Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.120

version 1.41.2.2, 2003/06/13 07:45:28 version 1.120, 2006/03/16 15:10:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
   This program computes Healthy Life Expectancies from    status=-2 in order to have more reliable computation if stepm is
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    not 1 month. Version 0.98f
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.119  2006/03/15 17:42:26  brouard
   case of a health survey which is our main interest) -2- at least a    (Module): Bug if status = -2, the loglikelihood was
   second wave of interviews ("longitudinal") which measure each change    computed as likelihood omitting the logarithm. Version O.98e
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.118  2006/03/14 18:20:07  brouard
   model. More health states you consider, more time is necessary to reach the    (Module): varevsij Comments added explaining the second
   Maximum Likelihood of the parameters involved in the model.  The    table of variances if popbased=1 .
   simplest model is the multinomial logistic model where pij is the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   probability to be observed in state j at the second wave    (Module): Function pstamp added
   conditional to be observed in state i at the first wave. Therefore    (Module): Version 0.98d
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.117  2006/03/14 17:16:22  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.116  2006/03/06 10:29:27  brouard
   identical for each individual. Also, if a individual missed an    (Module): Variance-covariance wrong links and
   intermediate interview, the information is lost, but taken into    varian-covariance of ej. is needed (Saito).
   account using an interpolation or extrapolation.    
     Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): One freematrix added in mlikeli! 0.98c
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.114  2006/02/26 12:57:58  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Some improvements in processing parameter
   semester or year) is model as a multinomial logistic.  The hPx    filename with strsep.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.113  2006/02/24 14:20:24  brouard
   hPijx.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Also this programme outputs the covariance matrix of the parameters but also    allocation too.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.112  2006/01/30 09:55:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Back to gnuplot.exe instead of wgnuplot.exe
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.111  2006/01/25 20:38:18  brouard
   from the European Union.    (Module): Lots of cleaning and bugs added (Gompertz)
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Comments can be added in data file. Missing date values
   software can be distributed freely for non commercial use. Latest version    can be a simple dot '.'.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.110  2006/01/25 00:51:50  brouard
      (Module): Lots of cleaning and bugs added (Gompertz)
 #include <math.h>  
 #include <stdio.h>    Revision 1.109  2006/01/24 19:37:15  brouard
 #include <stdlib.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <unistd.h>  
     Revision 1.108  2006/01/19 18:05:42  lievre
 #define MAXLINE 256    Gnuplot problem appeared...
 #define GNUPLOTPROGRAM "wgnuplot"    To be fixed
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.107  2006/01/19 16:20:37  brouard
 /*#define DEBUG*/    Test existence of gnuplot in imach path
   
 /*#define windows*/    Revision 1.106  2006/01/19 13:24:36  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Some cleaning and links added in html output
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.105  2006/01/05 20:23:19  lievre
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    *** empty log message ***
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.104  2005/09/30 16:11:43  lievre
 #define NINTERVMAX 8    (Module): sump fixed, loop imx fixed, and simplifications.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): If the status is missing at the last wave but we know
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    that the person is alive, then we can code his/her status as -2
 #define NCOVMAX 8 /* Maximum number of covariates */    (instead of missing=-1 in earlier versions) and his/her
 #define MAXN 20000    contributions to the likelihood is 1 - Prob of dying from last
 #define YEARM 12. /* Number of months per year */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define AGESUP 130    the healthy state at last known wave). Version is 0.98
 #define AGEBASE 40  
     Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int erreur; /* Error number */  
 int nvar;    Revision 1.102  2004/09/15 17:31:30  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Add the possibility to read data file including tab characters.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.101  2004/09/15 10:38:38  brouard
 int ndeath=1; /* Number of dead states */    Fix on curr_time
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.99  2004/06/05 08:57:40  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    *** empty log message ***
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.98  2004/05/16 15:05:56  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    New version 0.97 . First attempt to estimate force of mortality
 double jmean; /* Mean space between 2 waves */    directly from the data i.e. without the need of knowing the health
 double **oldm, **newm, **savm; /* Working pointers to matrices */    state at each age, but using a Gompertz model: log u =a + b*age .
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    This is the basic analysis of mortality and should be done before any
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    other analysis, in order to test if the mortality estimated from the
 FILE *ficgp,*ficresprob,*ficpop;    cross-longitudinal survey is different from the mortality estimated
 FILE *ficreseij;    from other sources like vital statistic data.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    The same imach parameter file can be used but the option for mle should be -3.
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Agnès, who wrote this part of the code, tried to keep most of the
   char fileresvpl[FILENAMELENGTH];    former routines in order to include the new code within the former code.
   
 #define NR_END 1    The output is very simple: only an estimate of the intercept and of
 #define FREE_ARG char*    the slope with 95% confident intervals.
 #define FTOL 1.0e-10  
     Current limitations:
 #define NRANSI    A) Even if you enter covariates, i.e. with the
 #define ITMAX 200    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define TOL 2.0e-4  
     Revision 1.97  2004/02/20 13:25:42  lievre
 #define CGOLD 0.3819660    Version 0.96d. Population forecasting command line is (temporarily)
 #define ZEPS 1.0e-10    suppressed.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.96  2003/07/15 15:38:55  brouard
 #define GOLD 1.618034    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define GLIMIT 100.0    rewritten within the same printf. Workaround: many printfs.
 #define TINY 1.0e-20  
     Revision 1.95  2003/07/08 07:54:34  brouard
 static double maxarg1,maxarg2;    * imach.c (Repository):
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Repository): Using imachwizard code to output a more meaningful covariance
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    matrix (cov(a12,c31) instead of numbers.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.94  2003/06/27 13:00:02  brouard
 #define rint(a) floor(a+0.5)    Just cleaning
   
 static double sqrarg;    Revision 1.93  2003/06/25 16:33:55  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): On windows (cygwin) function asctime_r doesn't
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int imx;  
 int stepm;    Revision 1.92  2003/06/25 16:30:45  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 int m,nb;    (Repository): Elapsed time after each iteration is now output. It
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    helps to forecast when convergence will be reached. Elapsed time
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    is stamped in powell.  We created a new html file for the graphs
 double **pmmij, ***probs, ***mobaverage;    concerning matrix of covariance. It has extension -cov.htm.
 double dateintmean=0;  
     Revision 1.90  2003/06/24 12:34:15  brouard
 double *weight;    (Module): Some bugs corrected for windows. Also, when
 int **s; /* Status */    mle=-1 a template is output in file "or"mypar.txt with the design
 double *agedc, **covar, idx;    of the covariance matrix to be input.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.89  2003/06/24 12:30:52  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Some bugs corrected for windows. Also, when
 double ftolhess; /* Tolerance for computing hessian */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.86  2003/06/17 20:04:08  brouard
 #ifdef windows    (Module): Change position of html and gnuplot routines and added
    s = strrchr( path, '\\' );           /* find last / */    routine fileappend.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.85  2003/06/17 13:12:43  brouard
 #endif    * imach.c (Repository): Check when date of death was earlier that
    if ( s == NULL ) {                   /* no directory, so use current */    current date of interview. It may happen when the death was just
 #if     defined(__bsd__)                /* get current working directory */    prior to the death. In this case, dh was negative and likelihood
       extern char       *getwd( );    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
       if ( getwd( dirc ) == NULL ) {    interview.
 #else    (Repository): Because some people have very long ID (first column)
       extern char       *getcwd( );    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    truncation)
 #endif    (Repository): No more line truncation errors.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.84  2003/06/13 21:44:43  brouard
       strcpy( name, path );             /* we've got it */    * imach.c (Repository): Replace "freqsummary" at a correct
    } else {                             /* strip direcotry from path */    place. It differs from routine "prevalence" which may be called
       s++;                              /* after this, the filename */    many times. Probs is memory consuming and must be used with
       l2 = strlen( s );                 /* length of filename */    parcimony.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.83  2003/06/10 13:39:11  lievre
       dirc[l1-l2] = 0;                  /* add zero */    *** empty log message ***
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.82  2003/06/05 15:57:20  brouard
 #ifdef windows    Add log in  imach.c and  fullversion number is now printed.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  /*
 #endif     Interpolated Markov Chain
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Short summary of the programme:
    strcpy(ext,s);                       /* save extension */    
    l1= strlen( name);    This program computes Healthy Life Expectancies from
    l2= strlen( s)+1;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
    strncpy( finame, name, l1-l2);    first survey ("cross") where individuals from different ages are
    finame[l1-l2]= 0;    interviewed on their health status or degree of disability (in the
    return( 0 );                         /* we're done */    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /******************************************/    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 void replace(char *s, char*t)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   int i;    conditional to be observed in state i at the first wave. Therefore
   int lg=20;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   i=0;    'age' is age and 'sex' is a covariate. If you want to have a more
   lg=strlen(t);    complex model than "constant and age", you should modify the program
   for(i=0; i<= lg; i++) {    where the markup *Covariates have to be included here again* invites
     (s[i] = t[i]);    you to do it.  More covariates you add, slower the
     if (t[i]== '\\') s[i]='/';    convergence.
   }  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 int nbocc(char *s, char occ)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   int i,j=0;    account using an interpolation or extrapolation.  
   int lg=20;  
   i=0;    hPijx is the probability to be observed in state i at age x+h
   lg=strlen(s);    conditional to the observed state i at age x. The delay 'h' can be
   for(i=0; i<= lg; i++) {    split into an exact number (nh*stepm) of unobserved intermediate
   if  (s[i] == occ ) j++;    states. This elementary transition (by month, quarter,
   }    semester or year) is modelled as a multinomial logistic.  The hPx
   return j;    matrix is simply the matrix product of nh*stepm elementary matrices
 }    and the contribution of each individual to the likelihood is simply
     hPijx.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Also this programme outputs the covariance matrix of the parameters but also
   int i,lg,j,p=0;    of the life expectancies. It also computes the period (stable) prevalence. 
   i=0;    
   for(j=0; j<=strlen(t)-1; j++) {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   lg=strlen(t);    It is copyrighted identically to a GNU software product, ie programme and
   for(j=0; j<p; j++) {    software can be distributed freely for non commercial use. Latest version
     (u[j] = t[j]);    can be accessed at http://euroreves.ined.fr/imach .
   }  
      u[p]='\0';    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
    for(j=0; j<= lg; j++) {    
     if (j>=(p+1))(v[j-p-1] = t[j]);    **********************************************************************/
   }  /*
 }    main
     read parameterfile
 /********************** nrerror ********************/    read datafile
     concatwav
 void nrerror(char error_text[])    freqsummary
 {    if (mle >= 1)
   fprintf(stderr,"ERREUR ...\n");      mlikeli
   fprintf(stderr,"%s\n",error_text);    print results files
   exit(1);    if mle==1 
 }       computes hessian
 /*********************** vector *******************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 double *vector(int nl, int nh)        begin-prev-date,...
 {    open gnuplot file
   double *v;    open html file
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    period (stable) prevalence
   if (!v) nrerror("allocation failure in vector");     for age prevalim()
   return v-nl+NR_END;    h Pij x
 }    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 /************************ free vector ******************/    health expectancies
 void free_vector(double*v, int nl, int nh)    Variance-covariance of DFLE
 {    prevalence()
   free((FREE_ARG)(v+nl-NR_END));     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /************************ivector *******************************/    total life expectancies
 int *ivector(long nl,long nh)    Variance of period (stable) prevalence
 {   end
   int *v;  */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  
 }   
   #include <math.h>
 /******************free ivector **************************/  #include <stdio.h>
 void free_ivector(int *v, long nl, long nh)  #include <stdlib.h>
 {  #include <string.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <unistd.h>
 }  
   #include <limits.h>
 /******************* imatrix *******************************/  #include <sys/types.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <sys/stat.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <errno.h>
 {  extern int errno;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  /* #include <sys/time.h> */
    #include <time.h>
   /* allocate pointers to rows */  #include "timeval.h"
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* #include <libintl.h> */
   m += NR_END;  /* #define _(String) gettext (String) */
   m -= nrl;  
    #define MAXLINE 256
    
   /* allocate rows and set pointers to them */  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define FILENAMELENGTH 132
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   /* return pointer to array of pointers to rows */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   return m;  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /****************** free_imatrix *************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define NCOVMAX 8 /* Maximum number of covariates */
       int **m;  #define MAXN 20000
       long nch,ncl,nrh,nrl;  #define YEARM 12. /* Number of months per year */
      /* free an int matrix allocated by imatrix() */  #define AGESUP 130
 {  #define AGEBASE 40
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG) (m+nrl-NR_END));  #ifdef UNIX
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /******************* matrix *******************************/  #define ODIRSEPARATOR '\\'
 double **matrix(long nrl, long nrh, long ncl, long nch)  #else
 {  #define DIRSEPARATOR '\\'
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define CHARSEPARATOR "\\"
   double **m;  #define ODIRSEPARATOR '/'
   #endif
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /* $Id$ */
   m += NR_END;  /* $State$ */
   m -= nrl;  
   char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char fullversion[]="$Revision$ $Date$"; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char strstart[80];
   m[nrl] += NR_END;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m[nrl] -= ncl;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return m;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /*************************free matrix ************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int popbased=0;
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
   free((FREE_ARG)(m+nrl-NR_END));  int maxwav; /* Maxim number of waves */
 }  int jmin, jmax; /* min, max spacing between 2 waves */
   int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 /******************* ma3x *******************************/  int gipmx, gsw; /* Global variables on the number of contributions 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)                     to the likelihood and the sum of weights (done by funcone)*/
 {  int mle, weightopt;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   double ***m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!m) nrerror("allocation failure 1 in matrix()");  double jmean; /* Mean space between 2 waves */
   m += NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m -= nrl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  FILE *ficlog, *ficrespow;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int globpr; /* Global variable for printing or not */
   m[nrl] += NR_END;  double fretone; /* Only one call to likelihood */
   m[nrl] -= ncl;  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE *ficresilk;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   m[nrl][ncl] += NR_END;  FILE *ficresprobmorprev;
   m[nrl][ncl] -= nll;  FILE *fichtm, *fichtmcov; /* Html File */
   for (j=ncl+1; j<=nch; j++)  FILE *ficreseij;
     m[nrl][j]=m[nrl][j-1]+nlay;  char filerese[FILENAMELENGTH];
    FILE *ficresstdeij;
   for (i=nrl+1; i<=nrh; i++) {  char fileresstde[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE *ficrescveij;
     for (j=ncl+1; j<=nch; j++)  char filerescve[FILENAMELENGTH];
       m[i][j]=m[i][j-1]+nlay;  FILE  *ficresvij;
   }  char fileresv[FILENAMELENGTH];
   return m;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*************************free ma3x ************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char command[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int  outcmd=0;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /***************** f1dim *************************/  char filelog[FILENAMELENGTH]; /* Log file */
 extern int ncom;  char filerest[FILENAMELENGTH];
 extern double *pcom,*xicom;  char fileregp[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  char popfile[FILENAMELENGTH];
    
 double f1dim(double x)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   int j;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double f;  struct timezone tzp;
   double *xt;  extern int gettimeofday();
    struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xt=vector(1,ncom);  long time_value;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  extern long time();
   f=(*nrfunc)(xt);  char strcurr[80], strfor[80];
   free_vector(xt,1,ncom);  
   return f;  char *endptr;
 }  long lval;
   
