Diff for /imach/src/imach.c between versions 1.3 and 1.124

version 1.3, 2001/05/02 17:21:42 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.124  2006/03/22 17:13:53  lievre
   individuals from different ages are interviewed on their health status    Parameters are printed with %lf instead of %f (more numbers after the comma).
   or degree of  disability. At least a second wave of interviews    The log-likelihood is printed in the log file
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.123  2006/03/20 10:52:43  brouard
   waves and are computed for each degree of severity of disability (number    * imach.c (Module): <title> changed, corresponds to .htm file
   of life states). More degrees you consider, more time is necessary to    name. <head> headers where missing.
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    * imach.c (Module): Weights can have a decimal point as for
   the probabibility to be observed in state j at the second wave conditional    English (a comma might work with a correct LC_NUMERIC environment,
   to be observed in state i at the first wave. Therefore the model is:    otherwise the weight is truncated).
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Modification of warning when the covariates values are not 0 or
   is a covariate. If you want to have a more complex model than "constant and    1.
   age", you should modify the program where the markup    Version 0.98g
     *Covariates have to be included here again* invites you to do it.  
   More covariates you add, less is the speed of the convergence.    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   The advantage that this computer programme claims, comes from that if the    English (a comma might work with a correct LC_NUMERIC environment,
   delay between waves is not identical for each individual, or if some    otherwise the weight is truncated).
   individual missed an interview, the information is not rounded or lost, but    Modification of warning when the covariates values are not 0 or
   taken into account using an interpolation or extrapolation.    1.
   hPijx is the probability to be    Version 0.98g
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.121  2006/03/16 17:45:01  lievre
   unobserved intermediate  states. This elementary transition (by month or    * imach.c (Module): Comments concerning covariates added
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    * imach.c (Module): refinements in the computation of lli if
   and the contribution of each individual to the likelihood is simply hPijx.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    status=-2 in order to have more reliable computation if stepm is
            Institut national d'études démographiques, Paris.    not 1 month. Version 0.98f
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.119  2006/03/15 17:42:26  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Bug if status = -2, the loglikelihood was
   software can be distributed freely for non commercial use. Latest version    computed as likelihood omitting the logarithm. Version O.98e
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.118  2006/03/14 18:20:07  brouard
      (Module): varevsij Comments added explaining the second
 #include <math.h>    table of variances if popbased=1 .
 #include <stdio.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdlib.h>    (Module): Function pstamp added
 #include <unistd.h>    (Module): Version 0.98d
   
 #define MAXLINE 256    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FILENAMELENGTH 80    (Module): varevsij Comments added explaining the second
 /*#define DEBUG*/    table of variances if popbased=1 .
 #define windows    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Version 0.98d
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define NINTERVMAX 8    (Module): Variance-covariance wrong links and
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    varian-covariance of ej. is needed (Saito).
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.115  2006/02/27 12:17:45  brouard
 #define MAXN 20000    (Module): One freematrix added in mlikeli! 0.98c
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.114  2006/02/26 12:57:58  brouard
 #define AGEBASE 40    (Module): Some improvements in processing parameter
     filename with strsep.
   
 int nvar;    Revision 1.113  2006/02/24 14:20:24  brouard
 static int cptcov;    (Module): Memory leaks checks with valgrind and:
 int cptcovn;    datafile was not closed, some imatrix were not freed and on matrix
 int npar=NPARMAX;    allocation too.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.112  2006/01/30 09:55:26  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.111  2006/01/25 20:38:18  brouard
 int maxwav; /* Maxim number of waves */    (Module): Lots of cleaning and bugs added (Gompertz)
 int mle, weightopt;    (Module): Comments can be added in data file. Missing date values
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    can be a simple dot '.'.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.110  2006/01/25 00:51:50  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Lots of cleaning and bugs added (Gompertz)
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  
 FILE *ficgp, *fichtm;    Revision 1.109  2006/01/24 19:37:15  brouard
 FILE *ficreseij;    (Module): Comments (lines starting with a #) are allowed in data.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.108  2006/01/19 18:05:42  lievre
   char fileresv[FILENAMELENGTH];    Gnuplot problem appeared...
  FILE  *ficresvpl;    To be fixed
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
   
