Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.123

version 1.41.2.2, 2003/06/13 07:45:28 version 1.123, 2006/03/20 10:52:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.123  2006/03/20 10:52:43  brouard
      * imach.c (Module): <title> changed, corresponds to .htm file
   This program computes Healthy Life Expectancies from    name. <head> headers where missing.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    * imach.c (Module): Weights can have a decimal point as for
   interviewed on their health status or degree of disability (in the    English (a comma might work with a correct LC_NUMERIC environment,
   case of a health survey which is our main interest) -2- at least a    otherwise the weight is truncated).
   second wave of interviews ("longitudinal") which measure each change    Modification of warning when the covariates values are not 0 or
   (if any) in individual health status.  Health expectancies are    1.
   computed from the time spent in each health state according to a    Version 0.98g
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.122  2006/03/20 09:45:41  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Weights can have a decimal point as for
   probability to be observed in state j at the second wave    English (a comma might work with a correct LC_NUMERIC environment,
   conditional to be observed in state i at the first wave. Therefore    otherwise the weight is truncated).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of warning when the covariates values are not 0 or
   'age' is age and 'sex' is a covariate. If you want to have a more    1.
   complex model than "constant and age", you should modify the program    Version 0.98g
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.121  2006/03/16 17:45:01  lievre
   convergence.    * imach.c (Module): Comments concerning covariates added
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): refinements in the computation of lli if
   multinomial logistic model, is clear when the delay between waves is not    status=-2 in order to have more reliable computation if stepm is
   identical for each individual. Also, if a individual missed an    not 1 month. Version 0.98f
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   hPijx is the probability to be observed in state i at age x+h    status=-2 in order to have more reliable computation if stepm is
   conditional to the observed state i at age x. The delay 'h' can be    not 1 month. Version 0.98f
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.119  2006/03/15 17:42:26  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Bug if status = -2, the loglikelihood was
   matrix is simply the matrix product of nh*stepm elementary matrices    computed as likelihood omitting the logarithm. Version O.98e
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Also this programme outputs the covariance matrix of the parameters but also    table of variances if popbased=1 .
   of the life expectancies. It also computes the prevalence limits.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Version 0.98d
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.117  2006/03/14 17:16:22  brouard
   from the European Union.    (Module): varevsij Comments added explaining the second
   It is copyrighted identically to a GNU software product, ie programme and    table of variances if popbased=1 .
   software can be distributed freely for non commercial use. Latest version    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Function pstamp added
   **********************************************************************/    (Module): Version 0.98d
    
 #include <math.h>    Revision 1.116  2006/03/06 10:29:27  brouard
 #include <stdio.h>    (Module): Variance-covariance wrong links and
 #include <stdlib.h>    varian-covariance of ej. is needed (Saito).
 #include <unistd.h>  
     Revision 1.115  2006/02/27 12:17:45  brouard
 #define MAXLINE 256    (Module): One freematrix added in mlikeli! 0.98c
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FILENAMELENGTH 80    (Module): Some improvements in processing parameter
 /*#define DEBUG*/    filename with strsep.
   
 /*#define windows*/    Revision 1.113  2006/02/24 14:20:24  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Memory leaks checks with valgrind and:
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Comments can be added in data file. Missing date values
 #define MAXN 20000    can be a simple dot '.'.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.110  2006/01/25 00:51:50  brouard
 #define AGEBASE 40    (Module): Lots of cleaning and bugs added (Gompertz)
   
     Revision 1.109  2006/01/24 19:37:15  brouard
 int erreur; /* Error number */    (Module): Comments (lines starting with a #) are allowed in data.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.108  2006/01/19 18:05:42  lievre
 int npar=NPARMAX;    Gnuplot problem appeared...
 int nlstate=2; /* Number of live states */    To be fixed
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.107  2006/01/19 16:20:37  brouard
 int popbased=0;    Test existence of gnuplot in imach path
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.106  2006/01/19 13:24:36  brouard
 int maxwav; /* Maxim number of waves */    Some cleaning and links added in html output
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.105  2006/01/05 20:23:19  lievre
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    *** empty log message ***
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.104  2005/09/30 16:11:43  lievre
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Module): sump fixed, loop imx fixed, and simplifications.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): If the status is missing at the last wave but we know
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    that the person is alive, then we can code his/her status as -2
 FILE *ficgp,*ficresprob,*ficpop;    (instead of missing=-1 in earlier versions) and his/her
 FILE *ficreseij;    contributions to the likelihood is 1 - Prob of dying from last
   char filerese[FILENAMELENGTH];    health status (= 1-p13= p11+p12 in the easiest case of somebody in
  FILE  *ficresvij;    the healthy state at last known wave). Version is 0.98
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.103  2005/09/30 15:54:49  lievre
   char fileresvpl[FILENAMELENGTH];    (Module): sump fixed, loop imx fixed, and simplifications.
   
 #define NR_END 1    Revision 1.102  2004/09/15 17:31:30  brouard
 #define FREE_ARG char*    Add the possibility to read data file including tab characters.
 #define FTOL 1.0e-10  
     Revision 1.101  2004/09/15 10:38:38  brouard
 #define NRANSI    Fix on curr_time
 #define ITMAX 200  
     Revision 1.100  2004/07/12 18:29:06  brouard
 #define TOL 2.0e-4    Add version for Mac OS X. Just define UNIX in Makefile
   
 #define CGOLD 0.3819660    Revision 1.99  2004/06/05 08:57:40  brouard
 #define ZEPS 1.0e-10    *** empty log message ***
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.98  2004/05/16 15:05:56  brouard
 #define GOLD 1.618034    New version 0.97 . First attempt to estimate force of mortality
 #define GLIMIT 100.0    directly from the data i.e. without the need of knowing the health
 #define TINY 1.0e-20    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 static double maxarg1,maxarg2;    other analysis, in order to test if the mortality estimated from the
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    cross-longitudinal survey is different from the mortality estimated
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    from other sources like vital statistic data.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    The same imach parameter file can be used but the option for mle should be -3.
 #define rint(a) floor(a+0.5)  
     Agnès, who wrote this part of the code, tried to keep most of the
 static double sqrarg;    former routines in order to include the new code within the former code.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 int imx;  
 int stepm;    Current limitations:
 /* Stepm, step in month: minimum step interpolation*/    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 int estepm;    B) There is no computation of Life Expectancy nor Life Table.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.97  2004/02/20 13:25:42  lievre
 int m,nb;    Version 0.96d. Population forecasting command line is (temporarily)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    suppressed.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.96  2003/07/15 15:38:55  brouard
 double dateintmean=0;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 double *weight;  
 int **s; /* Status */    Revision 1.95  2003/07/08 07:54:34  brouard
 double *agedc, **covar, idx;    * imach.c (Repository):
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
    char *s;                             /* pointer */    exist so I changed back to asctime which exists.
    int  l1, l2;                         /* length counters */    (Module): Version 0.96b
   
    l1 = strlen( path );                 /* length of path */    Revision 1.92  2003/06/25 16:30:45  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): On windows (cygwin) function asctime_r doesn't
 #ifdef windows    exist so I changed back to asctime which exists.
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.91  2003/06/25 15:30:29  brouard
    s = strrchr( path, '/' );            /* find last / */    * imach.c (Repository): Duplicated warning errors corrected.
 #endif    (Repository): Elapsed time after each iteration is now output. It
    if ( s == NULL ) {                   /* no directory, so use current */    helps to forecast when convergence will be reached. Elapsed time
 #if     defined(__bsd__)                /* get current working directory */    is stamped in powell.  We created a new html file for the graphs
       extern char       *getwd( );    concerning matrix of covariance. It has extension -cov.htm.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.90  2003/06/24 12:34:15  brouard
 #else    (Module): Some bugs corrected for windows. Also, when
       extern char       *getcwd( );    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.89  2003/06/24 12:30:52  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Some bugs corrected for windows. Also, when
       }    mle=-1 a template is output in file "or"mypar.txt with the design
       strcpy( name, path );             /* we've got it */    of the covariance matrix to be input.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.88  2003/06/23 17:54:56  brouard
       l2 = strlen( s );                 /* length of filename */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.87  2003/06/18 12:26:01  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Version 0.96
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.86  2003/06/17 20:04:08  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Change position of html and gnuplot routines and added
 #ifdef windows    routine fileappend.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.85  2003/06/17 13:12:43  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    * imach.c (Repository): Check when date of death was earlier that
 #endif    current date of interview. It may happen when the death was just
    s = strrchr( name, '.' );            /* find last / */    prior to the death. In this case, dh was negative and likelihood
    s++;    was wrong (infinity). We still send an "Error" but patch by
    strcpy(ext,s);                       /* save extension */    assuming that the date of death was just one stepm after the
    l1= strlen( name);    interview.
    l2= strlen( s)+1;    (Repository): Because some people have very long ID (first column)
    strncpy( finame, name, l1-l2);    we changed int to long in num[] and we added a new lvector for
    finame[l1-l2]= 0;    memory allocation. But we also truncated to 8 characters (left
    return( 0 );                         /* we're done */    truncation)
 }    (Repository): No more line truncation errors.
   
     Revision 1.84  2003/06/13 21:44:43  brouard
 /******************************************/    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 void replace(char *s, char*t)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   int i;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   int lg=20;  
   i=0;    Revision 1.83  2003/06/10 13:39:11  lievre
   lg=strlen(t);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.82  2003/06/05 15:57:20  brouard
     if (t[i]== '\\') s[i]='/';    Add log in  imach.c and  fullversion number is now printed.
   }  
 }  */
   /*
 int nbocc(char *s, char occ)     Interpolated Markov Chain
 {  
   int i,j=0;    Short summary of the programme:
   int lg=20;    
   i=0;    This program computes Healthy Life Expectancies from
   lg=strlen(s);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   for(i=0; i<= lg; i++) {    first survey ("cross") where individuals from different ages are
   if  (s[i] == occ ) j++;    interviewed on their health status or degree of disability (in the
   }    case of a health survey which is our main interest) -2- at least a
   return j;    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 void cutv(char *u,char *v, char*t, char occ)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   int i,lg,j,p=0;    simplest model is the multinomial logistic model where pij is the
   i=0;    probability to be observed in state j at the second wave
   for(j=0; j<=strlen(t)-1; j++) {    conditional to be observed in state i at the first wave. Therefore
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   lg=strlen(t);    where the markup *Covariates have to be included here again* invites
   for(j=0; j<p; j++) {    you to do it.  More covariates you add, slower the
     (u[j] = t[j]);    convergence.
   }  
      u[p]='\0';    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
    for(j=0; j<= lg; j++) {    identical for each individual. Also, if a individual missed an
     if (j>=(p+1))(v[j-p-1] = t[j]);    intermediate interview, the information is lost, but taken into
   }    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 /********************** nrerror ********************/    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 void nrerror(char error_text[])    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   fprintf(stderr,"ERREUR ...\n");    matrix is simply the matrix product of nh*stepm elementary matrices
   fprintf(stderr,"%s\n",error_text);    and the contribution of each individual to the likelihood is simply
   exit(1);    hPijx.
 }  
 /*********************** vector *******************/    Also this programme outputs the covariance matrix of the parameters but also
 double *vector(int nl, int nh)    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   double *v;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));             Institut national d'études démographiques, Paris.
   if (!v) nrerror("allocation failure in vector");    This software have been partly granted by Euro-REVES, a concerted action
   return v-nl+NR_END;    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /************************ free vector ******************/    can be accessed at http://euroreves.ined.fr/imach .
 void free_vector(double*v, int nl, int nh)  
 {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG)(v+nl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /************************ivector *******************************/  /*
 int *ivector(long nl,long nh)    main
 {    read parameterfile
   int *v;    read datafile
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    concatwav
   if (!v) nrerror("allocation failure in ivector");    freqsummary
   return v-nl+NR_END;    if (mle >= 1)
 }      mlikeli
     print results files
 /******************free ivector **************************/    if mle==1 
 void free_ivector(int *v, long nl, long nh)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(v+nl-NR_END));        begin-prev-date,...
 }    open gnuplot file
     open html file
 /******************* imatrix *******************************/    period (stable) prevalence
 int **imatrix(long nrl, long nrh, long ncl, long nch)     for age prevalim()
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    h Pij x
 {    variance of p varprob
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   int **m;    health expectancies
      Variance-covariance of DFLE
   /* allocate pointers to rows */    prevalence()
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));     movingaverage()
   if (!m) nrerror("allocation failure 1 in matrix()");    varevsij() 
   m += NR_END;    if popbased==1 varevsij(,popbased)
   m -= nrl;    total life expectancies
      Variance of period (stable) prevalence
     end
   /* allocate rows and set pointers to them */  */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  
   m[nrl] -= ncl;   
    #include <math.h>
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  #include <stdio.h>
    #include <stdlib.h>
   /* return pointer to array of pointers to rows */  #include <string.h>
   return m;  #include <unistd.h>
 }  
   #include <limits.h>
 /****************** free_imatrix *************************/  #include <sys/types.h>
 void free_imatrix(m,nrl,nrh,ncl,nch)  #include <sys/stat.h>
       int **m;  #include <errno.h>
       long nch,ncl,nrh,nrl;  extern int errno;
      /* free an int matrix allocated by imatrix() */  
 {  /* #include <sys/time.h> */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <time.h>
   free((FREE_ARG) (m+nrl-NR_END));  #include "timeval.h"
 }  
   /* #include <libintl.h> */
 /******************* matrix *******************************/  /* #define _(String) gettext (String) */
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  #define MAXLINE 256
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FILENAMELENGTH 132
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   m -= nrl;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   return m;  #define NCOVMAX 8 /* Maximum number of covariates */
 }  #define MAXN 20000
   #define YEARM 12. /* Number of months per year */
 /*************************free matrix ************************/  #define AGESUP 130
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define AGEBASE 40
 {  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #ifdef UNIX
   free((FREE_ARG)(m+nrl-NR_END));  #define DIRSEPARATOR '/'
 }  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 /******************* ma3x *******************************/  #else
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define DIRSEPARATOR '\\'
 {  #define CHARSEPARATOR "\\"
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define ODIRSEPARATOR '/'
   double ***m;  #endif
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  /* $Id$ */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* $State$ */
   m += NR_END;  
   m -= nrl;  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   char fullversion[]="$Revision$ $Date$"; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char strstart[80];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   m[nrl] += NR_END;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   m[nrl] -= ncl;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  int ndeath=1; /* Number of dead states */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   m[nrl][ncl] += NR_END;  int popbased=0;
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  int *wav; /* Number of waves for this individuual 0 is possible */
     m[nrl][j]=m[nrl][j-1]+nlay;  int maxwav; /* Maxim number of waves */
    int jmin, jmax; /* min, max spacing between 2 waves */
   for (i=nrl+1; i<=nrh; i++) {  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int gipmx, gsw; /* Global variables on the number of contributions 
     for (j=ncl+1; j<=nch; j++)                     to the likelihood and the sum of weights (done by funcone)*/
       m[i][j]=m[i][j-1]+nlay;  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   return m;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 /*************************free ma3x ************************/  double jmean; /* Mean space between 2 waves */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE *ficlog, *ficrespow;
   free((FREE_ARG)(m+nrl-NR_END));  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx; /* Number of contributions */
 /***************** f1dim *************************/  double sw; /* Sum of weights */
 extern int ncom;  char filerespow[FILENAMELENGTH];
 extern double *pcom,*xicom;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 extern double (*nrfunc)(double []);  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double f1dim(double x)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   int j;  FILE *ficreseij;
   double f;  char filerese[FILENAMELENGTH];
   double *xt;  FILE *ficresstdeij;
    char fileresstde[FILENAMELENGTH];
   xt=vector(1,ncom);  FILE *ficrescveij;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char filerescve[FILENAMELENGTH];
   f=(*nrfunc)(xt);  FILE  *ficresvij;
   free_vector(xt,1,ncom);  char fileresv[FILENAMELENGTH];
   return f;  FILE  *ficresvpl;
 }  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 /*****************brent *************************/  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   int iter;  char command[FILENAMELENGTH];
   double a,b,d,etemp;  int  outcmd=0;
   double fu,fv,fw,fx;  
   double ftemp;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char fileregp[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  char popfile[FILENAMELENGTH];
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  struct timezone tzp;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  extern int gettimeofday();
     printf(".");fflush(stdout);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 #ifdef DEBUG  long time_value;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  extern long time();
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char strcurr[80], strfor[80];
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char *endptr;
       *xmin=x;  long lval;
       return fx;  double dval;
     }  
     ftemp=fu;  #define NR_END 1
     if (fabs(e) > tol1) {  #define FREE_ARG char*
       r=(x-w)*(fx-fv);  #define FTOL 1.0e-10
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  #define NRANSI 
       q=2.0*(q-r);  #define ITMAX 200 
       if (q > 0.0) p = -p;  
       q=fabs(q);  #define TOL 2.0e-4 
       etemp=e;  
       e=d;  #define CGOLD 0.3819660 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define ZEPS 1.0e-10 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       else {  
         d=p/q;  #define GOLD 1.618034 
         u=x+d;  #define GLIMIT 100.0 
         if (u-a < tol2 || b-u < tol2)  #define TINY 1.0e-20 
           d=SIGN(tol1,xm-x);  
       }  static double maxarg1,maxarg2;
     } else {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     fu=(*f)(u);  #define rint(a) floor(a+0.5)
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  static double sqrarg;
       SHFT(v,w,x,u)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         SHFT(fv,fw,fx,fu)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         } else {  int agegomp= AGEGOMP;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  int imx; 
             v=w;  int stepm=1;
             w=u;  /* Stepm, step in month: minimum step interpolation*/
             fv=fw;  
             fw=fu;  int estepm;
           } else if (fu <= fv || v == x || v == w) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
             v=u;  
             fv=fu;  int m,nb;
           }  long *num;
         }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   nrerror("Too many iterations in brent");  double **pmmij, ***probs;
   *xmin=x;  double *ageexmed,*agecens;
   return fx;  double dateintmean=0;
 }  
   double *weight;
 /****************** mnbrak ***********************/  int **s; /* Status */
   double *agedc, **covar, idx;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
             double (*func)(double))  double *lsurv, *lpop, *tpop;
 {  
   double ulim,u,r,q, dum;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double fu;  double ftolhess; /* Tolerance for computing hessian */
    