 /*****************brent *************************/  #define NR_END 1
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int iter;  
   double a,b,d,etemp;  #define NRANSI 
   double fu,fv,fw,fx;  #define ITMAX 200 
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define TOL 2.0e-4 
   double e=0.0;  
    #define CGOLD 0.3819660 
   a=(ax < cx ? ax : cx);  #define ZEPS 1.0e-10 
   b=(ax > cx ? ax : cx);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define GOLD 1.618034 
   for (iter=1;iter<=ITMAX;iter++) {  #define GLIMIT 100.0 
     xm=0.5*(a+b);  #define TINY 1.0e-20 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  static double maxarg1,maxarg2;
     printf(".");fflush(stdout);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #endif  #define rint(a) floor(a+0.5)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  static double sqrarg;
       return fx;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     ftemp=fu;  int agegomp= AGEGOMP;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  int imx; 
       q=(x-v)*(fx-fw);  int stepm=1;
       p=(x-v)*q-(x-w)*r;  /* Stepm, step in month: minimum step interpolation*/
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  int estepm;
       q=fabs(q);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       etemp=e;  
       e=d;  int m,nb;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  long *num;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       else {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         d=p/q;  double **pmmij, ***probs;
         u=x+d;  double *ageexmed,*agecens;
         if (u-a < tol2 || b-u < tol2)  double dateintmean=0;
           d=SIGN(tol1,xm-x);  
       }  double *weight;
     } else {  int **s; /* Status */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double *agedc, **covar, idx;
     }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double *lsurv, *lpop, *tpop;
     fu=(*f)(u);  
     if (fu <= fx) {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       if (u >= x) a=x; else b=x;  double ftolhess; /* Tolerance for computing hessian */
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /**************** split *************************/
         } else {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
           if (u < x) a=u; else b=u;  {
           if (fu <= fw || w == x) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
             v=w;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             w=u;    */ 
             fv=fw;    char  *ss;                            /* pointer */
             fw=fu;    int   l1, l2;                         /* length counters */
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    l1 = strlen(path );                   /* length of path */
             fv=fu;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   }      strcpy( name, path );               /* we got the fullname name because no directory */
   nrerror("Too many iterations in brent");      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   *xmin=x;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return fx;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /****************** mnbrak ***********************/        return( GLOCK_ERROR_GETCWD );
       }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      /* got dirc from getcwd*/
             double (*func)(double))      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   double ulim,u,r,q, dum;      ss++;                               /* after this, the filename */
   double fu;      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   *fa=(*func)(*ax);      strcpy( name, ss );         /* save file name */
   *fb=(*func)(*bx);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (*fb > *fa) {      dirc[l1-l2] = 0;                    /* add zero */
     SHFT(dum,*ax,*bx,dum)      printf(" DIRC2 = %s \n",dirc);
       SHFT(dum,*fb,*fa,dum)    }
       }    /* We add a separator at the end of dirc if not exists */
   *cx=(*bx)+GOLD*(*bx-*ax);    l1 = strlen( dirc );                  /* length of directory */
   *fc=(*func)(*cx);    if( dirc[l1-1] != DIRSEPARATOR ){
   while (*fb > *fc) {      dirc[l1] =  DIRSEPARATOR;
     r=(*bx-*ax)*(*fb-*fc);      dirc[l1+1] = 0; 
     q=(*bx-*cx)*(*fb-*fa);      printf(" DIRC3 = %s \n",dirc);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    ss = strrchr( name, '.' );            /* find last / */
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if (ss >0){
     if ((*bx-u)*(u-*cx) > 0.0) {      ss++;
       fu=(*func)(u);      strcpy(ext,ss);                     /* save extension */
     } else if ((*cx-u)*(u-ulim) > 0.0) {      l1= strlen( name);
       fu=(*func)(u);      l2= strlen(ss)+1;
       if (fu < *fc) {      strncpy( finame, name, l1-l2);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      finame[l1-l2]= 0;
           SHFT(*fb,*fc,fu,(*func)(u))    }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    return( 0 );                          /* we're done */
       u=ulim;  }
       fu=(*func)(u);  
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);  /******************************************/
       fu=(*func)(u);  
     }  void replace_back_to_slash(char *s, char*t)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    int i;
       }    int lg=0;
 }    i=0;
     lg=strlen(t);
 /*************** linmin ************************/    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 int ncom;      if (t[i]== '\\') s[i]='/';
 double *pcom,*xicom;    }
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int nbocc(char *s, char occ)
 {  {
   double brent(double ax, double bx, double cx,    int i,j=0;
                double (*f)(double), double tol, double *xmin);    int lg=20;
   double f1dim(double x);    i=0;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    lg=strlen(s);
               double *fc, double (*func)(double));    for(i=0; i<= lg; i++) {
   int j;    if  (s[i] == occ ) j++;
   double xx,xmin,bx,ax;    }
   double fx,fb,fa;    return j;
    }
   ncom=n;  
   pcom=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   xicom=vector(1,n);  {
   nrfunc=func;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (j=1;j<=n;j++) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     pcom[j]=p[j];       gives u="abcedf" and v="ghi2j" */
     xicom[j]=xi[j];    int i,lg,j,p=0;
   }    i=0;
   ax=0.0;    for(j=0; j<=strlen(t)-1; j++) {
   xx=1.0;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    lg=strlen(t);
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for(j=0; j<p; j++) {
 #endif      (u[j] = t[j]);
   for (j=1;j<=n;j++) {    }
     xi[j] *= xmin;       u[p]='\0';
     p[j] += xi[j];  
   }     for(j=0; j<= lg; j++) {
   free_vector(xicom,1,n);      if (j>=(p+1))(v[j-p-1] = t[j]);
   free_vector(pcom,1,n);    }
 }  }
   
 /*************** powell ************************/  /********************** nrerror ********************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  void nrerror(char error_text[])
 {  {
   void linmin(double p[], double xi[], int n, double *fret,    fprintf(stderr,"ERREUR ...\n");
               double (*func)(double []));    fprintf(stderr,"%s\n",error_text);
   int i,ibig,j;    exit(EXIT_FAILURE);
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  /*********************** vector *******************/
   double *xits;  double *vector(int nl, int nh)
   pt=vector(1,n);  {
   ptt=vector(1,n);    double *v;
   xit=vector(1,n);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   xits=vector(1,n);    if (!v) nrerror("allocation failure in vector");
   *fret=(*func)(p);    return v-nl+NR_END;
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /************************ free vector ******************/
     ibig=0;  void free_vector(double*v, int nl, int nh)
     del=0.0;  {
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /************************ivector *******************************/
     for (i=1;i<=n;i++) {  int *ivector(long nl,long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    int *v;
 #ifdef DEBUG    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       printf("fret=%lf \n",*fret);    if (!v) nrerror("allocation failure in ivector");
 #endif    return v-nl+NR_END;
       printf("%d",i);fflush(stdout);  }
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  /******************free ivector **************************/
         del=fabs(fptt-(*fret));  void free_ivector(int *v, long nl, long nh)
         ibig=i;  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       printf("%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /************************lvector *******************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  long *lvector(long nl,long nh)
         printf(" x(%d)=%.12e",j,xit[j]);  {
       }    long *v;
       for(j=1;j<=n;j++)    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         printf(" p=%.12e",p[j]);    if (!v) nrerror("allocation failure in ivector");
       printf("\n");    return v-nl+NR_END;
 #endif  }
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /******************free lvector **************************/
 #ifdef DEBUG  void free_lvector(long *v, long nl, long nh)
       int k[2],l;  {
       k[0]=1;    free((FREE_ARG)(v+nl-NR_END));
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  /******************* imatrix *******************************/
         printf(" %.12e",p[j]);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf("\n");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       for(l=0;l<=1;l++) {  { 
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    int **m; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    
         }    /* allocate pointers to rows */ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       }    if (!m) nrerror("allocation failure 1 in matrix()"); 
 #endif    m += NR_END; 
     m -= nrl; 
     
       free_vector(xit,1,n);    
       free_vector(xits,1,n);    /* allocate rows and set pointers to them */ 
       free_vector(ptt,1,n);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       free_vector(pt,1,n);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       return;    m[nrl] += NR_END; 
     }    m[nrl] -= ncl; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    
     for (j=1;j<=n;j++) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       ptt[j]=2.0*p[j]-pt[j];    
       xit[j]=p[j]-pt[j];    /* return pointer to array of pointers to rows */ 
       pt[j]=p[j];    return m; 
     }  } 
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /****************** free_imatrix *************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  void free_imatrix(m,nrl,nrh,ncl,nch)
       if (t < 0.0) {        int **m;
         linmin(p,xit,n,fret,func);        long nch,ncl,nrh,nrl; 
         for (j=1;j<=n;j++) {       /* free an int matrix allocated by imatrix() */ 
           xi[j][ibig]=xi[j][n];  { 
           xi[j][n]=xit[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         }    free((FREE_ARG) (m+nrl-NR_END)); 
 #ifdef DEBUG  } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /******************* matrix *******************************/
           printf(" %.12e",xit[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
         printf("\n");  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
     }  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /**** Prevalence limit ****************/    m -= nrl;
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m[nrl] += NR_END;
      matrix by transitions matrix until convergence is reached */    m[nrl] -= ncl;
   
   int i, ii,j,k;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double min, max, maxmin, maxmax,sumnew=0.;    return m;
   double **matprod2();    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   double **out, cov[NCOVMAX], **pmij();     */
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************************free matrix ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }
    cov[1]=1.;  
    /******************* ma3x *******************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     /* Covariates have to be included here again */    double ***m;
      cov[2]=agefin;  
      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for (k=1; k<=cptcovn;k++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m += NR_END;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m -= nrl;
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       for (k=1; k<=cptcovprod;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl] += NR_END;
     m[nrl] -= ncl;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     savm=oldm;    m[nrl][ncl] += NR_END;
     oldm=newm;    m[nrl][ncl] -= nll;
     maxmax=0.;    for (j=ncl+1; j<=nch; j++) 
     for(j=1;j<=nlstate;j++){      m[nrl][j]=m[nrl][j-1]+nlay;
       min=1.;    
       max=0.;    for (i=nrl+1; i<=nrh; i++) {
       for(i=1; i<=nlstate; i++) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         sumnew=0;      for (j=ncl+1; j<=nch; j++) 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        m[i][j]=m[i][j-1]+nlay;
         prlim[i][j]= newm[i][j]/(1-sumnew);    }
         max=FMAX(max,prlim[i][j]);    return m; 
         min=FMIN(min,prlim[i][j]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       maxmin=max-min;    */
       maxmax=FMAX(maxmax,maxmin);  }
     }  
     if(maxmax < ftolpl){  /*************************free ma3x ************************/
       return prlim;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
   }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*************** function subdirf ***********/
 {  char *subdirf(char fileres[])
   double s1, s2;  {
   /*double t34;*/    /* Caution optionfilefiname is hidden */
   int i,j,j1, nc, ii, jj;    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
     for(i=1; i<= nlstate; i++){    strcat(tmpout,fileres);
     for(j=1; j<i;j++){    return tmpout;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         /*s2 += param[i][j][nc]*cov[nc];*/  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*************** function subdirf2 ***********/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  char *subdirf2(char fileres[], char *preop)
       }  {
       ps[i][j]=s2;    
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,"/");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,fileres);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    return tmpout;
       }  }
       ps[i][j]=s2;  
     }  /*************** function subdirf3 ***********/
   }  char *subdirf3(char fileres[], char *preop, char *preop2)
     /*ps[3][2]=1;*/  {
     
   for(i=1; i<= nlstate; i++){    /* Caution optionfilefiname is hidden */
      s1=0;    strcpy(tmpout,optionfilefiname);
     for(j=1; j<i; j++)    strcat(tmpout,"/");
       s1+=exp(ps[i][j]);    strcat(tmpout,preop);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,preop2);
       s1+=exp(ps[i][j]);    strcat(tmpout,fileres);
     ps[i][i]=1./(s1+1.);    return tmpout;
     for(j=1; j<i; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     for(j=i+1; j<=nlstate+ndeath; j++)  /***************** f1dim *************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  extern int ncom; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  extern double *pcom,*xicom;
   } /* end i */  extern double (*nrfunc)(double []); 
    
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double f1dim(double x) 
     for(jj=1; jj<= nlstate+ndeath; jj++){  { 
       ps[ii][jj]=0;    int j; 
       ps[ii][ii]=1;    double f;
     }    double *xt; 
   }   
     xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    f=(*nrfunc)(xt); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    free_vector(xt,1,ncom); 
      printf("%lf ",ps[ii][jj]);    return f; 
    }  } 
     printf("\n ");  
     }  /*****************brent *************************/
     printf("\n ");printf("%lf ",cov[2]);*/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*  { 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    int iter; 
   goto end;*/    double a,b,d,etemp;
     return ps;    double fu,fv,fw,fx;
 }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
 /**************** Product of 2 matrices ******************/    double e=0.0; 
    
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    a=(ax < cx ? ax : cx); 
 {    b=(ax > cx ? ax : cx); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    x=w=v=bx; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    fw=fv=fx=(*f)(x); 
   /* in, b, out are matrice of pointers which should have been initialized    for (iter=1;iter<=ITMAX;iter++) { 
      before: only the contents of out is modified. The function returns      xm=0.5*(a+b); 
      a pointer to pointers identical to out */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   long i, j, k;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for(i=nrl; i<= nrh; i++)      printf(".");fflush(stdout);
     for(k=ncolol; k<=ncoloh; k++)      fprintf(ficlog,".");fflush(ficlog);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #ifdef DEBUG
         out[i][k] +=in[i][j]*b[j][k];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   return out;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 /************* Higher Matrix Product ***************/        return fx; 
       } 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      ftemp=fu;
 {      if (fabs(e) > tol1) { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        r=(x-w)*(fx-fv); 
      duration (i.e. until        q=(x-v)*(fx-fw); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        p=(x-v)*q-(x-w)*r; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        q=2.0*(q-r); 
      (typically every 2 years instead of every month which is too big).        if (q > 0.0) p = -p; 
      Model is determined by parameters x and covariates have to be        q=fabs(q); 
      included manually here.        etemp=e; 
         e=d; 
      */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i, j, d, h, k;        else { 
   double **out, cov[NCOVMAX];          d=p/q; 
   double **newm;          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
   /* Hstepm could be zero and should return the unit matrix */            d=SIGN(tol1,xm-x); 
   for (i=1;i<=nlstate+ndeath;i++)        } 
     for (j=1;j<=nlstate+ndeath;j++){      } else { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      } 
     }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fu=(*f)(u); 
   for(h=1; h <=nhstepm; h++){      if (fu <= fx) { 
     for(d=1; d <=hstepm; d++){        if (u >= x) a=x; else b=x; 
       newm=savm;        SHFT(v,w,x,u) 
       /* Covariates have to be included here again */          SHFT(fv,fw,fx,fu) 
       cov[1]=1.;          } else { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;            if (u < x) a=u; else b=u; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            if (fu <= fw || w == x) { 
       for (k=1; k<=cptcovage;k++)              v=w; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              w=u; 
       for (k=1; k<=cptcovprod;k++)              fv=fw; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
               v=u; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/              fv=fu; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/            } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    } 
       savm=oldm;    nrerror("Too many iterations in brent"); 
       oldm=newm;    *xmin=x; 
     }    return fx; 
     for(i=1; i<=nlstate+ndeath; i++)  } 
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  /****************** mnbrak ***********************/
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       }              double (*func)(double)) 
   } /* end h */  { 
   return po;    double ulim,u,r,q, dum;
 }    double fu; 
    