     Revision 1.106  2006/01/19 13:24:36  brouard
 #define NR_END 1    Some cleaning and links added in html output
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define NRANSI  
 #define ITMAX 200    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define TOL 2.0e-4    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 #define CGOLD 0.3819660    (instead of missing=-1 in earlier versions) and his/her
 #define ZEPS 1.0e-10    contributions to the likelihood is 1 - Prob of dying from last
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.103  2005/09/30 15:54:49  lievre
 #define TINY 1.0e-20    (Module): sump fixed, loop imx fixed, and simplifications.
   
 static double maxarg1,maxarg2;    Revision 1.102  2004/09/15 17:31:30  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Add the possibility to read data file including tab characters.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.101  2004/09/15 10:38:38  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Fix on curr_time
 #define rint(a) floor(a+0.5)  
     Revision 1.100  2004/07/12 18:29:06  brouard
 static double sqrarg;    Add version for Mac OS X. Just define UNIX in Makefile
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 int imx;  
 int stepm;    Revision 1.98  2004/05/16 15:05:56  brouard
 /* Stepm, step in month: minimum step interpolation*/    New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 int m,nb;    state at each age, but using a Gompertz model: log u =a + b*age .
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    This is the basic analysis of mortality and should be done before any
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    other analysis, in order to test if the mortality estimated from the
 double **pmmij;    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 double *weight;  
 int **s; /* Status */    The same imach parameter file can be used but the option for mle should be -3.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   
 /******************************************/    Current limitations:
     A) Even if you enter covariates, i.e. with the
 void replace(char *s, char*t)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 {    B) There is no computation of Life Expectancy nor Life Table.
   int i;  
   int lg=20;    Revision 1.97  2004/02/20 13:25:42  lievre
   i=0;    Version 0.96d. Population forecasting command line is (temporarily)
   lg=strlen(t);    suppressed.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.96  2003/07/15 15:38:55  brouard
     if (t[i]== '\\') s[i]='/';    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   }    rewritten within the same printf. Workaround: many printfs.
 }  
     Revision 1.95  2003/07/08 07:54:34  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository):
 {    (Repository): Using imachwizard code to output a more meaningful covariance
   int i,j=0;    matrix (cov(a12,c31) instead of numbers.
   int lg=20;  
   i=0;    Revision 1.94  2003/06/27 13:00:02  brouard
   lg=strlen(s);    Just cleaning
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.93  2003/06/25 16:33:55  brouard
   }    (Module): On windows (cygwin) function asctime_r doesn't
   return j;    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.92  2003/06/25 16:30:45  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   int i,lg,j,p;    exist so I changed back to asctime which exists.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    * imach.c (Repository): Duplicated warning errors corrected.
   }    (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
   lg=strlen(t);    is stamped in powell.  We created a new html file for the graphs
   for(j=0; j<p; j++) {    concerning matrix of covariance. It has extension -cov.htm.
     (u[j] = t[j]);  
     u[p]='\0';    Revision 1.90  2003/06/24 12:34:15  brouard
   }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
    for(j=0; j<= lg; j++) {    of the covariance matrix to be input.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.89  2003/06/24 12:30:52  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /********************** nrerror ********************/    of the covariance matrix to be input.
   
