" 0.");
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */                        fprintf(ficparo," 0.");
       if (wav[i] > 1 ) { /* ??? */                      }
         L=L+A*weight[i];                    }
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/                  }
       }                } /* end lk */
     }              } /* end lj */
             } /* end li */
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/            printf("\n");
              fprintf(ficparo,"\n");
   return -2*L*num/sump;            numlinepar++;
 }          } /* end k*/
         } /*end j */
 /******************* Printing html file ***********/      } /* end i */
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \    } /* end itimes */
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,  double p[],double **matcov,double agemortsup){  } /* end of prwizard */
   int i,k;  /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");  {
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);    double A,B,L=0.0,sump=0.,num=0.;
   for (i=1;i<=2;i++)     int i,n=0; /* n is the size of the sample */
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));  
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");    for (i=0;i<=imx-1 ; i++) {
   fprintf(fichtm,"</ul>");      sump=sump+weight[i];
       /*    sump=sump+1;*/
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");      num=num+1;
     }
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");   
    
  for (k=agegomp;k<(agemortsup-2);k++)     /* for (i=0; i<=imx; i++)
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
      for (i=1;i<=imx ; i++)
   fflush(fichtm);      {
 }        if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
 /******************* Gnuplot file **************/       
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   char dirfileres[132],optfileres[132];               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;       
   int ng;        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
   /*#ifdef windows */          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   fprintf(ficgp,"cd \"%s\" \n",pathc);        }
     /*#endif */      }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
   strcpy(dirfileres,optionfilefiname);   
   strcpy(optfileres,"vpl");    return -2*L*num/sump;
   fprintf(ficgp,"set out \"graphmort.png\"\n ");   }
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");   
   fprintf(ficgp, "set ter png small\n set log y\n");   /******************* Printing html file ***********/
   fprintf(ficgp, "set size 0.65,0.65\n");  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
 }     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++)
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
 /***********************************************/    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
 /**************** Main Program *****************/    fprintf(fichtm,"</ul>");
 /***********************************************/  
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
 int main(int argc, char *argv[])  
 {   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;   for (k=agegomp;k<(agemortsup-2);k++)
   int linei, month, year,iout;     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   int jj, ll, li, lj, lk, imk;  
   int numlinepar=0; /* Current linenumber of parameter file */   
   int itimes;    fflush(fichtm);
   int NDIM=2;  }
   
   char ca[32], cb[32], cc[32];  /******************* Gnuplot file **************/
   char dummy[]="                         ";  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /*  FILE *fichtm; *//* Html File */  
   /* FILE *ficgp;*/ /*Gnuplot File */    char dirfileres[132],optfileres[132];
   struct stat info;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   double agedeb, agefin,hf;    int ng;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
   
   double fret;    /*#ifdef windows */
   double **xi,tmp,delta;    fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   double dum; /* Dummy variable */  
   double ***p3mat;  
   double ***mobaverage;    strcpy(dirfileres,optionfilefiname);
   int *indx;    strcpy(optfileres,"vpl");
   char line[MAXLINE], linepar[MAXLINE];    fprintf(ficgp,"set out \"graphmort.png\"\n ");
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
   char pathr[MAXLINE], pathimach[MAXLINE];     fprintf(ficgp, "set ter png small\n set log y\n");
   char **bp, *tok, *val; /* pathtot */    fprintf(ficgp, "set size 0.65,0.65\n");
   int firstobs=1, lastobs=10;    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   int sdeb, sfin; /* Status at beginning and end */  
   int c,  h , cpt,l;  }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */  
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  /***********************************************/
   int agemortsup;  /**************** Main Program *****************/
   float  sumlpop=0.;  /***********************************************/
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;  
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;  int main(int argc, char *argv[])
   {
   double bage, fage, age, agelim, agebase;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   double ftolpl=FTOL;    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   double **prlim;    int linei, month, year,iout;
   double *severity;    int jj, ll, li, lj, lk, imk;
   double ***param; /* Matrix of parameters */    int numlinepar=0; /* Current linenumber of parameter file */
   double  *p;    int itimes;
   double **matcov; /* Matrix of covariance */    int NDIM=2;
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    char ca[32], cb[32], cc[32];
   double ***eij, ***vareij;    char dummy[]="                         ";
   double **varpl; /* Variances of prevalence limits by age */    /*  FILE *fichtm; *//* Html File */
   double *epj, vepp;    /* FILE *ficgp;*/ /*Gnuplot File */
   double kk1, kk2;    struct stat info;
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    double agedeb, agefin,hf;
   double **ximort;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
   int *dcwave;    double fret;
     double **xi,tmp,delta;
   char z[1]="c", occ;  
     double dum; /* Dummy variable */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    double ***p3mat;
   char  *strt, strtend[80];    double ***mobaverage;
   char *stratrunc;    int *indx;
   int lstra;    char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   long total_usecs;    char pathr[MAXLINE], pathimach[MAXLINE];
      char **bp, *tok, *val; /* pathtot */
 /*   setlocale (LC_ALL, ""); */    int firstobs=1, lastobs=10;
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    int sdeb, sfin; /* Status at beginning and end */
 /*   textdomain (PACKAGE); */    int c,  h , cpt,l;
 /*   setlocale (LC_CTYPE, ""); */    int ju,jl, mi;
 /*   setlocale (LC_MESSAGES, ""); */    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   (void) gettimeofday(&start_time,&tzp);    int mobilav=0,popforecast=0;
   curr_time=start_time;    int hstepm, nhstepm;
   tm = *localtime(&start_time.tv_sec);    int agemortsup;
   tmg = *gmtime(&start_time.tv_sec);    float  sumlpop=0.;
   strcpy(strstart,asctime(&tm));    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 /*  printf("Localtime (at start)=%s",strstart); */  
 /*  tp.tv_sec = tp.tv_sec +86400; */    double bage, fage, age, agelim, agebase;
 /*  tm = *localtime(&start_time.tv_sec); */    double ftolpl=FTOL;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */    double **prlim;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */    double *severity;
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    double ***param; /* Matrix of parameters */
 /*   tp.tv_sec = mktime(&tmg); */    double  *p;
 /*   strt=asctime(&tmg); */    double **matcov; /* Matrix of covariance */
 /*   printf("Time(after) =%s",strstart);  */    double ***delti3; /* Scale */
 /*  (void) time (&time_value);    double *delti; /* Scale */
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);    double ***eij, ***vareij;
 *  tm = *localtime(&time_value);    double **varpl; /* Variances of prevalence limits by age */
 *  strstart=asctime(&tm);    double *epj, vepp;
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);     double kk1, kk2;
 */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
   nberr=0; /* Number of errors and warnings */    char *alph[]={"a","a","b","c","d","e"}, str[4];
   nbwarn=0;    int *dcwave;
   getcwd(pathcd, size);  
     char z[1]="c", occ;
   printf("\n%s\n%s",version,fullversion);  
   if(argc <=1){    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     printf("\nEnter the parameter file name: ");    char  *strt, strtend[80];
     fgets(pathr,FILENAMELENGTH,stdin);    char *stratrunc;
     i=strlen(pathr);    int lstra;
     if(pathr[i-1]=='\n')  
       pathr[i-1]='\0';    long total_usecs;
    for (tok = pathr; tok != NULL; ){   
       printf("Pathr |%s|\n",pathr);  /*   setlocale (LC_ALL, ""); */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
       printf("val= |%s| pathr=%s\n",val,pathr);  /*   textdomain (PACKAGE); */
       strcpy (pathtot, val);  /*   setlocale (LC_CTYPE, ""); */
       if(pathr[0] == '\0') break; /* Dirty */  /*   setlocale (LC_MESSAGES, ""); */
     }  
   }    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   else{    (void) gettimeofday(&start_time,&tzp);
     strcpy(pathtot,argv[1]);    curr_time=start_time;
   }    tm = *localtime(&start_time.tv_sec);
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    tmg = *gmtime(&start_time.tv_sec);
   /*cygwin_split_path(pathtot,path,optionfile);    strcpy(strstart,asctime(&tm));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /* Split argv[0], imach program to get pathimach */  /*  tm = *localtime(&start_time.tv_sec); */
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
  /*   strcpy(pathimach,argv[0]); */  /*   tp.tv_sec = mktime(&tmg); */
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */  /*   strt=asctime(&tmg); */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  /*   printf("Time(after) =%s",strstart);  */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  /*  (void) time (&time_value);
   chdir(path); /* Can be a relative path */  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */  *  tm = *localtime(&time_value);
     printf("Current directory %s!\n",pathcd);  *  strstart=asctime(&tm);
   strcpy(command,"mkdir ");  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
   strcat(command,optionfilefiname);  */
   if((outcmd=system(command)) != 0){  
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);    nberr=0; /* Number of errors and warnings */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    nbwarn=0;
     /* fclose(ficlog); */    getcwd(pathcd, size);
 /*     exit(1); */  
   }    printf("\n%s\n%s",version,fullversion);
 /*   if((imk=mkdir(optionfilefiname))<0){ */    if(argc <=1){
 /*     perror("mkdir"); */      printf("\nEnter the parameter file name: ");
 /*   } */      fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
   /*-------- arguments in the command line --------*/      if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
   /* Log file */     for (tok = pathr; tok != NULL; ){
   strcat(filelog, optionfilefiname);        printf("Pathr |%s|\n",pathr);
   strcat(filelog,".log");    /* */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   if((ficlog=fopen(filelog,"w"))==NULL)    {        printf("val= |%s| pathr=%s\n",val,pathr);
     printf("Problem with logfile %s\n",filelog);        strcpy (pathtot, val);
     goto end;        if(pathr[0] == '\0') break; /* Dirty */
   }      }
   fprintf(ficlog,"Log filename:%s\n",filelog);    }
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    else{
   fprintf(ficlog,"\nEnter the parameter file name: \n");      strcpy(pathtot,argv[1]);
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    }
  path=%s \n\    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
  optionfile=%s\n\    /*cygwin_split_path(pathtot,path,optionfile);
  optionfilext=%s\n\      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    /* cutv(path,optionfile,pathtot,'\\');*/
   