     *fa=(*func)(*ax); 
 /*************** log-likelihood *************/    *fb=(*func)(*bx); 
 double func( double *x)    if (*fb > *fa) { 
 {      SHFT(dum,*ax,*bx,dum) 
   int i, ii, j, k, mi, d, kk;        SHFT(dum,*fb,*fa,dum) 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        } 
   double **out;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double sw; /* Sum of weights */    *fc=(*func)(*cx); 
   double lli; /* Individual log likelihood */    while (*fb > *fc) { 
   int s1, s2;      r=(*bx-*ax)*(*fb-*fc); 
   long ipmx;      q=(*bx-*cx)*(*fb-*fa); 
   /*extern weight */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   /* We are differentiating ll according to initial status */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   /*for(i=1;i<imx;i++)      if ((*bx-u)*(u-*cx) > 0.0) { 
     printf(" %d\n",s[4][i]);        fu=(*func)(u); 
   */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   cov[1]=1.;        fu=(*func)(u); 
         if (fu < *fc) { 
   for(k=1; k<=nlstate; k++) ll[k]=0.;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            SHFT(*fb,*fc,fu,(*func)(u)) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            } 
     for(mi=1; mi<= wav[i]-1; mi++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)        u=ulim; 
         for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } else { 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);        u=(*cx)+GOLD*(*cx-*bx); 
         }        fu=(*func)(u); 
       for(d=0; d<dh[mi][i]; d++){      } 
         newm=savm;      SHFT(*ax,*bx,*cx,u) 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        SHFT(*fa,*fb,*fc,fu) 
         for (kk=1; kk<=cptcovage;kk++) {        } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  } 
         }  
          /*************** linmin ************************/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  int ncom; 
         savm=oldm;  double *pcom,*xicom;
         oldm=newm;  double (*nrfunc)(double []); 
           
          void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       } /* end mult */  { 
          double brent(double ax, double bx, double cx, 
       s1=s[mw[mi][i]][i];                 double (*f)(double), double tol, double *xmin); 
       s2=s[mw[mi+1][i]][i];    double f1dim(double x); 
       if( s2 > nlstate){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution                double *fc, double (*func)(double)); 
            to the likelihood is the probability to die between last step unit time and current    int j; 
            step unit time, which is also the differences between probability to die before dh    double xx,xmin,bx,ax; 
            and probability to die before dh-stepm .    double fx,fb,fa;
            In version up to 0.92 likelihood was computed   
            as if date of death was unknown. Death was treated as any other    ncom=n; 
            health state: the date of the interview describes the actual state    pcom=vector(1,n); 
            and not the date of a change in health state. The former idea was    xicom=vector(1,n); 
            to consider that at each interview the state was recorded    nrfunc=func; 
            (healthy, disable or death) and IMaCh was corrected; but when we    for (j=1;j<=n;j++) { 
            introduced the exact date of death then we should have modified      pcom[j]=p[j]; 
            the contribution of an exact death to the likelihood. This new      xicom[j]=xi[j]; 
            contribution is smaller and very dependent of the step unit    } 
            stepm. It is no more the probability to die between last interview    ax=0.0; 
            and month of death but the probability to survive from last    xx=1.0; 
            interview up to one month before death multiplied by the    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
            probability to die within a month. Thanks to Chris    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
            Jackson for correcting this bug.  Former versions increased  #ifdef DEBUG
            mortality artificially. The bad side is that we add another loop    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            which slows down the processing. The difference can be up to 10%    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            lower mortality.  #endif
         */    for (j=1;j<=n;j++) { 
         lli=log(out[s1][s2] - savm[s1][s2]);      xi[j] *= xmin; 
       }else{      p[j] += xi[j]; 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    } 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    free_vector(xicom,1,n); 
       }    free_vector(pcom,1,n); 
       ipmx +=1;  } 
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  char *asc_diff_time(long time_sec, char ascdiff[])
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  {
     } /* end of wave */    long sec_left, days, hours, minutes;
   } /* end of individual */    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    hours = (sec_left) / (60*60) ;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    sec_left = (sec_left) %(60*60);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    minutes = (sec_left) /60;
   /*exit(0);*/    sec_left = (sec_left) % (60);
   return -l;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 }    return ascdiff;
   }
   
 /*********** Maximum Likelihood Estimation ***************/  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))              double (*func)(double [])) 
 {  { 
   int i,j, iter;    void linmin(double p[], double xi[], int n, double *fret, 
   double **xi,*delti;                double (*func)(double [])); 
   double fret;    int i,ibig,j; 
   xi=matrix(1,npar,1,npar);    double del,t,*pt,*ptt,*xit;
   for (i=1;i<=npar;i++)    double fp,fptt;
     for (j=1;j<=npar;j++)    double *xits;
       xi[i][j]=(i==j ? 1.0 : 0.0);    int niterf, itmp;
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);    pt=vector(1,n); 
     ptt=vector(1,n); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    xit=vector(1,n); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    xits=vector(1,n); 
     *fret=(*func)(p); 
 }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 /**** Computes Hessian and covariance matrix ***/      fp=(*fret); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      ibig=0; 
 {      del=0.0; 
   double  **a,**y,*x,pd;      last_time=curr_time;
   double **hess;      (void) gettimeofday(&curr_time,&tzp);
   int i, j,jk;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   int *indx;      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double hessii(double p[], double delta, int theta, double delti[]);      */
   double hessij(double p[], double delti[], int i, int j);     for (i=1;i<=n;i++) {
   void lubksb(double **a, int npar, int *indx, double b[]) ;        printf(" %d %.12f",i, p[i]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   hess=matrix(1,npar,1,npar);      }
       printf("\n");
   printf("\nCalculation of the hessian matrix. Wait...\n");      fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++){      fprintf(ficrespow,"\n");fflush(ficrespow);
     printf("%d",i);fflush(stdout);      if(*iter <=3){
     hess[i][i]=hessii(p,ftolhess,i,delti);        tm = *localtime(&curr_time.tv_sec);
     /*printf(" %f ",p[i]);*/        strcpy(strcurr,asctime(&tm));
     /*printf(" %lf ",hess[i][i]);*/  /*       asctime_r(&tm,strcurr); */
   }        forecast_time=curr_time; 
          itmp = strlen(strcurr);
   for (i=1;i<=npar;i++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (j=1;j<=npar;j++)  {          strcurr[itmp-1]='\0';
       if (j>i) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         hess[i][j]=hessij(p,delti,i,j);        for(niterf=10;niterf<=30;niterf+=10){
         hess[j][i]=hess[i][j];              forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         /*printf(" %lf ",hess[i][j]);*/          tmf = *localtime(&forecast_time.tv_sec);
       }  /*      asctime_r(&tmf,strfor); */
     }          strcpy(strfor,asctime(&tmf));
   }          itmp = strlen(strfor);
   printf("\n");          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   a=matrix(1,npar,1,npar);        }
   y=matrix(1,npar,1,npar);      }
   x=vector(1,npar);      for (i=1;i<=n;i++) { 
   indx=ivector(1,npar);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   for (i=1;i<=npar;i++)        fptt=(*fret); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   for (j=1;j<=npar;j++) {  #endif
     for (i=1;i<=npar;i++) x[i]=0;        printf("%d",i);fflush(stdout);
     x[j]=1;        fprintf(ficlog,"%d",i);fflush(ficlog);
     lubksb(a,npar,indx,x);        linmin(p,xit,n,fret,func); 
     for (i=1;i<=npar;i++){        if (fabs(fptt-(*fret)) > del) { 
       matcov[i][j]=x[i];          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
   }        } 
   #ifdef DEBUG
   printf("\n#Hessian matrix#\n");        printf("%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++) {        for (j=1;j<=n;j++) {
       printf("%.3e ",hess[i][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
     printf("\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   }        }
         for(j=1;j<=n;j++) {
   /* Recompute Inverse */          printf(" p=%.12e",p[j]);
   for (i=1;i<=npar;i++)          fprintf(ficlog," p=%.12e",p[j]);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);        printf("\n");
         fprintf(ficlog,"\n");
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
       } 
   for (j=1;j<=npar;j++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;        int k[2],l;
     lubksb(a,npar,indx,x);        k[0]=1;
     for (i=1;i<=npar;i++){        k[1]=-1;
       y[i][j]=x[i];        printf("Max: %.12e",(*func)(p));
       printf("%.3e ",y[i][j]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     printf("\n");          printf(" %.12e",p[j]);
   }          fprintf(ficlog," %.12e",p[j]);
   */        }
         printf("\n");
   free_matrix(a,1,npar,1,npar);        fprintf(ficlog,"\n");
   free_matrix(y,1,npar,1,npar);        for(l=0;l<=1;l++) {
   free_vector(x,1,npar);          for (j=1;j<=n;j++) {
   free_ivector(indx,1,npar);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   free_matrix(hess,1,npar,1,npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*************** hessian matrix ****************/        }
 double hessii( double x[], double delta, int theta, double delti[])  #endif
 {  
   int i;  
   int l=1, lmax=20;        free_vector(xit,1,n); 
   double k1,k2;        free_vector(xits,1,n); 
   double p2[NPARMAX+1];        free_vector(ptt,1,n); 
   double res;        free_vector(pt,1,n); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        return; 
   double fx;      } 
   int k=0,kmax=10;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double l1;      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   fx=func(x);        xit[j]=p[j]-pt[j]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];        pt[j]=p[j]; 
   for(l=0 ; l <=lmax; l++){      } 
     l1=pow(10,l);      fptt=(*func)(ptt); 
     delts=delt;      if (fptt < fp) { 
     for(k=1 ; k <kmax; k=k+1){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       delt = delta*(l1*k);        if (t < 0.0) { 
       p2[theta]=x[theta] +delt;          linmin(p,xit,n,fret,func); 
       k1=func(p2)-fx;          for (j=1;j<=n;j++) { 
       p2[theta]=x[theta]-delt;            xi[j][ibig]=xi[j][n]; 
       k2=func(p2)-fx;            xi[j][n]=xit[j]; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */          }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  #ifdef DEBUG
                printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 #ifdef DEBUG          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          for(j=1;j<=n;j++){
 #endif            printf(" %.12e",xit[j]);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            fprintf(ficlog," %.12e",xit[j]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          }
         k=kmax;          printf("\n");
       }          fprintf(ficlog,"\n");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #endif
         k=kmax; l=lmax*10.;        }
       }      } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    } 
         delts=delt;  } 
       }  
     }  /**** Prevalence limit (stable or period prevalence)  ****************/
   }  
   delti[theta]=delts;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   return res;  {
      /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 }       matrix by transitions matrix until convergence is reached */
   
 double hessij( double x[], double delti[], int thetai,int thetaj)    int i, ii,j,k;
 {    double min, max, maxmin, maxmax,sumnew=0.;
   int i;    double **matprod2();
   int l=1, l1, lmax=20;    double **out, cov[NCOVMAX], **pmij();
   double k1,k2,k3,k4,res,fx;    double **newm;
   double p2[NPARMAX+1];    double agefin, delaymax=50 ; /* Max number of years to converge */
   int k;  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   fx=func(x);      for (j=1;j<=nlstate+ndeath;j++){
   for (k=1; k<=2; k++) {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) p2[i]=x[i];      }
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;     cov[1]=1.;
     k1=func(p2)-fx;   
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetai]=x[thetai]+delti[thetai]/k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      newm=savm;
     k2=func(p2)-fx;      /* Covariates have to be included here again */
         cov[2]=agefin;
     p2[thetai]=x[thetai]-delti[thetai]/k;    
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) {
     k3=func(p2)-fx;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     k4=func(p2)-fx;        for (k=1; k<=cptcovprod;k++)
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 #endif        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   return res;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 }  
       savm=oldm;
 /************** Inverse of matrix **************/      oldm=newm;
 void ludcmp(double **a, int n, int *indx, double *d)      maxmax=0.;
 {      for(j=1;j<=nlstate;j++){
   int i,imax,j,k;        min=1.;
   double big,dum,sum,temp;        max=0.;
   double *vv;        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   vv=vector(1,n);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   *d=1.0;          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (i=1;i<=n;i++) {          max=FMAX(max,prlim[i][j]);
     big=0.0;          min=FMIN(min,prlim[i][j]);
     for (j=1;j<=n;j++)        }
       if ((temp=fabs(a[i][j])) > big) big=temp;        maxmin=max-min;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        maxmax=FMAX(maxmax,maxmin);
     vv[i]=1.0/big;      }
   }      if(maxmax < ftolpl){
   for (j=1;j<=n;j++) {        return prlim;
     for (i=1;i<j;i++) {      }
       sum=a[i][j];    }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
     }  /*************** transition probabilities ***************/ 
     big=0.0;  
     for (i=j;i<=n;i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       sum=a[i][j];  {
       for (k=1;k<j;k++)    double s1, s2;
         sum -= a[i][k]*a[k][j];    /*double t34;*/
       a[i][j]=sum;    int i,j,j1, nc, ii, jj;
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;      for(i=1; i<= nlstate; i++){
         imax=i;        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            /*s2 += param[i][j][nc]*cov[nc];*/
     if (j != imax) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (k=1;k<=n;k++) {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         dum=a[imax][k];          }
         a[imax][k]=a[j][k];          ps[i][j]=s2;
         a[j][k]=dum;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       }        }
       *d = -(*d);        for(j=i+1; j<=nlstate+ndeath;j++){
       vv[imax]=vv[j];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     indx[j]=imax;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if (a[j][j] == 0.0) a[j][j]=TINY;          }
     if (j != n) {          ps[i][j]=s2;
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      }
     }      /*ps[3][2]=1;*/
   }      
   free_vector(vv,1,n);  /* Doesn't work */      for(i=1; i<= nlstate; i++){
 ;        s1=0;
 }        for(j=1; j<i; j++)
           s1+=exp(ps[i][j]);
 void lubksb(double **a, int n, int *indx, double b[])        for(j=i+1; j<=nlstate+ndeath; j++)
 {          s1+=exp(ps[i][j]);
   int i,ii=0,ip,j;        ps[i][i]=1./(s1+1.);
   double sum;        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=n;i++) {        for(j=i+1; j<=nlstate+ndeath; j++)
     ip=indx[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     sum=b[ip];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     b[ip]=b[i];      } /* end i */
     if (ii)      
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     else if (sum) ii=i;        for(jj=1; jj<= nlstate+ndeath; jj++){
     b[i]=sum;          ps[ii][jj]=0;
   }          ps[ii][ii]=1;
   for (i=n;i>=1;i--) {        }
     sum=b[i];      }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      
     b[i]=sum/a[i][i];  
   }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
 /************ Frequencies ********************/  /*       } */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*       printf("\n "); */
 {  /* Some frequencies */  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;         /*
   double ***freq; /* Frequencies */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double *pp;        goto end;*/
   double pos, k2, dateintsum=0,k2cpt=0;      return ps;
   FILE *ficresp;  }
   char fileresp[FILENAMELENGTH];  
    /**************** Product of 2 matrices ******************/
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   strcpy(fileresp,"p");  {
   strcat(fileresp,fileres);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   if((ficresp=fopen(fileresp,"w"))==NULL) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* in, b, out are matrice of pointers which should have been initialized 
     exit(0);       before: only the contents of out is modified. The function returns
   }       a pointer to pointers identical to out */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    long i, j, k;
   j1=0;    for(i=nrl; i<= nrh; i++)
        for(k=ncolol; k<=ncoloh; k++)
   j=cptcoveff;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          out[i][k] +=in[i][j]*b[j][k];
    