   *fa=(*func)(*ax);  /**************** split *************************/
   *fb=(*func)(*bx);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       SHFT(dum,*fb,*fa,dum)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       }    */ 
   *cx=(*bx)+GOLD*(*bx-*ax);    char  *ss;                            /* pointer */
   *fc=(*func)(*cx);    int   l1, l2;                         /* length counters */
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    l1 = strlen(path );                   /* length of path */
     q=(*bx-*cx)*(*fb-*fa);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     ulim=(*bx)+GLIMIT*(*cx-*bx);      strcpy( name, path );               /* we got the fullname name because no directory */
     if ((*bx-u)*(u-*cx) > 0.0) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       fu=(*func)(u);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {      /* get current working directory */
       fu=(*func)(u);      /*    extern  char* getcwd ( char *buf , int len);*/
       if (fu < *fc) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        return( GLOCK_ERROR_GETCWD );
           SHFT(*fb,*fc,fu,(*func)(u))      }
           }      /* got dirc from getcwd*/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      printf(" DIRC = %s \n",dirc);
       u=ulim;    } else {                              /* strip direcotry from path */
       fu=(*func)(u);      ss++;                               /* after this, the filename */
     } else {      l2 = strlen( ss );                  /* length of filename */
       u=(*cx)+GOLD*(*cx-*bx);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       fu=(*func)(u);      strcpy( name, ss );         /* save file name */
     }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     SHFT(*ax,*bx,*cx,u)      dirc[l1-l2] = 0;                    /* add zero */
       SHFT(*fa,*fb,*fc,fu)      printf(" DIRC2 = %s \n",dirc);
       }    }
 }    /* We add a separator at the end of dirc if not exists */
     l1 = strlen( dirc );                  /* length of directory */
 /*************** linmin ************************/    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 int ncom;      dirc[l1+1] = 0; 
 double *pcom,*xicom;      printf(" DIRC3 = %s \n",dirc);
 double (*nrfunc)(double []);    }
      ss = strrchr( name, '.' );            /* find last / */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    if (ss >0){
 {      ss++;
   double brent(double ax, double bx, double cx,      strcpy(ext,ss);                     /* save extension */
                double (*f)(double), double tol, double *xmin);      l1= strlen( name);
   double f1dim(double x);      l2= strlen(ss)+1;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      strncpy( finame, name, l1-l2);
               double *fc, double (*func)(double));      finame[l1-l2]= 0;
   int j;    }
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    return( 0 );                          /* we're done */
    }
   ncom=n;  
   pcom=vector(1,n);  
   xicom=vector(1,n);  /******************************************/
   nrfunc=func;  
   for (j=1;j<=n;j++) {  void replace_back_to_slash(char *s, char*t)
     pcom[j]=p[j];  {
     xicom[j]=xi[j];    int i;
   }    int lg=0;
   ax=0.0;    i=0;
   xx=1.0;    lg=strlen(t);
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    for(i=0; i<= lg; i++) {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);      (s[i] = t[i]);
 #ifdef DEBUG      if (t[i]== '\\') s[i]='/';
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif  }
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  int nbocc(char *s, char occ)
     p[j] += xi[j];  {
   }    int i,j=0;
   free_vector(xicom,1,n);    int lg=20;
   free_vector(pcom,1,n);    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /*************** powell ************************/    if  (s[i] == occ ) j++;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    }
             double (*func)(double []))    return j;
 {  }
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  void cutv(char *u,char *v, char*t, char occ)
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   double fp,fptt;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   double *xits;       gives u="abcedf" and v="ghi2j" */
   pt=vector(1,n);    int i,lg,j,p=0;
   ptt=vector(1,n);    i=0;
   xit=vector(1,n);    for(j=0; j<=strlen(t)-1; j++) {
   xits=vector(1,n);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   *fret=(*func)(p);    }
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {    lg=strlen(t);
     fp=(*fret);    for(j=0; j<p; j++) {
     ibig=0;      (u[j] = t[j]);
     del=0.0;    }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);       u[p]='\0';
     for (i=1;i<=n;i++)  
       printf(" %d %.12f",i, p[i]);     for(j=0; j<= lg; j++) {
     printf("\n");      if (j>=(p+1))(v[j-p-1] = t[j]);
     for (i=1;i<=n;i++) {    }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /********************** nrerror ********************/
       printf("fret=%lf \n",*fret);  
 #endif  void nrerror(char error_text[])
       printf("%d",i);fflush(stdout);  {
       linmin(p,xit,n,fret,func);    fprintf(stderr,"ERREUR ...\n");
       if (fabs(fptt-(*fret)) > del) {    fprintf(stderr,"%s\n",error_text);
         del=fabs(fptt-(*fret));    exit(EXIT_FAILURE);
         ibig=i;  }
       }  /*********************** vector *******************/
 #ifdef DEBUG  double *vector(int nl, int nh)
       printf("%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    double *v;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf(" x(%d)=%.12e",j,xit[j]);    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  
       printf("\n");  /************************ free vector ******************/
 #endif  void free_vector(double*v, int nl, int nh)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  /************************ivector *******************************/
       k[1]=-1;  int *ivector(long nl,long nh)
       printf("Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++)    int *v;
         printf(" %.12e",p[j]);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       printf("\n");    if (!v) nrerror("allocation failure in ivector");
       for(l=0;l<=1;l++) {    return v-nl+NR_END;
         for (j=1;j<=n;j++) {  }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  /******************free ivector **************************/
         }  void free_ivector(int *v, long nl, long nh)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  {
       }    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
   
   /************************lvector *******************************/
       free_vector(xit,1,n);  long *lvector(long nl,long nh)
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    long *v;
       free_vector(pt,1,n);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       return;    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  /******************free lvector **************************/
       xit[j]=p[j]-pt[j];  void free_lvector(long *v, long nl, long nh)
       pt[j]=p[j];  {
     }    free((FREE_ARG)(v+nl-NR_END));
     fptt=(*func)(ptt);  }
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /******************* imatrix *******************************/
       if (t < 0.0) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
         linmin(p,xit,n,fret,func);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         for (j=1;j<=n;j++) {  { 
           xi[j][ibig]=xi[j][n];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           xi[j][n]=xit[j];    int **m; 
         }    
 #ifdef DEBUG    /* allocate pointers to rows */ 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for(j=1;j<=n;j++)    if (!m) nrerror("allocation failure 1 in matrix()"); 
           printf(" %.12e",xit[j]);    m += NR_END; 
         printf("\n");    m -= nrl; 
 #endif    
       }    
     }    /* allocate rows and set pointers to them */ 
   }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 /**** Prevalence limit ****************/    m[nrl] -= ncl; 
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 {    
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* return pointer to array of pointers to rows */ 
      matrix by transitions matrix until convergence is reached */    return m; 
   } 
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  /****************** free_imatrix *************************/
   double **matprod2();  void free_imatrix(m,nrl,nrh,ncl,nch)
   double **out, cov[NCOVMAX], **pmij();        int **m;
   double **newm;        long nch,ncl,nrh,nrl; 
   double agefin, delaymax=50 ; /* Max number of years to converge */       /* free an int matrix allocated by imatrix() */ 
   { 
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG) (m+nrl-NR_END)); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
     }  
   /******************* matrix *******************************/
    cov[1]=1.;  double **matrix(long nrl, long nrh, long ncl, long nch)
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    double **m;
     newm=savm;  
     /* Covariates have to be included here again */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      cov[2]=agefin;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
       for (k=1; k<=cptcovn;k++) {    m -= nrl;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl] += NR_END;
       for (k=1; k<=cptcovprod;k++)    m[nrl] -= ncl;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    return m;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/     */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /*************************free matrix ************************/
     oldm=newm;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       min=1.;    free((FREE_ARG)(m+nrl-NR_END));
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /******************* ma3x *******************************/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         min=FMIN(min,prlim[i][j]);    double ***m;
       }  
       maxmin=max-min;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       maxmax=FMAX(maxmax,maxmin);    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     if(maxmax < ftolpl){    m -= nrl;
       return prlim;  
     }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*************** transition probabilities ***************/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double s1, s2;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /*double t34;*/    m[nrl][ncl] += NR_END;
   int i,j,j1, nc, ii, jj;    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
     for(i=1; i<= nlstate; i++){      m[nrl][j]=m[nrl][j-1]+nlay;
     for(j=1; j<i;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    for (i=nrl+1; i<=nrh; i++) {
         /*s2 += param[i][j][nc]*cov[nc];*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      for (j=ncl+1; j<=nch; j++) 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        m[i][j]=m[i][j-1]+nlay;
       }    }
       ps[i][j]=s2;    return m; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=i+1; j<=nlstate+ndeath;j++){    */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       ps[i][j]=s2;  {
     }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     /*ps[3][2]=1;*/    free((FREE_ARG)(m+nrl-NR_END));
   }
   for(i=1; i<= nlstate; i++){  
      s1=0;  /*************** function subdirf ***********/
     for(j=1; j<i; j++)  char *subdirf(char fileres[])
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    /* Caution optionfilefiname is hidden */
       s1+=exp(ps[i][j]);    strcpy(tmpout,optionfilefiname);
     ps[i][i]=1./(s1+1.);    strcat(tmpout,"/"); /* Add to the right */
     for(j=1; j<i; j++)    strcat(tmpout,fileres);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return tmpout;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*************** function subdirf2 ***********/
   } /* end i */  char *subdirf2(char fileres[], char *preop)
   {
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    /* Caution optionfilefiname is hidden */
       ps[ii][jj]=0;    strcpy(tmpout,optionfilefiname);
       ps[ii][ii]=1;    strcat(tmpout,"/");
     }    strcat(tmpout,preop);
   }    strcat(tmpout,fileres);
     return tmpout;
   }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf3 ***********/
      printf("%lf ",ps[ii][jj]);  char *subdirf3(char fileres[], char *preop, char *preop2)
    }  {
     printf("\n ");    
     }    /* Caution optionfilefiname is hidden */
     printf("\n ");printf("%lf ",cov[2]);*/    strcpy(tmpout,optionfilefiname);
 /*    strcat(tmpout,"/");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcat(tmpout,preop);
   goto end;*/    strcat(tmpout,preop2);
     return ps;    strcat(tmpout,fileres);
 }    return tmpout;
   }
 /**************** Product of 2 matrices ******************/  
   /***************** f1dim *************************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  extern int ncom; 
 {  extern double *pcom,*xicom;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  extern double (*nrfunc)(double []); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */   
   /* in, b, out are matrice of pointers which should have been initialized  double f1dim(double x) 
      before: only the contents of out is modified. The function returns  { 
      a pointer to pointers identical to out */    int j; 
   long i, j, k;    double f;
   for(i=nrl; i<= nrh; i++)    double *xt; 
     for(k=ncolol; k<=ncoloh; k++)   
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    xt=vector(1,ncom); 
         out[i][k] +=in[i][j]*b[j][k];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   return out;    free_vector(xt,1,ncom); 
 }    return f; 
   } 
   