   printf("Local time (at start):%s",strstart);    /* Split argv[0], imach program to get pathimach */
   fprintf(ficlog,"Local time (at start): %s",strstart);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   fflush(ficlog);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 /*   (void) gettimeofday(&curr_time,&tzp); */    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */   /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   /* */    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcpy(fileres,"r");    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcat(fileres, optionfilefiname);    chdir(path); /* Can be a relative path */
   strcat(fileres,".txt");    /* Other files have txt extension */    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
   /*---------arguments file --------*/    strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if((outcmd=system(command)) != 0){
     printf("Problem with optionfile %s\n",optionfile);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
     fflush(ficlog);      /* fclose(ficlog); */
     goto end;  /*     exit(1); */
   }    }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    /*-------- arguments in the command line --------*/
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  
     printf("Problem with Output resultfile: %s\n", filereso);    /* Log file */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    strcat(filelog, optionfilefiname);
     fflush(ficlog);    strcat(filelog,".log");    /* */
     goto end;    if((ficlog=fopen(filelog,"w"))==NULL)    {
   }      printf("Problem with logfile %s\n",filelog);
       goto end;
   /* Reads comments: lines beginning with '#' */    }
   numlinepar=0;    fprintf(ficlog,"Log filename:%s\n",filelog);
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"\n%s\n%s",version,fullversion);
     ungetc(c,ficpar);    fprintf(ficlog,"\nEnter the parameter file name: \n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
     numlinepar++;   path=%s \n\
     puts(line);   optionfile=%s\n\
     fputs(line,ficparo);   optionfilext=%s\n\
     fputs(line,ficlog);   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   }  
   ungetc(c,ficpar);    printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fflush(ficlog);
   numlinepar++;  /*   (void) gettimeofday(&curr_time,&tzp); */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    /* */
   fflush(ficlog);    strcpy(fileres,"r");
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileres, optionfilefiname);
     ungetc(c,ficpar);    strcat(fileres,".txt");    /* Other files have txt extension */
     fgets(line, MAXLINE, ficpar);  
     numlinepar++;    /*---------arguments file --------*/
     puts(line);  
     fputs(line,ficparo);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     fputs(line,ficlog);      printf("Problem with optionfile %s\n",optionfile);
   }      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   ungetc(c,ficpar);      fflush(ficlog);
       goto end;
        }
   covar=matrix(0,NCOVMAX,1,n);   
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     strcpy(filereso,"o");
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */    strcat(filereso,fileres);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/      printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fflush(ficlog);
   delti=delti3[1][1];      goto end;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    }
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */  
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    /* Reads comments: lines beginning with '#' */
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    numlinepar=0;
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    while((c=getc(ficpar))=='#' && c!= EOF){
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       ungetc(c,ficpar);
     fclose (ficparo);      fgets(line, MAXLINE, ficpar);
     fclose (ficlog);      numlinepar++;
     exit(0);      puts(line);
   }      fputs(line,ficparo);
   else if(mle==-3) {      fputs(line,ficlog);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    }
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    ungetc(c,ficpar);
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);  
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     matcov=matrix(1,npar,1,npar);    numlinepar++;
   }    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   else{    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     /* Read guess parameters */    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     /* Reads comments: lines beginning with '#' */    fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);      fgets(line, MAXLINE, ficpar);
       numlinepar++;      numlinepar++;
       puts(line);      puts(line);
       fputs(line,ficparo);      fputs(line,ficparo);
       fputs(line,ficlog);      fputs(line,ficlog);
     }    }
     ungetc(c,ficpar);    ungetc(c,ficpar);
       
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     
     for(i=1; i <=nlstate; i++){    covar=matrix(0,NCOVMAX,1,n);
       j=0;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       for(jj=1; jj <=nlstate+ndeath; jj++){    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
         if(jj==i) continue;  
         j++;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         fscanf(ficpar,"%1d%1d",&i1,&j1);    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         if ((i1 != i) && (j1 != j)){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  
           exit(1);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         }    delti=delti3[1][1];
         fprintf(ficparo,"%1d%1d",i1,j1);    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
         if(mle==1)    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
           printf("%1d%1d",i,j);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         fprintf(ficlog,"%1d%1d",i,j);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         for(k=1; k<=ncovmodel;k++){      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
           fscanf(ficpar," %lf",&param[i][j][k]);      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
           if(mle==1){      fclose (ficparo);
             printf(" %lf",param[i][j][k]);      fclose (ficlog);
             fprintf(ficlog," %lf",param[i][j][k]);      goto end;
           }      exit(0);
           else    }
             fprintf(ficlog," %lf",param[i][j][k]);    else if(mle==-3) {
           fprintf(ficparo," %lf",param[i][j][k]);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
         }      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         fscanf(ficpar,"\n");      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
         numlinepar++;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         if(mle==1)      matcov=matrix(1,npar,1,npar);
           printf("\n");    }
         fprintf(ficlog,"\n");    else{
         fprintf(ficparo,"\n");      /* Read guess parameters */
       }      /* Reads comments: lines beginning with '#' */
     }        while((c=getc(ficpar))=='#' && c!= EOF){
     fflush(ficlog);        ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     p=param[1][1];        numlinepar++;
             puts(line);
     /* Reads comments: lines beginning with '#' */        fputs(line,ficparo);
     while((c=getc(ficpar))=='#' && c!= EOF){        fputs(line,ficlog);
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);      ungetc(c,ficpar);
       numlinepar++;     
       puts(line);      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       fputs(line,ficparo);      for(i=1; i <=nlstate; i++){
       fputs(line,ficlog);        j=0;
     }        for(jj=1; jj <=nlstate+ndeath; jj++){
     ungetc(c,ficpar);          if(jj==i) continue;
           j++;
     for(i=1; i <=nlstate; i++){          fscanf(ficpar,"%1d%1d",&i1,&j1);
       for(j=1; j <=nlstate+ndeath-1; j++){          if ((i1 != i) && (j1 != j)){
         fscanf(ficpar,"%1d%1d",&i1,&j1);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
         if ((i1-i)*(j1-j)!=0){  It might be a problem of design; if ncovcol and the model are correct\n \
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
           exit(1);            exit(1);
         }          }
         printf("%1d%1d",i,j);          fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficparo,"%1d%1d",i1,j1);          if(mle==1)
         fprintf(ficlog,"%1d%1d",i1,j1);            printf("%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){          fprintf(ficlog,"%1d%1d",i,j);
           fscanf(ficpar,"%le",&delti3[i][j][k]);          for(k=1; k<=ncovmodel;k++){
           printf(" %le",delti3[i][j][k]);            fscanf(ficpar," %lf",&param[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);            if(mle==1){
           fprintf(ficlog," %le",delti3[i][j][k]);              printf(" %lf",param[i][j][k]);
         }              fprintf(ficlog," %lf",param[i][j][k]);
         fscanf(ficpar,"\n");            }
         numlinepar++;            else
         printf("\n");              fprintf(ficlog," %lf",param[i][j][k]);
         fprintf(ficparo,"\n");            fprintf(ficparo," %lf",param[i][j][k]);
         fprintf(ficlog,"\n");          }
       }          fscanf(ficpar,"\n");
     }          numlinepar++;
     fflush(ficlog);          if(mle==1)
             printf("\n");
     delti=delti3[1][1];          fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      }  
         fflush(ficlog);
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){      p=param[1][1];
       ungetc(c,ficpar);     
       fgets(line, MAXLINE, ficpar);      /* Reads comments: lines beginning with '#' */
       numlinepar++;      while((c=getc(ficpar))=='#' && c!= EOF){
       puts(line);        ungetc(c,ficpar);
       fputs(line,ficparo);        fgets(line, MAXLINE, ficpar);
       fputs(line,ficlog);        numlinepar++;
     }        puts(line);
     ungetc(c,ficpar);        fputs(line,ficparo);
           fputs(line,ficlog);
     matcov=matrix(1,npar,1,npar);      }
     for(i=1; i <=npar; i++){      ungetc(c,ficpar);
       fscanf(ficpar,"%s",&str);  
       if(mle==1)      for(i=1; i <=nlstate; i++){
         printf("%s",str);        for(j=1; j <=nlstate+ndeath-1; j++){
       fprintf(ficlog,"%s",str);          fscanf(ficpar,"%1d%1d",&i1,&j1);
       fprintf(ficparo,"%s",str);          if ((i1-i)*(j1-j)!=0){
       for(j=1; j <=i; j++){            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
         fscanf(ficpar," %le",&matcov[i][j]);            exit(1);
         if(mle==1){          }
           printf(" %.5le",matcov[i][j]);          printf("%1d%1d",i,j);
         }          fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog," %.5le",matcov[i][j]);          fprintf(ficlog,"%1d%1d",i1,j1);
         fprintf(ficparo," %.5le",matcov[i][j]);          for(k=1; k<=ncovmodel;k++){
       }            fscanf(ficpar,"%le",&delti3[i][j][k]);
       fscanf(ficpar,"\n");            printf(" %le",delti3[i][j][k]);
       numlinepar++;            fprintf(ficparo," %le",delti3[i][j][k]);
       if(mle==1)            fprintf(ficlog," %le",delti3[i][j][k]);
         printf("\n");          }
       fprintf(ficlog,"\n");          fscanf(ficpar,"\n");
       fprintf(ficparo,"\n");          numlinepar++;
     }          printf("\n");
     for(i=1; i <=npar; i++)          fprintf(ficparo,"\n");
       for(j=i+1;j<=npar;j++)          fprintf(ficlog,"\n");
         matcov[i][j]=matcov[j][i];        }
           }
     if(mle==1)      fflush(ficlog);
       printf("\n");  
     fprintf(ficlog,"\n");      delti=delti3[1][1];
       
     fflush(ficlog);  
           /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     /*-------- Rewriting parameter file ----------*/   
     strcpy(rfileres,"r");    /* "Rparameterfile */      /* Reads comments: lines beginning with '#' */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      while((c=getc(ficpar))=='#' && c!= EOF){
     strcat(rfileres,".");    /* */        ungetc(c,ficpar);
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        fgets(line, MAXLINE, ficpar);
     if((ficres =fopen(rfileres,"w"))==NULL) {        numlinepar++;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        puts(line);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        fputs(line,ficparo);
     }        fputs(line,ficlog);
     fprintf(ficres,"#%s\n",version);      }
   }    /* End of mle != -3 */      ungetc(c,ficpar);
    