   for(k1=1; k1<=j;k1++){    return out;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  /************* Higher Matrix Product ***************/
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    /* Computes the transition matrix starting at age 'age' over 
             'nhstepm*hstepm*stepm' months (i.e. until
       dateintsum=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       k2cpt=0;       nhstepm*hstepm matrices. 
       for (i=1; i<=imx; i++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         bool=1;       (typically every 2 years instead of every month which is too big 
         if  (cptcovn>0) {       for the memory).
           for (z1=1; z1<=cptcoveff; z1++)       Model is determined by parameters x and covariates have to be 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       included manually here. 
               bool=0;  
         }       */
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    int i, j, d, h, k;
             k2=anint[m][i]+(mint[m][i]/12.);    double **out, cov[NCOVMAX];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double **newm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Hstepm could be zero and should return the unit matrix */
               if (m<lastpass) {    for (i=1;i<=nlstate+ndeath;i++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (j=1;j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
               }        po[i][j][0]=(i==j ? 1.0 : 0.0);
                    }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                 dateintsum=dateintsum+k2;    for(h=1; h <=nhstepm; h++){
                 k2cpt++;      for(d=1; d <=hstepm; d++){
               }        newm=savm;
             }        /* Covariates have to be included here again */
           }        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                for (k=1; k<=cptcovage;k++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
       if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(i=1; i<=nlstate;i++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "\n");        savm=oldm;
              oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         if(i==(int)agemax+3)      for(i=1; i<=nlstate+ndeath; i++)
           printf("Total");        for(j=1;j<=nlstate+ndeath;j++) {
         else          po[i][j][h]=newm[i][j];
           printf("Age %d", i);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         for(jk=1; jk <=nlstate ; jk++){           */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        }
             pp[jk] += freq[jk][m][i];    } /* end h */
         }    return po;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)  /*************** log-likelihood *************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  double func( double *x)
           else  {
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
         for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double lli; /* Individual log likelihood */
             pp[jk] += freq[jk][m][i];    int s1, s2;
         }    double bbh, survp;
     long ipmx;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    /*extern weight */
           pos += pp[jk];    /* We are differentiating ll according to initial status */
         for(jk=1; jk <=nlstate ; jk++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           if(pos>=1.e-5)    /*for(i=1;i<imx;i++) 
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      printf(" %d\n",s[4][i]);
           else    */
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    cov[1]=1.;
           if( i <= (int) agemax){  
             if(pos>=1.e-5){    for(k=1; k<=nlstate; k++) ll[k]=0.;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;    if(mle==1){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             else        for(mi=1; mi<= wav[i]-1; mi++){
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                      savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=-1; jk <=nlstate+ndeath; jk++)            }
           for(m=-1; m <=nlstate+ndeath; m++)          for(d=0; d<dh[mi][i]; d++){
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);            newm=savm;
         if(i <= (int) agemax)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficresp,"\n");            for (kk=1; kk<=cptcovage;kk++) {
         printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dateintmean=dateintsum/k2cpt;            savm=oldm;
              oldm=newm;
   fclose(ficresp);          } /* end mult */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        
   free_vector(pp,1,nlstate);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias at large stepm.
   /* End of Freq */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 }           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 /************ Prevalence ********************/           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 {  /* Some frequencies */           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * -stepm/2 to stepm/2 .
   double ***freq; /* Frequencies */           * For stepm=1 the results are the same as for previous versions of Imach.
   double *pp;           * For stepm > 1 the results are less biased than in previous versions. 
   double pos, k2;           */
           s1=s[mw[mi][i]][i];
   pp=vector(1,nlstate);          s2=s[mw[mi+1][i]][i];
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias bh is positive if real duration
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   j1=0;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcoveff;          if( s2 > nlstate){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
  for(k1=1; k1<=j;k1++){               die between last step unit time and current  step unit time, 
     for(i1=1; i1<=ncodemax[k1];i1++){               which is also equal to probability to die before dh 
       j1++;               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
       for (i=-1; i<=nlstate+ndeath; i++)            as if date of death was unknown. Death was treated as any other
         for (jk=-1; jk<=nlstate+ndeath; jk++)            health state: the date of the interview describes the actual state
           for(m=agemin; m <= agemax+3; m++)          and not the date of a change in health state. The former idea was
             freq[i][jk][m]=0;          to consider that at each interview the state was recorded
                (healthy, disable or death) and IMaCh was corrected; but when we
       for (i=1; i<=imx; i++) {          introduced the exact date of death then we should have modified
         bool=1;          the contribution of an exact death to the likelihood. This new
         if  (cptcovn>0) {          contribution is smaller and very dependent of the step unit
           for (z1=1; z1<=cptcoveff; z1++)          stepm. It is no more the probability to die between last interview
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          and month of death but the probability to survive from last
               bool=0;          interview up to one month before death multiplied by the
         }          probability to die within a month. Thanks to Chris
         if (bool==1) {          Jackson for correcting this bug.  Former versions increased
           for(m=firstpass; m<=lastpass; m++){          mortality artificially. The bad side is that we add another loop
             k2=anint[m][i]+(mint[m][i]/12.);          which slows down the processing. The difference can be up to 10%
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          lower mortality.
               if(agev[m][i]==0) agev[m][i]=agemax+1;            */
               if(agev[m][i]==1) agev[m][i]=agemax+2;            lli=log(out[s1][s2] - savm[s1][s2]);
               if (m<lastpass)  
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
               else          } else if  (s2==-2) {
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (j=1,survp=0. ; j<=nlstate; j++) 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             }            /*survp += out[s1][j]; */
           }            lli= log(survp);
         }          }
       }          
         for(i=(int)agemin; i <= (int)agemax+3; i++){          else if  (s2==-4) { 
           for(jk=1; jk <=nlstate ; jk++){            for (j=3,survp=0. ; j<=nlstate; j++)  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               pp[jk] += freq[jk][m][i];            lli= log(survp); 
           }          } 
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pos=0; m <=0 ; m++)          else if  (s2==-5) { 
             pos += freq[jk][m][i];            for (j=1,survp=0. ; j<=2; j++)  
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                    lli= log(survp); 
          for(jk=1; jk <=nlstate ; jk++){          } 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          
              pp[jk] += freq[jk][m][i];          else{
          }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                      /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
          for(jk=1; jk <=nlstate ; jk++){                    /*if(lli ==000.0)*/
            if( i <= (int) agemax){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
              if(pos>=1.e-5){          ipmx +=1;
                probs[i][jk][j1]= pp[jk]/pos;          sw += weight[i];
              }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            }        } /* end of wave */
          }      } /* end of individual */
              }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(pp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }  /* End of Freq */          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
 /************* Waves Concatenation ***************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Death is a valid wave (if date is known).                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            savm=oldm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            oldm=newm;
      and mw[mi+1][i]. dh depends on stepm.          } /* end mult */
      */        
           s1=s[mw[mi][i]][i];
   int i, mi, m;          s2=s[mw[mi+1][i]][i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
      double sum=0., jmean=0.;*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
   int j, k=0,jk, ju, jl;          sw += weight[i];
   double sum=0.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   jmin=1e+5;        } /* end of wave */
   jmax=-1;      } /* end of individual */
   jmean=0.;    }  else if(mle==3){  /* exponential inter-extrapolation */
   for(i=1; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     mi=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     m=firstpass;        for(mi=1; mi<= wav[i]-1; mi++){
     while(s[m][i] <= nlstate){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(s[m][i]>=1)            for (j=1;j<=nlstate+ndeath;j++){
         mw[++mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;            }
       else          for(d=0; d<dh[mi][i]; d++){
         m++;            newm=savm;
     }/* end while */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (s[m][i] > nlstate){            for (kk=1; kk<=cptcovage;kk++) {
       mi++;     /* Death is another wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mw[mi][i]=m;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
             oldm=newm;
     wav[i]=mi;          } /* end mult */
     if(mi==0)        
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=imx; i++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(mi=1; mi<wav[i];mi++){          ipmx +=1;
       if (stepm <=0)          sw += weight[i];
         dh[mi][i]=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else{        } /* end of wave */
         if (s[mw[mi+1][i]][i] > nlstate) {      } /* end of individual */
           if (agedc[i] < 2*AGESUP) {    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if(j==0) j=1;  /* Survives at least one month after exam */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           k=k+1;        for(mi=1; mi<= wav[i]-1; mi++){
           if (j >= jmax) jmax=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j <= jmin) jmin=j;            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }            }
         }          for(d=0; d<dh[mi][i]; d++){
         else{            newm=savm;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           k=k+1;            for (kk=1; kk<=cptcovage;kk++) {
           if (j >= jmax) jmax=j;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           else if (j <= jmin)jmin=j;            }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          
           sum=sum+j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         jk= j/stepm;            savm=oldm;
         jl= j -jk*stepm;            oldm=newm;
         ju= j -(jk+1)*stepm;          } /* end mult */
         if(jl <= -ju)        
           dh[mi][i]=jk;          s1=s[mw[mi][i]][i];
         else          s2=s[mw[mi+1][i]][i];
           dh[mi][i]=jk+1;          if( s2 > nlstate){ 
         if(dh[mi][i]==0)            lli=log(out[s1][s2] - savm[s1][s2]);
           dh[mi][i]=1; /* At least one step */          }else{
       }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     }          }
   }          ipmx +=1;
   jmean=sum/k;          sw += weight[i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /*********** Tricode ****************************/        } /* end of wave */
 void tricode(int *Tvar, int **nbcode, int imx)      } /* end of individual */
 {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   int Ndum[20],ij=1, k, j, i;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int cptcode=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   cptcoveff=0;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=0; k<19; k++) Ndum[k]=0;            for (j=1;j<=nlstate+ndeath;j++){
   for (k=1; k<=7; k++) ncodemax[k]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }
     for (i=1; i<=imx; i++) {          for(d=0; d<dh[mi][i]; d++){
       ij=(int)(covar[Tvar[j]][i]);            newm=savm;
       Ndum[ij]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            for (kk=1; kk<=cptcovage;kk++) {
       if (ij > cptcode) cptcode=ij;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
           
     for (i=0; i<=cptcode; i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if(Ndum[i]!=0) ncodemax[j]++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     ij=1;            oldm=newm;
           } /* end mult */
         
     for (i=1; i<=ncodemax[j]; i++) {          s1=s[mw[mi][i]][i];
       for (k=0; k<=19; k++) {          s2=s[mw[mi+1][i]][i];
         if (Ndum[k] != 0) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           nbcode[Tvar[j]][ij]=k;          ipmx +=1;
                    sw += weight[i];
           ij++;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         if (ij > ncodemax[j]) break;        } /* end of wave */
       }        } /* end of individual */
     }    } /* End of if */
   }      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  for (k=0; k<19; k++) Ndum[k]=0;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
  for (i=1; i<=ncovmodel-2; i++) {  }
       ij=Tvar[i];  
       Ndum[ij]++;  /*************** log-likelihood *************/
     }  double funcone( double *x)
   {
  ij=1;    /* Same as likeli but slower because of a lot of printf and if */
  for (i=1; i<=10; i++) {    int i, ii, j, k, mi, d, kk;
    if((Ndum[i]!=0) && (i<=ncovcol)){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      Tvaraff[ij]=i;    double **out;
      ij++;    double lli; /* Individual log likelihood */
    }    double llt;
  }    int s1, s2;
      double bbh, survp;
     cptcoveff=ij-1;    /*extern weight */
 }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 /*********** Health Expectancies ****************/    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    */
     cov[1]=1.;
 {  
   /* Health expectancies */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***p3mat,***varhe;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **dnewm,**doldm;      for(mi=1; mi<= wav[i]-1; mi++){
   double *xp;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double **gp, **gm;          for (j=1;j<=nlstate+ndeath;j++){
   double ***gradg, ***trgradg;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        for(d=0; d<dh[mi][i]; d++){
   xp=vector(1,npar);          newm=savm;
   dnewm=matrix(1,nlstate*2,1,npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   doldm=matrix(1,nlstate*2,1,nlstate*2);          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficreseij,"# Health expectancies\n");          }
   fprintf(ficreseij,"# Age");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)          savm=oldm;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          oldm=newm;
   fprintf(ficreseij,"\n");        } /* end mult */
         
   if(estepm < stepm){        s1=s[mw[mi][i]][i];
     printf ("Problem %d lower than %d\n",estepm, stepm);        s2=s[mw[mi+1][i]][i];
   }        bbh=(double)bh[mi][i]/(double)stepm; 
   else  hstepm=estepm;          /* bias is positive if real duration
   /* We compute the life expectancy from trapezoids spaced every estepm months         * is higher than the multiple of stepm and negative otherwise.
    * This is mainly to measure the difference between two models: for example         */
    * if stepm=24 months pijx are given only every 2 years and by summing them        if( s2 > nlstate && (mle <5) ){  /* Jackson */
    * we are calculating an estimate of the Life Expectancy assuming a linear          lli=log(out[s1][s2] - savm[s1][s2]);
    * progression inbetween and thus overestimating or underestimating according        } else if  (s2==-2) {
    * to the curvature of the survival function. If, for the same date, we          for (j=1,survp=0. ; j<=nlstate; j++) 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    * to compare the new estimate of Life expectancy with the same linear          lli= log(survp);
    * hypothesis. A more precise result, taking into account a more precise        }else if (mle==1){
    * curvature will be obtained if estepm is as small as stepm. */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
   /* For example we decided to compute the life expectancy with the smallest unit */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        } else if(mle==3){  /* exponential inter-extrapolation */
      nhstepm is the number of hstepm from age to agelim          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      nstepm is the number of stepm from age to agelin.        } else if (mle==4){  /* mle=4 no inter-extrapolation */
      Look at hpijx to understand the reason of that which relies in memory size          lli=log(out[s1][s2]); /* Original formula */
      and note for a fixed period like estepm months */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          lli=log(out[s1][s2]); /* Original formula */
      survival function given by stepm (the optimization length). Unfortunately it        } /* End of if */
      means that if the survival funtion is printed only each two years of age and if        ipmx +=1;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        sw += weight[i];
      results. So we changed our mind and took the option of the best precision.        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        if(globpr){
           fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   agelim=AGESUP;   %11.6f %11.6f %11.6f ", \
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     /* nhstepm age range expressed in number of stepm */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            llt +=ll[k]*gipmx/gsw;
     /* if (stepm >= YEARM) hstepm=1;*/            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresilk," %10.6f\n", -llt);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);        }
     gp=matrix(0,nhstepm,1,nlstate*2);      } /* end of wave */
     gm=matrix(0,nhstepm,1,nlstate*2);    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      if(globpr==0){ /* First time we count the contributions and weights */
        gipmx=ipmx;
       gsw=sw;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     return -l;
     /* Computing Variances of health expectancies */  }
   
      for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){  /*************** function likelione ***********/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* This routine should help understanding what is done with 
         the selection of individuals/waves and
       cptj=0;       to check the exact contribution to the likelihood.
       for(j=1; j<= nlstate; j++){       Plotting could be done.
         for(i=1; i<=nlstate; i++){     */
           cptj=cptj+1;    int k;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    if(*globpri !=0){ /* Just counts and sums, no printings */
           }      strcpy(fileresilk,"ilk"); 
         }      strcat(fileresilk,fileres);
       }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", fileresilk);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(i=1; i<=npar; i++)      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
            /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       cptj=0;      for(k=1; k<=nlstate; k++) 
       for(j=1; j<= nlstate; j++){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         for(i=1;i<=nlstate;i++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           cptj=cptj+1;    }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    *fretone=(*funcone)(p);
           }    if(*globpri !=0){
         }      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
            fflush(fichtm); 
        } 
     return;
       for(j=1; j<= nlstate*2; j++)  }
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /*********** Maximum Likelihood Estimation ***************/
   