 void nrerror(char error_text[])    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.87  2003/06/18 12:26:01  brouard
   exit(1);    Version 0.96
 }  
 /*********************** vector *******************/    Revision 1.86  2003/06/17 20:04:08  brouard
 double *vector(int nl, int nh)    (Module): Change position of html and gnuplot routines and added
 {    routine fileappend.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.85  2003/06/17 13:12:43  brouard
   if (!v) nrerror("allocation failure in vector");    * imach.c (Repository): Check when date of death was earlier that
   return v-nl+NR_END;    current date of interview. It may happen when the death was just
 }    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /************************ free vector ******************/    assuming that the date of death was just one stepm after the
 void free_vector(double*v, int nl, int nh)    interview.
 {    (Repository): Because some people have very long ID (first column)
   free((FREE_ARG)(v+nl-NR_END));    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 /************************ivector *******************************/    (Repository): No more line truncation errors.
 int *ivector(long nl,long nh)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   int *v;    * imach.c (Repository): Replace "freqsummary" at a correct
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    place. It differs from routine "prevalence" which may be called
   if (!v) nrerror("allocation failure in ivector");    many times. Probs is memory consuming and must be used with
   return v-nl+NR_END;    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /******************free ivector **************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 void free_ivector(int *v, long nl, long nh)    *** empty log message ***
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /******************* imatrix *******************************/  */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /*
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     Interpolated Markov Chain
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Short summary of the programme:
   int **m;    
      This program computes Healthy Life Expectancies from
   /* allocate pointers to rows */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    first survey ("cross") where individuals from different ages are
   if (!m) nrerror("allocation failure 1 in matrix()");    interviewed on their health status or degree of disability (in the
   m += NR_END;    case of a health survey which is our main interest) -2- at least a
   m -= nrl;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
      computed from the time spent in each health state according to a
   /* allocate rows and set pointers to them */    model. More health states you consider, more time is necessary to reach the
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Maximum Likelihood of the parameters involved in the model.  The
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    simplest model is the multinomial logistic model where pij is the
   m[nrl] += NR_END;    probability to be observed in state j at the second wave
   m[nrl] -= ncl;    conditional to be observed in state i at the first wave. Therefore
      the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
   /* return pointer to array of pointers to rows */    where the markup *Covariates have to be included here again* invites
   return m;    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /****************** free_imatrix *************************/    The advantage of this computer programme, compared to a simple
 void free_imatrix(m,nrl,nrh,ncl,nch)    multinomial logistic model, is clear when the delay between waves is not
       int **m;    identical for each individual. Also, if a individual missed an
       long nch,ncl,nrh,nrl;    intermediate interview, the information is lost, but taken into
      /* free an int matrix allocated by imatrix() */    account using an interpolation or extrapolation.  
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    hPijx is the probability to be observed in state i at age x+h
   free((FREE_ARG) (m+nrl-NR_END));    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /******************* matrix *******************************/    semester or year) is modelled as a multinomial logistic.  The hPx
 double **matrix(long nrl, long nrh, long ncl, long nch)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    hPijx.
   double **m;  
     Also this programme outputs the covariance matrix of the parameters but also
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    of the life expectancies. It also computes the period (stable) prevalence. 
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m -= nrl;             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    from the European Union.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    It is copyrighted identically to a GNU software product, ie programme and
   m[nrl] += NR_END;    software can be distributed freely for non commercial use. Latest version
   m[nrl] -= ncl;    can be accessed at http://euroreves.ined.fr/imach .
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return m;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /*************************free matrix ************************/  /*
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    main
 {    read parameterfile
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    read datafile
   free((FREE_ARG)(m+nrl-NR_END));    concatwav
 }    freqsummary
     if (mle >= 1)
 /******************* ma3x *******************************/      mlikeli
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    print results files
 {    if mle==1 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;       computes hessian
   double ***m;    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    open gnuplot file
   if (!m) nrerror("allocation failure 1 in matrix()");    open html file
   m += NR_END;    period (stable) prevalence
   m -= nrl;     for age prevalim()
     h Pij x
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    variance of p varprob
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    forecasting if prevfcast==1 prevforecast call prevalence()
   m[nrl] += NR_END;    health expectancies
   m[nrl] -= ncl;    Variance-covariance of DFLE
     prevalence()
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     movingaverage()
     varevsij() 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    if popbased==1 varevsij(,popbased)
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    total life expectancies
   m[nrl][ncl] += NR_END;    Variance of period (stable) prevalence
   m[nrl][ncl] -= nll;   end
   for (j=ncl+1; j<=nch; j++)  */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;   
     for (j=ncl+1; j<=nch; j++)  #include <math.h>
       m[i][j]=m[i][j-1]+nlay;  #include <stdio.h>
   }  #include <stdlib.h>
   return m;  #include <string.h>
 }  #include <unistd.h>
   