   /*-------- data file ----------*/      matcov=matrix(1,npar,1,npar);
   if((fic=fopen(datafile,"r"))==NULL)    {      for(i=1; i <=npar; i++){
     printf("Problem while opening datafile: %s\n", datafile);goto end;        fscanf(ficpar,"%s",&str);
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;        if(mle==1)
   }          printf("%s",str);
         fprintf(ficlog,"%s",str);
   n= lastobs;        fprintf(ficparo,"%s",str);
   severity = vector(1,maxwav);        for(j=1; j <=i; j++){
   outcome=imatrix(1,maxwav+1,1,n);          fscanf(ficpar," %le",&matcov[i][j]);
   num=lvector(1,n);          if(mle==1){
   moisnais=vector(1,n);            printf(" %.5le",matcov[i][j]);
   annais=vector(1,n);          }
   moisdc=vector(1,n);          fprintf(ficlog," %.5le",matcov[i][j]);
   andc=vector(1,n);          fprintf(ficparo," %.5le",matcov[i][j]);
   agedc=vector(1,n);        }
   cod=ivector(1,n);        fscanf(ficpar,"\n");
   weight=vector(1,n);        numlinepar++;
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        if(mle==1)
   mint=matrix(1,maxwav,1,n);          printf("\n");
   anint=matrix(1,maxwav,1,n);        fprintf(ficlog,"\n");
   s=imatrix(1,maxwav+1,1,n);        fprintf(ficparo,"\n");
   tab=ivector(1,NCOVMAX);      }
   ncodemax=ivector(1,8);      for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
   i=1;          matcov[i][j]=matcov[j][i];
   linei=0;     
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {      if(mle==1)
     linei=linei+1;        printf("\n");
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */      fprintf(ficlog,"\n");
       if(line[j] == '\t')     
         line[j] = ' ';      fflush(ficlog);
     }     
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){      /*-------- Rewriting parameter file ----------*/
       ;      strcpy(rfileres,"r");    /* "Rparameterfile */
     };      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     line[j+1]=0;  /* Trims blanks at end of line */      strcat(rfileres,".");    /* */
     if(line[0]=='#'){      strcat(rfileres,optionfilext);    /* Other files have txt extension */
       fprintf(ficlog,"Comment line\n%s\n",line);      if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Comment line\n%s\n",line);        printf("Problem writing new parameter file: %s\n", fileres);goto end;
       continue;        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }      }
       fprintf(ficres,"#%s\n",version);
     for (j=maxwav;j>=1;j--){    }    /* End of mle != -3 */
       cutv(stra, strb,line,' ');   
       errno=0;    /*-------- data file ----------*/
       lval=strtol(strb,&endptr,10);     if((fic=fopen(datafile,"r"))==NULL)    {
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/      printf("Problem while opening datafile: %s\n", datafile);goto end;
       if( strb[0]=='\0' || (*endptr != '\0')){      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);    }
         exit(1);  
       }    n= lastobs;
       s[j][i]=lval;    severity = vector(1,maxwav);
           outcome=imatrix(1,maxwav+1,1,n);
       strcpy(line,stra);    num=lvector(1,n);
       cutv(stra, strb,line,' ');    moisnais=vector(1,n);
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    annais=vector(1,n);
       }    moisdc=vector(1,n);
       else  if(iout=sscanf(strb,"%s.") != 0){    andc=vector(1,n);
         month=99;    agedc=vector(1,n);
         year=9999;    cod=ivector(1,n);
       }else{    weight=vector(1,n);
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
         exit(1);    mint=matrix(1,maxwav,1,n);
       }    anint=matrix(1,maxwav,1,n);
       anint[j][i]= (double) year;     s=imatrix(1,maxwav+1,1,n);
       mint[j][i]= (double)month;     tab=ivector(1,NCOVMAX);
       strcpy(line,stra);    ncodemax=ivector(1,8);
     } /* ENd Waves */  
         i=1;
     cutv(stra, strb,line,' ');     linei=0;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
     }      linei=linei+1;
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
       month=99;        if(line[j] == '\t')
       year=9999;          line[j] = ' ';
     }else{      }
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
       exit(1);        ;
     }      };
     andc[i]=(double) year;       line[j+1]=0;  /* Trims blanks at end of line */
     moisdc[i]=(double) month;       if(line[0]=='#'){
     strcpy(line,stra);        fprintf(ficlog,"Comment line\n%s\n",line);
             printf("Comment line\n%s\n",line);
     cutv(stra, strb,line,' ');         continue;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){      }
     }  
     else  if(iout=sscanf(strb,"%s.") != 0){      for (j=maxwav;j>=1;j--){
       month=99;        cutv(stra, strb,line,' ');
       year=9999;        errno=0;
     }else{        lval=strtol(strb,&endptr,10);
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
       exit(1);        if( strb[0]=='\0' || (*endptr != '\0')){
     }          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     annais[i]=(double)(year);          exit(1);
     moisnais[i]=(double)(month);         }
     strcpy(line,stra);        s[j][i]=lval;
            
     cutv(stra, strb,line,' ');         strcpy(line,stra);
     errno=0;        cutv(stra, strb,line,' ');
     lval=strtol(strb,&endptr,10);         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     if( strb[0]=='\0' || (*endptr != '\0')){        }
       printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);        else  if(iout=sscanf(strb,"%s.") != 0){
       exit(1);          month=99;
     }          year=9999;
     weight[i]=(double)(lval);         }else{
     strcpy(line,stra);          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
               exit(1);
     for (j=ncovcol;j>=1;j--){        }
       cutv(stra, strb,line,' ');         anint[j][i]= (double) year;
       errno=0;        mint[j][i]= (double)month;
       lval=strtol(strb,&endptr,10);         strcpy(line,stra);
       if( strb[0]=='\0' || (*endptr != '\0')){      } /* ENd Waves */
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);     
         exit(1);      cutv(stra, strb,line,' ');
       }      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       if(lval <-1 || lval >1){      }
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         exit(1);        month=99;
       }        year=9999;
       covar[j][i]=(double)(lval);      }else{
       strcpy(line,stra);        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     }         exit(1);
     lstra=strlen(stra);      }
           andc[i]=(double) year;
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */      moisdc[i]=(double) month;
       stratrunc = &(stra[lstra-9]);      strcpy(line,stra);
       num[i]=atol(stratrunc);     
     }      cutv(stra, strb,line,' ');
     else      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       num[i]=atol(stra);      }
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      else  if(iout=sscanf(strb,"%s.") != 0){
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        month=99;
             year=9999;
     i=i+1;      }else{
   } /* End loop reading  data */        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
   fclose(fic);        exit(1);
   /* printf("ii=%d", ij);      }
      scanf("%d",i);*/      annais[i]=(double)(year);
   imx=i-1; /* Number of individuals */      moisnais[i]=(double)(month);
       strcpy(line,stra);
   /* for (i=1; i<=imx; i++){     
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      cutv(stra, strb,line,' ');
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      errno=0;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      dval=strtod(strb,&endptr);
     }*/      if( strb[0]=='\0' || (*endptr != '\0')){
    /*  for (i=1; i<=imx; i++){        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
      if (s[4][i]==9)  s[4][i]=-1;         exit(1);
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
         weight[i]=dval;
   /* for (i=1; i<=imx; i++) */      strcpy(line,stra);
       