      }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      {
 /* End theta */    int i,j, iter;
     double **xi;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    double fret;
     double fretone; /* Only one call to likelihood */
      for(h=0; h<=nhstepm-1; h++)    /*  char filerespow[FILENAMELENGTH];*/
       for(j=1; j<=nlstate*2;j++)    xi=matrix(1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=npar;i++)
         trgradg[h][j][theta]=gradg[h][theta][j];      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
      for(i=1;i<=nlstate*2;i++)    strcpy(filerespow,"pow"); 
       for(j=1;j<=nlstate*2;j++)    strcat(filerespow,fileres);
         varhe[i][j][(int)age] =0.;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     for(h=0;h<=nhstepm-1;h++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(k=0;k<=nhstepm-1;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for (i=1;i<=nlstate;i++)
         for(i=1;i<=nlstate*2;i++)      for(j=1;j<=nlstate+ndeath;j++)
           for(j=1;j<=nlstate*2;j++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    fprintf(ficrespow,"\n");
       }  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
   
          free_matrix(xi,1,npar,1,npar);
     /* Computing expectancies */    fclose(ficrespow);
     for(i=1; i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
            }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   /**** Computes Hessian and covariance matrix ***/
         }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     fprintf(ficreseij,"%3.0f",age );    double  **a,**y,*x,pd;
     cptj=0;    double **hess;
     for(i=1; i<=nlstate;i++)    int i, j,jk;
       for(j=1; j<=nlstate;j++){    int *indx;
         cptj++;  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficreseij,"\n");    void lubksb(double **a, int npar, int *indx, double b[]) ;
        void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    double gompertz(double p[]);
     free_matrix(gp,0,nhstepm,1,nlstate*2);    hess=matrix(1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   }    for (i=1;i<=npar;i++){
   free_vector(xp,1,npar);      printf("%d",i);fflush(stdout);
   free_matrix(dnewm,1,nlstate*2,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);     
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 }      
       /*  printf(" %f ",p[i]);
 /************ Variance ******************/          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    }
 {    
   /* Variance of health expectancies */    for (i=1;i<=npar;i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)  {
   double **newm;        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   int i, j, nhstepm, hstepm, h, nstepm ;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int k, cptcode;          hess[i][j]=hessij(p,delti,i,j,func,npar);
   double *xp;          
   double **gp, **gm;          hess[j][i]=hess[i][j];    
   double ***gradg, ***trgradg;          /*printf(" %lf ",hess[i][j]);*/
   double ***p3mat;        }
   double age,agelim, hf;      }
   int theta;    }
     printf("\n");
    fprintf(ficresvij,"# Covariances of life expectancies\n");    fprintf(ficlog,"\n");
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    
   fprintf(ficresvij,"\n");    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   xp=vector(1,npar);    x=vector(1,npar);
   dnewm=matrix(1,nlstate,1,npar);    indx=ivector(1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   if(estepm < stepm){    ludcmp(a,npar,indx,&pd);
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    for (j=1;j<=npar;j++) {
   else  hstepm=estepm;        for (i=1;i<=npar;i++) x[i]=0;
   /* For example we decided to compute the life expectancy with the smallest unit */      x[j]=1;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      lubksb(a,npar,indx,x);
      nhstepm is the number of hstepm from age to agelim      for (i=1;i<=npar;i++){ 
      nstepm is the number of stepm from age to agelin.        matcov[i][j]=x[i];
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like k years */    }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it    printf("\n#Hessian matrix#\n");
      means that if the survival funtion is printed only each two years of age and if    fprintf(ficlog,"\n#Hessian matrix#\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (i=1;i<=npar;i++) { 
      results. So we changed our mind and took the option of the best precision.      for (j=1;j<=npar;j++) { 
   */        printf("%.3e ",hess[i][j]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"%.3e ",hess[i][j]);
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf("\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      fprintf(ficlog,"\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /* Recompute Inverse */
     gp=matrix(0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++)
     gm=matrix(0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*  printf("\n#Hessian matrix recomputed#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (j=1;j<=npar;j++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++) x[i]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      x[j]=1;
       lubksb(a,npar,indx,x);
       if (popbased==1) {      for (i=1;i<=npar;i++){ 
         for(i=1; i<=nlstate;i++)        y[i][j]=x[i];
           prlim[i][i]=probs[(int)age][i][ij];        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
        }
       for(j=1; j<= nlstate; j++){      printf("\n");
         for(h=0; h<=nhstepm; h++){      fprintf(ficlog,"\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    */
         }  
       }    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    free_vector(x,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(hess,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
    
       if (popbased==1) {  }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
       for(j=1; j<= nlstate; j++){    int i;
         for(h=0; h<=nhstepm; h++){    int l=1, lmax=20;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double k1,k2;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double p2[NPARMAX+1];
         }    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
       for(j=1; j<= nlstate; j++)    int k=0,kmax=10;
         for(h=0; h<=nhstepm; h++){    double l1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    fx=func(x);
     } /* End theta */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      l1=pow(10,l);
       delts=delt;
     for(h=0; h<=nhstepm; h++)      for(k=1 ; k <kmax; k=k+1){
       for(j=1; j<=nlstate;j++)        delt = delta*(l1*k);
         for(theta=1; theta <=npar; theta++)        p2[theta]=x[theta] +delt;
           trgradg[h][j][theta]=gradg[h][theta][j];        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        k2=func(p2)-fx;
     for(i=1;i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       for(j=1;j<=nlstate;j++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         vareij[i][j][(int)age] =0.;        
   #ifdef DEBUG
     for(h=0;h<=nhstepm;h++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for(k=0;k<=nhstepm;k++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  #endif
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for(i=1;i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(j=1;j<=nlstate;j++)          k=kmax;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     }          k=kmax; l=lmax*10.;
         }
     fprintf(ficresvij,"%.0f ",age );        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1; i<=nlstate;i++)          delts=delt;
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      }
       }    }
     fprintf(ficresvij,"\n");    delti[theta]=delts;
     free_matrix(gp,0,nhstepm,1,nlstate);    return res; 
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   } /* End age */  {
      int i;
   free_vector(xp,1,npar);    int l=1, l1, lmax=20;
   free_matrix(doldm,1,nlstate,1,npar);    double k1,k2,k3,k4,res,fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);    double p2[NPARMAX+1];
     int k;
 }  
     fx=func(x);
 /************ Variance of prevlim ******************/    for (k=1; k<=2; k++) {
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (i=1;i<=npar;i++) p2[i]=x[i];
 {      p2[thetai]=x[thetai]+delti[thetai]/k;
   /* Variance of prevalence limit */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      k1=func(p2)-fx;
   double **newm;    
   double **dnewm,**doldm;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int i, j, nhstepm, hstepm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   int k, cptcode;      k2=func(p2)-fx;
   double *xp;    
   double *gp, *gm;      p2[thetai]=x[thetai]-delti[thetai]/k;
   double **gradg, **trgradg;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double age,agelim;      k3=func(p2)-fx;
   int theta;    
          p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvpl,"# Age");      k4=func(p2)-fx;
   for(i=1; i<=nlstate;i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fprintf(ficresvpl," %1d-%1d",i,i);  #ifdef DEBUG
   fprintf(ficresvpl,"\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   xp=vector(1,npar);  #endif
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    return res;
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  /************** Inverse of matrix **************/
   agelim = AGESUP;  void ludcmp(double **a, int n, int *indx, double *d) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  { 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i,imax,j,k; 
     if (stepm >= YEARM) hstepm=1;    double big,dum,sum,temp; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double *vv; 
     gradg=matrix(1,npar,1,nlstate);   
     gp=vector(1,nlstate);    vv=vector(1,n); 
     gm=vector(1,nlstate);    *d=1.0; 
     for (i=1;i<=n;i++) { 
     for(theta=1; theta <=npar; theta++){      big=0.0; 
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=n;j++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      vv[i]=1.0/big; 
       for(i=1;i<=nlstate;i++)    } 
         gp[i] = prlim[i][i];    for (j=1;j<=n;j++) { 
          for (i=1;i<j;i++) { 
       for(i=1; i<=npar; i++) /* Computes gradient */        sum=a[i][j]; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        a[i][j]=sum; 
       for(i=1;i<=nlstate;i++)      } 
         gm[i] = prlim[i][i];      big=0.0; 
       for (i=j;i<=n;i++) { 
       for(i=1;i<=nlstate;i++)        sum=a[i][j]; 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        for (k=1;k<j;k++) 
     } /* End theta */          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     trgradg =matrix(1,nlstate,1,npar);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
     for(j=1; j<=nlstate;j++)          imax=i; 
       for(theta=1; theta <=npar; theta++)        } 
         trgradg[j][theta]=gradg[theta][j];      } 
       if (j != imax) { 
     for(i=1;i<=nlstate;i++)        for (k=1;k<=n;k++) { 
       varpl[i][(int)age] =0.;          dum=a[imax][k]; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          a[imax][k]=a[j][k]; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          a[j][k]=dum; 
     for(i=1;i<=nlstate;i++)        } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        *d = -(*d); 
         vv[imax]=vv[j]; 
     fprintf(ficresvpl,"%.0f ",age );      } 
     for(i=1; i<=nlstate;i++)      indx[j]=imax; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(ficresvpl,"\n");      if (j != n) { 
     free_vector(gp,1,nlstate);        dum=1.0/(a[j][j]); 
     free_vector(gm,1,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     free_matrix(gradg,1,npar,1,nlstate);      } 
     free_matrix(trgradg,1,nlstate,1,npar);    } 
   } /* End age */    free_vector(vv,1,n);  /* Doesn't work */
   ;
   free_vector(xp,1,npar);  } 
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 }    int i,ii=0,ip,j; 
     double sum; 
 /************ Variance of one-step probabilities  ******************/   
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    for (i=1;i<=n;i++) { 
 {      ip=indx[i]; 
   int i, j, i1, k1, j1, z1;      sum=b[ip]; 
   int k=0, cptcode;      b[ip]=b[i]; 
   double **dnewm,**doldm;      if (ii) 
   double *xp;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   double *gp, *gm;      else if (sum) ii=i; 
   double **gradg, **trgradg;      b[i]=sum; 
   double age,agelim, cov[NCOVMAX];    } 
   int theta;    for (i=n;i>=1;i--) { 
   char fileresprob[FILENAMELENGTH];      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   strcpy(fileresprob,"prob");      b[i]=sum/a[i][i]; 
   strcat(fileresprob,fileres);    } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  } 
     printf("Problem with resultfile: %s\n", fileresprob);  
   }  void pstamp(FILE *fichier)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  {
      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  }
   fprintf(ficresprob,"# Age");  
   for(i=1; i<=nlstate;i++)  /************ Frequencies ********************/
     for(j=1; j<=(nlstate+ndeath);j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  {  /* Some frequencies */
     
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   fprintf(ficresprob,"\n");    int first;
     double ***freq; /* Frequencies */
     double *pp, **prop;
   xp=vector(1,npar);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    char fileresp[FILENAMELENGTH];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    
      pp=vector(1,nlstate);
   cov[1]=1;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   j=cptcoveff;    strcpy(fileresp,"p");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    strcat(fileresp,fileres);
   j1=0;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   for(k1=1; k1<=1;k1++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     j1++;      exit(0);
     }
     if  (cptcovn>0) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       fprintf(ficresprob, "\n#********** Variable ");    j1=0;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
       fprintf(ficresprob, "**********\n#");    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
       for (age=bage; age<=fage; age ++){    first=1;
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {    for(k1=1; k1<=j;k1++){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for(i1=1; i1<=ncodemax[k1];i1++){
                  j1++;
         }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          scanf("%d", i);*/
         for (k=1; k<=cptcovprod;k++)        for (i=-5; i<=nlstate+ndeath; i++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                    for(m=iagemin; m <= iagemax+3; m++)
         gradg=matrix(1,npar,1,9);              freq[i][jk][m]=0;
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1; i<=nlstate; i++)  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0;
         for(theta=1; theta <=npar; theta++){        
           for(i=1; i<=npar; i++)        dateintsum=0;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        k2cpt=0;
                  for (i=1; i<=imx; i++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          bool=1;
                    if  (cptcovn>0) {
           k=0;            for (z1=1; z1<=cptcoveff; z1++) 
           for(i=1; i<= (nlstate+ndeath); i++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             for(j=1; j<=(nlstate+ndeath);j++){                bool=0;
               k=k+1;          }
               gp[k]=pmmij[i][j];          if (bool==1){
             }            for(m=firstpass; m<=lastpass; m++){
           }              k2=anint[m][i]+(mint[m][i]/12.);
                        /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(i=1; i<=npar; i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                if (m<lastpass) {
           k=0;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           for(i=1; i<=(nlstate+ndeath); i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             for(j=1; j<=(nlstate+ndeath);j++){                }
               k=k+1;                
               gm[k]=pmmij[i][j];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             }                  dateintsum=dateintsum+k2;
           }                  k2cpt++;
                      }
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)                /*}*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              }
         }          }
         }
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)         
           for(theta=1; theta <=npar; theta++)        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             trgradg[j][theta]=gradg[theta][j];        pstamp(ficresp);
                if  (cptcovn>0) {
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          fprintf(ficresp, "\n#********** Variable "); 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficresp, "**********\n#");
         pmij(pmmij,cov,ncovmodel,x,nlstate);        }
                for(i=1; i<=nlstate;i++) 
         k=0;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         for(i=1; i<=(nlstate+ndeath); i++){        fprintf(ficresp, "\n");
           for(j=1; j<=(nlstate+ndeath);j++){        
             k=k+1;        for(i=iagemin; i <= iagemax+3; i++){
             gm[k]=pmmij[i][j];          if(i==iagemax+3){
           }            fprintf(ficlog,"Total");
         }          }else{
                  if(first==1){
      /*printf("\n%d ",(int)age);              first=0;
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              printf("See log file for details...\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
      }*/            fprintf(ficlog,"Age %d", i);
           }
         fprintf(ficresprob,"\n%d ",(int)age);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              pp[jk] += freq[jk][m][i]; 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          }
            for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            if(pp[jk]>=1.e-10){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1){
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_vector(xp,1,npar);            }else{
   fclose(ficresprob);              if(first==1)
                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /******************* Printing html file ***********/          }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
  int lastpass, int stepm, int weightopt, char model[],\          for(jk=1; jk <=nlstate ; jk++){
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\              pp[jk] += freq[jk][m][i];
  char version[], int popforecast, int estepm ){          }       
   int jj1, k1, i1, cpt;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   FILE *fichtm;            pos += pp[jk];
   /*char optionfilehtm[FILENAMELENGTH];*/            posprop += prop[jk][i];
           }
   strcpy(optionfilehtm,optionfile);          for(jk=1; jk <=nlstate ; jk++){
   strcat(optionfilehtm,".htm");            if(pos>=1.e-5){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              if(first==1)
     printf("Problem with %s \n",optionfilehtm), exit(0);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              if(first==1)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 \n              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 Total number of observations=%d <br>\n            }
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            if( i <= iagemax){
 <hr  size=\"2\" color=\"#EC5E5E\">              if(pos>=1.e-5){
  <ul><li>Outputs files<br>\n                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                /*probs[i][jk][j1]= pp[jk]/pos;*/
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              }
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n              else
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            }
           }
  fprintf(fichtm,"\n          
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n          for(jk=-1; jk <=nlstate+ndeath; jk++)
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            for(m=-1; m <=nlstate+ndeath; m++)
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              if(freq[jk][m][i] !=0 ) {
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n              if(first==1)
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  if(popforecast==1) fprintf(fichtm,"\n              }
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          if(i <= iagemax)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            fprintf(ficresp,"\n");
         <br>",fileres,fileres,fileres,fileres);          if(first==1)
  else            printf("Others in log...\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          fprintf(ficlog,"\n");
 fprintf(fichtm," <li>Graphs</li><p>");        }
       }
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    dateintmean=dateintsum/k2cpt; 
    