 /*************************free ma3x ************************/  #include <limits.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <sys/types.h>
 {  #include <sys/stat.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <errno.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  extern int errno;
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* #include <sys/time.h> */
   #include <time.h>
 /***************** f1dim *************************/  #include "timeval.h"
 extern int ncom;  
 extern double *pcom,*xicom;  /* #include <libintl.h> */
 extern double (*nrfunc)(double []);  /* #define _(String) gettext (String) */
    
 double f1dim(double x)  #define MAXLINE 256
 {  
   int j;  #define GNUPLOTPROGRAM "gnuplot"
   double f;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double *xt;  #define FILENAMELENGTH 132
    
   xt=vector(1,ncom);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   return f;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 }  
   #define NINTERVMAX 8
 /*****************brent *************************/  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 {  #define NCOVMAX 8 /* Maximum number of covariates */
   int iter;  #define MAXN 20000
   double a,b,d,etemp;  #define YEARM 12. /* Number of months per year */
   double fu,fv,fw,fx;  #define AGESUP 130
   double ftemp;  #define AGEBASE 40
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double e=0.0;  #ifdef UNIX
    #define DIRSEPARATOR '/'
   a=(ax < cx ? ax : cx);  #define CHARSEPARATOR "/"
   b=(ax > cx ? ax : cx);  #define ODIRSEPARATOR '\\'
   x=w=v=bx;  #else
   fw=fv=fx=(*f)(x);  #define DIRSEPARATOR '\\'
   for (iter=1;iter<=ITMAX;iter++) {  #define CHARSEPARATOR "\\"
     xm=0.5*(a+b);  #define ODIRSEPARATOR '/'
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #endif
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  /* $Id$ */
 #ifdef DEBUG  /* $State$ */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 #endif  char fullversion[]="$Revision$ $Date$"; 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char strstart[80];
       *xmin=x;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       return fx;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     }  int nvar;
     ftemp=fu;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
     if (fabs(e) > tol1) {  int npar=NPARMAX;
       r=(x-w)*(fx-fv);  int nlstate=2; /* Number of live states */
       q=(x-v)*(fx-fw);  int ndeath=1; /* Number of dead states */
       p=(x-v)*q-(x-w)*r;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       q=2.0*(q-r);  int popbased=0;
       if (q > 0.0) p = -p;  
       q=fabs(q);  int *wav; /* Number of waves for this individuual 0 is possible */
       etemp=e;  int maxwav; /* Maxim number of waves */
       e=d;  int jmin, jmax; /* min, max spacing between 2 waves */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int gipmx, gsw; /* Global variables on the number of contributions 
       else {                     to the likelihood and the sum of weights (done by funcone)*/
         d=p/q;  int mle, weightopt;
         u=x+d;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         if (u-a < tol2 || b-u < tol2)  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           d=SIGN(tol1,xm-x);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     } else {  double jmean; /* Mean space between 2 waves */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **oldm, **newm, **savm; /* Working pointers to matrices */
     }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     fu=(*f)(u);  FILE *ficlog, *ficrespow;
     if (fu <= fx) {  int globpr; /* Global variable for printing or not */
       if (u >= x) a=x; else b=x;  double fretone; /* Only one call to likelihood */
       SHFT(v,w,x,u)  long ipmx; /* Number of contributions */
         SHFT(fv,fw,fx,fu)  double sw; /* Sum of weights */
         } else {  char filerespow[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
           if (fu <= fw || w == x) {  FILE *ficresilk;
             v=w;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
             w=u;  FILE *ficresprobmorprev;
             fv=fw;  FILE *fichtm, *fichtmcov; /* Html File */
             fw=fu;  FILE *ficreseij;
           } else if (fu <= fv || v == x || v == w) {  char filerese[FILENAMELENGTH];
             v=u;  FILE *ficresstdeij;
             fv=fu;  char fileresstde[FILENAMELENGTH];
           }  FILE *ficrescveij;
         }  char filerescve[FILENAMELENGTH];
   }  FILE  *ficresvij;
   nrerror("Too many iterations in brent");  char fileresv[FILENAMELENGTH];
   *xmin=x;  FILE  *ficresvpl;
   return fx;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /****************** mnbrak ***********************/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char command[FILENAMELENGTH];
             double (*func)(double))  int  outcmd=0;
 {  
   double ulim,u,r,q, dum;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double fu;  
    char filelog[FILENAMELENGTH]; /* Log file */
   *fa=(*func)(*ax);  char filerest[FILENAMELENGTH];
   *fb=(*func)(*bx);  char fileregp[FILENAMELENGTH];
   if (*fb > *fa) {  char popfile[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   *fc=(*func)(*cx);  struct timezone tzp;
   while (*fb > *fc) {  extern int gettimeofday();
     r=(*bx-*ax)*(*fb-*fc);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     q=(*bx-*cx)*(*fb-*fa);  long time_value;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  extern long time();
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char strcurr[80], strfor[80];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  char *endptr;
       fu=(*func)(u);  long lval;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double dval;
       fu=(*func)(u);  
       if (fu < *fc) {  #define NR_END 1
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define FREE_ARG char*
           SHFT(*fb,*fc,fu,(*func)(u))  #define FTOL 1.0e-10
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define NRANSI 
       u=ulim;  #define ITMAX 200 
       fu=(*func)(u);  
     } else {  #define TOL 2.0e-4 
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  #define CGOLD 0.3819660 
     }  #define ZEPS 1.0e-10 
     SHFT(*ax,*bx,*cx,u)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       SHFT(*fa,*fb,*fc,fu)  
       }  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /*************** linmin ************************/  
   static double maxarg1,maxarg2;
 int ncom;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double *pcom,*xicom;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double (*nrfunc)(double []);    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define rint(a) floor(a+0.5)
 {  
   double brent(double ax, double bx, double cx,  static double sqrarg;
                double (*f)(double), double tol, double *xmin);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double f1dim(double x);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int agegomp= AGEGOMP;
               double *fc, double (*func)(double));  
   int j;  int imx; 
   double xx,xmin,bx,ax;  int stepm=1;
   double fx,fb,fa;  /* Stepm, step in month: minimum step interpolation*/
    