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;      for (j=ncovcol;j>=1;j--){
      else weight[i]=1;*/        cutv(stra, strb,line,' ');
         errno=0;
   /* Calculation of the number of parameters from char model */        lval=strtol(strb,&endptr,10);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        if( strb[0]=='\0' || (*endptr != '\0')){
   Tprod=ivector(1,15);           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   Tvaraff=ivector(1,15);           exit(1);
   Tvard=imatrix(1,15,1,2);        }
   Tage=ivector(1,15);              if(lval <-1 || lval >1){
              printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   if (strlen(model) >1){ /* If there is at least 1 covariate */   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     j=0, j1=0, k1=1, k2=1;   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     j=nbocc(model,'+'); /* j=Number of '+' */   For example, for multinomial values like 1, 2 and 3,\n \
     j1=nbocc(model,'*'); /* j1=Number of '*' */   build V1=0 V2=0 for the reference value (1),\n \
     cptcovn=j+1;           V1=1 V2=0 for (2) \n \
     cptcovprod=j1; /*Number of products */   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
        output of IMaCh is often meaningless.\n \
     strcpy(modelsav,model);    Exiting.\n",lval,linei, i,line,j);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          exit(1);
       printf("Error. Non available option model=%s ",model);        }
       fprintf(ficlog,"Error. Non available option model=%s ",model);        covar[j][i]=(double)(lval);
       goto end;        strcpy(line,stra);
     }      }
           lstra=strlen(stra);
     /* This loop fills the array Tvar from the string 'model'.*/     
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     for(i=(j+1); i>=1;i--){        stratrunc = &(stra[lstra-9]);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         num[i]=atol(stratrunc);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */      }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      else
       /*scanf("%d",i);*/        num[i]=atol(stra);
       if (strchr(strb,'*')) {  /* Model includes a product */      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
         if (strcmp(strc,"age")==0) { /* Vn*age */     
           cptcovprod--;      i=i+1;
           cutv(strb,stre,strd,'V');    } /* End loop reading  data */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    fclose(fic);
           cptcovage++;    /* printf("ii=%d", ij);
             Tage[cptcovage]=i;       scanf("%d",i);*/
             /*printf("stre=%s ", stre);*/    imx=i-1; /* Number of individuals */
         }  
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    /* for (i=1; i<=imx; i++){
           cptcovprod--;      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
           cutv(strb,stre,strc,'V');      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
           Tvar[i]=atoi(stre);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
           cptcovage++;      }*/
           Tage[cptcovage]=i;     /*  for (i=1; i<=imx; i++){
         }       if (s[4][i]==9)  s[4][i]=-1;
         else {  /* Age is not in the model */       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/   
           Tvar[i]=ncovcol+k1;    /* for (i=1; i<=imx; i++) */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */   
           Tprod[k1]=i;     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
           Tvard[k1][1]=atoi(strc); /* m*/       else weight[i]=1;*/
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];    /* Calculation of the number of parameters from char model */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
           for (k=1; k<=lastobs;k++)     Tprod=ivector(1,15);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    Tvaraff=ivector(1,15);
           k1++;    Tvard=imatrix(1,15,1,2);
           k2=k2+2;    Tage=ivector(1,15);      
         }     
       }    if (strlen(model) >1){ /* If there is at least 1 covariate */
       else { /* no more sum */      j=0, j1=0, k1=1, k2=1;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      j=nbocc(model,'+'); /* j=Number of '+' */
        /*  scanf("%d",i);*/      j1=nbocc(model,'*'); /* j1=Number of '*' */
       cutv(strd,strc,strb,'V');      cptcovn=j+1;
       Tvar[i]=atoi(strc);      cptcovprod=j1; /*Number of products */
       }     
       strcpy(modelsav,stra);        strcpy(modelsav,model);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         scanf("%d",i);*/        printf("Error. Non available option model=%s ",model);
     } /* end of loop + */        fprintf(ficlog,"Error. Non available option model=%s ",model);
   } /* end model */        goto end;
         }
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.     
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      /* This loop fills the array Tvar from the string 'model'.*/
   
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      for(i=(j+1); i>=1;i--){
   printf("cptcovprod=%d ", cptcovprod);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   scanf("%d ",i);*/        /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
     /*  if(mle==1){*/          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   if (weightopt != 1) { /* Maximisation without weights*/          if (strcmp(strc,"age")==0) { /* Vn*age */
     for(i=1;i<=n;i++) weight[i]=1.0;            cptcovprod--;
   }            cutv(strb,stre,strd,'V');
     /*-calculation of age at interview from date of interview and age at death -*/            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
   agev=matrix(1,maxwav,1,imx);            cptcovage++;
               Tage[cptcovage]=i;
   for (i=1; i<=imx; i++) {              /*printf("stre=%s ", stre);*/
     for(m=2; (m<= maxwav); m++) {          }
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){          else if (strcmp(strd,"age")==0) { /* or age*Vn */
         anint[m][i]=9999;            cptcovprod--;
         s[m][i]=-1;            cutv(strb,stre,strc,'V');
       }            Tvar[i]=atoi(stre);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){            cptcovage++;
         nberr++;            Tage[cptcovage]=i;
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);          }
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);          else {  /* Age is not in the model */
         s[m][i]=-1;            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
       }            Tvar[i]=ncovcol+k1;
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
         nberr++;            Tprod[k1]=i;
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);             Tvard[k1][1]=atoi(strc); /* m*/
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);             Tvard[k1][2]=atoi(stre); /* n */
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            Tvar[cptcovn+k2]=Tvard[k1][1];
       }            Tvar[cptcovn+k2+1]=Tvard[k1][2];
     }            for (k=1; k<=lastobs;k++)
   }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
   for (i=1; i<=imx; i++)  {            k2=k2+2;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
     for(m=firstpass; (m<= lastpass); m++){        }
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){        else { /* no more sum */
         if (s[m][i] >= nlstate+1) {          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           if(agedc[i]>0)         /*  scanf("%d",i);*/
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)        cutv(strd,strc,strb,'V');
               agev[m][i]=agedc[i];        Tvar[i]=atoi(strc);
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
             else {        strcpy(modelsav,stra);  
               if ((int)andc[i]!=9999){        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                 nbwarn++;          scanf("%d",i);*/
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);      } /* end of loop + */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);    } /* end model */
                 agev[m][i]=-1;   
               }    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
             }      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
         }  
         else if(s[m][i] !=9){ /* Standard case, age in fractional    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                                  years but with the precision of a month */    printf("cptcovprod=%d ", cptcovprod);
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  
             agev[m][i]=1;    scanf("%d ",i);*/
           else if(agev[m][i] <agemin){   
             agemin=agev[m][i];      /*  if(mle==1){*/
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    if (weightopt != 1) { /* Maximisation without weights*/
           }      for(i=1;i<=n;i++) weight[i]=1.0;
           else if(agev[m][i] >agemax){    }
             agemax=agev[m][i];      /*-calculation of age at interview from date of interview and age at death -*/
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    agev=matrix(1,maxwav,1,imx);
           }  
           /*agev[m][i]=anint[m][i]-annais[i];*/    for (i=1; i<=imx; i++) {
           /*     agev[m][i] = age[i]+2*m;*/      for(m=2; (m<= maxwav); m++) {
         }        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         else { /* =9 */          anint[m][i]=9999;
           agev[m][i]=1;          s[m][i]=-1;
           s[m][i]=-1;        }
         }        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       }          nberr++;
       else /*= 0 Unknown */          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         agev[m][i]=1;          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
     }          s[m][i]=-1;
             }
   }        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
   for (i=1; i<=imx; i++)  {          nberr++;
     for(m=firstpass; (m<=lastpass); m++){          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
       if (s[m][i] > (nlstate+ndeath)) {          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
         nberr++;          s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             }
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           }
         goto end;    }
       }  
     }    for (i=1; i<=imx; i++)  {
   }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
   /*for (i=1; i<=imx; i++){        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
   for (m=firstpass; (m<lastpass); m++){          if (s[m][i] >= nlstate+1) {
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);            if(agedc[i]>0)
 }              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
 }*/            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                  nbwarn++;
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
   agegomp=(int)agemin;                  agev[m][i]=-1;
   free_vector(severity,1,maxwav);                }
   free_imatrix(outcome,1,maxwav+1,1,n);              }
   free_vector(moisnais,1,n);          }
   free_vector(annais,1,n);          else if(s[m][i] !=9){ /* Standard case, age in fractional
   /* free_matrix(mint,1,maxwav,1,n);                                   years but with the precision of a month */
      free_matrix(anint,1,maxwav,1,n);*/            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   free_vector(moisdc,1,n);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   free_vector(andc,1,n);              agev[m][i]=1;
             else if(agev[m][i] <agemin){
                  agemin=agev[m][i];
   wav=ivector(1,imx);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
   dh=imatrix(1,lastpass-firstpass+1,1,imx);            }
   bh=imatrix(1,lastpass-firstpass+1,1,imx);            else if(agev[m][i] >agemax){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);              agemax=agev[m][i];
                  /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   /* Concatenates waves */            }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          }
           else { /* =9 */
   Tcode=ivector(1,100);            agev[m][i]=1;
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);             s[m][i]=-1;
   ncodemax[1]=1;          }
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
               else /*= 0 Unknown */
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of           agev[m][i]=1;
                                  the estimations*/      }
   h=0;     
   m=pow(2,cptcoveff);    }
      for (i=1; i<=imx; i++)  {
   for(k=1;k<=cptcoveff; k++){      for(m=firstpass; (m<=lastpass); m++){
     for(i=1; i <=(m/pow(2,k));i++){        if (s[m][i] > (nlstate+ndeath)) {
       for(j=1; j <= ncodemax[k]; j++){          nberr++;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           h++;          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          goto end;
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        }
         }       }
       }    }
     }  
   }     /*for (i=1; i<=imx; i++){
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     for (m=firstpass; (m<lastpass); m++){
      codtab[1][2]=1;codtab[2][2]=2; */       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   /* for(i=1; i <=m ;i++){   }
      for(k=1; k <=cptcovn; k++){  
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  }*/
      }  
      printf("\n");  
      }    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
      scanf("%d",i);*/    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       
   /*------------ gnuplot -------------*/    agegomp=(int)agemin;
   strcpy(optionfilegnuplot,optionfilefiname);    free_vector(severity,1,maxwav);
   if(mle==-3)    free_imatrix(outcome,1,maxwav+1,1,n);
     strcat(optionfilegnuplot,"-mort");    free_vector(moisnais,1,n);
   strcat(optionfilegnuplot,".gp");    free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       free_matrix(anint,1,maxwav,1,n);*/
     printf("Problem with file %s",optionfilegnuplot);    free_vector(moisdc,1,n);
   }    free_vector(andc,1,n);
   else{  
     fprintf(ficgp,"\n# %s\n", version);      
     fprintf(ficgp,"# %s\n", optionfilegnuplot);     wav=ivector(1,imx);
     fprintf(ficgp,"set missing 'NaNq'\n");    dh=imatrix(1,lastpass-firstpass+1,1,imx);
   }    bh=imatrix(1,lastpass-firstpass+1,1,imx);
   /*  fclose(ficgp);*/    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   /*--------- index.htm --------*/     
     /* Concatenates waves */
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   if(mle==-3)  
     strcat(optionfilehtm,"-mort");    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    Tcode=ivector(1,100);
     printf("Problem with %s \n",optionfilehtm), exit(0);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
   }    ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */       
   strcat(optionfilehtmcov,"-cov.htm");    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {                                   the estimations*/
     printf("Problem with %s \n",optionfilehtmcov), exit(0);    h=0;
   }    m=pow(2,cptcoveff);
   else{   
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \    for(k=1;k<=cptcoveff; k++){
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      for(i=1; i <=(m/pow(2,k));i++){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\        for(j=1; j <= ncodemax[k]; j++){
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   }            h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
 <hr size=\"2\" color=\"#EC5E5E\"> \n\          }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\        }
 \n\      }
 <hr  size=\"2\" color=\"#EC5E5E\">\    }
  <ul><li><h4>Parameter files</h4>\n\    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\       codtab[1][2]=1;codtab[2][2]=2; */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    /* for(i=1; i <=m ;i++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\       for(k=1; k <=cptcovn; k++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
  - Date and time at start: %s</ul>\n",\       }
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\       printf("\n");
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\       }
           fileres,fileres,\       scanf("%d",i);*/
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);     
   fflush(fichtm);    /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
   strcpy(pathr,path);    if(mle==-3)
   strcat(pathr,optionfilefiname);      strcat(optionfilegnuplot,"-mort");
   chdir(optionfilefiname); /* Move to directory named optionfile */    strcat(optionfilegnuplot,".gp");
     