 /************* Higher Matrix Product ***************/  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  { 
 {    int iter; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double a,b,d,etemp;
      duration (i.e. until    double fu,fv,fw,fx;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    double ftemp;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      (typically every 2 years instead of every month which is too big).    double e=0.0; 
      Model is determined by parameters x and covariates have to be   
      included manually here.    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
      */    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   int i, j, d, h, k;    for (iter=1;iter<=ITMAX;iter++) { 
   double **out, cov[NCOVMAX];      xm=0.5*(a+b); 
   double **newm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   /* Hstepm could be zero and should return the unit matrix */      printf(".");fflush(stdout);
   for (i=1;i<=nlstate+ndeath;i++)      fprintf(ficlog,".");fflush(ficlog);
     for (j=1;j<=nlstate+ndeath;j++){  #ifdef DEBUG
       oldm[i][j]=(i==j ? 1.0 : 0.0);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       po[i][j][0]=(i==j ? 1.0 : 0.0);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #endif
   for(h=1; h <=nhstepm; h++){      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for(d=1; d <=hstepm; d++){        *xmin=x; 
       newm=savm;        return fx; 
       /* Covariates have to be included here again */      } 
       cov[1]=1.;      ftemp=fu;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      if (fabs(e) > tol1) { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        r=(x-w)*(fx-fv); 
       for (k=1; k<=cptcovage;k++)        q=(x-v)*(fx-fw); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        p=(x-v)*q-(x-w)*r; 
       for (k=1; k<=cptcovprod;k++)        q=2.0*(q-r); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if (q > 0.0) p = -p; 
         q=fabs(q); 
         etemp=e; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        e=d; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        else { 
       savm=oldm;          d=p/q; 
       oldm=newm;          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     for(i=1; i<=nlstate+ndeath; i++)            d=SIGN(tol1,xm-x); 
       for(j=1;j<=nlstate+ndeath;j++) {        } 
         po[i][j][h]=newm[i][j];      } else { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          */      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   } /* end h */      fu=(*f)(u); 
   return po;      if (fu <= fx) { 
 }        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
 /*************** log-likelihood *************/          } else { 
 double func( double *x)            if (u < x) a=u; else b=u; 
 {            if (fu <= fw || w == x) { 
   int i, ii, j, k, mi, d, kk;              v=w; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];              w=u; 
   double **out;              fv=fw; 
   double sw; /* Sum of weights */              fw=fu; 
   double lli; /* Individual log likelihood */            } else if (fu <= fv || v == x || v == w) { 
   int s1, s2;              v=u; 
   long ipmx;              fv=fu; 
   /*extern weight */            } 
   /* We are differentiating ll according to initial status */          } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    } 
   /*for(i=1;i<imx;i++)    nrerror("Too many iterations in brent"); 
     printf(" %d\n",s[4][i]);    *xmin=x; 
   */    return fx; 
   cov[1]=1.;  } 
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /****************** mnbrak ***********************/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(mi=1; mi<= wav[i]-1; mi++){              double (*func)(double)) 
       for (ii=1;ii<=nlstate+ndeath;ii++)  { 
         for (j=1;j<=nlstate+ndeath;j++){    double ulim,u,r,q, dum;
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double fu; 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);   
         }    *fa=(*func)(*ax); 
       for(d=0; d<dh[mi][i]; d++){    *fb=(*func)(*bx); 
         newm=savm;    if (*fb > *fa) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      SHFT(dum,*ax,*bx,dum) 
         for (kk=1; kk<=cptcovage;kk++) {        SHFT(dum,*fb,*fa,dum) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        } 
         }    *cx=(*bx)+GOLD*(*bx-*ax); 
            *fc=(*func)(*cx); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    while (*fb > *fc) { 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      r=(*bx-*ax)*(*fb-*fc); 
         savm=oldm;      q=(*bx-*cx)*(*fb-*fa); 
         oldm=newm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
                (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
              ulim=(*bx)+GLIMIT*(*cx-*bx); 
       } /* end mult */      if ((*bx-u)*(u-*cx) > 0.0) { 
              fu=(*func)(u); 
       s1=s[mw[mi][i]][i];      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       s2=s[mw[mi+1][i]][i];        fu=(*func)(u); 
       if( s2 > nlstate){        if (fu < *fc) { 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
            to the likelihood is the probability to die between last step unit time and current            SHFT(*fb,*fc,fu,(*func)(u)) 
            step unit time, which is also the differences between probability to die before dh            } 
            and probability to die before dh-stepm .      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
            In version up to 0.92 likelihood was computed        u=ulim; 
            as if date of death was unknown. Death was treated as any other        fu=(*func)(u); 
            health state: the date of the interview describes the actual state      } else { 
            and not the date of a change in health state. The former idea was        u=(*cx)+GOLD*(*cx-*bx); 
            to consider that at each interview the state was recorded        fu=(*func)(u); 
            (healthy, disable or death) and IMaCh was corrected; but when we      } 
            introduced the exact date of death then we should have modified      SHFT(*ax,*bx,*cx,u) 
            the contribution of an exact death to the likelihood. This new        SHFT(*fa,*fb,*fc,fu) 
            contribution is smaller and very dependent of the step unit        } 
            stepm. It is no more the probability to die between last interview  } 
            and month of death but the probability to survive from last  
            interview up to one month before death multiplied by the  /*************** linmin ************************/
            probability to die within a month. Thanks to Chris  
            Jackson for correcting this bug.  Former versions increased  int ncom; 
            mortality artificially. The bad side is that we add another loop  double *pcom,*xicom;
            which slows down the processing. The difference can be up to 10%  double (*nrfunc)(double []); 
            lower mortality.   
         */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         lli=log(out[s1][s2] - savm[s1][s2]);  { 
       }else{    double brent(double ax, double bx, double cx, 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */                 double (*f)(double), double tol, double *xmin); 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       ipmx +=1;                double *fc, double (*func)(double)); 
       sw += weight[i];    int j; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double xx,xmin,bx,ax; 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/    double fx,fb,fa;
     } /* end of wave */   
   } /* end of individual */    ncom=n; 
     pcom=vector(1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    xicom=vector(1,n); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    nrfunc=func; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    for (j=1;j<=n;j++) { 
   /*exit(0);*/      pcom[j]=p[j]; 
   return -l;      xicom[j]=xi[j]; 
 }    } 
     ax=0.0; 
     xx=1.0; 
 /*********** Maximum Likelihood Estimation ***************/    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #ifdef DEBUG
 {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i,j, iter;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double **xi,*delti;  #endif
   double fret;    for (j=1;j<=n;j++) { 
   xi=matrix(1,npar,1,npar);      xi[j] *= xmin; 
   for (i=1;i<=npar;i++)      p[j] += xi[j]; 
     for (j=1;j<=npar;j++)    } 
       xi[i][j]=(i==j ? 1.0 : 0.0);    free_vector(xicom,1,n); 
   printf("Powell\n");    free_vector(pcom,1,n); 
   powell(p,xi,npar,ftol,&iter,&fret,func);  } 
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  char *asc_diff_time(long time_sec, char ascdiff[])
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  {
     long sec_left, days, hours, minutes;
 }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
 /**** Computes Hessian and covariance matrix ***/    hours = (sec_left) / (60*60) ;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    sec_left = (sec_left) %(60*60);
 {    minutes = (sec_left) /60;
   double  **a,**y,*x,pd;    sec_left = (sec_left) % (60);
   double **hess;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i, j,jk;    return ascdiff;
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************** powell ************************/
   double hessij(double p[], double delti[], int i, int j);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   void lubksb(double **a, int npar, int *indx, double b[]) ;              double (*func)(double [])) 
   void ludcmp(double **a, int npar, int *indx, double *d) ;  { 
     void linmin(double p[], double xi[], int n, double *fret, 
   hess=matrix(1,npar,1,npar);                double (*func)(double [])); 
     int i,ibig,j; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    double del,t,*pt,*ptt,*xit;
   for (i=1;i<=npar;i++){    double fp,fptt;
     printf("%d",i);fflush(stdout);    double *xits;
     hess[i][i]=hessii(p,ftolhess,i,delti);    int niterf, itmp;
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    pt=vector(1,n); 
   }    ptt=vector(1,n); 
      xit=vector(1,n); 
   for (i=1;i<=npar;i++) {    xits=vector(1,n); 
     for (j=1;j<=npar;j++)  {    *fret=(*func)(p); 
       if (j>i) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
         printf(".%d%d",i,j);fflush(stdout);    for (*iter=1;;++(*iter)) { 
         hess[i][j]=hessij(p,delti,i,j);      fp=(*fret); 
         hess[j][i]=hess[i][j];          ibig=0; 
         /*printf(" %lf ",hess[i][j]);*/      del=0.0; 
       }      last_time=curr_time;
     }      (void) gettimeofday(&curr_time,&tzp);
   }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   printf("\n");      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      */
       for (i=1;i<=n;i++) {
   a=matrix(1,npar,1,npar);        printf(" %d %.12f",i, p[i]);
   y=matrix(1,npar,1,npar);        fprintf(ficlog," %d %.12lf",i, p[i]);
   x=vector(1,npar);        fprintf(ficrespow," %.12lf", p[i]);
   indx=ivector(1,npar);      }
   for (i=1;i<=npar;i++)      printf("\n");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      fprintf(ficlog,"\n");
   ludcmp(a,npar,indx,&pd);      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   for (j=1;j<=npar;j++) {        tm = *localtime(&curr_time.tv_sec);
     for (i=1;i<=npar;i++) x[i]=0;        strcpy(strcurr,asctime(&tm));
     x[j]=1;  /*       asctime_r(&tm,strcurr); */
     lubksb(a,npar,indx,x);        forecast_time=curr_time; 
     for (i=1;i<=npar;i++){        itmp = strlen(strcurr);
       matcov[i][j]=x[i];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\n#Hessian matrix#\n");        for(niterf=10;niterf<=30;niterf+=10){
   for (i=1;i<=npar;i++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=npar;j++) {          tmf = *localtime(&forecast_time.tv_sec);
       printf("%.3e ",hess[i][j]);  /*      asctime_r(&tmf,strfor); */
     }          strcpy(strfor,asctime(&tmf));
     printf("\n");          itmp = strlen(strfor);
   }          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
   /* Recompute Inverse */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=npar;i++)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        }
   ludcmp(a,npar,indx,&pd);      }
       for (i=1;i<=n;i++) { 
   /*  printf("\n#Hessian matrix recomputed#\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   for (j=1;j<=npar;j++) {  #ifdef DEBUG
     for (i=1;i<=npar;i++) x[i]=0;        printf("fret=%lf \n",*fret);
     x[j]=1;        fprintf(ficlog,"fret=%lf \n",*fret);
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){        printf("%d",i);fflush(stdout);
       y[i][j]=x[i];        fprintf(ficlog,"%d",i);fflush(ficlog);
       printf("%.3e ",y[i][j]);        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
     printf("\n");          del=fabs(fptt-(*fret)); 
   }          ibig=i; 
   */        } 
   #ifdef DEBUG
   free_matrix(a,1,npar,1,npar);        printf("%d %.12e",i,(*fret));
   free_matrix(y,1,npar,1,npar);        fprintf(ficlog,"%d %.12e",i,(*fret));
   free_vector(x,1,npar);        for (j=1;j<=n;j++) {
   free_ivector(indx,1,npar);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   free_matrix(hess,1,npar,1,npar);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 }        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
 /*************** hessian matrix ****************/          fprintf(ficlog," p=%.12e",p[j]);
 double hessii( double x[], double delta, int theta, double delti[])        }
 {        printf("\n");
   int i;        fprintf(ficlog,"\n");
   int l=1, lmax=20;  #endif
   double k1,k2;      } 
   double p2[NPARMAX+1];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   double res;  #ifdef DEBUG
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        int k[2],l;
   double fx;        k[0]=1;
   int k=0,kmax=10;        k[1]=-1;
   double l1;        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   fx=func(x);        for (j=1;j<=n;j++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];          printf(" %.12e",p[j]);
   for(l=0 ; l <=lmax; l++){          fprintf(ficlog," %.12e",p[j]);
     l1=pow(10,l);        }
     delts=delt;        printf("\n");
     for(k=1 ; k <kmax; k=k+1){        fprintf(ficlog,"\n");
       delt = delta*(l1*k);        for(l=0;l<=1;l++) {
       p2[theta]=x[theta] +delt;          for (j=1;j<=n;j++) {
       k1=func(p2)-fx;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       p2[theta]=x[theta]-delt;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       k2=func(p2)-fx;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       /*res= (k1-2.0*fx+k2)/delt/delt; */          }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 #ifdef DEBUG        }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #endif
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        free_vector(xit,1,n); 
         k=kmax;        free_vector(xits,1,n); 
       }        free_vector(ptt,1,n); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        free_vector(pt,1,n); 
         k=kmax; l=lmax*10.;        return; 
       }      } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         delts=delt;      for (j=1;j<=n;j++) { 
       }        ptt[j]=2.0*p[j]-pt[j]; 
     }        xit[j]=p[j]-pt[j]; 
   }        pt[j]=p[j]; 
   delti[theta]=delts;      } 
   return res;      fptt=(*func)(ptt); 
        if (fptt < fp) { 
 }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)          linmin(p,xit,n,fret,func); 
 {          for (j=1;j<=n;j++) { 
   int i;            xi[j][ibig]=xi[j][n]; 
   int l=1, l1, lmax=20;            xi[j][n]=xit[j]; 
   double k1,k2,k3,k4,res,fx;          }
   double p2[NPARMAX+1];  #ifdef DEBUG
   int k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   fx=func(x);          for(j=1;j<=n;j++){
   for (k=1; k<=2; k++) {            printf(" %.12e",xit[j]);
     for (i=1;i<=npar;i++) p2[i]=x[i];            fprintf(ficlog," %.12e",xit[j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;          }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf("\n");
     k1=func(p2)-fx;          fprintf(ficlog,"\n");
    #endif
     p2[thetai]=x[thetai]+delti[thetai]/k;        }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } 
     k2=func(p2)-fx;    } 
    } 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /**** Prevalence limit (stable or period prevalence)  ****************/
     k3=func(p2)-fx;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     p2[thetai]=x[thetai]-delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
     k4=func(p2)-fx;       matrix by transitions matrix until convergence is reached */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG    int i, ii,j,k;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double min, max, maxmin, maxmax,sumnew=0.;
 #endif    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
   return res;    double **newm;
 }    double agefin, delaymax=50 ; /* Max number of years to converge */
   
 /************** Inverse of matrix **************/    for (ii=1;ii<=nlstate+ndeath;ii++)
 void ludcmp(double **a, int n, int *indx, double *d)      for (j=1;j<=nlstate+ndeath;j++){
 {        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,imax,j,k;      }
   double big,dum,sum,temp;  
   double *vv;     cov[1]=1.;
     
   vv=vector(1,n);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   *d=1.0;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   for (i=1;i<=n;i++) {      newm=savm;
     big=0.0;      /* Covariates have to be included here again */
     for (j=1;j<=n;j++)       cov[2]=agefin;
       if ((temp=fabs(a[i][j])) > big) big=temp;    
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        for (k=1; k<=cptcovn;k++) {
     vv[i]=1.0/big;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (j=1;j<=n;j++) {        }
     for (i=1;i<j;i++) {        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       sum=a[i][j];        for (k=1; k<=cptcovprod;k++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       a[i][j]=sum;  
     }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     big=0.0;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for (i=j;i<=n;i++) {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       sum=a[i][j];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];      savm=oldm;
       a[i][j]=sum;      oldm=newm;
       if ( (dum=vv[i]*fabs(sum)) >= big) {      maxmax=0.;
         big=dum;      for(j=1;j<=nlstate;j++){
         imax=i;        min=1.;
       }        max=0.;
     }        for(i=1; i<=nlstate; i++) {
     if (j != imax) {          sumnew=0;
       for (k=1;k<=n;k++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         dum=a[imax][k];          prlim[i][j]= newm[i][j]/(1-sumnew);
         a[imax][k]=a[j][k];          max=FMAX(max,prlim[i][j]);
         a[j][k]=dum;          min=FMIN(min,prlim[i][j]);
       }        }
       *d = -(*d);        maxmin=max-min;
       vv[imax]=vv[j];        maxmax=FMAX(maxmax,maxmin);
     }      }
     indx[j]=imax;      if(maxmax < ftolpl){
     if (a[j][j] == 0.0) a[j][j]=TINY;        return prlim;
     if (j != n) {      }
       dum=1.0/(a[j][j]);    }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  }
     }  
   }  /*************** transition probabilities ***************/ 
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 }  {
     double s1, s2;
 void lubksb(double **a, int n, int *indx, double b[])    /*double t34;*/
 {    int i,j,j1, nc, ii, jj;
   int i,ii=0,ip,j;  
   double sum;      for(i=1; i<= nlstate; i++){
          for(j=1; j<i;j++){
   for (i=1;i<=n;i++) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     ip=indx[i];            /*s2 += param[i][j][nc]*cov[nc];*/
     sum=b[ip];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     b[ip]=b[i];  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     if (ii)          }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          ps[i][j]=s2;
     else if (sum) ii=i;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     b[i]=sum;        }
   }        for(j=i+1; j<=nlstate+ndeath;j++){
   for (i=n;i>=1;i--) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     sum=b[i];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     b[i]=sum/a[i][i];          }
   }          ps[i][j]=s2;
 }        }
       }
 /************ Frequencies ********************/      /*ps[3][2]=1;*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      
 {  /* Some frequencies */      for(i=1; i<= nlstate; i++){
          s1=0;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for(j=1; j<i; j++)
   double ***freq; /* Frequencies */          s1+=exp(ps[i][j]);
   double *pp;        for(j=i+1; j<=nlstate+ndeath; j++)
   double pos, k2, dateintsum=0,k2cpt=0;          s1+=exp(ps[i][j]);
   FILE *ficresp;        ps[i][i]=1./(s1+1.);
   char fileresp[FILENAMELENGTH];        for(j=1; j<i; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   pp=vector(1,nlstate);        for(j=i+1; j<=nlstate+ndeath; j++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   strcpy(fileresp,"p");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   strcat(fileresp,fileres);      } /* end i */
   if((ficresp=fopen(fileresp,"w"))==NULL) {      
     printf("Problem with prevalence resultfile: %s\n", fileresp);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     exit(0);        for(jj=1; jj<= nlstate+ndeath; jj++){
   }          ps[ii][jj]=0;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          ps[ii][ii]=1;
   j1=0;        }
        }
   j=cptcoveff;      
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   for(k1=1; k1<=j;k1++){  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
     for(i1=1; i1<=ncodemax[k1];i1++){  /*         printf("ddd %lf ",ps[ii][jj]); */
       j1++;  /*       } */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  /*       printf("\n "); */
         scanf("%d", i);*/  /*        } */
       for (i=-1; i<=nlstate+ndeath; i++)    /*        printf("\n ");printf("%lf ",cov[2]); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)           /*
           for(m=agemin; m <= agemax+3; m++)        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             freq[i][jk][m]=0;        goto end;*/
            return ps;
       dateintsum=0;  }
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  /**************** Product of 2 matrices ******************/
         bool=1;  
         if  (cptcovn>0) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
           for (z1=1; z1<=cptcoveff; z1++)  {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               bool=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         }    /* in, b, out are matrice of pointers which should have been initialized 
         if (bool==1) {       before: only the contents of out is modified. The function returns
           for(m=firstpass; m<=lastpass; m++){       a pointer to pointers identical to out */
             k2=anint[m][i]+(mint[m][i]/12.);    long i, j, k;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for(i=nrl; i<= nrh; i++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(k=ncolol; k<=ncoloh; k++)
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
               if (m<lastpass) {          out[i][k] +=in[i][j]*b[j][k];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    return out;
               }  }
                