  jj1=0;    fclose(ficresp);
  for(k1=1; k1<=m;k1++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_vector(pp,1,nlstate);
        jj1++;    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        if (cptcovn > 0) {    /* End of Freq */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  }
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /************ Prevalence ********************/
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
        }  {  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           in each health status at the date of interview (if between dateprev1 and dateprev2).
        for(cpt=1; cpt<nlstate;cpt++){       We still use firstpass and lastpass as another selection.
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    */
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);   
        }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for(cpt=1; cpt<=nlstate;cpt++) {    double ***freq; /* Frequencies */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double *pp, **prop;
 interval) in state (%d): v%s%d%d.gif <br>    double pos,posprop; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      double  y2; /* in fractional years */
      }    int iagemin, iagemax;
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    iagemin= (int) agemin;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    iagemax= (int) agemax;
      }    /*pp=vector(1,nlstate);*/
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    prop=matrix(1,nlstate,iagemin,iagemax+3); 
 health expectancies in states (1) and (2): e%s%d.gif<br>    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    j1=0;
 fprintf(fichtm,"\n</body>");    
    }    j=cptcoveff;
    }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 fclose(fichtm);    
 }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
 /******************* Gnuplot file **************/        j1++;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        
         for (i=1; i<=nlstate; i++)  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
   strcpy(optionfilegnuplot,optionfilefiname);       
   strcat(optionfilegnuplot,".gp.txt");        for (i=1; i<=imx; i++) { /* Each individual */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          bool=1;
     printf("Problem with file %s",optionfilegnuplot);          if  (cptcovn>0) {
   }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 #ifdef windows                bool=0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          } 
 #endif          if (bool==1) { 
 m=pow(2,cptcoveff);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  /* 1eme*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   for (cpt=1; cpt<= nlstate ; cpt ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    for (k1=1; k1<= m ; k1 ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 for (i=1; i<= nlstate ; i ++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                } 
 }              }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            } /* end selection of waves */
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=iagemin; i <= iagemax+3; i++){  
 }          
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      for (i=1; i<= nlstate ; i ++) {            posprop += prop[jk][i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }            for(jk=1; jk <=nlstate ; jk++){     
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                probs[i][jk][j1]= prop[jk][i]/posprop;
    }              } 
   }            } 
   /*2 eme*/          }/* end jk */ 
         }/* end i */ 
   for (k1=1; k1<= m ; k1 ++) {      } /* end i1 */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    } /* end k1 */
        
     for (i=1; i<= nlstate+1 ; i ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       k=2*i;    /*free_vector(pp,1,nlstate);*/
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {  }  /* End of prevalence */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  {
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for (j=1; j<= nlstate+1 ; j ++) {       Death is a valid wave (if date is known).
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         else fprintf(ficgp," \%%*lf (\%%*lf)");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 }         and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficgp,"\" t\"\" w l 0,");       */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    int i, mi, m;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");       double sum=0., jmean=0.;*/
 }      int first;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    int j, k=0,jk, ju, jl;
       else fprintf(ficgp,"\" t\"\" w l 0,");    double sum=0.;
     }    first=0;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    jmin=1e+5;
   }    jmax=-1;
      jmean=0.;
   /*3eme*/    for(i=1; i<=imx; i++){
       mi=0;
   for (k1=1; k1<= m ; k1 ++) {      m=firstpass;
     for (cpt=1; cpt<= nlstate ; cpt ++) {      while(s[m][i] <= nlstate){
       k=2+nlstate*(2*cpt-2);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          mw[++mi][i]=m;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        if(m >=lastpass)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          break;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        else
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          m++;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      }/* end while */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
 */        /* if(mi==0)  never been interviewed correctly before death */
       for (i=1; i< nlstate ; i ++) {           /* Only death is a correct wave */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        mw[mi][i]=m;
       }
       }  
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      wav[i]=mi;
     }      if(mi==0){
     }        nbwarn++;
          if(first==0){
   /* CV preval stat */          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     for (k1=1; k1<= m ; k1 ++) {          first=1;
     for (cpt=1; cpt<nlstate ; cpt ++) {        }
       k=3;        if(first==1){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       for (i=1; i< nlstate ; i ++)      } /* end mi==0 */
         fprintf(ficgp,"+$%d",k+i+1);    } /* End individuals */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
          for(i=1; i<=imx; i++){
       l=3+(nlstate+ndeath)*cpt;      for(mi=1; mi<wav[i];mi++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        if (stepm <=0)
       for (i=1; i< nlstate ; i ++) {          dh[mi][i]=1;
         l=3+(nlstate+ndeath)*cpt;        else{
         fprintf(ficgp,"+$%d",l+i+1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              if(j==0) j=1;  /* Survives at least one month after exam */
     }              else if(j<0){
   }                  nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* proba elementaires */                j=1; /* Temporary Dangerous patch */
    for(i=1,jk=1; i <=nlstate; i++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for(k=1; k <=(nlstate+ndeath); k++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (k != i) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for(j=1; j <=ncovmodel; j++){              }
                      k=k+1;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              if (j >= jmax){
           jk++;                jmax=j;
           fprintf(ficgp,"\n");                ijmax=i;
         }              }
       }              if (j <= jmin){
     }                jmin=j;
     }                ijmin=i;
               }
     for(jk=1; jk <=m; jk++) {              sum=sum+j;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    i=1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    for(k2=1; k2<=nlstate; k2++) {            }
      k3=i;          }
      for(k=1; k<=(nlstate+ndeath); k++) {          else{
        if (k != k2){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 ij=1;  
         for(j=3; j <=ncovmodel; j++) {            k=k+1;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            if (j >= jmax) {
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              jmax=j;
             ij++;              ijmax=i;
           }            }
           else            else if (j <= jmin){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              jmin=j;
         }              ijmin=i;
           fprintf(ficgp,")/(1");            }
                    /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for(k1=1; k1 <=nlstate; k1++){              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            if(j<0){
 ij=1;              nberr++;
           for(j=3; j <=ncovmodel; j++){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;            sum=sum+j;
           }          }
           else          jk= j/stepm;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          jl= j -jk*stepm;
           }          ju= j -(jk+1)*stepm;
           fprintf(ficgp,")");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         }            if(jl==0){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              dh[mi][i]=jk;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              bh[mi][i]=0;
         i=i+ncovmodel;            }else{ /* We want a negative bias in order to only have interpolation ie
        }                    * at the price of an extra matrix product in likelihood */
      }              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            }
    }          }else{
                if(jl <= -ju){
   fclose(ficgp);              dh[mi][i]=jk;
 }  /* end gnuplot */              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
 /*************** Moving average **************/            }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            else{
               dh[mi][i]=jk+1;
   int i, cpt, cptcod;              bh[mi][i]=ju;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            }
       for (i=1; i<=nlstate;i++)            if(dh[mi][i]==0){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              dh[mi][i]=1; /* At least one step */
           mobaverage[(int)agedeb][i][cptcod]=0.;              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            }
       for (i=1; i<=nlstate;i++){          } /* end if mle */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
           for (cpt=0;cpt<=4;cpt++){      } /* end wave */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    jmean=sum/k;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       }   }
     }  
      /*********** Tricode ****************************/
 }  void tricode(int *Tvar, int **nbcode, int imx)
   {
     
 /************** Forecasting ******************/    int Ndum[20],ij=1, k, j, i, maxncov=19;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int cptcode=0;
      cptcoveff=0; 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;   
   int *popage;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for (k=1; k<=7; k++) ncodemax[k]=0;
   double *popeffectif,*popcount;  
   double ***p3mat;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   char fileresf[FILENAMELENGTH];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
  agelim=AGESUP;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                           Tvar[j]. If V=sex and male is 0 and 
                                           female is 1, then  cptcode=1.*/
   strcpy(fileresf,"f");      }
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for (i=0; i<=cptcode; i++) {
     printf("Problem with forecast resultfile: %s\n", fileresf);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
       ij=1; 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
   if (mobilav==1) {          if (Ndum[k] != 0) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nbcode[Tvar[j]][ij]=k; 
     movingaverage(agedeb, fage, ageminpar, mobaverage);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   }            
             ij++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;          if (ij > ncodemax[j]) break; 
          }  
   agelim=AGESUP;      } 
      }  
   hstepm=1;  
   hstepm=hstepm/stepm;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;   for (i=1; i<=ncovmodel-2; i++) { 
   yp2=modf((yp1*12),&yp);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   mprojmean=yp;     ij=Tvar[i];
   yp1=modf((yp2*30.5),&yp);     Ndum[ij]++;
   jprojmean=yp;   }
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;   ij=1;
     for (i=1; i<= maxncov; i++) {
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     if((Ndum[i]!=0) && (i<=ncovcol)){
         Tvaraff[ij]=i; /*For printing */
   for(cptcov=1;cptcov<=i2;cptcov++){       ij++;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     }
       k=k+1;   }
       fprintf(ficresf,"\n#******");   
       for(j=1;j<=cptcoveff;j++) {   cptcoveff=ij-1; /*Number of simple covariates*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       }  
       fprintf(ficresf,"******\n");  /*********** Health Expectancies ****************/
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
        
        {
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    /* Health expectancies, no variances */
         fprintf(ficresf,"\n");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      double age, agelim, hf;
     double ***p3mat;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double eip;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;    pstamp(ficreseij);
              fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficreseij,"# Age");
           oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=1; j<=nlstate;j++){
                fprintf(ficreseij," e%1d%1d ",i,j);
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {      fprintf(ficreseij," e%1d. ",i);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    }
             }    fprintf(ficreseij,"\n");
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  if(estepm < stepm){
                 if (mobilav==1)      printf ("Problem %d lower than %d\n",estepm, stepm);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    }
                 else {    else  hstepm=estepm;   
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* We compute the life expectancy from trapezoids spaced every estepm months
                 }     * This is mainly to measure the difference between two models: for example
                     * if stepm=24 months pijx are given only every 2 years and by summing them
               }     * we are calculating an estimate of the Life Expectancy assuming a linear 
               if (h==(int)(calagedate+12*cpt)){     * progression in between and thus overestimating or underestimating according
                 fprintf(ficresf," %.3f", kk1);     * to the curvature of the survival function. If, for the same date, we 
                             * estimate the model with stepm=1 month, we can keep estepm to 24 months
               }     * to compare the new estimate of Life expectancy with the same linear 
             }     * hypothesis. A more precise result, taking into account a more precise
           }     * curvature will be obtained if estepm is as small as stepm. */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fclose(ficresf);       survival function given by stepm (the optimization length). Unfortunately it
 }       means that if the survival funtion is printed only each two years of age and if
 /************** Forecasting ******************/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       results. So we changed our mind and took the option of the best precision.
      */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    agelim=AGESUP;
   double *popeffectif,*popcount;    /* nhstepm age range expressed in number of stepm */
   double ***p3mat,***tabpop,***tabpopprev;    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   char filerespop[FILENAMELENGTH];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   agelim=AGESUP;  
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   strcpy(filerespop,"pop");      
   strcat(filerespop,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      
     printf("Problem with forecast resultfile: %s\n", filerespop);      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   printf("Computing forecasting: result on file '%s' \n", filerespop);      
       /* Computing expectancies */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   if (mobilav==1) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     movingaverage(agedeb, fage, ageminpar, mobaverage);            
   }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   if (stepm<=12) stepsize=1;  
        fprintf(ficreseij,"%3.0f",age );
   agelim=AGESUP;      for(i=1; i<=nlstate;i++){
          eip=0;
   hstepm=1;        for(j=1; j<=nlstate;j++){
   hstepm=hstepm/stepm;          eip +=eij[i][j][(int)age];
            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   if (popforecast==1) {        }
     if((ficpop=fopen(popfile,"r"))==NULL) {        fprintf(ficreseij,"%9.4f", eip );
       printf("Problem with population file : %s\n",popfile);exit(0);      }
     }      fprintf(ficreseij,"\n");
     popage=ivector(0,AGESUP);      
     popeffectif=vector(0,AGESUP);    }
     popcount=vector(0,AGESUP);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        printf("\n");
     i=1;      fprintf(ficlog,"\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    
      }
     imx=i;  
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   }  
   {
   for(cptcov=1;cptcov<=i2;cptcov++){    /* Covariances of health expectancies eij and of total life expectancies according
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     to initial status i, ei. .
       k=k+1;    */
       fprintf(ficrespop,"\n#******");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       for(j=1;j<=cptcoveff;j++) {    double age, agelim, hf;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***p3matp, ***p3matm, ***varhe;
       }    double **dnewm,**doldm;
       fprintf(ficrespop,"******\n");    double *xp, *xm;
       fprintf(ficrespop,"# Age");    double **gp, **gm;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    double ***gradg, ***trgradg;
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int theta;
        
       for (cpt=0; cpt<=0;cpt++) {    double eip, vip;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    xp=vector(1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    xm=vector(1,npar);
           nhstepm = nhstepm/hstepm;    dnewm=matrix(1,nlstate*nlstate,1,npar);
              doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    pstamp(ficresstdeij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
            fprintf(ficresstdeij,"# Age");
           for (h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++){
             if (h==(int) (calagedate+YEARM*cpt)) {      for(j=1; j<=nlstate;j++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
             }      fprintf(ficresstdeij," e%1d. ",i);
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    fprintf(ficresstdeij,"\n");
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)    pstamp(ficrescveij);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                 else {    fprintf(ficrescveij,"# Age");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    for(i=1; i<=nlstate;i++)
                 }      for(j=1; j<=nlstate;j++){
               }        cptj= (j-1)*nlstate+i;
               if (h==(int)(calagedate+12*cpt)){        for(i2=1; i2<=nlstate;i2++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for(j2=1; j2<=nlstate;j2++){
                   /*fprintf(ficrespop," %.3f", kk1);            cptj2= (j2-1)*nlstate+i2;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            if(cptj2 <= cptj)
               }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             }          }
             for(i=1; i<=nlstate;i++){      }
               kk1=0.;    fprintf(ficrescveij,"\n");
                 for(j=1; j<=nlstate;j++){    
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    if(estepm < stepm){
                 }      printf ("Problem %d lower than %d\n",estepm, stepm);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    }
             }    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)     * This is mainly to measure the difference between two models: for example
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   /******/     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* For example we decided to compute the life expectancy with the smallest unit */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       nhstepm is the number of hstepm from age to agelim 
           nhstepm = nhstepm/hstepm;       nstepm is the number of stepm from age to agelin. 
                 Look at hpijx to understand the reason of that which relies in memory size
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       and note for a fixed period like estepm months */
           oldm=oldms;savm=savms;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         survival function given by stepm (the optimization length). Unfortunately it
           for (h=0; h<=nhstepm; h++){       means that if the survival funtion is printed only each two years of age and if
             if (h==(int) (calagedate+YEARM*cpt)) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       results. So we changed our mind and took the option of the best precision.
             }    */
             for(j=1; j<=nlstate+ndeath;j++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  /* If stepm=6 months */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        /* nhstepm age range expressed in number of stepm */
               }    agelim=AGESUP;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           }    /* if (stepm >= YEARM) hstepm=1;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }    
       }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);    for (age=bage; age<=fage; age ++){ 
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(ficrespop);  
 }      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
 /***********************************************/         decrease memory allocation */
 /**************** Main Program *****************/      for(theta=1; theta <=npar; theta++){
 /***********************************************/        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 int main(int argc, char *argv[])          xm[i] = x[i] - (i==theta ?delti[theta]:0);
 {        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   double agedeb, agefin,hf;    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
   double fret;            for(h=0; h<=nhstepm-1; h++){
   double **xi,tmp,delta;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double dum; /* Dummy variable */            }
   double ***p3mat;          }
   int *indx;        }
   char line[MAXLINE], linepar[MAXLINE];       
   char title[MAXLINE];        for(ij=1; ij<= nlstate*nlstate; ij++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          for(h=0; h<=nhstepm-1; h++){
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];      }/* End theta */
       