   /* Calculates basic frequencies. Computes observed prevalence at single age    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
      and prints on file fileres'p'. */      printf("Problem with file %s",optionfilegnuplot);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);    }
     else{
   fprintf(fichtm,"\n");      fprintf(ficgp,"\n# %s\n", version);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      fprintf(ficgp,"# %s\n", optionfilegnuplot);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\      fprintf(ficgp,"set missing 'NaNq'\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    }
           imx,agemin,agemax,jmin,jmax,jmean);    /*  fclose(ficgp);*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*--------- index.htm --------*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(mle==-3)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      strcat(optionfilehtm,"-mort");
         strcat(optionfilehtm,".htm");
        if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
   /* For Powell, parameters are in a vector p[] starting at p[1]      printf("Problem with %s \n",optionfilehtm), exit(0);
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    }
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/    strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
   if (mle==-3){      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     ximort=matrix(1,NDIM,1,NDIM);    }
     cens=ivector(1,n);    else{
     ageexmed=vector(1,n);    fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     agecens=vector(1,n);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     dcwave=ivector(1,n);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
              optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     for (i=1; i<=imx; i++){    }
       dcwave[i]=-1;  
       for (m=firstpass; m<=lastpass; m++)    fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
         if (s[m][i]>nlstate) {  <hr size=\"2\" color=\"#EC5E5E\"> \n\
           dcwave[i]=m;  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/  \n\
           break;  <hr  size=\"2\" color=\"#EC5E5E\">\
         }   <ul><li><h4>Parameter files</h4>\n\
     }   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
     for (i=1; i<=imx; i++) {   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
       if (wav[i]>0){   - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
         ageexmed[i]=agev[mw[1][i]][i];   - Date and time at start: %s</ul>\n",\
         j=wav[i];            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
         agecens[i]=1.;             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
         if (ageexmed[i]> 1 && wav[i] > 0){            filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
           agecens[i]=agev[mw[j][i]][i];    fflush(fichtm);
           cens[i]= 1;  
         }else if (ageexmed[i]< 1)     strcpy(pathr,path);
           cens[i]= -1;    strcat(pathr,optionfilefiname);
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)    chdir(optionfilefiname); /* Move to directory named optionfile */
           cens[i]=0 ;   
       }    /* Calculates basic frequencies. Computes observed prevalence at single age
       else cens[i]=-1;       and prints on file fileres'p'. */
     }    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
       
     for (i=1;i<=NDIM;i++) {    fprintf(fichtm,"\n");
       for (j=1;j<=NDIM;j++)    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
         ximort[i][j]=(i == j ? 1.0 : 0.0);  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
     }  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                 imx,agemin,agemax,jmin,jmax,jmean);
     p[1]=0.0268; p[NDIM]=0.083;    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     /*printf("%lf %lf", p[1], p[2]);*/      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     printf("Powell\n");  fprintf(ficlog,"Powell\n");      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     strcpy(filerespow,"pow-mort");      
     strcat(filerespow,fileres);     
     if((ficrespow=fopen(filerespow,"w"))==NULL) {    /* For Powell, parameters are in a vector p[] starting at p[1]
       printf("Problem with resultfile: %s\n", filerespow);       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     }  
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /*  for (i=1;i<=nlstate;i++)  
         for(j=1;j<=nlstate+ndeath;j++)    if (mle==-3){
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      ximort=matrix(1,NDIM,1,NDIM);
     */      cens=ivector(1,n);
     fprintf(ficrespow,"\n");      ageexmed=vector(1,n);
           agecens=vector(1,n);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);      dcwave=ivector(1,n);
     fclose(ficrespow);   
           for (i=1; i<=imx; i++){
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
     for(i=1; i <=NDIM; i++)          if (s[m][i]>nlstate) {
       for(j=i+1;j<=NDIM;j++)            dcwave[i]=m;
         matcov[i][j]=matcov[j][i];            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                 break;
     printf("\nCovariance matrix\n ");          }
     for(i=1; i <=NDIM; i++) {      }
       for(j=1;j<=NDIM;j++){   
         printf("%f ",matcov[i][j]);      for (i=1; i<=imx; i++) {
       }        if (wav[i]>0){
       printf("\n ");          ageexmed[i]=agev[mw[1][i]][i];
     }          j=wav[i];
               agecens[i]=1.;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);  
     for (i=1;i<=NDIM;i++)           if (ageexmed[i]> 1 && wav[i] > 0){
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));            agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
     lsurv=vector(1,AGESUP);          }else if (ageexmed[i]< 1)
     lpop=vector(1,AGESUP);            cens[i]= -1;
     tpop=vector(1,AGESUP);          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     lsurv[agegomp]=100000;            cens[i]=0 ;
             }
     for (k=agegomp;k<=AGESUP;k++) {        else cens[i]=-1;
       agemortsup=k;      }
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;     
     }      for (i=1;i<=NDIM;i++) {
             for (j=1;j<=NDIM;j++)
     for (k=agegomp;k<agemortsup;k++)          ximort[i][j]=(i == j ? 1.0 : 0.0);
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));      }
          
     for (k=agegomp;k<agemortsup;k++){      p[1]=0.0268; p[NDIM]=0.083;
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;      /*printf("%lf %lf", p[1], p[2]);*/
       sumlpop=sumlpop+lpop[k];     
     }     
           printf("Powell\n");  fprintf(ficlog,"Powell\n");
     tpop[agegomp]=sumlpop;      strcpy(filerespow,"pow-mort");
     for (k=agegomp;k<(agemortsup-3);k++){      strcat(filerespow,fileres);
       /*  tpop[k+1]=2;*/      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       tpop[k+1]=tpop[k]-lpop[k];        printf("Problem with resultfile: %s\n", filerespow);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           }
           fprintf(ficrespow,"# Powell\n# iter -2*LL");
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");      /*  for (i=1;i<=nlstate;i++)
     for (k=agegomp;k<(agemortsup-2);k++)           for(j=1;j<=nlstate+ndeath;j++)
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           */
           fprintf(ficrespow,"\n");
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */     
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
           fclose(ficrespow);
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \     
                      stepm, weightopt,\      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
                      model,imx,p,matcov,agemortsup);  
           for(i=1; i <=NDIM; i++)
     free_vector(lsurv,1,AGESUP);        for(j=i+1;j<=NDIM;j++)
     free_vector(lpop,1,AGESUP);          matcov[i][j]=matcov[j][i];
     free_vector(tpop,1,AGESUP);     
   } /* Endof if mle==-3 */      printf("\nCovariance matrix\n ");
         for(i=1; i <=NDIM; i++) {
   else{ /* For mle >=1 */        for(j=1;j<=NDIM;j++){
             printf("%f ",matcov[i][j]);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        }
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        printf("\n ");
     for (k=1; k<=npar;k++)      }
       printf(" %d %8.5f",k,p[k]);     
     printf("\n");      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
     globpr=1; /* to print the contributions */      for (i=1;i<=NDIM;i++)
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);  
     for (k=1; k<=npar;k++)      lsurv=vector(1,AGESUP);
       printf(" %d %8.5f",k,p[k]);      lpop=vector(1,AGESUP);
     printf("\n");      tpop=vector(1,AGESUP);
     if(mle>=1){ /* Could be 1 or 2 */      lsurv[agegomp]=100000;
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);     
     }      for (k=agegomp;k<=AGESUP;k++) {
             agemortsup=k;
     /*--------- results files --------------*/        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      }
          