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  /************* Higher Matrix Product ***************/
                 k2cpt++;  
               }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             }  {
           }    /* Computes the transition matrix starting at age 'age' over 
         }       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
               nhstepm*hstepm matrices. 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
       if  (cptcovn>0) {       for the memory).
         fprintf(ficresp, "\n#********** Variable ");       Model is determined by parameters x and covariates have to be 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       included manually here. 
         fprintf(ficresp, "**********\n#");  
       }       */
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    int i, j, d, h, k;
       fprintf(ficresp, "\n");    double **out, cov[NCOVMAX];
          double **newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3)    /* Hstepm could be zero and should return the unit matrix */
           printf("Total");    for (i=1;i<=nlstate+ndeath;i++)
         else      for (j=1;j<=nlstate+ndeath;j++){
           printf("Age %d", i);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      }
             pp[jk] += freq[jk][m][i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
         for(jk=1; jk <=nlstate ; jk++){      for(d=1; d <=hstepm; d++){
           for(m=-1, pos=0; m <=0 ; m++)        newm=savm;
             pos += freq[jk][m][i];        /* Covariates have to be included here again */
           if(pp[jk]>=1.e-10)        cov[1]=1.;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           else        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for (k=1; k<=cptcovage;k++)
         }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
         for(jk=1; jk <=nlstate ; jk++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];  
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for(jk=1,pos=0; jk <=nlstate ; jk++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           pos += pp[jk];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
           if(pos>=1.e-5)        oldm=newm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
           else      for(i=1; i<=nlstate+ndeath; i++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=1;j<=nlstate+ndeath;j++) {
           if( i <= (int) agemax){          po[i][j][h]=newm[i][j];
             if(pos>=1.e-5){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           */
               probs[i][jk][j1]= pp[jk]/pos;        }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    } /* end h */
             }    return po;
             else  }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }  
         }  /*************** log-likelihood *************/
          double func( double *x)
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    int i, ii, j, k, mi, d, kk;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         if(i <= (int) agemax)    double **out;
           fprintf(ficresp,"\n");    double sw; /* Sum of weights */
         printf("\n");    double lli; /* Individual log likelihood */
       }    int s1, s2;
     }    double bbh, survp;
   }    long ipmx;
   dateintmean=dateintsum/k2cpt;    /*extern weight */
      /* We are differentiating ll according to initial status */
   fclose(ficresp);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*for(i=1;i<imx;i++) 
   free_vector(pp,1,nlstate);      printf(" %d\n",s[4][i]);
      */
   /* End of Freq */    cov[1]=1.;
 }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    if(mle==1){
 {  /* Some frequencies */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(mi=1; mi<= wav[i]-1; mi++){
   double ***freq; /* Frequencies */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *pp;            for (j=1;j<=nlstate+ndeath;j++){
   double pos, k2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   pp=vector(1,nlstate);            }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for(k1=1; k1<=j;k1++){            savm=oldm;
     for(i1=1; i1<=ncodemax[k1];i1++){            oldm=newm;
       j1++;          } /* end mult */
          
       for (i=-1; i<=nlstate+ndeath; i++)            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /* But now since version 0.9 we anticipate for bias at large stepm.
           for(m=agemin; m <= agemax+3; m++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             freq[i][jk][m]=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=1; i<=imx; i++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         bool=1;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if  (cptcovn>0) {           * probability in order to take into account the bias as a fraction of the way
           for (z1=1; z1<=cptcoveff; z1++)           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           * -stepm/2 to stepm/2 .
               bool=0;           * For stepm=1 the results are the same as for previous versions of Imach.
         }           * For stepm > 1 the results are less biased than in previous versions. 
         if (bool==1) {           */
           for(m=firstpass; m<=lastpass; m++){          s1=s[mw[mi][i]][i];
             k2=anint[m][i]+(mint[m][i]/12.);          s2=s[mw[mi+1][i]][i];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          bbh=(double)bh[mi][i]/(double)stepm; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /* bias bh is positive if real duration
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * is higher than the multiple of stepm and negative otherwise.
               if (m<lastpass)           */
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
               else          if( s2 > nlstate){ 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /* i.e. if s2 is a death state and if the date of death is known 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];               then the contribution to the likelihood is the probability to 
             }               die between last step unit time and current  step unit time, 
           }               which is also equal to probability to die before dh 
         }               minus probability to die before dh-stepm . 
       }               In version up to 0.92 likelihood was computed
         for(i=(int)agemin; i <= (int)agemax+3; i++){          as if date of death was unknown. Death was treated as any other
           for(jk=1; jk <=nlstate ; jk++){          health state: the date of the interview describes the actual state
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          and not the date of a change in health state. The former idea was
               pp[jk] += freq[jk][m][i];          to consider that at each interview the state was recorded
           }          (healthy, disable or death) and IMaCh was corrected; but when we
           for(jk=1; jk <=nlstate ; jk++){          introduced the exact date of death then we should have modified
             for(m=-1, pos=0; m <=0 ; m++)          the contribution of an exact death to the likelihood. This new
             pos += freq[jk][m][i];          contribution is smaller and very dependent of the step unit
         }          stepm. It is no more the probability to die between last interview
                  and month of death but the probability to survive from last
          for(jk=1; jk <=nlstate ; jk++){          interview up to one month before death multiplied by the
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          probability to die within a month. Thanks to Chris
              pp[jk] += freq[jk][m][i];          Jackson for correcting this bug.  Former versions increased
          }          mortality artificially. The bad side is that we add another loop
                    which slows down the processing. The difference can be up to 10%
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          lower mortality.
             */
          for(jk=1; jk <=nlstate ; jk++){                      lli=log(out[s1][s2] - savm[s1][s2]);
            if( i <= (int) agemax){  
              if(pos>=1.e-5){  
                probs[i][jk][j1]= pp[jk]/pos;          } else if  (s2==-2) {
              }            for (j=1,survp=0. ; j<=nlstate; j++) 
            }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
          }            /*survp += out[s1][j]; */
                      lli= log(survp);
         }          }
     }          
   }          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli= log(survp); 
   free_vector(pp,1,nlstate);          } 
    
 }  /* End of Freq */          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
 /************* Waves Concatenation ***************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          } 
 {          
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          else{
      Death is a valid wave (if date is known).            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          } 
      and mw[mi+1][i]. dh depends on stepm.          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      */          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   int i, mi, m;          ipmx +=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          sw += weight[i];
      double sum=0., jmean=0.;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   int j, k=0,jk, ju, jl;      } /* end of individual */
   double sum=0.;    }  else if(mle==2){
   jmin=1e+5;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jmax=-1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmean=0.;        for(mi=1; mi<= wav[i]-1; mi++){
   for(i=1; i<=imx; i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     mi=0;            for (j=1;j<=nlstate+ndeath;j++){
     m=firstpass;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     while(s[m][i] <= nlstate){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(s[m][i]>=1)            }
         mw[++mi][i]=m;          for(d=0; d<=dh[mi][i]; d++){
       if(m >=lastpass)            newm=savm;
         break;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else            for (kk=1; kk<=cptcovage;kk++) {
         m++;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }/* end while */            }
     if (s[m][i] > nlstate){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       mi++;     /* Death is another wave */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       /* if(mi==0)  never been interviewed correctly before death */            savm=oldm;
          /* Only death is a correct wave */            oldm=newm;
       mw[mi][i]=m;          } /* end mult */
     }        
           s1=s[mw[mi][i]][i];
     wav[i]=mi;          s2=s[mw[mi+1][i]][i];
     if(mi==0)          bbh=(double)bh[mi][i]/(double)stepm; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }          ipmx +=1;
           sw += weight[i];
   for(i=1; i<=imx; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(mi=1; mi<wav[i];mi++){        } /* end of wave */
       if (stepm <=0)      } /* end of individual */
         dh[mi][i]=1;    }  else if(mle==3){  /* exponential inter-extrapolation */
       else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (agedc[i] < 2*AGESUP) {        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          for (ii=1;ii<=nlstate+ndeath;ii++)
           if(j==0) j=1;  /* Survives at least one month after exam */            for (j=1;j<=nlstate+ndeath;j++){
           k=k+1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           if (j <= jmin) jmin=j;            }
           sum=sum+j;          for(d=0; d<dh[mi][i]; d++){
           /*if (j<0) printf("j=%d num=%d \n",j,i); */            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         else{              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            }
           k=k+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if (j >= jmax) jmax=j;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           else if (j <= jmin)jmin=j;            savm=oldm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            oldm=newm;
           sum=sum+j;          } /* end mult */
         }        
         jk= j/stepm;          s1=s[mw[mi][i]][i];
         jl= j -jk*stepm;          s2=s[mw[mi+1][i]][i];
         ju= j -(jk+1)*stepm;          bbh=(double)bh[mi][i]/(double)stepm; 
         if(jl <= -ju)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           dh[mi][i]=jk;          ipmx +=1;
         else          sw += weight[i];
           dh[mi][i]=jk+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if(dh[mi][i]==0)        } /* end of wave */
           dh[mi][i]=1; /* At least one step */      } /* end of individual */
       }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   jmean=sum/k;        for(mi=1; mi<= wav[i]-1; mi++){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for (ii=1;ii<=nlstate+ndeath;ii++)
  }            for (j=1;j<=nlstate+ndeath;j++){
 /*********** Tricode ****************************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void tricode(int *Tvar, int **nbcode, int imx)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int Ndum[20],ij=1, k, j, i;          for(d=0; d<dh[mi][i]; d++){
   int cptcode=0;            newm=savm;
   cptcoveff=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   for (k=0; k<19; k++) Ndum[k]=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (k=1; k<=7; k++) ncodemax[k]=0;            }
           
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=imx; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       ij=(int)(covar[Tvar[j]][i]);            savm=oldm;
       Ndum[ij]++;            oldm=newm;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          } /* end mult */
       if (ij > cptcode) cptcode=ij;        
     }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     for (i=0; i<=cptcode; i++) {          if( s2 > nlstate){ 
       if(Ndum[i]!=0) ncodemax[j]++;            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
     ij=1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
           ipmx +=1;
     for (i=1; i<=ncodemax[j]; i++) {          sw += weight[i];
       for (k=0; k<=19; k++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (Ndum[k] != 0) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           nbcode[Tvar[j]][ij]=k;        } /* end of wave */
                } /* end of individual */
           ij++;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if (ij > ncodemax[j]) break;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }          for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }              for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (k=0; k<19; k++) Ndum[k]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  for (i=1; i<=ncovmodel-2; i++) {          for(d=0; d<dh[mi][i]; d++){
       ij=Tvar[i];            newm=savm;
       Ndum[ij]++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  ij=1;            }
  for (i=1; i<=10; i++) {          
    if((Ndum[i]!=0) && (i<=ncovcol)){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;            savm=oldm;
    }            oldm=newm;
  }          } /* end mult */
          
     cptcoveff=ij-1;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /*********** Health Expectancies ****************/          ipmx +=1;
           sw += weight[i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 {        } /* end of wave */
   /* Health expectancies */      } /* end of individual */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    } /* End of if */
   double age, agelim, hf;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double ***p3mat,***varhe;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **dnewm,**doldm;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *xp;    return -l;
   double **gp, **gm;  }
   double ***gradg, ***trgradg;  
   int theta;  /*************** log-likelihood *************/
   double funcone( double *x)
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  {
   xp=vector(1,npar);    /* Same as likeli but slower because of a lot of printf and if */
   dnewm=matrix(1,nlstate*2,1,npar);    int i, ii, j, k, mi, d, kk;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   fprintf(ficreseij,"# Health expectancies\n");    double lli; /* Individual log likelihood */
   fprintf(ficreseij,"# Age");    double llt;
   for(i=1; i<=nlstate;i++)    int s1, s2;
     for(j=1; j<=nlstate;j++)    double bbh, survp;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    /*extern weight */
   fprintf(ficreseij,"\n");    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if(estepm < stepm){    /*for(i=1;i<imx;i++) 
     printf ("Problem %d lower than %d\n",estepm, stepm);      printf(" %d\n",s[4][i]);
   }    */
   else  hstepm=estepm;      cov[1]=1.;
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example    for(k=1; k<=nlstate; k++) ll[k]=0.;
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    * progression inbetween and thus overestimating or underestimating according      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * to the curvature of the survival function. If, for the same date, we      for(mi=1; mi<= wav[i]-1; mi++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        for (ii=1;ii<=nlstate+ndeath;ii++)
    * to compare the new estimate of Life expectancy with the same linear          for (j=1;j<=nlstate+ndeath;j++){
    * hypothesis. A more precise result, taking into account a more precise            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * curvature will be obtained if estepm is as small as stepm. */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   /* For example we decided to compute the life expectancy with the smallest unit */        for(d=0; d<dh[mi][i]; d++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          newm=savm;
      nhstepm is the number of hstepm from age to agelim          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      nstepm is the number of stepm from age to agelin.          for (kk=1; kk<=cptcovage;kk++) {
      Look at hpijx to understand the reason of that which relies in memory size            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      and note for a fixed period like estepm months */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      survival function given by stepm (the optimization length). Unfortunately it                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      means that if the survival funtion is printed only each two years of age and if          savm=oldm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          oldm=newm;
      results. So we changed our mind and took the option of the best precision.        } /* end mult */
   */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        s1=s[mw[mi][i]][i];
         s2=s[mw[mi+1][i]][i];
   agelim=AGESUP;        bbh=(double)bh[mi][i]/(double)stepm; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* bias is positive if real duration
     /* nhstepm age range expressed in number of stepm */         * is higher than the multiple of stepm and negative otherwise.
     nstepm=(int) rint((agelim-age)*YEARM/stepm);         */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     /* if (stepm >= YEARM) hstepm=1;*/          lli=log(out[s1][s2] - savm[s1][s2]);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } else if  (s2==-2) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (j=1,survp=0. ; j<=nlstate; j++) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gp=matrix(0,nhstepm,1,nlstate*2);          lli= log(survp);
     gm=matrix(0,nhstepm,1,nlstate*2);        }else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        } else if(mle==2){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     /* Computing Variances of health expectancies */          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
      for(theta=1; theta <=npar; theta++){        ipmx +=1;
       for(i=1; i<=npar; i++){        sw += weight[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if(globpr){
            fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       cptj=0;   %11.6f %11.6f %11.6f ", \
       for(j=1; j<= nlstate; j++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(i=1; i<=nlstate; i++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           cptj=cptj+1;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            llt +=ll[k]*gipmx/gsw;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }          }
         }          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
            } /* end of wave */
          } /* end of individual */
       for(i=1; i<=npar; i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
          if(globpr==0){ /* First time we count the contributions and weights */
       cptj=0;      gipmx=ipmx;
       for(j=1; j<= nlstate; j++){      gsw=sw;
         for(i=1;i<=nlstate;i++){    }
           cptj=cptj+1;    return -l;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  
         }  /*************** function likelione ***********/
       }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
        {
        /* This routine should help understanding what is done with 
        the selection of individuals/waves and
       for(j=1; j<= nlstate*2; j++)       to check the exact contribution to the likelihood.
         for(h=0; h<=nhstepm-1; h++){       Plotting could be done.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];     */
         }    int k;
   