   ncom=n;  int estepm;
   pcom=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   xicom=vector(1,n);  
   nrfunc=func;  int m,nb;
   for (j=1;j<=n;j++) {  long *num;
     pcom[j]=p[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     xicom[j]=xi[j];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
   ax=0.0;  double *ageexmed,*agecens;
   xx=1.0;  double dateintmean=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double *weight;
 #ifdef DEBUG  int **s; /* Status */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double *agedc, **covar, idx;
 #endif  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
     xi[j] *= xmin;  
     p[j] += xi[j];  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   }  double ftolhess; /* Tolerance for computing hessian */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************** powell ************************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             double (*func)(double []))    */ 
 {    char  *ss;                            /* pointer */
   void linmin(double p[], double xi[], int n, double *fret,    int   l1, l2;                         /* length counters */
               double (*func)(double []));  
   int i,ibig,j;    l1 = strlen(path );                   /* length of path */
   double del,t,*pt,*ptt,*xit;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double fp,fptt;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double *xits;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   pt=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   ptt=vector(1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xit=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xits=vector(1,n);      /* get current working directory */
   *fret=(*func)(p);      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=1;j<=n;j++) pt[j]=p[j];      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (*iter=1;;++(*iter)) {        return( GLOCK_ERROR_GETCWD );
     fp=(*fret);      }
     ibig=0;      /* got dirc from getcwd*/
     del=0.0;      printf(" DIRC = %s \n",dirc);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    } else {                              /* strip direcotry from path */
     for (i=1;i<=n;i++)      ss++;                               /* after this, the filename */
       printf(" %d %.12f",i, p[i]);      l2 = strlen( ss );                  /* length of filename */
     printf("\n");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (i=1;i<=n;i++) {      strcpy( name, ss );         /* save file name */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       fptt=(*fret);      dirc[l1-l2] = 0;                    /* add zero */
 #ifdef DEBUG      printf(" DIRC2 = %s \n",dirc);
       printf("fret=%lf \n",*fret);    }
 #endif    /* We add a separator at the end of dirc if not exists */
       printf("%d",i);fflush(stdout);    l1 = strlen( dirc );                  /* length of directory */
       linmin(p,xit,n,fret,func);    if( dirc[l1-1] != DIRSEPARATOR ){
       if (fabs(fptt-(*fret)) > del) {      dirc[l1] =  DIRSEPARATOR;
         del=fabs(fptt-(*fret));      dirc[l1+1] = 0; 
         ibig=i;      printf(" DIRC3 = %s \n",dirc);
       }    }
 #ifdef DEBUG    ss = strrchr( name, '.' );            /* find last / */
       printf("%d %.12e",i,(*fret));    if (ss >0){
       for (j=1;j<=n;j++) {      ss++;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      strcpy(ext,ss);                     /* save extension */
         printf(" x(%d)=%.12e",j,xit[j]);      l1= strlen( name);
       }      l2= strlen(ss)+1;
       for(j=1;j<=n;j++)      strncpy( finame, name, l1-l2);
         printf(" p=%.12e",p[j]);      finame[l1-l2]= 0;
       printf("\n");    }
 #endif  
     }    return( 0 );                          /* we're done */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  
       k[0]=1;  /******************************************/
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  void replace_back_to_slash(char *s, char*t)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    int i;
       printf("\n");    int lg=0;
       for(l=0;l<=1;l++) {    i=0;
         for (j=1;j<=n;j++) {    lg=strlen(t);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for(i=0; i<= lg; i++) {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      (s[i] = t[i]);
         }      if (t[i]== '\\') s[i]='/';
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }  }
 #endif  
   int nbocc(char *s, char occ)
   {
       free_vector(xit,1,n);    int i,j=0;
       free_vector(xits,1,n);    int lg=20;
       free_vector(ptt,1,n);    i=0;
       free_vector(pt,1,n);    lg=strlen(s);
       return;    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    }
     for (j=1;j<=n;j++) {    return j;
       ptt[j]=2.0*p[j]-pt[j];  }
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  void cutv(char *u,char *v, char*t, char occ)
     }  {
     fptt=(*func)(ptt);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
     if (fptt < fp) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       gives u="abcedf" and v="ghi2j" */
       if (t < 0.0) {    int i,lg,j,p=0;
         linmin(p,xit,n,fret,func);    i=0;
         for (j=1;j<=n;j++) {    for(j=0; j<=strlen(t)-1; j++) {
           xi[j][ibig]=xi[j][n];      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
           xi[j][n]=xit[j];    }
         }  
 #ifdef DEBUG    lg=strlen(t);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    for(j=0; j<p; j++) {
         for(j=1;j<=n;j++)      (u[j] = t[j]);
           printf(" %.12e",xit[j]);    }
         printf("\n");       u[p]='\0';
 #endif  
       }     for(j=0; j<= lg; j++) {
     }      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
   