           for (k=agegomp;k<agemortsup;k++)
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for (k=agegomp;k<agemortsup;k++){
     for(i=1,jk=1; i <=nlstate; i++){        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
       for(k=1; k <=(nlstate+ndeath); k++){        sumlpop=sumlpop+lpop[k];
         if (k != i) {      }
           printf("%d%d ",i,k);     
           fprintf(ficlog,"%d%d ",i,k);      tpop[agegomp]=sumlpop;
           fprintf(ficres,"%1d%1d ",i,k);      for (k=agegomp;k<(agemortsup-3);k++){
           for(j=1; j <=ncovmodel; j++){        /*  tpop[k+1]=2;*/
             printf("%f ",p[jk]);        tpop[k+1]=tpop[k]-lpop[k];
             fprintf(ficlog,"%f ",p[jk]);      }
             fprintf(ficres,"%f ",p[jk]);     
             jk++;      
           }      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
           printf("\n");      for (k=agegomp;k<(agemortsup-2);k++)
           fprintf(ficlog,"\n");        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
           fprintf(ficres,"\n");     
         }     
       }      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
     }      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
     if(mle!=0){     
       /* Computing hessian and covariance matrix */      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
       ftolhess=ftol; /* Usually correct */                       stepm, weightopt,\
       hesscov(matcov, p, npar, delti, ftolhess, func);                       model,imx,p,matcov,agemortsup);
     }     
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      free_vector(lsurv,1,AGESUP);
     printf("# Scales (for hessian or gradient estimation)\n");      free_vector(lpop,1,AGESUP);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      free_vector(tpop,1,AGESUP);
     for(i=1,jk=1; i <=nlstate; i++){    } /* Endof if mle==-3 */
       for(j=1; j <=nlstate+ndeath; j++){   
         if (j!=i) {    else{ /* For mle >=1 */
           fprintf(ficres,"%1d%1d",i,j);   
           printf("%1d%1d",i,j);      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           fprintf(ficlog,"%1d%1d",i,j);      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           for(k=1; k<=ncovmodel;k++){      for (k=1; k<=npar;k++)
             printf(" %.5e",delti[jk]);        printf(" %d %8.5f",k,p[k]);
             fprintf(ficlog," %.5e",delti[jk]);      printf("\n");
             fprintf(ficres," %.5e",delti[jk]);      globpr=1; /* to print the contributions */
             jk++;      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           }      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
           printf("\n");      for (k=1; k<=npar;k++)
           fprintf(ficlog,"\n");        printf(" %d %8.5f",k,p[k]);
           fprintf(ficres,"\n");      printf("\n");
         }      if(mle>=1){ /* Could be 1 or 2 */
       }        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }      }
          
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /*--------- results files --------------*/
     if(mle>=1)      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     
     /* # 121 Var(a12)\n\ */      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     /* # 122 Cov(b12,a12) Var(b12)\n\ */      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      for(i=1,jk=1; i <=nlstate; i++){
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        for(k=1; k <=(nlstate+ndeath); k++){
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */          if (k != i) {
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */            printf("%d%d ",i,k);
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */            fprintf(ficlog,"%d%d ",i,k);
                 fprintf(ficres,"%1d%1d ",i,k);
                 for(j=1; j <=ncovmodel; j++){
     /* Just to have a covariance matrix which will be more understandable              printf("%lf ",p[jk]);
        even is we still don't want to manage dictionary of variables              fprintf(ficlog,"%lf ",p[jk]);
     */              fprintf(ficres,"%lf ",p[jk]);
     for(itimes=1;itimes<=2;itimes++){              jk++;
       jj=0;            }
       for(i=1; i <=nlstate; i++){            printf("\n");
         for(j=1; j <=nlstate+ndeath; j++){            fprintf(ficlog,"\n");
           if(j==i) continue;            fprintf(ficres,"\n");
           for(k=1; k<=ncovmodel;k++){          }
             jj++;        }
             ca[0]= k+'a'-1;ca[1]='\0';      }
             if(itimes==1){      if(mle!=0){
               if(mle>=1)        /* Computing hessian and covariance matrix */
                 printf("#%1d%1d%d",i,j,k);        ftolhess=ftol; /* Usually correct */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);        hesscov(matcov, p, npar, delti, ftolhess, func);
               fprintf(ficres,"#%1d%1d%d",i,j,k);      }
             }else{      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
               if(mle>=1)      printf("# Scales (for hessian or gradient estimation)\n");
                 printf("%1d%1d%d",i,j,k);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
               fprintf(ficlog,"%1d%1d%d",i,j,k);      for(i=1,jk=1; i <=nlstate; i++){
               fprintf(ficres,"%1d%1d%d",i,j,k);        for(j=1; j <=nlstate+ndeath; j++){
             }          if (j!=i) {
             ll=0;            fprintf(ficres,"%1d%1d",i,j);
             for(li=1;li <=nlstate; li++){            printf("%1d%1d",i,j);
               for(lj=1;lj <=nlstate+ndeath; lj++){            fprintf(ficlog,"%1d%1d",i,j);
                 if(lj==li) continue;            for(k=1; k<=ncovmodel;k++){
                 for(lk=1;lk<=ncovmodel;lk++){              printf(" %.5e",delti[jk]);
                   ll++;              fprintf(ficlog," %.5e",delti[jk]);
                   if(ll<=jj){              fprintf(ficres," %.5e",delti[jk]);
                     cb[0]= lk +'a'-1;cb[1]='\0';              jk++;
                     if(ll<jj){            }
                       if(itimes==1){            printf("\n");
                         if(mle>=1)            fprintf(ficlog,"\n");
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            fprintf(ficres,"\n");
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          }
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        }
                       }else{      }
                         if(mle>=1)     
                           printf(" %.5e",matcov[jj][ll]);       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                         fprintf(ficlog," %.5e",matcov[jj][ll]);       if(mle>=1)
                         fprintf(ficres," %.5e",matcov[jj][ll]);         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                       }      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                     }else{      /* # 121 Var(a12)\n\ */
                       if(itimes==1){      /* # 122 Cov(b12,a12) Var(b12)\n\ */
                         if(mle>=1)      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                           printf(" Var(%s%1d%1d)",ca,i,j);      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);      /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                       }else{      /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                         if(mle>=1)      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                           printf(" %.5e",matcov[jj][ll]);      
                         fprintf(ficlog," %.5e",matcov[jj][ll]);      
                         fprintf(ficres," %.5e",matcov[jj][ll]);       /* Just to have a covariance matrix which will be more understandable
                       }         even is we still don't want to manage dictionary of variables
                     }      */
                   }      for(itimes=1;itimes<=2;itimes++){
                 } /* end lk */        jj=0;
               } /* end lj */        for(i=1; i <=nlstate; i++){
             } /* end li */          for(j=1; j <=nlstate+ndeath; j++){
             if(mle>=1)            if(j==i) continue;
               printf("\n");            for(k=1; k<=ncovmodel;k++){
             fprintf(ficlog,"\n");              jj++;
             fprintf(ficres,"\n");              ca[0]= k+'a'-1;ca[1]='\0';
             numlinepar++;              if(itimes==1){
           } /* end k*/                if(mle>=1)
         } /*end j */                  printf("#%1d%1d%d",i,j,k);
       } /* end i */                fprintf(ficlog,"#%1d%1d%d",i,j,k);
     } /* end itimes */                fprintf(ficres,"#%1d%1d%d",i,j,k);
                   }else{
     fflush(ficlog);                if(mle>=1)
     fflush(ficres);                  printf("%1d%1d%d",i,j,k);
                     fprintf(ficlog,"%1d%1d%d",i,j,k);
     while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficres,"%1d%1d%d",i,j,k);
       ungetc(c,ficpar);              }
       fgets(line, MAXLINE, ficpar);              ll=0;
       puts(line);              for(li=1;li <=nlstate; li++){
       fputs(line,ficparo);                for(lj=1;lj <=nlstate+ndeath; lj++){
     }                  if(lj==li) continue;
     ungetc(c,ficpar);                  for(lk=1;lk<=ncovmodel;lk++){
                         ll++;
     estepm=0;                    if(ll<=jj){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                      cb[0]= lk +'a'-1;cb[1]='\0';
     if (estepm==0 || estepm < stepm) estepm=stepm;                      if(ll<jj){
     if (fage <= 2) {                        if(itimes==1){
       bage = ageminpar;                          if(mle>=1)
       fage = agemaxpar;                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     }                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                               fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                        }else{
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                          if(mle>=1)
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                            printf(" %.5e",matcov[jj][ll]);
                               fprintf(ficlog," %.5e",matcov[jj][ll]);
     while((c=getc(ficpar))=='#' && c!= EOF){                          fprintf(ficres," %.5e",matcov[jj][ll]);
       ungetc(c,ficpar);                        }
       fgets(line, MAXLINE, ficpar);                      }else{
       puts(line);                        if(itimes==1){
       fputs(line,ficparo);                          if(mle>=1)
     }                            printf(" Var(%s%1d%1d)",ca,i,j);
     ungetc(c,ficpar);                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                               fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);                        }else{
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          if(mle>=1)
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                            printf(" %.5e",matcov[jj][ll]);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);                          fprintf(ficres," %.5e",matcov[jj][ll]);
                             }
     while((c=getc(ficpar))=='#' && c!= EOF){                      }
       ungetc(c,ficpar);                    }
       fgets(line, MAXLINE, ficpar);                  } /* end lk */
       puts(line);                } /* end lj */
       fputs(line,ficparo);              } /* end li */
     }              if(mle>=1)
     ungetc(c,ficpar);                printf("\n");
                   fprintf(ficlog,"\n");
                   fprintf(ficres,"\n");
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;              numlinepar++;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;            } /* end k*/
               } /*end j */
     fscanf(ficpar,"pop_based=%d\n",&popbased);        } /* end i */
     fprintf(ficparo,"pop_based=%d\n",popbased);         } /* end itimes */
     fprintf(ficres,"pop_based=%d\n",popbased);        
           fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){      fflush(ficres);
       ungetc(c,ficpar);     
       fgets(line, MAXLINE, ficpar);      while((c=getc(ficpar))=='#' && c!= EOF){
       puts(line);        ungetc(c,ficpar);
       fputs(line,ficparo);        fgets(line, MAXLINE, ficpar);
     }        puts(line);
     ungetc(c,ficpar);        fputs(line,ficparo);
           }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);      ungetc(c,ficpar);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      estepm=0;
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      if (estepm==0 || estepm < stepm) estepm=stepm;
     /* day and month of proj2 are not used but only year anproj2.*/      if (fage <= 2) {
             bage = ageminpar;
             fage = agemaxpar;
           }
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/     
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
           fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);     
           while((c=getc(ficpar))=='#' && c!= EOF){
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        ungetc(c,ficpar);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        fgets(line, MAXLINE, ficpar);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        puts(line);
               fputs(line,ficparo);
    /*------------ free_vector  -------------*/      }
    /*  chdir(path); */      ungetc(c,ficpar);
       