      }    if(*globpri !=0){ /* Just counts and sums, no printings */
          strcpy(fileresilk,"ilk"); 
 /* End theta */      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
      for(h=0; h<=nhstepm-1; h++)      }
       for(j=1; j<=nlstate*2;j++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for(theta=1; theta <=npar; theta++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         trgradg[h][j][theta]=gradg[h][theta][j];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
      for(i=1;i<=nlstate*2;i++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       for(j=1;j<=nlstate*2;j++)    }
         varhe[i][j][(int)age] =0.;  
     *fretone=(*funcone)(p);
     for(h=0;h<=nhstepm-1;h++){    if(*globpri !=0){
       for(k=0;k<=nhstepm-1;k++){      fclose(ficresilk);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      fflush(fichtm); 
         for(i=1;i<=nlstate*2;i++)    } 
           for(j=1;j<=nlstate*2;j++)    return;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  
   /*********** Maximum Likelihood Estimation ***************/
        
     /* Computing expectancies */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++)    int i,j, iter;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    double **xi;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double fret;
              double fretone; /* Only one call to likelihood */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
     fprintf(ficreseij,"%3.0f",age );        xi[i][j]=(i==j ? 1.0 : 0.0);
     cptj=0;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
       for(j=1; j<=nlstate;j++){    strcat(filerespow,fileres);
         cptj++;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fprintf(ficreseij,"\n");    }
        fprintf(ficrespow,"# Powell\n# iter -2*LL");
     free_matrix(gm,0,nhstepm,1,nlstate*2);    for (i=1;i<=nlstate;i++)
     free_matrix(gp,0,nhstepm,1,nlstate*2);      for(j=1;j<=nlstate+ndeath;j++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficrespow,"\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    free_matrix(xi,1,npar,1,npar);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    fclose(ficrespow);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /************ Variance ******************/  
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)  }
 {  
   /* Variance of health expectancies */  /**** Computes Hessian and covariance matrix ***/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double **newm;  {
   double **dnewm,**doldm;    double  **a,**y,*x,pd;
   int i, j, nhstepm, hstepm, h, nstepm ;    double **hess;
   int k, cptcode;    int i, j,jk;
   double *xp;    int *indx;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   double ***p3mat;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double age,agelim, hf;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   int theta;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
    fprintf(ficresvij,"# Covariances of life expectancies\n");    hess=matrix(1,npar,1,npar);
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
     for(j=1; j<=nlstate;j++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (i=1;i<=npar;i++){
   fprintf(ficresvij,"\n");      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
   xp=vector(1,npar);     
   dnewm=matrix(1,nlstate,1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   doldm=matrix(1,nlstate,1,nlstate);      
        /*  printf(" %f ",p[i]);
   if(estepm < stepm){          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     printf ("Problem %d lower than %d\n",estepm, stepm);    }
   }    
   else  hstepm=estepm;      for (i=1;i<=npar;i++) {
   /* For example we decided to compute the life expectancy with the smallest unit */      for (j=1;j<=npar;j++)  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        if (j>i) { 
      nhstepm is the number of hstepm from age to agelim          printf(".%d%d",i,j);fflush(stdout);
      nstepm is the number of stepm from age to agelin.          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      Look at hpijx to understand the reason of that which relies in memory size          hess[i][j]=hessij(p,delti,i,j,func,npar);
      and note for a fixed period like k years */          
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          hess[j][i]=hess[i][j];    
      survival function given by stepm (the optimization length). Unfortunately it          /*printf(" %lf ",hess[i][j]);*/
      means that if the survival funtion is printed only each two years of age and if        }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      }
      results. So we changed our mind and took the option of the best precision.    }
   */    printf("\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    fprintf(ficlog,"\n");
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    a=matrix(1,npar,1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    y=matrix(1,npar,1,npar);
     gp=matrix(0,nhstepm,1,nlstate);    x=vector(1,npar);
     gm=matrix(0,nhstepm,1,nlstate);    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
     for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(i=1; i<=npar; i++){ /* Computes gradient */    ludcmp(a,npar,indx,&pd);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (j=1;j<=npar;j++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1;i<=npar;i++) x[i]=0;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      x[j]=1;
       lubksb(a,npar,indx,x);
       if (popbased==1) {      for (i=1;i<=npar;i++){ 
         for(i=1; i<=nlstate;i++)        matcov[i][j]=x[i];
           prlim[i][i]=probs[(int)age][i][ij];      }
       }    }
    
       for(j=1; j<= nlstate; j++){    printf("\n#Hessian matrix#\n");
         for(h=0; h<=nhstepm; h++){    fprintf(ficlog,"\n#Hessian matrix#\n");
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for (i=1;i<=npar;i++) { 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for (j=1;j<=npar;j++) { 
         }        printf("%.3e ",hess[i][j]);
       }        fprintf(ficlog,"%.3e ",hess[i][j]);
          }
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
      /* Recompute Inverse */
       if (popbased==1) {    for (i=1;i<=npar;i++)
         for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           prlim[i][i]=probs[(int)age][i][ij];    ludcmp(a,npar,indx,&pd);
       }  
     /*  printf("\n#Hessian matrix recomputed#\n");
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    for (j=1;j<=npar;j++) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      x[j]=1;
         }      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
       for(j=1; j<= nlstate; j++)        printf("%.3e ",y[i][j]);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"%.3e ",y[i][j]);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      printf("\n");
     } /* End theta */      fprintf(ficlog,"\n");
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    */
   
     for(h=0; h<=nhstepm; h++)    free_matrix(a,1,npar,1,npar);
       for(j=1; j<=nlstate;j++)    free_matrix(y,1,npar,1,npar);
         for(theta=1; theta <=npar; theta++)    free_vector(x,1,npar);
           trgradg[h][j][theta]=gradg[h][theta][j];    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  }
         vareij[i][j][(int)age] =0.;  
   /*************** hessian matrix ****************/
     for(h=0;h<=nhstepm;h++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(k=0;k<=nhstepm;k++){  {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int i;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int l=1, lmax=20;
         for(i=1;i<=nlstate;i++)    double k1,k2;
           for(j=1;j<=nlstate;j++)    double p2[NPARMAX+1];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double res;
       }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
     int k=0,kmax=10;
     fprintf(ficresvij,"%.0f ",age );    double l1;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    fx=func(x);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    for (i=1;i<=npar;i++) p2[i]=x[i];
       }    for(l=0 ; l <=lmax; l++){
     fprintf(ficresvij,"\n");      l1=pow(10,l);
     free_matrix(gp,0,nhstepm,1,nlstate);      delts=delt;
     free_matrix(gm,0,nhstepm,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        delt = delta*(l1*k);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        p2[theta]=x[theta] +delt;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        k1=func(p2)-fx;
   } /* End age */        p2[theta]=x[theta]-delt;
          k2=func(p2)-fx;
   free_vector(xp,1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_matrix(doldm,1,nlstate,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   free_matrix(dnewm,1,nlstate,1,nlstate);        
   #ifdef DEBUG
 }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 /************ Variance of prevlim ******************/  #endif
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   /* Variance of prevalence limit */          k=kmax;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        }
   double **newm;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **dnewm,**doldm;          k=kmax; l=lmax*10.;
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double *xp;          delts=delt;
   double *gp, *gm;        }
   double **gradg, **trgradg;      }
   double age,agelim;    }
   int theta;    delti[theta]=delts;
        return res; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    
   fprintf(ficresvpl,"# Age");  }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   fprintf(ficresvpl,"\n");  {
     int i;
   xp=vector(1,npar);    int l=1, l1, lmax=20;
   dnewm=matrix(1,nlstate,1,npar);    double k1,k2,k3,k4,res,fx;
   doldm=matrix(1,nlstate,1,nlstate);    double p2[NPARMAX+1];
      int k;
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    fx=func(x);
   agelim = AGESUP;    for (k=1; k<=2; k++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1;i<=npar;i++) p2[i]=x[i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p2[thetai]=x[thetai]+delti[thetai]/k;
     if (stepm >= YEARM) hstepm=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      k1=func(p2)-fx;
     gradg=matrix(1,npar,1,nlstate);    
     gp=vector(1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
     gm=vector(1,nlstate);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */      p2[thetai]=x[thetai]-delti[thetai]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k3=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
       for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         gp[i] = prlim[i][i];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
          k4=func(p2)-fx;
       for(i=1; i<=npar; i++) /* Computes gradient */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #ifdef DEBUG
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         gm[i] = prlim[i][i];  #endif
     }
       for(i=1;i<=nlstate;i++)    return res;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  }
     } /* End theta */  
   /************** Inverse of matrix **************/
     trgradg =matrix(1,nlstate,1,npar);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(j=1; j<=nlstate;j++)    int i,imax,j,k; 
       for(theta=1; theta <=npar; theta++)    double big,dum,sum,temp; 
         trgradg[j][theta]=gradg[theta][j];    double *vv; 
    
     for(i=1;i<=nlstate;i++)    vv=vector(1,n); 
       varpl[i][(int)age] =0.;    *d=1.0; 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=n;i++) { 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      big=0.0; 
     for(i=1;i<=nlstate;i++)      for (j=1;j<=n;j++) 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     fprintf(ficresvpl,"%.0f ",age );      vv[i]=1.0/big; 
     for(i=1; i<=nlstate;i++)    } 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (j=1;j<=n;j++) { 
     fprintf(ficresvpl,"\n");      for (i=1;i<j;i++) { 
     free_vector(gp,1,nlstate);        sum=a[i][j]; 
     free_vector(gm,1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_matrix(gradg,1,npar,1,nlstate);        a[i][j]=sum; 
     free_matrix(trgradg,1,nlstate,1,npar);      } 
   } /* End age */      big=0.0; 
       for (i=j;i<=n;i++) { 
   free_vector(xp,1,npar);        sum=a[i][j]; 
   free_matrix(doldm,1,nlstate,1,npar);        for (k=1;k<j;k++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
 /************ Variance of one-step probabilities  ******************/          imax=i; 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        } 
 {      } 
   int i, j, i1, k1, j1, z1;      if (j != imax) { 
   int k=0, cptcode;        for (k=1;k<=n;k++) { 
   double **dnewm,**doldm;          dum=a[imax][k]; 
   double *xp;          a[imax][k]=a[j][k]; 
   double *gp, *gm;          a[j][k]=dum; 
   double **gradg, **trgradg;        } 
   double age,agelim, cov[NCOVMAX];        *d = -(*d); 
   int theta;        vv[imax]=vv[j]; 
   char fileresprob[FILENAMELENGTH];      } 
       indx[j]=imax; 
   strcpy(fileresprob,"prob");      if (a[j][j] == 0.0) a[j][j]=TINY; 
   strcat(fileresprob,fileres);      if (j != n) { 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        dum=1.0/(a[j][j]); 
     printf("Problem with resultfile: %s\n", fileresprob);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    } 
      free_vector(vv,1,n);  /* Doesn't work */
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");  ;
   fprintf(ficresprob,"# Age");  } 
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)  void lubksb(double **a, int n, int *indx, double b[]) 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  { 
     int i,ii=0,ip,j; 
     double sum; 
   fprintf(ficresprob,"\n");   
     for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   xp=vector(1,npar);      sum=b[ip]; 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      b[ip]=b[i]; 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   cov[1]=1;      else if (sum) ii=i; 
   j=cptcoveff;      b[i]=sum; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    } 
   j1=0;    for (i=n;i>=1;i--) { 
   for(k1=1; k1<=1;k1++){      sum=b[i]; 
     for(i1=1; i1<=ncodemax[k1];i1++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     j1++;      b[i]=sum/a[i][i]; 
     } 
     if  (cptcovn>0) {  } 
       fprintf(ficresprob, "\n#********** Variable ");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  void pstamp(FILE *fichier)
       fprintf(ficresprob, "**********\n#");  {
     }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      }
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;  /************ Frequencies ********************/
         for (k=1; k<=cptcovn;k++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  {  /* Some frequencies */
              
         }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int first;
         for (k=1; k<=cptcovprod;k++)    double ***freq; /* Frequencies */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double *pp, **prop;
            double pos,posprop, k2, dateintsum=0,k2cpt=0;
         gradg=matrix(1,npar,1,9);    char fileresp[FILENAMELENGTH];
         trgradg=matrix(1,9,1,npar);    
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    pp=vector(1,nlstate);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
        strcpy(fileresp,"p");
         for(theta=1; theta <=npar; theta++){    strcat(fileresp,fileres);
           for(i=1; i<=npar; i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("Problem with prevalence resultfile: %s\n", fileresp);
                fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      exit(0);
              }
           k=0;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for(i=1; i<= (nlstate+ndeath); i++){    j1=0;
             for(j=1; j<=(nlstate+ndeath);j++){    
               k=k+1;    j=cptcoveff;
               gp[k]=pmmij[i][j];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
             }  
           }    first=1;
            
           for(i=1; i<=npar; i++)    for(k1=1; k1<=j;k1++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           k=0;          scanf("%d", i);*/
           for(i=1; i<=(nlstate+ndeath); i++){        for (i=-5; i<=nlstate+ndeath; i++)  
             for(j=1; j<=(nlstate+ndeath);j++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               k=k+1;            for(m=iagemin; m <= iagemax+3; m++)
               gm[k]=pmmij[i][j];              freq[i][jk][m]=0;
             }  
           }      for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)          prop[i][m]=0;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          
         }        dateintsum=0;
         k2cpt=0;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        for (i=1; i<=imx; i++) {
           for(theta=1; theta <=npar; theta++)          bool=1;
             trgradg[j][theta]=gradg[theta][j];          if  (cptcovn>0) {
                    for (z1=1; z1<=cptcoveff; z1++) 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);                bool=0;
                  }
         pmij(pmmij,cov,ncovmodel,x,nlstate);          if (bool==1){
                    for(m=firstpass; m<=lastpass; m++){
         k=0;              k2=anint[m][i]+(mint[m][i]/12.);
         for(i=1; i<=(nlstate+ndeath); i++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
           for(j=1; j<=(nlstate+ndeath);j++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
             k=k+1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             gm[k]=pmmij[i][j];                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
         }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                        freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      /*printf("\n%d ",(int)age);                }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      }*/                  dateintsum=dateintsum+k2;
                   k2cpt++;
         fprintf(ficresprob,"\n%d ",(int)age);                }
                 /*}*/
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)            }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          }
          }
       }         
     }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        pstamp(ficresp);
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        if  (cptcovn>0) {
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          fprintf(ficresp, "\n#********** Variable "); 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresp, "**********\n#");
   free_vector(xp,1,npar);        }
   fclose(ficresprob);        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 }        fprintf(ficresp, "\n");
         