   char filerest[FILENAMELENGTH];      
   char fileregp[FILENAMELENGTH];      for(h=0; h<=nhstepm-1; h++)
   char popfile[FILENAMELENGTH];        for(j=1; j<=nlstate*nlstate;j++)
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for(theta=1; theta <=npar; theta++)
   int firstobs=1, lastobs=10;            trgradg[h][j][theta]=gradg[h][theta][j];
   int sdeb, sfin; /* Status at beginning and end */      
   int c,  h , cpt,l;  
   int ju,jl, mi;       for(ij=1;ij<=nlstate*nlstate;ij++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(ji=1;ji<=nlstate*nlstate;ji++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          varhe[ij][ji][(int)age] =0.;
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;       printf("%d|",(int)age);fflush(stdout);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   double bage, fage, age, agelim, agebase;        for(k=0;k<=nhstepm-1;k++){
   double ftolpl=FTOL;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double **prlim;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double *severity;          for(ij=1;ij<=nlstate*nlstate;ij++)
   double ***param; /* Matrix of parameters */            for(ji=1;ji<=nlstate*nlstate;ji++)
   double  *p;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double **matcov; /* Matrix of covariance */        }
   double ***delti3; /* Scale */      }
   double *delti; /* Scale */      /* Computing expectancies */
   double ***eij, ***vareij;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **varpl; /* Variances of prevalence limits by age */      for(i=1; i<=nlstate;i++)
   double *epj, vepp;        for(j=1; j<=nlstate;j++)
   double kk1, kk2;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
              
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];          }
   
       fprintf(ficresstdeij,"%3.0f",age );
   char z[1]="c", occ;      for(i=1; i<=nlstate;i++){
 #include <sys/time.h>        eip=0.;
 #include <time.h>        vip=0.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate;j++){
            eip += eij[i][j][(int)age];
   /* long total_usecs;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   struct timeval start_time, end_time;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
   getcwd(pathcd, size);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
   printf("\n%s",version);      fprintf(ficresstdeij,"\n");
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");      fprintf(ficrescveij,"%3.0f",age );
     scanf("%s",pathtot);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   else{          cptj= (j-1)*nlstate+i;
     strcpy(pathtot,argv[1]);          for(i2=1; i2<=nlstate;i2++)
   }            for(j2=1; j2<=nlstate;j2++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              cptj2= (j2-1)*nlstate+i2;
   /*cygwin_split_path(pathtot,path,optionfile);              if(cptj2 <= cptj)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /* cutv(path,optionfile,pathtot,'\\');*/            }
         }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      fprintf(ficrescveij,"\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);     
   chdir(path);    }
   replace(pathc,path);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 /*-------- arguments in the command line --------*/    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcpy(fileres,"r");    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileres, optionfilefiname);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileres,".txt");    /* Other files have txt extension */    printf("\n");
     fprintf(ficlog,"\n");
   /*---------arguments file --------*/  
     free_vector(xm,1,npar);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_vector(xp,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     goto end;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   strcpy(filereso,"o");  
   strcat(filereso,fileres);  /************ Variance ******************/
   if((ficparo=fopen(filereso,"w"))==NULL) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  {
   }    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* Reads comments: lines beginning with '#' */    /* double **newm;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double *gpp, *gmp; /* for var p point j */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double ***p3mat;
 while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim, hf;
     ungetc(c,ficpar);    double ***mobaverage;
     fgets(line, MAXLINE, ficpar);    int theta;
     puts(line);    char digit[4];
     fputs(line,ficparo);    char digitp[25];
   }  
   ungetc(c,ficpar);    char fileresprobmorprev[FILENAMELENGTH];
    
        if(popbased==1){
   covar=matrix(0,NCOVMAX,1,n);      if(mobilav!=0)
   cptcovn=0;        strcpy(digitp,"-populbased-mobilav-");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      else strcpy(digitp,"-populbased-nomobil-");
     }
   ncovmodel=2+cptcovn;    else 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      strcpy(digitp,"-stablbased-");
    
   /* Read guess parameters */    if (mobilav!=0) {
   /* Reads comments: lines beginning with '#' */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ungetc(c,ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);      }
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for(i=1; i <=nlstate; i++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     for(j=1; j <=nlstate+ndeath-1; j++){    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    strcat(fileresprobmorprev,fileres);
       fprintf(ficparo,"%1d%1d",i1,j1);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("%1d%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for(k=1; k<=ncovmodel;k++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fscanf(ficpar," %lf",&param[i][j][k]);    }
         printf(" %lf",param[i][j][k]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         fprintf(ficparo," %lf",param[i][j][k]);   
       }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fscanf(ficpar,"\n");    pstamp(ficresprobmorprev);
       printf("\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficparo,"\n");    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   p=param[1][1];    }  
      fprintf(ficresprobmorprev,"\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n# Routine varevsij");
   while((c=getc(ficpar))=='#' && c!= EOF){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     puts(line);  /*   } */
     fputs(line,ficparo);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    pstamp(ficresvij);
   ungetc(c,ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    else
   for(i=1; i <=nlstate; i++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(ficresvij,"# Age");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    for(i=1; i<=nlstate;i++)
       printf("%1d%1d",i,j);      for(j=1; j<=nlstate;j++)
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresvij,"\n");
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    xp=vector(1,npar);
         fprintf(ficparo," %le",delti3[i][j][k]);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       fscanf(ficpar,"\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       printf("\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fprintf(ficparo,"\n");  
     }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   }    gpp=vector(nlstate+1,nlstate+ndeath);
   delti=delti3[1][1];    gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){    if(estepm < stepm){
     ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    else  hstepm=estepm;   
     fputs(line,ficparo);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   ungetc(c,ficpar);       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   matcov=matrix(1,npar,1,npar);       Look at hpijx to understand the reason of that which relies in memory size
   for(i=1; i <=npar; i++){       and note for a fixed period like k years */
     fscanf(ficpar,"%s",&str);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("%s",str);       survival function given by stepm (the optimization length). Unfortunately it
     fprintf(ficparo,"%s",str);       means that if the survival funtion is printed every two years of age and if
     for(j=1; j <=i; j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fscanf(ficpar," %le",&matcov[i][j]);       results. So we changed our mind and took the option of the best precision.
       printf(" %.5le",matcov[i][j]);    */
       fprintf(ficparo," %.5le",matcov[i][j]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     }    agelim = AGESUP;
     fscanf(ficpar,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficparo,"\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     for(j=i+1;j<=npar;j++)      gp=matrix(0,nhstepm,1,nlstate);
       matcov[i][j]=matcov[j][i];      gm=matrix(0,nhstepm,1,nlstate);
      
   printf("\n");  
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     /*-------- Rewriting paramater file ----------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      strcpy(rfileres,"r");    /* "Rparameterfile */        }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      strcat(rfileres,".");    /* */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {        if (popbased==1) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
     fprintf(ficres,"#%s\n",version);              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     /*-------- data file ----------*/            for(i=1; i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {              prlim[i][i]=mobaverage[(int)age][i][ij];
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }        }
     
     n= lastobs;        for(j=1; j<= nlstate; j++){
     severity = vector(1,maxwav);          for(h=0; h<=nhstepm; h++){
     outcome=imatrix(1,maxwav+1,1,n);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     num=ivector(1,n);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     moisnais=vector(1,n);          }
     annais=vector(1,n);        }
     moisdc=vector(1,n);        /* This for computing probability of death (h=1 means
     andc=vector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     agedc=vector(1,n);           as a weighted average of prlim.
     cod=ivector(1,n);        */
     weight=vector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     mint=matrix(1,maxwav,1,n);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     anint=matrix(1,maxwav,1,n);        }    
     s=imatrix(1,maxwav+1,1,n);        /* end probability of death */
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     ncodemax=ivector(1,8);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     i=1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     while (fgets(line, MAXLINE, fic) != NULL)    {   
       if ((i >= firstobs) && (i <=lastobs)) {        if (popbased==1) {
                  if(mobilav ==0){
         for (j=maxwav;j>=1;j--){            for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              prlim[i][i]=probs[(int)age][i][ij];
           strcpy(line,stra);          }else{ /* mobilav */ 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=mobaverage[(int)age][i][ij];
         }          }
                }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){        /* This for computing probability of death (h=1 means
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
         }           as a weighted average of prlim.
         num[i]=atol(stra);        */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         i=i+1;        /* end probability of death */
       }  
     }        for(j=1; j<= nlstate; j++) /* vareij */
     /* printf("ii=%d", ij);          for(h=0; h<=nhstepm; h++){
        scanf("%d",i);*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   imx=i-1; /* Number of individuals */          }
   
   /* for (i=1; i<=imx; i++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/      } /* End theta */
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
        for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
   /* Calculation of the number of parameter from char model*/          for(theta=1; theta <=npar; theta++)
   Tvar=ivector(1,15);            trgradg[h][j][theta]=gradg[h][theta][j];
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   Tvard=imatrix(1,15,1,2);        for(theta=1; theta <=npar; theta++)
   Tage=ivector(1,15);                trgradgp[j][theta]=gradgp[theta][j];
        
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     j=nbocc(model,'+');      for(i=1;i<=nlstate;i++)
     j1=nbocc(model,'*');        for(j=1;j<=nlstate;j++)
     cptcovn=j+1;          vareij[i][j][(int)age] =0.;
     cptcovprod=j1;  
          for(h=0;h<=nhstepm;h++){
     strcpy(modelsav,model);        for(k=0;k<=nhstepm;k++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       printf("Error. Non available option model=%s ",model);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       goto end;          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     for(i=(j+1); i>=1;i--){        }
       cutv(stra,strb,modelsav,'+');      }
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      /* pptj */
       /*scanf("%d",i);*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       if (strchr(strb,'*')) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         cutv(strd,strc,strb,'*');      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         if (strcmp(strc,"age")==0) {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           cptcovprod--;          varppt[j][i]=doldmp[j][i];
           cutv(strb,stre,strd,'V');      /* end ppptj */
           Tvar[i]=atoi(stre);      /*  x centered again */
           cptcovage++;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             Tage[cptcovage]=i;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             /*printf("stre=%s ", stre);*/   
         }      if (popbased==1) {
         else if (strcmp(strd,"age")==0) {        if(mobilav ==0){
           cptcovprod--;          for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strc,'V');            prlim[i][i]=probs[(int)age][i][ij];
           Tvar[i]=atoi(stre);        }else{ /* mobilav */ 
           cptcovage++;          for(i=1; i<=nlstate;i++)
           Tage[cptcovage]=i;            prlim[i][i]=mobaverage[(int)age][i][ij];
         }        }
         else {      }
           cutv(strb,stre,strc,'V');               
           Tvar[i]=ncovcol+k1;      /* This for computing probability of death (h=1 means
           cutv(strb,strc,strd,'V');         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           Tprod[k1]=i;         as a weighted average of prlim.
           Tvard[k1][1]=atoi(strc);      */
           Tvard[k1][2]=atoi(stre);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvar[cptcovn+k2]=Tvard[k1][1];        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           for (k=1; k<=lastobs;k++)      }    
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      /* end probability of death */
           k1++;  
           k2=k2+2;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       else {        for(i=1; i<=nlstate;i++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
        /*  scanf("%d",i);*/        }
       cutv(strd,strc,strb,'V');      } 
       Tvar[i]=atoi(strc);      fprintf(ficresprobmorprev,"\n");
       }  
       strcpy(modelsav,stra);        fprintf(ficresvij,"%.0f ",age );
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      for(i=1; i<=nlstate;i++)
         scanf("%d",i);*/        for(j=1; j<=nlstate;j++){
     }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }        }
        fprintf(ficresvij,"\n");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      free_matrix(gp,0,nhstepm,1,nlstate);
   printf("cptcovprod=%d ", cptcovprod);      free_matrix(gm,0,nhstepm,1,nlstate);
   scanf("%d ",i);*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     fclose(fic);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*  if(mle==1){*/    } /* End age */
     if (weightopt != 1) { /* Maximisation without weights*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
       for(i=1;i<=n;i++) weight[i]=1.0;    free_vector(gmp,nlstate+1,nlstate+ndeath);
     }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     /*-calculation of age at interview from date of interview and age at death -*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     agev=matrix(1,maxwav,1,imx);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for (i=1; i<=imx; i++) {    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for(m=2; (m<= maxwav); m++) {  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
          anint[m][i]=9999;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          s[m][i]=-1;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
        }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for (i=1; i<=imx; i++)  {  */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       for(m=1; (m<= maxwav); m++){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    free_vector(xp,1,npar);
             if(agedc[i]>0)    free_matrix(doldm,1,nlstate,1,nlstate);
               if(moisdc[i]!=99 && andc[i]!=9999)    free_matrix(dnewm,1,nlstate,1,npar);
                 agev[m][i]=agedc[i];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
            else {    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               if (andc[i]!=9999){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    fclose(ficresprobmorprev);
               agev[m][i]=-1;    fflush(ficgp);
               }    fflush(fichtm); 
             }  }  /* end varevsij */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */  /************ Variance of prevlim ******************/
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             if(mint[m][i]==99 || anint[m][i]==9999)  {
               agev[m][i]=1;    /* Variance of prevalence limit */
             else if(agev[m][i] <agemin){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               agemin=agev[m][i];    double **newm;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    double **dnewm,**doldm;
             }    int i, j, nhstepm, hstepm;
             else if(agev[m][i] >agemax){    int k, cptcode;
               agemax=agev[m][i];    double *xp;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double *gp, *gm;
             }    double **gradg, **trgradg;
             /*agev[m][i]=anint[m][i]-annais[i];*/    double age,agelim;
             /*   agev[m][i] = age[i]+2*m;*/    int theta;
           }    
           else { /* =9 */    pstamp(ficresvpl);
             agev[m][i]=1;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             s[m][i]=-1;    fprintf(ficresvpl,"# Age");
           }    for(i=1; i<=nlstate;i++)
         }        fprintf(ficresvpl," %1d-%1d",i,i);
         else /*= 0 Unknown */    fprintf(ficresvpl,"\n");
           agev[m][i]=1;  
       }    xp=vector(1,npar);
        dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     for (i=1; i<=imx; i++)  {    
       for(m=1; (m<= maxwav); m++){    hstepm=1*YEARM; /* Every year of age */
         if (s[m][i] > (nlstate+ndeath)) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           printf("Error: Wrong value in nlstate or ndeath\n");      agelim = AGESUP;
           goto end;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);      for(theta=1; theta <=npar; theta++){
     free_vector(moisnais,1,n);        for(i=1; i<=npar; i++){ /* Computes gradient */
     free_vector(annais,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     /* free_matrix(mint,1,maxwav,1,n);        }
        free_matrix(anint,1,maxwav,1,n);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(moisdc,1,n);        for(i=1;i<=nlstate;i++)
     free_vector(andc,1,n);          gp[i] = prlim[i][i];
       