     free_ivector(wav,1,imx);      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     free_lvector(num,1,n);      fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     free_vector(agedc,1,n);     
     /*free_matrix(covar,0,NCOVMAX,1,n);*/      while((c=getc(ficpar))=='#' && c!= EOF){
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        ungetc(c,ficpar);
     fclose(ficparo);        fgets(line, MAXLINE, ficpar);
     fclose(ficres);        puts(line);
         fputs(line,ficparo);
       }
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/      ungetc(c,ficpar);
        
     strcpy(filerespl,"pl");     
     strcat(filerespl,fileres);      dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     if((ficrespl=fopen(filerespl,"w"))==NULL) {      dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;     
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;      fscanf(ficpar,"pop_based=%d\n",&popbased);
     }      fprintf(ficparo,"pop_based=%d\n",popbased);  
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);      fprintf(ficres,"pop_based=%d\n",popbased);  
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);     
     pstamp(ficrespl);      while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficrespl,"# Period (stable) prevalence \n");        ungetc(c,ficpar);
     fprintf(ficrespl,"#Age ");        fgets(line, MAXLINE, ficpar);
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        puts(line);
     fprintf(ficrespl,"\n");        fputs(line,ficparo);
         }
     prlim=matrix(1,nlstate,1,nlstate);      ungetc(c,ficpar);
      
     agebase=ageminpar;      fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     agelim=agemaxpar;      fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     ftolpl=1.e-10;      printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     i1=cptcoveff;      fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     if (cptcovn < 1){i1=1;}      fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){     
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
         k=k+1;     
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
         fprintf(ficrespl,"\n#******");      /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         printf("\n#******");     
         fprintf(ficlog,"\n#******");      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
         for(j=1;j<=cptcoveff;j++) {      printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
         }                   jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         fprintf(ficrespl,"******\n");       
         printf("******\n");     /*------------ free_vector  -------------*/
         fprintf(ficlog,"******\n");     /*  chdir(path); */
            
         for (age=agebase; age<=agelim; age++){      free_ivector(wav,1,imx);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
           fprintf(ficrespl,"%.0f ",age );      free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
           for(j=1;j<=cptcoveff;j++)      free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_lvector(num,1,n);
           for(i=1; i<=nlstate;i++)      free_vector(agedc,1,n);
             fprintf(ficrespl," %.5f", prlim[i][i]);      /*free_matrix(covar,0,NCOVMAX,1,n);*/
           fprintf(ficrespl,"\n");      /*free_matrix(covar,1,NCOVMAX,1,n);*/
         }      fclose(ficparo);
       }      fclose(ficres);
     }  
     fclose(ficrespl);  
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     /*------------- h Pij x at various ages ------------*/   
         strcpy(filerespl,"pl");
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);      strcat(filerespl,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {      if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;        fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
     }      }
     printf("Computing pij: result on file '%s' \n", filerespij);      printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
         pstamp(ficrespl);
     stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficrespl,"# Period (stable) prevalence \n");
     /*if (stepm<=24) stepsize=2;*/      fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     agelim=AGESUP;      fprintf(ficrespl,"\n");
     hstepm=stepsize*YEARM; /* Every year of age */   
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       prlim=matrix(1,nlstate,1,nlstate);
   
     /* hstepm=1;   aff par mois*/      agebase=ageminpar;
     pstamp(ficrespij);      agelim=agemaxpar;
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");      ftolpl=1.e-10;
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      i1=cptcoveff;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      if (cptcovn < 1){i1=1;}
         k=k+1;  
         fprintf(ficrespij,"\n#****** ");      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(j=1;j<=cptcoveff;j++)         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          k=k+1;
         fprintf(ficrespij,"******\n");          /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
                   fprintf(ficrespl,"\n#******");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          printf("\n#******");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           fprintf(ficlog,"\n#******");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
           oldm=oldms;savm=savms;          fprintf(ficrespl,"******\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            printf("******\n");
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          fprintf(ficlog,"******\n");
           for(i=1; i<=nlstate;i++)         
             for(j=1; j<=nlstate+ndeath;j++)          for (age=agebase; age<=agelim; age++){
               fprintf(ficrespij," %1d-%1d",i,j);            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespij,"\n");            fprintf(ficrespl,"%.0f ",age );
           for (h=0; h<=nhstepm; h++){            for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );              fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)            for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)              fprintf(ficrespl," %.5f", prlim[i][i]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            fprintf(ficrespl,"\n");
             fprintf(ficrespij,"\n");          }
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           fprintf(ficrespij,"\n");      fclose(ficrespl);
         }  
       }      /*------------- h Pij x at various ages ------------*/
     }   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);      if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
     fclose(ficrespij);        fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Computing pij: result on file '%s' \n", filerespij);
     for(i=1;i<=AGESUP;i++)      fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
       for(j=1;j<=NCOVMAX;j++)   
         for(k=1;k<=NCOVMAX;k++)      stepsize=(int) (stepm+YEARM-1)/YEARM;
           probs[i][j][k]=0.;      /*if (stepm<=24) stepsize=2;*/
   
     /*---------- Forecasting ------------------*/      agelim=AGESUP;
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      hstepm=stepsize*YEARM; /* Every year of age */
     if(prevfcast==1){      hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
       /*    if(stepm ==1){*/  
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);      /* hstepm=1;   aff par mois*/
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/      pstamp(ficrespij);
       /*      }  */      fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       /*      else{ */      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /*        erreur=108; */        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          k=k+1;
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          fprintf(ficrespij,"\n#****** ");
       /*      } */          for(j=1;j<=cptcoveff;j++)
     }            fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrespij,"******\n");
          
     /*---------- Health expectancies and variances ------------*/          for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
     strcpy(filerest,"t");            nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     strcat(filerest,fileres);  
     if((ficrest=fopen(filerest,"w"))==NULL) {            /*      nhstepm=nhstepm*YEARM; aff par mois*/
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            oldm=oldms;savm=savms;
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
     strcpy(filerese,"e");                fprintf(ficrespij," %1d-%1d",i,j);
     strcat(filerese,fileres);            fprintf(ficrespij,"\n");
     if((ficreseij=fopen(filerese,"w"))==NULL) {            for (h=0; h<=nhstepm; h++){
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              for(i=1; i<=nlstate;i++)
     }                for(j=1; j<=nlstate+ndeath;j++)
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  fprintf(ficrespij," %.5f", p3mat[i][j][h]);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);              fprintf(ficrespij,"\n");
             }
     strcpy(fileresstde,"stde");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     strcat(fileresstde,fileres);            fprintf(ficrespij,"\n");
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {          }
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);        }
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);      }
     }  
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);      varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);  
       fclose(ficrespij);
     strcpy(filerescve,"cve");  
     strcat(filerescve,fileres);      probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {      for(i=1;i<=AGESUP;i++)
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);        for(j=1;j<=NCOVMAX;j++)
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);          for(k=1;k<=NCOVMAX;k++)
     }            probs[i][j][k]=0.;
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);  
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);      /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     strcpy(fileresv,"v");      if(prevfcast==1){
     strcat(fileresv,fileres);        /*    if(stepm ==1){*/
     if((ficresvij=fopen(fileresv,"w"))==NULL) {        prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        /*      }  */
     }        /*      else{ */
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        /*        erreur=108; */
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */        /*      } */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      }
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\   
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  
     */      /*---------- Health expectancies and variances ------------*/
   