 /******************* Printing html file ***********/        for(i=iagemin; i <= iagemax+3; i++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          if(i==iagemax+3){
  int lastpass, int stepm, int weightopt, char model[],\            fprintf(ficlog,"Total");
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \          }else{
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\            if(first==1){
  char version[], int popforecast, int estepm ){              first=0;
   int jj1, k1, i1, cpt;              printf("See log file for details...\n");
   FILE *fichtm;            }
   /*char optionfilehtm[FILENAMELENGTH];*/            fprintf(ficlog,"Age %d", i);
           }
   strcpy(optionfilehtm,optionfile);          for(jk=1; jk <=nlstate ; jk++){
   strcat(optionfilehtm,".htm");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              pp[jk] += freq[jk][m][i]; 
     printf("Problem with %s \n",optionfilehtm), exit(0);          }
   }          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              pos += freq[jk][m][i];
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            if(pp[jk]>=1.e-10){
 \n              if(first==1){
 Total number of observations=%d <br>\n              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n              }
 <hr  size=\"2\" color=\"#EC5E5E\">              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  <ul><li>Outputs files<br>\n            }else{
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              if(first==1)
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          }
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
           for(jk=1; jk <=nlstate ; jk++){
  fprintf(fichtm,"\n            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              pp[jk] += freq[jk][m][i];
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          }       
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n            pos += pp[jk];
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            posprop += prop[jk][i];
           }
  if(popforecast==1) fprintf(fichtm,"\n          for(jk=1; jk <=nlstate ; jk++){
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            if(pos>=1.e-5){
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              if(first==1)
         <br>",fileres,fileres,fileres,fileres);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  else              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            }else{
 fprintf(fichtm," <li>Graphs</li><p>");              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  m=cptcoveff;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            }
             if( i <= iagemax){
  jj1=0;              if(pos>=1.e-5){
  for(k1=1; k1<=m;k1++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    for(i1=1; i1<=ncodemax[k1];i1++){                /*probs[i][jk][j1]= pp[jk]/pos;*/
        jj1++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
        if (cptcovn > 0) {              }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              else
          for (cpt=1; cpt<=cptcoveff;cpt++)                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
        }          
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          for(jk=-1; jk <=nlstate+ndeath; jk++)
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                for(m=-1; m <=nlstate+ndeath; m++)
        for(cpt=1; cpt<nlstate;cpt++){              if(freq[jk][m][i] !=0 ) {
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              if(first==1)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
        }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(cpt=1; cpt<=nlstate;cpt++) {              }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          if(i <= iagemax)
 interval) in state (%d): v%s%d%d.gif <br>            fprintf(ficresp,"\n");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if(first==1)
      }            printf("Others in log...\n");
      for(cpt=1; cpt<=nlstate;cpt++) {          fprintf(ficlog,"\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      }
      }    }
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    dateintmean=dateintsum/k2cpt; 
 health expectancies in states (1) and (2): e%s%d.gif<br>   
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fclose(ficresp);
 fprintf(fichtm,"\n</body>");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
    }    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 fclose(fichtm);    /* End of Freq */
 }  }
   
 /******************* Gnuplot file **************/  /************ Prevalence ********************/
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcpy(optionfilegnuplot,optionfilefiname);       We still use firstpass and lastpass as another selection.
   strcat(optionfilegnuplot,".gp.txt");    */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {   
     printf("Problem with file %s",optionfilegnuplot);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   }    double ***freq; /* Frequencies */
     double *pp, **prop;
 #ifdef windows    double pos,posprop; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    double  y2; /* in fractional years */
 #endif    int iagemin, iagemax;
 m=pow(2,cptcoveff);  
      iagemin= (int) agemin;
  /* 1eme*/    iagemax= (int) agemax;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /*pp=vector(1,nlstate);*/
    for (k1=1; k1<= m ; k1 ++) {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    j1=0;
     
 for (i=1; i<= nlstate ; i ++) {    j=cptcoveff;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    for(k1=1; k1<=j;k1++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(i1=1; i1<=ncodemax[k1];i1++){
     for (i=1; i<= nlstate ; i ++) {        j1++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for (i=1; i<=nlstate; i++)  
 }          for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            prop[i][m]=0.0;
      for (i=1; i<= nlstate ; i ++) {       
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (i=1; i<=imx; i++) { /* Each individual */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          bool=1;
 }            if  (cptcovn>0) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                bool=0;
    }          } 
   }          if (bool==1) { 
   /*2 eme*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   for (k1=1; k1<= m ; k1 ++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    if(agev[m][i]==1) agev[m][i]=iagemax+2;
     for (i=1; i<= nlstate+1 ; i ++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       k=2*i;                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for (j=1; j<= nlstate+1 ; j ++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                } 
 }                }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            } /* end selection of waves */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {        for(i=iagemin; i <= iagemax+3; i++){  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          
         else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 }              posprop += prop[jk][i]; 
       fprintf(ficgp,"\" t\"\" w l 0,");          } 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=1; jk <=nlstate ; jk++){     
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if( i <=  iagemax){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(posprop>=1.e-5){ 
 }                  probs[i][jk][j1]= prop[jk][i]/posprop;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              } 
       else fprintf(ficgp,"\" t\"\" w l 0,");            } 
     }          }/* end jk */ 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        }/* end i */ 
   }      } /* end i1 */
      } /* end k1 */
   /*3eme*/    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for (k1=1; k1<= m ; k1 ++) {    /*free_vector(pp,1,nlstate);*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       k=2+nlstate*(2*cpt-2);  }  /* End of prevalence */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  /************* Waves Concatenation ***************/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 */       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       for (i=1; i< nlstate ; i ++) {       and mw[mi+1][i]. dh depends on stepm.
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       */
   
       }    int i, mi, m;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     }       double sum=0., jmean=0.;*/
     }    int first;
      int j, k=0,jk, ju, jl;
   /* CV preval stat */    double sum=0.;
     for (k1=1; k1<= m ; k1 ++) {    first=0;
     for (cpt=1; cpt<nlstate ; cpt ++) {    jmin=1e+5;
       k=3;    jmax=-1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    jmean=0.;
     for(i=1; i<=imx; i++){
       for (i=1; i< nlstate ; i ++)      mi=0;
         fprintf(ficgp,"+$%d",k+i+1);      m=firstpass;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      while(s[m][i] <= nlstate){
              if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       l=3+(nlstate+ndeath)*cpt;          mw[++mi][i]=m;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        if(m >=lastpass)
       for (i=1; i< nlstate ; i ++) {          break;
         l=3+(nlstate+ndeath)*cpt;        else
         fprintf(ficgp,"+$%d",l+i+1);          m++;
       }      }/* end while */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        if (s[m][i] > nlstate){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        mi++;     /* Death is another wave */
     }        /* if(mi==0)  never been interviewed correctly before death */
   }             /* Only death is a correct wave */
          mw[mi][i]=m;
   /* proba elementaires */      }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){      wav[i]=mi;
       if (k != i) {      if(mi==0){
         for(j=1; j <=ncovmodel; j++){        nbwarn++;
                if(first==0){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           jk++;          first=1;
           fprintf(ficgp,"\n");        }
         }        if(first==1){
       }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     }        }
     }      } /* end mi==0 */
     } /* End individuals */
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for(i=1; i<=imx; i++){
    i=1;      for(mi=1; mi<wav[i];mi++){
    for(k2=1; k2<=nlstate; k2++) {        if (stepm <=0)
      k3=i;          dh[mi][i]=1;
      for(k=1; k<=(nlstate+ndeath); k++) {        else{
        if (k != k2){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            if (agedc[i] < 2*AGESUP) {
 ij=1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for(j=3; j <=ncovmodel; j++) {              if(j==0) j=1;  /* Survives at least one month after exam */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              else if(j<0){
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                nberr++;
             ij++;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
           else                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficgp,")/(1");              }
                      k=k+1;
         for(k1=1; k1 <=nlstate; k1++){                if (j >= jmax){
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                jmax=j;
 ij=1;                ijmax=i;
           for(j=3; j <=ncovmodel; j++){              }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              if (j <= jmin){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                jmin=j;
             ij++;                ijmin=i;
           }              }
           else              sum=sum+j;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           fprintf(ficgp,")");            }
         }          }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);          else{
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         i=i+ncovmodel;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        }  
      }            k=k+1;
    }            if (j >= jmax) {
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              jmax=j;
    }              ijmax=i;
                }
   fclose(ficgp);            else if (j <= jmin){
 }  /* end gnuplot */              jmin=j;
               ijmin=i;
             }
 /*************** Moving average **************/            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   int i, cpt, cptcod;              nberr++;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (i=1; i<=nlstate;i++)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            }
           mobaverage[(int)agedeb][i][cptcod]=0.;            sum=sum+j;
              }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          jk= j/stepm;
       for (i=1; i<=nlstate;i++){          jl= j -jk*stepm;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          ju= j -(jk+1)*stepm;
           for (cpt=0;cpt<=4;cpt++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            if(jl==0){
           }              dh[mi][i]=jk;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              bh[mi][i]=0;
         }            }else{ /* We want a negative bias in order to only have interpolation ie
       }                    * at the price of an extra matrix product in likelihood */
     }              dh[mi][i]=jk+1;
                  bh[mi][i]=ju;
 }            }
           }else{
             if(jl <= -ju){
 /************** Forecasting ******************/              dh[mi][i]=jk;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                                   */
   int *popage;            }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            else{
   double *popeffectif,*popcount;              dh[mi][i]=jk+1;
   double ***p3mat;              bh[mi][i]=ju;
   char fileresf[FILENAMELENGTH];            }
             if(dh[mi][i]==0){
  agelim=AGESUP;              dh[mi][i]=1; /* At least one step */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
            } /* end if mle */
          }
   strcpy(fileresf,"f");      } /* end wave */
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {    jmean=sum/k;
     printf("Problem with forecast resultfile: %s\n", fileresf);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   printf("Computing forecasting: result on file '%s' \n", fileresf);   }
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   if (mobilav==1) {  {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   }    int cptcode=0;
     cptcoveff=0; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   if (stepm<=12) stepsize=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for (k=1; k<=7; k++) ncodemax[k]=0;
   agelim=AGESUP;  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   hstepm=1;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   hstepm=hstepm/stepm;                                 modality*/ 
   yp1=modf(dateintmean,&yp);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   anprojmean=yp;        Ndum[ij]++; /*store the modality */
   yp2=modf((yp1*12),&yp);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   mprojmean=yp;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   yp1=modf((yp2*30.5),&yp);                                         Tvar[j]. If V=sex and male is 0 and 
   jprojmean=yp;                                         female is 1, then  cptcode=1.*/
   if(jprojmean==0) jprojmean=1;      }
   if(mprojmean==0) jprojmean=1;  
        for (i=0; i<=cptcode; i++) {
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
        }
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      ij=1; 
       k=k+1;      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficresf,"\n#******");        for (k=0; k<= maxncov; k++) {
       for(j=1;j<=cptcoveff;j++) {          if (Ndum[k] != 0) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            nbcode[Tvar[j]][ij]=k; 
       }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       fprintf(ficresf,"******\n");            
       fprintf(ficresf,"# StartingAge FinalAge");            ij++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          }
                if (ij > ncodemax[j]) break; 
              }  
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      } 
         fprintf(ficresf,"\n");    }  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
    for (k=0; k< maxncov; k++) Ndum[k]=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   for (i=1; i<=ncovmodel-2; i++) { 
           nhstepm = nhstepm/hstepm;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               ij=Tvar[i];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     Ndum[ij]++;
           oldm=oldms;savm=savms;   }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           ij=1;
           for (h=0; h<=nhstepm; h++){   for (i=1; i<= maxncov; i++) {
             if (h==(int) (calagedate+YEARM*cpt)) {     if((Ndum[i]!=0) && (i<=ncovcol)){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);       Tvaraff[ij]=i; /*For printing */
             }       ij++;
             for(j=1; j<=nlstate+ndeath;j++) {     }
               kk1=0.;kk2=0;   }
               for(i=1; i<=nlstate;i++) {                 
                 if (mobilav==1)   cptcoveff=ij-1; /*Number of simple covariates*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  }
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  /*********** Health Expectancies ****************/
                 }  
                  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
               }  
               if (h==(int)(calagedate+12*cpt)){  {
                 fprintf(ficresf," %.3f", kk1);    /* Health expectancies, no variances */
                            int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
               }    double age, agelim, hf;
             }    double ***p3mat;
           }    double eip;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    pstamp(ficreseij);
       }    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     }    fprintf(ficreseij,"# Age");
   }    for(i=1; i<=nlstate;i++){
              for(j=1; j<=nlstate;j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficreseij," e%1d%1d ",i,j);
       }
   fclose(ficresf);      fprintf(ficreseij," e%1d. ",i);
 }    }
 /************** Forecasting ******************/    fprintf(ficreseij,"\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
      
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if(estepm < stepm){
   int *popage;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    }
   double *popeffectif,*popcount;    else  hstepm=estepm;   
   double ***p3mat,***tabpop,***tabpopprev;    /* We compute the life expectancy from trapezoids spaced every estepm months
   char filerespop[FILENAMELENGTH];     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * progression in between and thus overestimating or underestimating according
   agelim=AGESUP;     * to the curvature of the survival function. If, for the same date, we 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
    
   strcpy(filerespop,"pop");    /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(filerespop,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim 
     printf("Problem with forecast resultfile: %s\n", filerespop);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   printf("Computing forecasting: result on file '%s' \n", filerespop);       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   if (cptcoveff==0) ncodemax[cptcoveff]=1;       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
   if (mobilav==1) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       results. So we changed our mind and took the option of the best precision.
     movingaverage(agedeb, fage, ageminpar, mobaverage);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    agelim=AGESUP;
   if (stepm<=12) stepsize=1;    /* nhstepm age range expressed in number of stepm */
      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   agelim=AGESUP;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   hstepm=1;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   hstepm=hstepm/stepm;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    
   if (popforecast==1) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     if((ficpop=fopen(popfile,"r"))==NULL) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       printf("Problem with population file : %s\n",popfile);exit(0);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }      
     popage=ivector(0,AGESUP);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     popeffectif=vector(0,AGESUP);      
     popcount=vector(0,AGESUP);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
     i=1;        printf("%d|",(int)age);fflush(stdout);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
          
     imx=i;      /* Computing expectancies */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   for(cptcov=1;cptcov<=i2;cptcov++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            
       k=k+1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {          }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }      fprintf(ficreseij,"%3.0f",age );
       fprintf(ficrespop,"******\n");      for(i=1; i<=nlstate;i++){
       fprintf(ficrespop,"# Age");        eip=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        for(j=1; j<=nlstate;j++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");          eip +=eij[i][j][(int)age];
                fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       for (cpt=0; cpt<=0;cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficreseij,"%9.4f", eip );
              }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      fprintf(ficreseij,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;    }
              free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\n");
           oldm=oldms;savm=savms;    fprintf(ficlog,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
          }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }  {
             for(j=1; j<=nlstate+ndeath;j++) {    /* Covariances of health expectancies eij and of total life expectancies according
               kk1=0.;kk2=0;     to initial status i, ei. .
               for(i=1; i<=nlstate;i++) {                  */
                 if (mobilav==1)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double age, agelim, hf;
                 else {    double ***p3matp, ***p3matm, ***varhe;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    double **dnewm,**doldm;
                 }    double *xp, *xm;
               }    double **gp, **gm;
               if (h==(int)(calagedate+12*cpt)){    double ***gradg, ***trgradg;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    int theta;
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    double eip, vip;
               }  
             }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             for(i=1; i<=nlstate;i++){    xp=vector(1,npar);
               kk1=0.;    xm=vector(1,npar);
                 for(j=1; j<=nlstate;j++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                 }    
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    pstamp(ficresstdeij);
             }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    for(i=1; i<=nlstate;i++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresstdeij," e%1d. ",i);
         }    }
       }    fprintf(ficresstdeij,"\n");
    