            for(i=1; i<=npar; i++) /* Computes gradient */
     wav=ivector(1,imx);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for(i=1;i<=nlstate;i++)
              gm[i] = prlim[i][i];
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      trgradg =matrix(1,nlstate,1,npar);
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      for(j=1; j<=nlstate;j++)
              for(theta=1; theta <=npar; theta++)
    codtab=imatrix(1,100,1,10);          trgradg[j][theta]=gradg[theta][j];
    h=0;  
    m=pow(2,cptcoveff);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
    for(k=1;k<=cptcoveff; k++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
      for(i=1; i <=(m/pow(2,k));i++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        for(j=1; j <= ncodemax[k]; j++){      for(i=1;i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      fprintf(ficresvpl,"%.0f ",age );
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      for(i=1; i<=nlstate;i++)
          }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        }      fprintf(ficresvpl,"\n");
      }      free_vector(gp,1,nlstate);
    }      free_vector(gm,1,nlstate);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      free_matrix(gradg,1,npar,1,nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */      free_matrix(trgradg,1,nlstate,1,npar);
    /* for(i=1; i <=m ;i++){    } /* End age */
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,npar);
       printf("\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
       }  
       scanf("%d",i);*/  }
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  /************ Variance of one-step probabilities  ******************/
        and prints on file fileres'p'. */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
        int i, j=0,  i1, k1, l1, t, tj;
        int k2, l2, j1,  z1;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int k=0,l, cptcode;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int first=1, first1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double **dnewm,**doldm;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double *xp;
          double *gp, *gm;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double **gradg, **trgradg;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double **mu;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     if(mle==1){    int theta;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    char fileresprob[FILENAMELENGTH];
     }    char fileresprobcov[FILENAMELENGTH];
        char fileresprobcor[FILENAMELENGTH];
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double ***varpij;
    
     strcpy(fileresprob,"prob"); 
    jk=1;    strcat(fileresprob,fileres);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Problem with resultfile: %s\n", fileresprob);
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
      for(k=1; k <=(nlstate+ndeath); k++){    }
        if (k != i)    strcpy(fileresprobcov,"probcov"); 
          {    strcat(fileresprobcov,fileres);
            printf("%d%d ",i,k);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
            fprintf(ficres,"%1d%1d ",i,k);      printf("Problem with resultfile: %s\n", fileresprobcov);
            for(j=1; j <=ncovmodel; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
              printf("%f ",p[jk]);    }
              fprintf(ficres,"%f ",p[jk]);    strcpy(fileresprobcor,"probcor"); 
              jk++;    strcat(fileresprobcor,fileres);
            }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
            printf("\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
            fprintf(ficres,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
          }    }
      }    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  if(mle==1){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     /* Computing hessian and covariance matrix */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     ftolhess=ftol; /* Usually correct */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  }    pstamp(ficresprob);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficresprob,"# Age");
      for(i=1,jk=1; i <=nlstate; i++){    pstamp(ficresprobcov);
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         if (j!=i) {    fprintf(ficresprobcov,"# Age");
           fprintf(ficres,"%1d%1d",i,j);    pstamp(ficresprobcor);
           printf("%1d%1d",i,j);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcor,"# Age");
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;    for(i=1; i<=nlstate;i++)
           }      for(j=1; j<=(nlstate+ndeath);j++){
           printf("\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           fprintf(ficres,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }      }  
      }   /* fprintf(ficresprob,"\n");
        fprintf(ficresprobcov,"\n");
     k=1;    fprintf(ficresprobcor,"\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   xp=vector(1,npar);
     for(i=1;i<=npar;i++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       /*  if (k>nlstate) k=1;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       i1=(i-1)/(ncovmodel*nlstate)+1;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    first=1;
       fprintf(ficres,"%3d",i);    fprintf(ficgp,"\n# Routine varprob");
       printf("%3d",i);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       for(j=1; j<=i;j++){    fprintf(fichtm,"\n");
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       fprintf(ficres,"\n");    file %s<br>\n",optionfilehtmcov);
       printf("\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       k++;  and drawn. It helps understanding how is the covariance between two incidences.\
     }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
        fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     while((c=getc(ficpar))=='#' && c!= EOF){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       ungetc(c,ficpar);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fgets(line, MAXLINE, ficpar);  standard deviations wide on each axis. <br>\
       puts(line);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       fputs(line,ficparo);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     ungetc(c,ficpar);  
     estepm=0;    cov[1]=1;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    tj=cptcoveff;
     if (estepm==0 || estepm < stepm) estepm=stepm;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     if (fage <= 2) {    j1=0;
       bage = ageminpar;    for(t=1; t<=tj;t++){
       fage = agemaxpar;      for(i1=1; i1<=ncodemax[t];i1++){ 
     }        j1++;
            if  (cptcovn>0) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresprob, "\n#********** Variable "); 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
     while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprobcov, "**********\n#\n");
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(ficgp, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficgp, "**********\n#\n");
   ungetc(c,ficpar);          
            
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor, "\n#********** Variable ");    
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcor, "**********\n#");    
     puts(line);        }
     fputs(line,ficparo);        
   }        for (age=bage; age<=fage; age ++){ 
   ungetc(c,ficpar);          cov[2]=age;
            for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          }
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficparo,"pop_based=%d\n",popbased);            
   fprintf(ficres,"pop_based=%d\n",popbased);            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){          gp=vector(1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);      
     puts(line);          for(theta=1; theta <=npar; theta++){
     fputs(line,ficparo);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   ungetc(c,ficpar);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            k=0;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
 while((c=getc(ficpar))=='#' && c!= EOF){                gp[k]=pmmij[i][j];
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            
     fputs(line,ficparo);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   ungetc(c,ficpar);      
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            k=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for(i=1; i<=(nlstate); i++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                gm[k]=pmmij[i][j];
               }
 /*------------ gnuplot -------------*/            }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 /*------------ free_vector  -------------*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  chdir(path);          }
    
  free_ivector(wav,1,imx);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            for(theta=1; theta <=npar; theta++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                trgradg[j][theta]=gradg[theta][j];
  free_ivector(num,1,n);          
  free_vector(agedc,1,n);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  fclose(ficparo);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  fclose(ficres);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*--------- index.htm --------*/          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
            k=0;
   /*--------------- Prevalence limit --------------*/          for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
   strcpy(filerespl,"pl");              k=k+1;
   strcat(filerespl,fileres);              mu[k][(int) age]=pmmij[i][j];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficrespl,"#Prevalence limit\n");              varpij[i][j][(int)age] = doldm[i][j];
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          /*printf("\n%d ",(int)age);
   fprintf(ficrespl,"\n");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   prlim=matrix(1,nlstate,1,nlstate);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }*/
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob,"\n%d ",(int)age);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcov,"\n%d ",(int)age);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresprobcor,"\n%d ",(int)age);
   k=0;  
   agebase=ageminpar;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   agelim=agemaxpar;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   ftolpl=1.e-10;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   i1=cptcoveff;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   if (cptcovn < 1){i1=1;}            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   for(cptcov=1;cptcov<=i1;cptcov++){          i=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (k=1; k<=(nlstate);k++){
         k=k+1;            for (l=1; l<=(nlstate+ndeath);l++){ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              i=i++;
         fprintf(ficrespl,"\n#******");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         for(j=1;j<=cptcoveff;j++)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (j=1; j<=i;j++){
         fprintf(ficrespl,"******\n");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                        fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
         for (age=agebase; age<=agelim; age++){              }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            }
           fprintf(ficrespl,"%.0f",age );          }/* end of loop for state */
           for(i=1; i<=nlstate;i++)        } /* end of loop for age */
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");        /* Confidence intervalle of pij  */
         }        /*
       }          fprintf(ficgp,"\nset noparametric;unset label");
     }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fclose(ficrespl);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   /*------------- h Pij x at various ages ------------*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   printf("Computing pij: result on file '%s' \n", filerespij);        first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   /*if (stepm<=24) stepsize=2;*/            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   agelim=AGESUP;            for (k1=1; k1<=(nlstate);k1++){
   hstepm=stepsize*YEARM; /* Every year of age */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                if(l1==k1) continue;
                  i=(k1-1)*(nlstate+ndeath)+l1;
   k=0;                if(i<=j) continue;
   for(cptcov=1;cptcov<=i1;cptcov++){                for (age=bage; age<=fage; age ++){ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  if ((int)age %5==0){
       k=k+1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficrespij,"\n#****** ");                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         for(j=1;j<=cptcoveff;j++)                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    mu1=mu[i][(int) age]/stepm*YEARM ;
         fprintf(ficrespij,"******\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
                            c12=cv12/sqrt(v1*v2);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    /* Computing eigen value of matrix of covariance */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /* Eigen vectors */
           oldm=oldms;savm=savms;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /*v21=sqrt(1.-v11*v11); *//* error */
           fprintf(ficrespij,"# Age");                    v21=(lc1-v1)/cv12*v11;
           for(i=1; i<=nlstate;i++)                    v12=-v21;
             for(j=1; j<=nlstate+ndeath;j++)                    v22=v11;
               fprintf(ficrespij," %1d-%1d",i,j);                    tnalp=v21/v11;
           fprintf(ficrespij,"\n");                    if(first1==1){
            for (h=0; h<=nhstepm; h++){                      first1=0;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             for(i=1; i<=nlstate;i++)                    }
               for(j=1; j<=nlstate+ndeath;j++)                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    /*printf(fignu*/
             fprintf(ficrespij,"\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
              }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(first==1){
           fprintf(ficrespij,"\n");                      first=0;
         }                      fprintf(ficgp,"\nset parametric;unset label");
     }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fclose(ficrespij);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*---------- Forecasting ------------------*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   if((stepm == 1) && (strcmp(model,".")==0)){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   else{                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     erreur=108;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    }else{
   }                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*---------- Health expectancies and variances ------------*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   strcpy(filerest,"t");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcat(filerest,fileres);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if((ficrest=fopen(filerest,"w"))==NULL) {                    }/* if first */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                  } /* age mod 5 */
   }                } /* end loop age */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
   strcpy(filerese,"e");            } /* k12 */
   strcat(filerese,fileres);          } /*l1 */
   if((ficreseij=fopen(filerese,"w"))==NULL) {        }/* k1 */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      } /* loop covariates */
   }    }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
  strcpy(fileresv,"v");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   strcat(fileresv,fileres);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fclose(ficresprob);
   }    fclose(ficresprobcov);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fclose(ficresprobcor);
   calagedate=-1;    fflush(ficgp);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fflush(fichtmcov);
   }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /******************* Printing html file ***********/
       k=k+1;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficrest,"\n#****** ");                    int lastpass, int stepm, int weightopt, char model[],\
       for(j=1;j<=cptcoveff;j++)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int popforecast, int estepm ,\
       fprintf(ficrest,"******\n");                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
       fprintf(ficreseij,"\n#****** ");    int jj1, k1, i1, cpt;
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       fprintf(ficreseij,"******\n");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
       fprintf(ficresvij,"\n#****** ");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
       for(j=1;j<=cptcoveff;j++)   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       fprintf(ficresvij,"******\n");     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
       oldm=oldms;savm=savms;     fprintf(fichtm,"\
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij (estepm=%2d months): \
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);     <a href=\"%s\">%s</a> <br>\n</li>",
                 estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){   jj1=0;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   for(k1=1; k1<=m;k1++){
         if (popbased==1) {     for(i1=1; i1<=ncodemax[k1];i1++){
           for(i=1; i<=nlstate;i++)       jj1++;
             prlim[i][i]=probs[(int)age][i][k];       if (cptcovn > 0) {
         }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                 for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficrest," %4.0f",age);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       /* Pij */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
           }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           epj[nlstate+1] +=epj[j];       /* Quasi-incidences */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
         for(i=1, vepp=0.;i <=nlstate;i++)  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
           for(j=1;j <=nlstate;j++)         /* Period (stable) prevalence in each health state */
             vepp += vareij[i][j][(int)age];         for(cpt=1; cpt<nlstate;cpt++){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
         for(j=1;j <=nlstate;j++){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));         }
         }       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficrest,"\n");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     }       }
   }     } /* end i1 */
 free_matrix(mint,1,maxwav,1,n);   }/* End k1 */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   fprintf(fichtm,"</ul>");
     free_vector(weight,1,n);  
   fclose(ficreseij);  
   fclose(ficresvij);   fprintf(fichtm,"\
   fclose(ficrest);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   fclose(ficpar);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   free_vector(epj,1,nlstate+1);  
     fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /*------- Variance limit prevalence------*/             subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   strcat(fileresvpl,fileres);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fprintf(fichtm,"\
     exit(0);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   k=0;     <a href=\"%s\">%s</a> <br>\n</li>",
   for(cptcov=1;cptcov<=i1;cptcov++){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm,"\
       k=k+1;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       fprintf(ficresvpl,"\n#****** ");     <a href=\"%s\">%s</a> <br>\n</li>",
       for(j=1;j<=cptcoveff;j++)             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficresvpl,"******\n");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                 estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     }   fprintf(fichtm,"\
  }   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   fclose(ficresvpl);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*---------- End : free ----------------*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /*      <br>",fileres,fileres,fileres,fileres); */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*  else  */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   m=cptcoveff;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
     jj1=0;
   free_matrix(matcov,1,npar,1,npar);   for(k1=1; k1<=m;k1++){
   free_vector(delti,1,npar);     for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(agev,1,maxwav,1,imx);       jj1++;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if(erreur >0)         for (cpt=1; cpt<=cptcoveff;cpt++) 
     printf("End of Imach with error or warning %d\n",erreur);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   else   printf("End of Imach\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   /*printf("Total time was %d uSec.\n", total_usecs);*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   /*------ End -----------*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  end:  health expectancies in states (1) and (2): %s%d.png<br>\
   /* chdir(pathcd);*/  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  /*system("wgnuplot graph.plt");*/     } /* end i1 */
  /*system("../gp37mgw/wgnuplot graph.plt");*/   }/* End k1 */
  /*system("cd ../gp37mgw");*/   fprintf(fichtm,"</ul>");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   fflush(fichtm);
  strcpy(plotcmd,GNUPLOTPROGRAM);  }
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);  /******************* Gnuplot file **************/
  system(plotcmd);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
  /*#ifdef windows*/    char dirfileres[132],optfileres[132];
   while (z[0] != 'q') {    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     /* chdir(path); */    int ng;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     scanf("%s",z);  /*     printf("Problem with file %s",optionfilegnuplot); */
     if (z[0] == 'c') system("./imach");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     else if (z[0] == 'e') system(optionfilehtm);  /*   } */
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);    /*#ifdef windows */
   }    fprintf(ficgp,"cd \"%s\" \n",pathc);
   /*#endif */      /*#endif */
 }    m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.120


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>