     if (mobilav!=0) {      strcpy(filerest,"t");
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      strcat(filerest,fileres);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      if((ficrest=fopen(filerest,"w"))==NULL) {
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }      }
     }      printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;       strcpy(filerese,"e");
         fprintf(ficrest,"\n#****** ");      strcat(filerese,fileres);
         for(j=1;j<=cptcoveff;j++)       if((ficreseij=fopen(filerese,"w"))==NULL) {
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficrest,"******\n");        fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
         fprintf(ficreseij,"\n#****** ");      printf("Computing Health Expectancies: result on file '%s' \n", filerese);
         fprintf(ficresstdeij,"\n#****** ");      fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
         fprintf(ficrescveij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++) {      strcpy(fileresstde,"stde");
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(fileresstde,fileres);
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         }        fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficreseij,"******\n");      }
         fprintf(ficresstdeij,"******\n");      printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
         fprintf(ficrescveij,"******\n");      fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
         fprintf(ficresvij,"\n#****** ");      strcpy(filerescve,"cve");
         for(j=1;j<=cptcoveff;j++)       strcat(filerescve,fileres);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         fprintf(ficresvij,"******\n");        printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
         oldm=oldms;savm=savms;      printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);        fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    
        strcpy(fileresv,"v");
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      strcat(fileresv,fileres);
         oldm=oldms;savm=savms;      if((ficresvij=fopen(fileresv,"w"))==NULL) {
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         if(popbased==1){        fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);      }
         }      printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
         pstamp(ficrest);  
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");      /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         fprintf(ficrest,"\n");      /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
         epj=vector(1,nlstate+1);      */
         for(age=bage; age <=fage ;age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      if (mobilav!=0) {
           if (popbased==1) {        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if(mobilav ==0){        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
               for(i=1; i<=nlstate;i++)          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                 prlim[i][i]=probs[(int)age][i][k];          printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }else{ /* mobilav */         }
               for(i=1; i<=nlstate;i++)      }
                 prlim[i][i]=mobaverage[(int)age][i][k];  
             }      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
           }        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   k=k+1;
           fprintf(ficrest," %4.0f",age);          fprintf(ficrest,"\n#****** ");
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for(j=1;j<=cptcoveff;j++)
             for(i=1, epj[j]=0.;i <=nlstate;i++) {            fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               epj[j] += prlim[i][i]*eij[i][j][(int)age];          fprintf(ficrest,"******\n");
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
             }          fprintf(ficreseij,"\n#****** ");
             epj[nlstate+1] +=epj[j];          fprintf(ficresstdeij,"\n#****** ");
           }          fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
           for(i=1, vepp=0.;i <=nlstate;i++)            fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(j=1;j <=nlstate;j++)            fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
               vepp += vareij[i][j][(int)age];            fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          }
           for(j=1;j <=nlstate;j++){          fprintf(ficreseij,"******\n");
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficresstdeij,"******\n");
           }          fprintf(ficrescveij,"******\n");
           fprintf(ficrest,"\n");  
         }          fprintf(ficresvij,"\n#****** ");
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(j=1;j<=cptcoveff;j++)
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         free_vector(epj,1,nlstate+1);          fprintf(ficresvij,"******\n");
       }  
     }          eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
     free_vector(weight,1,n);          oldm=oldms;savm=savms;
     free_imatrix(Tvard,1,15,1,2);          evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
     free_imatrix(s,1,maxwav+1,1,n);          cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
     free_matrix(anint,1,maxwav,1,n);    
     free_matrix(mint,1,maxwav,1,n);          vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
     free_ivector(cod,1,n);          oldm=oldms;savm=savms;
     free_ivector(tab,1,NCOVMAX);          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
     fclose(ficreseij);          if(popbased==1){
     fclose(ficresstdeij);            varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
     fclose(ficrescveij);          }
     fclose(ficresvij);  
     fclose(ficrest);          pstamp(ficrest);
     fclose(ficpar);          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
     /*------- Variance of period (stable) prevalence------*/             fprintf(ficrest,"\n");
   
     strcpy(fileresvpl,"vpl");          epj=vector(1,nlstate+1);
     strcat(fileresvpl,fileres);          for(age=bage; age <=fage ;age++){
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);            if (popbased==1) {
       exit(0);              if(mobilav ==0){
     }                for(i=1; i<=nlstate;i++)
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);                  prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){                for(i=1; i<=nlstate;i++)
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  prlim[i][i]=mobaverage[(int)age][i][k];
         k=k+1;              }
         fprintf(ficresvpl,"\n#****** ");            }
         for(j=1;j<=cptcoveff;j++)          
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficrest," %4.0f",age);
         fprintf(ficresvpl,"******\n");            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                     for(i=1, epj[j]=0.;i <=nlstate;i++) {
         varpl=matrix(1,nlstate,(int) bage, (int) fage);                epj[j] += prlim[i][i]*eij[i][j][(int)age];
         oldm=oldms;savm=savms;                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);              }
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              epj[nlstate+1] +=epj[j];
       }            }
     }  
             for(i=1, vepp=0.;i <=nlstate;i++)
     fclose(ficresvpl);              for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
     /*---------- End : free ----------------*/            fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(j=1;j <=nlstate;j++){
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
   }  /* mle==-3 arrives here for freeing */            fprintf(ficrest,"\n");
   free_matrix(prlim,1,nlstate,1,nlstate);          }
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          free_vector(epj,1,nlstate+1);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
     free_matrix(covar,0,NCOVMAX,1,n);      }
     free_matrix(matcov,1,npar,1,npar);      free_vector(weight,1,n);
     /*free_vector(delti,1,npar);*/      free_imatrix(Tvard,1,15,1,2);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(agev,1,maxwav,1,imx);      free_matrix(anint,1,maxwav,1,n);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
     free_ivector(ncodemax,1,8);      free_ivector(tab,1,NCOVMAX);
     free_ivector(Tvar,1,15);      fclose(ficreseij);
     free_ivector(Tprod,1,15);      fclose(ficresstdeij);
     free_ivector(Tvaraff,1,15);      fclose(ficrescveij);
     free_ivector(Tage,1,15);      fclose(ficresvij);
     free_ivector(Tcode,1,100);      fclose(ficrest);
       fclose(ficpar);
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);   
     free_imatrix(codtab,1,100,1,10);      /*------- Variance of period (stable) prevalence------*/  
   fflush(fichtm);  
   fflush(ficgp);      strcpy(fileresvpl,"vpl");
         strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
   if((nberr >0) || (nbwarn>0)){        printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);        exit(0);
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      }
   }else{      printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
     printf("End of Imach\n");  
     fprintf(ficlog,"End of Imach\n");      for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   }        for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   printf("See log file on %s\n",filelog);          k=k+1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          fprintf(ficresvpl,"\n#****** ");
   (void) gettimeofday(&end_time,&tzp);          for(j=1;j<=cptcoveff;j++)
   tm = *localtime(&end_time.tv_sec);            fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   tmg = *gmtime(&end_time.tv_sec);          fprintf(ficresvpl,"******\n");
   strcpy(strtend,asctime(&tm));       
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);           varpl=matrix(1,nlstate,(int) bage, (int) fage);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);           oldm=oldms;savm=savms;
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));          varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);        }
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));      }
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);  
   /*  printf("Total time was %d uSec.\n", total_usecs);*/      fclose(ficresvpl);
 /*   if(fileappend(fichtm,optionfilehtm)){ */  
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      /*---------- End : free ----------------*/
   fclose(fichtm);      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(fichtmcov);      free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fclose(ficgp);  
   fclose(ficlog);    }  /* mle==-3 arrives here for freeing */
   /*------ End -----------*/    free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
    printf("Before Current directory %s!\n",pathcd);      free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
    if(chdir(pathcd) != 0)      free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     printf("Can't move to directory %s!\n",path);      free_matrix(covar,0,NCOVMAX,1,n);
   if(getcwd(pathcd,MAXLINE) > 0)      free_matrix(matcov,1,npar,1,npar);
     printf("Current directory %s!\n",pathcd);      /*free_vector(delti,1,npar);*/
   /*strcat(plotcmd,CHARSEPARATOR);*/      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   sprintf(plotcmd,"gnuplot");      free_matrix(agev,1,maxwav,1,imx);
 #ifndef UNIX      free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);  
 #endif      free_ivector(ncodemax,1,8);
   if(!stat(plotcmd,&info)){      free_ivector(Tvar,1,15);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);      free_ivector(Tprod,1,15);
     if(!stat(getenv("GNUPLOTBIN"),&info)){      free_ivector(Tvaraff,1,15);
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);      free_ivector(Tage,1,15);
     }else      free_ivector(Tcode,1,100);
       strcpy(pplotcmd,plotcmd);  
 #ifdef UNIX      free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     strcpy(plotcmd,GNUPLOTPROGRAM);      free_imatrix(codtab,1,100,1,10);
     if(!stat(plotcmd,&info)){    fflush(fichtm);
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);    fflush(ficgp);
     }else   
       strcpy(pplotcmd,plotcmd);  
 #endif    if((nberr >0) || (nbwarn>0)){
   }else      printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
     strcpy(pplotcmd,plotcmd);      fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       }else{
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);      printf("End of Imach\n");
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);      fprintf(ficlog,"End of Imach\n");
     }
   if((outcmd=system(plotcmd)) != 0){    printf("See log file on %s\n",filelog);
     printf("\n Problem with gnuplot\n");    /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
   }    (void) gettimeofday(&end_time,&tzp);
   printf(" Wait...");    tm = *localtime(&end_time.tv_sec);
   while (z[0] != 'q') {    tmg = *gmtime(&end_time.tv_sec);
     /* chdir(path); */    strcpy(strtend,asctime(&tm));
     printf("\nType e to edit output files, g to graph again and q for exiting: ");    printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     scanf("%s",z);    fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
 /*     if (z[0] == 'c') system("./imach"); */    printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     if (z[0] == 'e') {  
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);    printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
       system(optionfilehtm);    fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     }    fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     else if (z[0] == 'g') system(plotcmd);    /*  printf("Total time was %d uSec.\n", total_usecs);*/
     else if (z[0] == 'q') exit(0);  /*   if(fileappend(fichtm,optionfilehtm)){ */
   }    fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
   end:    fclose(fichtm);
   while (z[0] != 'q') {    fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     printf("\nType  q for exiting: ");    fclose(fichtmcov);
     scanf("%s",z);    fclose(ficgp);
   }    fclose(ficlog);
 }    /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.120  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>