   /******/    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fprintf(ficrescveij,"# Age");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      for(i=1; i<=nlstate;i++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      for(j=1; j<=nlstate;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        cptj= (j-1)*nlstate+i;
           nhstepm = nhstepm/hstepm;        for(i2=1; i2<=nlstate;i2++)
                    for(j2=1; j2<=nlstate;j2++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cptj2= (j2-1)*nlstate+i2;
           oldm=oldms;savm=savms;            if(cptj2 <= cptj)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           for (h=0; h<=nhstepm; h++){          }
             if (h==(int) (calagedate+YEARM*cpt)) {      }
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    fprintf(ficrescveij,"\n");
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    if(estepm < stepm){
               kk1=0.;kk2=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
               for(i=1; i<=nlstate;i++) {                  }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        else  hstepm=estepm;   
               }    /* We compute the life expectancy from trapezoids spaced every estepm months
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);     * This is mainly to measure the difference between two models: for example
             }     * if stepm=24 months pijx are given only every 2 years and by summing them
           }     * we are calculating an estimate of the Life Expectancy assuming a linear 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
    }     * to compare the new estimate of Life expectancy with the same linear 
   }     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     /* For example we decided to compute the life expectancy with the smallest unit */
   if (popforecast==1) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     free_ivector(popage,0,AGESUP);       nhstepm is the number of hstepm from age to agelim 
     free_vector(popeffectif,0,AGESUP);       nstepm is the number of stepm from age to agelin. 
     free_vector(popcount,0,AGESUP);       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
   fclose(ficrespop);       means that if the survival funtion is printed only each two years of age and if
 }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
 /***********************************************/    */
 /**************** Main Program *****************/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 /***********************************************/  
     /* If stepm=6 months */
 int main(int argc, char *argv[])    /* nhstepm age range expressed in number of stepm */
 {    agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double agedeb, agefin,hf;    /* if (stepm >= YEARM) hstepm=1;*/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   double fret;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **xi,tmp,delta;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double dum; /* Dummy variable */    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double ***p3mat;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   int *indx;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];    for (age=bage; age<=fage; age ++){ 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];      /* Computing  Variances of health expectancies */
   char popfile[FILENAMELENGTH];      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];         decrease memory allocation */
   int firstobs=1, lastobs=10;      for(theta=1; theta <=npar; theta++){
   int sdeb, sfin; /* Status at beginning and end */        for(i=1; i<=npar; i++){ 
   int c,  h , cpt,l;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int ju,jl, mi;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   int mobilav=0,popforecast=0;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   int hstepm, nhstepm;    
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
   double bage, fage, age, agelim, agebase;            for(h=0; h<=nhstepm-1; h++){
   double ftolpl=FTOL;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   double **prlim;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double *severity;            }
   double ***param; /* Matrix of parameters */          }
   double  *p;        }
   double **matcov; /* Matrix of covariance */       
   double ***delti3; /* Scale */        for(ij=1; ij<= nlstate*nlstate; ij++)
   double *delti; /* Scale */          for(h=0; h<=nhstepm-1; h++){
   double ***eij, ***vareij;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double **varpl; /* Variances of prevalence limits by age */          }
   double *epj, vepp;      }/* End theta */
   double kk1, kk2;      
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      
        for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";          for(theta=1; theta <=npar; theta++)
   char *alph[]={"a","a","b","c","d","e"}, str[4];            trgradg[h][j][theta]=gradg[h][theta][j];
       
   
   char z[1]="c", occ;       for(ij=1;ij<=nlstate*nlstate;ij++)
 #include <sys/time.h>        for(ji=1;ji<=nlstate*nlstate;ji++)
 #include <time.h>          varhe[ij][ji][(int)age] =0.;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
         printf("%d|",(int)age);fflush(stdout);
   /* long total_usecs;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   struct timeval start_time, end_time;       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   getcwd(pathcd, size);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   printf("\n%s",version);            for(ji=1;ji<=nlstate*nlstate;ji++)
   if(argc <=1){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("\nEnter the parameter file name: ");        }
     scanf("%s",pathtot);      }
   }      /* Computing expectancies */
   else{      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     strcpy(pathtot,argv[1]);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /*cygwin_split_path(pathtot,path,optionfile);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            
   /* cutv(path,optionfile,pathtot,'\\');*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      fprintf(ficresstdeij,"%3.0f",age );
   replace(pathc,path);      for(i=1; i<=nlstate;i++){
         eip=0.;
 /*-------- arguments in the command line --------*/        vip=0.;
         for(j=1; j<=nlstate;j++){
   strcpy(fileres,"r");          eip += eij[i][j][(int)age];
   strcat(fileres, optionfilefiname);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   strcat(fileres,".txt");    /* Other files have txt extension */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /*---------arguments file --------*/        }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);      fprintf(ficresstdeij,"\n");
     goto end;  
   }      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
   strcpy(filereso,"o");        for(j=1; j<=nlstate;j++){
   strcat(filereso,fileres);          cptj= (j-1)*nlstate+i;
   if((ficparo=fopen(filereso,"w"))==NULL) {          for(i2=1; i2<=nlstate;i2++)
     printf("Problem with Output resultfile: %s\n", filereso);goto end;            for(j2=1; j2<=nlstate;j2++){
   }              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   /* Reads comments: lines beginning with '#' */                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);      fprintf(ficrescveij,"\n");
     puts(line);     
     fputs(line,ficparo);    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 while((c=getc(ficpar))=='#' && c!= EOF){    printf("\n");
     ungetc(c,ficpar);    fprintf(ficlog,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    free_vector(xm,1,npar);
     fputs(line,ficparo);    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
      }
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;  /************ Variance ******************/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   ncovmodel=2+cptcovn;    /* Variance of health expectancies */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
   /* Read guess parameters */    double **dnewm,**doldm;
   /* Reads comments: lines beginning with '#' */    double **dnewmp,**doldmp;
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, j, nhstepm, hstepm, h, nstepm ;
     ungetc(c,ficpar);    int k, cptcode;
     fgets(line, MAXLINE, ficpar);    double *xp;
     puts(line);    double **gp, **gm;  /* for var eij */
     fputs(line,ficparo);    double ***gradg, ***trgradg; /*for var eij */
   }    double **gradgp, **trgradgp; /* for var p point j */
   ungetc(c,ficpar);    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double ***p3mat;
     for(i=1; i <=nlstate; i++)    double age,agelim, hf;
     for(j=1; j <=nlstate+ndeath-1; j++){    double ***mobaverage;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int theta;
       fprintf(ficparo,"%1d%1d",i1,j1);    char digit[4];
       printf("%1d%1d",i,j);    char digitp[25];
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    char fileresprobmorprev[FILENAMELENGTH];
         printf(" %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);    if(popbased==1){
       }      if(mobilav!=0)
       fscanf(ficpar,"\n");        strcpy(digitp,"-populbased-mobilav-");
       printf("\n");      else strcpy(digitp,"-populbased-nomobil-");
       fprintf(ficparo,"\n");    }
     }    else 
        strcpy(digitp,"-stablbased-");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     if (mobilav!=0) {
   p=param[1][1];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   while((c=getc(ficpar))=='#' && c!= EOF){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);  
     fputs(line,ficparo);    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
   ungetc(c,ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    strcat(fileresprobmorprev,fileres);
   for(i=1; i <=nlstate; i++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     for(j=1; j <=nlstate+ndeath-1; j++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       printf("%1d%1d",i,j);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(k=1; k<=ncovmodel;k++){   
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         printf(" %le",delti3[i][j][k]);    pstamp(ficresprobmorprev);
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fscanf(ficpar,"\n");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       printf("\n");      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficparo,"\n");      for(i=1; i<=nlstate;i++)
     }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
   delti=delti3[1][1];    fprintf(ficresprobmorprev,"\n");
      fprintf(ficgp,"\n# Routine varevsij");
   /* Reads comments: lines beginning with '#' */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     ungetc(c,ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fgets(line, MAXLINE, ficpar);  /*   } */
     puts(line);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    pstamp(ficresvij);
   }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   ungetc(c,ficpar);    if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   matcov=matrix(1,npar,1,npar);    else
   for(i=1; i <=npar; i++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fscanf(ficpar,"%s",&str);    fprintf(ficresvij,"# Age");
     printf("%s",str);    for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"%s",str);      for(j=1; j<=nlstate;j++)
     for(j=1; j <=i; j++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fscanf(ficpar," %le",&matcov[i][j]);    fprintf(ficresvij,"\n");
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
     fscanf(ficpar,"\n");    doldm=matrix(1,nlstate,1,nlstate);
     printf("\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     fprintf(ficparo,"\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
   for(i=1; i <=npar; i++)    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     for(j=i+1;j<=npar;j++)    gpp=vector(nlstate+1,nlstate+ndeath);
       matcov[i][j]=matcov[j][i];    gmp=vector(nlstate+1,nlstate+ndeath);
        trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   printf("\n");    
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     /*-------- Rewriting paramater file ----------*/    }
      strcpy(rfileres,"r");    /* "Rparameterfile */    else  hstepm=estepm;   
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    /* For example we decided to compute the life expectancy with the smallest unit */
      strcat(rfileres,".");    /* */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       nhstepm is the number of hstepm from age to agelim 
     if((ficres =fopen(rfileres,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
     fprintf(ficres,"#%s\n",version);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           survival function given by stepm (the optimization length). Unfortunately it
     /*-------- data file ----------*/       means that if the survival funtion is printed every two years of age and if
     if((fic=fopen(datafile,"r"))==NULL)    {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("Problem with datafile: %s\n", datafile);goto end;       results. So we changed our mind and took the option of the best precision.
     }    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     n= lastobs;    agelim = AGESUP;
     severity = vector(1,maxwav);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     outcome=imatrix(1,maxwav+1,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     num=ivector(1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     moisnais=vector(1,n);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     annais=vector(1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     moisdc=vector(1,n);      gp=matrix(0,nhstepm,1,nlstate);
     andc=vector(1,n);      gm=matrix(0,nhstepm,1,nlstate);
     agedc=vector(1,n);  
     cod=ivector(1,n);  
     weight=vector(1,n);      for(theta=1; theta <=npar; theta++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     mint=matrix(1,maxwav,1,n);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     anint=matrix(1,maxwav,1,n);        }
     s=imatrix(1,maxwav+1,1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     adl=imatrix(1,maxwav+1,1,n);            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);        if (popbased==1) {
           if(mobilav ==0){
     i=1;            for(i=1; i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {              prlim[i][i]=probs[(int)age][i][ij];
       if ((i >= firstobs) && (i <=lastobs)) {          }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){              prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
                    for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* This for computing probability of death (h=1 means
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        */
         for (j=ncovcol;j>=1;j--){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         num[i]=atol(stra);        }    
                /* end probability of death */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         i=i+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }   
     /* printf("ii=%d", ij);        if (popbased==1) {
        scanf("%d",i);*/          if(mobilav ==0){
   imx=i-1; /* Number of individuals */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /* for (i=1; i<=imx; i++){          }else{ /* mobilav */ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for(i=1; i<=nlstate;i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              prlim[i][i]=mobaverage[(int)age][i][ij];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/        }
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;        for(j=1; j<= nlstate; j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);        }
   Tprod=ivector(1,15);        /* This for computing probability of death (h=1 means
   Tvaraff=ivector(1,15);           computed over hstepm matrices product = hstepm*stepm months) 
   Tvard=imatrix(1,15,1,2);           as a weighted average of prlim.
   Tage=ivector(1,15);              */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (strlen(model) >1){          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     j=0, j1=0, k1=1, k2=1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     j=nbocc(model,'+');        }    
     j1=nbocc(model,'*');        /* end probability of death */
     cptcovn=j+1;  
     cptcovprod=j1;        for(j=1; j<= nlstate; j++) /* vareij */
              for(h=0; h<=nhstepm; h++){
     strcpy(modelsav,model);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          }
       printf("Error. Non available option model=%s ",model);  
       goto end;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            }
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');      } /* End theta */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {      for(h=0; h<=nhstepm; h++) /* veij */
         cutv(strd,strc,strb,'*');        for(j=1; j<=nlstate;j++)
         if (strcmp(strc,"age")==0) {          for(theta=1; theta <=npar; theta++)
           cptcovprod--;            trgradg[h][j][theta]=gradg[h][theta][j];
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           cptcovage++;        for(theta=1; theta <=npar; theta++)
             Tage[cptcovage]=i;          trgradgp[j][theta]=gradgp[theta][j];
             /*printf("stre=%s ", stre);*/    
         }  
         else if (strcmp(strd,"age")==0) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           cptcovprod--;      for(i=1;i<=nlstate;i++)
           cutv(strb,stre,strc,'V');        for(j=1;j<=nlstate;j++)
           Tvar[i]=atoi(stre);          vareij[i][j][(int)age] =0.;
           cptcovage++;  
           Tage[cptcovage]=i;      for(h=0;h<=nhstepm;h++){
         }        for(k=0;k<=nhstepm;k++){
         else {          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           cutv(strb,stre,strc,'V');          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           Tvar[i]=ncovcol+k1;          for(i=1;i<=nlstate;i++)
           cutv(strb,strc,strd,'V');            for(j=1;j<=nlstate;j++)
           Tprod[k1]=i;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           Tvard[k1][1]=atoi(strc);        }
           Tvard[k1][2]=atoi(stre);      }
           Tvar[cptcovn+k2]=Tvard[k1][1];    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      /* pptj */
           for (k=1; k<=lastobs;k++)      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           k1++;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           k2=k2+2;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         }          varppt[j][i]=doldmp[j][i];
       }      /* end ppptj */
       else {      /*  x centered again */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        /*  scanf("%d",i);*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       cutv(strd,strc,strb,'V');   
       Tvar[i]=atoi(strc);      if (popbased==1) {
       }        if(mobilav ==0){
       strcpy(modelsav,stra);            for(i=1; i<=nlstate;i++)
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);            prlim[i][i]=probs[(int)age][i][ij];
         scanf("%d",i);*/        }else{ /* mobilav */ 
     }          for(i=1; i<=nlstate;i++)
 }            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      }
   printf("cptcovprod=%d ", cptcovprod);               
   scanf("%d ",i);*/      /* This for computing probability of death (h=1 means
     fclose(fic);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
     /*  if(mle==1){*/      */
     if (weightopt != 1) { /* Maximisation without weights*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(i=1;i<=n;i++) weight[i]=1.0;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     /*-calculation of age at interview from date of interview and age at death -*/      }    
     agev=matrix(1,maxwav,1,imx);      /* end probability of death */
   
     for (i=1; i<=imx; i++) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(m=2; (m<= maxwav); m++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          anint[m][i]=9999;        for(i=1; i<=nlstate;i++){
          s[m][i]=-1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
        }        }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      } 
       }      fprintf(ficresprobmorprev,"\n");
     }  
       fprintf(ficresvij,"%.0f ",age );
     for (i=1; i<=imx; i++)  {      for(i=1; i<=nlstate;i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(j=1; j<=nlstate;j++){
       for(m=1; (m<= maxwav); m++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         if(s[m][i] >0){        }
           if (s[m][i] >= nlstate+1) {      fprintf(ficresvij,"\n");
             if(agedc[i]>0)      free_matrix(gp,0,nhstepm,1,nlstate);
               if(moisdc[i]!=99 && andc[i]!=9999)      free_matrix(gm,0,nhstepm,1,nlstate);
                 agev[m][i]=agedc[i];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
            else {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               if (andc[i]!=9999){    } /* End age */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_vector(gpp,nlstate+1,nlstate+ndeath);
               agev[m][i]=-1;    free_vector(gmp,nlstate+1,nlstate+ndeath);
               }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           else if(s[m][i] !=9){ /* Should no more exist */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             if(mint[m][i]==99 || anint[m][i]==9999)  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
               agev[m][i]=1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
             else if(agev[m][i] <agemin){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
               agemin=agev[m][i];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
             }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
             else if(agev[m][i] >agemax){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
               agemax=agev[m][i];    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             }  */
             /*agev[m][i]=anint[m][i]-annais[i];*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           }  
           else { /* =9 */    free_vector(xp,1,npar);
             agev[m][i]=1;    free_matrix(doldm,1,nlstate,1,nlstate);
             s[m][i]=-1;    free_matrix(dnewm,1,nlstate,1,npar);
           }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         else /*= 0 Unknown */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           agev[m][i]=1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
        fflush(ficgp);
     }    fflush(fichtm); 
     for (i=1; i<=imx; i++)  {  }  /* end varevsij */
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  /************ Variance of prevlim ******************/
           printf("Error: Wrong value in nlstate or ndeath\n");    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           goto end;  {
         }    /* Variance of prevalence limit */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     }    double **newm;
     double **dnewm,**doldm;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int i, j, nhstepm, hstepm;
     int k, cptcode;
     free_vector(severity,1,maxwav);    double *xp;
     free_imatrix(outcome,1,maxwav+1,1,n);    double *gp, *gm;
     free_vector(moisnais,1,n);    double **gradg, **trgradg;
     free_vector(annais,1,n);    double age,agelim;
     /* free_matrix(mint,1,maxwav,1,n);    int theta;
        free_matrix(anint,1,maxwav,1,n);*/    
     free_vector(moisdc,1,n);    pstamp(ficresvpl);
     free_vector(andc,1,n);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
        for(i=1; i<=nlstate;i++)
     wav=ivector(1,imx);        fprintf(ficresvpl," %1d-%1d",i,i);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficresvpl,"\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
        xp=vector(1,npar);
     /* Concatenates waves */    dnewm=matrix(1,nlstate,1,npar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
       Tcode=ivector(1,100);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    agelim = AGESUP;
       ncodemax[1]=1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
            if (stepm >= YEARM) hstepm=1;
    codtab=imatrix(1,100,1,10);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    h=0;      gradg=matrix(1,npar,1,nlstate);
    m=pow(2,cptcoveff);      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      for(theta=1; theta <=npar; theta++){
        for(j=1; j <= ncodemax[k]; j++){        for(i=1; i<=npar; i++){ /* Computes gradient */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        for(i=1;i<=nlstate;i++)
          }          gp[i] = prlim[i][i];
        }      
      }        for(i=1; i<=npar; i++) /* Computes gradient */
    }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       codtab[1][2]=1;codtab[2][2]=2; */        for(i=1;i<=nlstate;i++)
    /* for(i=1; i <=m ;i++){          gm[i] = prlim[i][i];
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(i=1;i<=nlstate;i++)
       }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       printf("\n");      } /* End theta */
       }  
       scanf("%d",i);*/      trgradg =matrix(1,nlstate,1,npar);
      
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(j=1; j<=nlstate;j++)
        and prints on file fileres'p'. */        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
      
          for(i=1;i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        varpl[i][(int)age] =0.;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1;i<=nlstate;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        
     /* For Powell, parameters are in a vector p[] starting at p[1]      fprintf(ficresvpl,"%.0f ",age );
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for(i=1; i<=nlstate;i++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
     if(mle==1){      free_vector(gp,1,nlstate);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      free_vector(gm,1,nlstate);
     }      free_matrix(gradg,1,npar,1,nlstate);
          free_matrix(trgradg,1,nlstate,1,npar);
     /*--------- results files --------------*/    } /* End age */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
    jk=1;    free_matrix(dnewm,1,nlstate,1,nlstate);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  }
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){  /************ Variance of one-step probabilities  ******************/
        if (k != i)  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
          {  {
            printf("%d%d ",i,k);    int i, j=0,  i1, k1, l1, t, tj;
            fprintf(ficres,"%1d%1d ",i,k);    int k2, l2, j1,  z1;
            for(j=1; j <=ncovmodel; j++){    int k=0,l, cptcode;
              printf("%f ",p[jk]);    int first=1, first1;
              fprintf(ficres,"%f ",p[jk]);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
              jk++;    double **dnewm,**doldm;
            }    double *xp;
            printf("\n");    double *gp, *gm;
            fprintf(ficres,"\n");    double **gradg, **trgradg;
          }    double **mu;
      }    double age,agelim, cov[NCOVMAX];
    }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  if(mle==1){    int theta;
     /* Computing hessian and covariance matrix */    char fileresprob[FILENAMELENGTH];
     ftolhess=ftol; /* Usually correct */    char fileresprobcov[FILENAMELENGTH];
     hesscov(matcov, p, npar, delti, ftolhess, func);    char fileresprobcor[FILENAMELENGTH];
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    double ***varpij;
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){    strcpy(fileresprob,"prob"); 
       for(j=1; j <=nlstate+ndeath; j++){    strcat(fileresprob,fileres);
         if (j!=i) {    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           fprintf(ficres,"%1d%1d",i,j);      printf("Problem with resultfile: %s\n", fileresprob);
           printf("%1d%1d",i,j);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           for(k=1; k<=ncovmodel;k++){    }
             printf(" %.5e",delti[jk]);    strcpy(fileresprobcov,"probcov"); 
             fprintf(ficres," %.5e",delti[jk]);    strcat(fileresprobcov,fileres);
             jk++;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           }      printf("Problem with resultfile: %s\n", fileresprobcov);
           printf("\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           fprintf(ficres,"\n");    }
         }    strcpy(fileresprobcor,"probcor"); 
       }    strcat(fileresprobcor,fileres);
      }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
     k=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(i=1;i<=npar;i++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       /*  if (k>nlstate) k=1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficres,"%3d",i);    pstamp(ficresprob);
       printf("%3d",i);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       for(j=1; j<=i;j++){    fprintf(ficresprob,"# Age");
         fprintf(ficres," %.5e",matcov[i][j]);    pstamp(ficresprobcov);
         printf(" %.5e",matcov[i][j]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       }    fprintf(ficresprobcov,"# Age");
       fprintf(ficres,"\n");    pstamp(ficresprobcor);
       printf("\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       k++;    fprintf(ficresprobcor,"# Age");
     }  
      
     while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
       ungetc(c,ficpar);      for(j=1; j<=(nlstate+ndeath);j++){
       fgets(line, MAXLINE, ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       puts(line);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fputs(line,ficparo);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     }      }  
     ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
     estepm=0;    fprintf(ficresprobcov,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    fprintf(ficresprobcor,"\n");
     if (estepm==0 || estepm < stepm) estepm=stepm;   */
     if (fage <= 2) {   xp=vector(1,npar);
       bage = ageminpar;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       fage = agemaxpar;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    first=1;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficgp,"\n# Routine varprob");
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fgets(line, MAXLINE, ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     puts(line);    file %s<br>\n",optionfilehtmcov);
     fputs(line,ficparo);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   }  and drawn. It helps understanding how is the covariance between two incidences.\
   ungetc(c,ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  standard deviations wide on each axis. <br>\
         Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   while((c=getc(ficpar))=='#' && c!= EOF){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     ungetc(c,ficpar);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    cov[1]=1;
     fputs(line,ficparo);    tj=cptcoveff;
   }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   ungetc(c,ficpar);    j1=0;
      for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        j1++;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   fscanf(ficpar,"pop_based=%d\n",&popbased);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficparo,"pop_based=%d\n",popbased);            fprintf(ficresprob, "**********\n#\n");
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficgp, "**********\n#\n");
   }          
   ungetc(c,ficpar);          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor, "**********\n#");    
     ungetc(c,ficpar);        }
     fgets(line, MAXLINE, ficpar);        
     puts(line);        for (age=bage; age<=fage; age ++){ 
     fputs(line,ficparo);          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   ungetc(c,ficpar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (k=1; k<=cptcovprod;k++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*------------ gnuplot -------------*/          gp=vector(1,(nlstate)*(nlstate+ndeath));
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
 /*------------ free_vector  -------------*/          for(theta=1; theta <=npar; theta++){
  chdir(path);            for(i=1; i<=npar; i++)
                xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  free_ivector(wav,1,imx);            
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              
  free_ivector(num,1,n);            k=0;
  free_vector(agedc,1,n);            for(i=1; i<= (nlstate); i++){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/              for(j=1; j<=(nlstate+ndeath);j++){
  fclose(ficparo);                k=k+1;
  fclose(ficres);                gp[k]=pmmij[i][j];
               }
 /*--------- index.htm --------*/            }
             
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   /*--------------- Prevalence limit --------------*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
   strcpy(filerespl,"pl");            for(i=1; i<=(nlstate); i++){
   strcat(filerespl,fileres);              for(j=1; j<=(nlstate+ndeath);j++){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                k=k+1;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                gm[k]=pmmij[i][j];
   }              }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            }
   fprintf(ficrespl,"#Prevalence limit\n");       
   fprintf(ficrespl,"#Age ");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   fprintf(ficrespl,"\n");          }
    
   prlim=matrix(1,nlstate,1,nlstate);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(theta=1; theta <=npar; theta++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              trgradg[j][theta]=gradg[theta][j];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   k=0;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   agebase=ageminpar;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   agelim=agemaxpar;          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   ftolpl=1.e-10;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
   for(cptcov=1;cptcov<=i1;cptcov++){          k=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(i=1; i<=(nlstate); i++){
         k=k+1;            for(j=1; j<=(nlstate+ndeath);j++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              k=k+1;
         fprintf(ficrespl,"\n#******");              mu[k][(int) age]=pmmij[i][j];
         for(j=1;j<=cptcoveff;j++)            }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                    for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         for (age=agebase; age<=agelim; age++){              varpij[i][j][(int)age] = doldm[i][j];
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );          /*printf("\n%d ",(int)age);
           for(i=1; i<=nlstate;i++)            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           fprintf(ficrespl," %.5f", prlim[i][i]);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           fprintf(ficrespl,"\n");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }            }*/
       }  
     }          fprintf(ficresprob,"\n%d ",(int)age);
   fclose(ficrespl);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   /*------------- h Pij x at various ages ------------*/  
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   printf("Computing pij: result on file '%s' \n", filerespij);          }
            i=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (k=1; k<=(nlstate);k++){
   /*if (stepm<=24) stepsize=2;*/            for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
   agelim=AGESUP;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   hstepm=stepsize*YEARM; /* Every year of age */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              for (j=1; j<=i;j++){
                  fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   k=0;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   for(cptcov=1;cptcov<=i1;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
       k=k+1;          }/* end of loop for state */
         fprintf(ficrespij,"\n#****** ");        } /* end of loop for age */
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* Confidence intervalle of pij  */
         fprintf(ficrespij,"******\n");        /*
                  fprintf(ficgp,"\nset noparametric;unset label");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           oldm=oldms;savm=savms;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
           fprintf(ficrespij,"# Age");        */
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
               fprintf(ficrespij," %1d-%1d",i,j);        first1=1;
           fprintf(ficrespij,"\n");        for (k2=1; k2<=(nlstate);k2++){
            for (h=0; h<=nhstepm; h++){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            if(l2==k2) continue;
             for(i=1; i<=nlstate;i++)            j=(k2-1)*(nlstate+ndeath)+l2;
               for(j=1; j<=nlstate+ndeath;j++)            for (k1=1; k1<=(nlstate);k1++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             fprintf(ficrespij,"\n");                if(l1==k1) continue;
              }                i=(k1-1)*(nlstate+ndeath)+l1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(i<=j) continue;
           fprintf(ficrespij,"\n");                for (age=bage; age<=fage; age ++){ 
         }                  if ((int)age %5==0){
     }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
   fclose(ficrespij);                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*---------- Forecasting ------------------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((stepm == 1) && (strcmp(model,".")==0)){                    /* Eigen vectors */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                    /*v21=sqrt(1.-v11*v11); *//* error */
   }                    v21=(lc1-v1)/cv12*v11;
   else{                    v12=-v21;
     erreur=108;                    v22=v11;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    tnalp=v21/v11;
   }                    if(first1==1){
                        first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /*---------- Health expectancies and variances ------------*/                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcpy(filerest,"t");                    /*printf(fignu*/
   strcat(filerest,fileres);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if((ficrest=fopen(filerest,"w"))==NULL) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                    if(first==1){
   }                      first=0;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcpy(filerese,"e");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   strcat(filerese,fileres);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   if((ficreseij=fopen(filerese,"w"))==NULL) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
  strcpy(fileresv,"v");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcat(fileresv,fileres);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   calagedate=-1;                    }else{
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   k=0;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       k=k+1;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       fprintf(ficrest,"\n#****** ");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       for(j=1;j<=cptcoveff;j++)                    }/* if first */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  } /* age mod 5 */
       fprintf(ficrest,"******\n");                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       fprintf(ficreseij,"\n#****** ");                first=1;
       for(j=1;j<=cptcoveff;j++)              } /*l12 */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            } /* k12 */
       fprintf(ficreseij,"******\n");          } /*l1 */
         }/* k1 */
       fprintf(ficresvij,"\n#****** ");      } /* loop covariates */
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       fprintf(ficresvij,"******\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       oldm=oldms;savm=savms;    free_vector(xp,1,npar);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fclose(ficresprob);
      fclose(ficresprobcov);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fclose(ficresprobcor);
       oldm=oldms;savm=savms;    fflush(ficgp);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    fflush(fichtmcov);
      }
   
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  /******************* Printing html file ***********/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
       fprintf(ficrest,"\n");                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       epj=vector(1,nlstate+1);                    int popforecast, int estepm ,\
       for(age=bage; age <=fage ;age++){                    double jprev1, double mprev1,double anprev1, \
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    double jprev2, double mprev2,double anprev2){
         if (popbased==1) {    int jj1, k1, i1, cpt;
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
         }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
          </ul>");
         fprintf(ficrest," %4.0f",age);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           for(i=1, epj[j]=0.;i <=nlstate;i++) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
             epj[j] += prlim[i][i]*eij[i][j][(int)age];     fprintf(fichtm,"\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
           }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           epj[nlstate+1] +=epj[j];     fprintf(fichtm,"\
         }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         for(i=1, vepp=0.;i <=nlstate;i++)     fprintf(fichtm,"\
           for(j=1;j <=nlstate;j++)   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
             vepp += vareij[i][j][(int)age];     <a href=\"%s\">%s</a> <br>\n</li>",
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
         fprintf(ficrest,"\n");  
       }   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
 free_matrix(mint,1,maxwav,1,n);   jj1=0;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   for(k1=1; k1<=m;k1++){
     free_vector(weight,1,n);     for(i1=1; i1<=ncodemax[k1];i1++){
   fclose(ficreseij);       jj1++;
   fclose(ficresvij);       if (cptcovn > 0) {
   fclose(ficrest);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fclose(ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   free_vector(epj,1,nlstate+1);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*------- Variance limit prevalence------*/         }
        /* Pij */
   strcpy(fileresvpl,"vpl");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   strcat(fileresvpl,fileres);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       /* Quasi-incidences */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     exit(0);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   }  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   k=0;           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         }
       k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficresvpl,"\n#****** ");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficresvpl,"******\n");     } /* end i1 */
         }/* End k1 */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"</ul>");
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }   fprintf(fichtm,"\
  }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   fclose(ficresvpl);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /*---------- End : free ----------------*/           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   fprintf(fichtm,"\
     - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
     fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);   fprintf(fichtm,"\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     <a href=\"%s\">%s</a> <br>\n</li>",
               estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   free_matrix(matcov,1,npar,1,npar);   fprintf(fichtm,"\
   free_vector(delti,1,npar);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   free_matrix(agev,1,maxwav,1,imx);     <a href=\"%s\">%s</a> <br>\n</li>",
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
   if(erreur >0)   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     printf("End of Imach with error or warning %d\n",erreur);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   else   printf("End of Imach\n");   fprintf(fichtm,"\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/   fprintf(fichtm,"\
   /*printf("Total time was %d uSec.\n", total_usecs);*/   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   /*------ End -----------*/           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
  end:  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /* chdir(pathcd);*/  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
  /*system("wgnuplot graph.plt");*/  /*      <br>",fileres,fileres,fileres,fileres); */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  /*  else  */
  /*system("cd ../gp37mgw");*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   fflush(fichtm);
  strcpy(plotcmd,GNUPLOTPROGRAM);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);   m=cptcoveff;
  system(plotcmd);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
  /*#ifdef windows*/   jj1=0;
   while (z[0] != 'q') {   for(k1=1; k1<=m;k1++){
     /* chdir(path); */     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       jj1++;
     scanf("%s",z);       if (cptcovn > 0) {
     if (z[0] == 'c') system("./imach");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     else if (z[0] == 'e') system(optionfilehtm);         for (cpt=1; cpt<=cptcoveff;cpt++) 
     else if (z[0] == 'g') system(plotcmd);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     else if (z[0] == 'q') exit(0);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   }       }
   /*#endif */       for(cpt=1; cpt<=nlstate;cpt++) {
 }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.123


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>