 /**** Prevalence limit ****************/  /********************** nrerror ********************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void nrerror(char error_text[])
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    fprintf(stderr,"ERREUR ...\n");
      matrix by transitions matrix until convergence is reached */    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  /*********************** vector *******************/
   double **matprod2();  double *vector(int nl, int nh)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    double *v;
   double agefin, delaymax=50 ; /* Max number of years to converge */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
   for (ii=1;ii<=nlstate+ndeath;ii++)    return v-nl+NR_END;
     for (j=1;j<=nlstate+ndeath;j++){  }
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /************************ free vector ******************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void free_vector(double*v, int nl, int nh)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    free((FREE_ARG)(v+nl-NR_END));
     /* Covariates have to be included here again */  }
     cov[1]=1.;  
     cov[2]=agefin;  /************************ivector *******************************/
     if (cptcovn>0){  int *ivector(long nl,long nh)
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  {
     }    int *v;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
     savm=oldm;    return v-nl+NR_END;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /******************free ivector **************************/
       min=1.;  void free_ivector(int *v, long nl, long nh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(v+nl-NR_END));
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /************************lvector *******************************/
         max=FMAX(max,prlim[i][j]);  long *lvector(long nl,long nh)
         min=FMIN(min,prlim[i][j]);  {
       }    long *v;
       maxmin=max-min;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       maxmax=FMAX(maxmax,maxmin);    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     if(maxmax < ftolpl){  }
       return prlim;  
     }  /******************free lvector **************************/
   }  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** transition probabilities **********/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double s1, s2;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   /*double t34;*/  { 
   int i,j,j1, nc, ii, jj;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
     for(i=1; i<= nlstate; i++){    
     for(j=1; j<i;j++){    /* allocate pointers to rows */ 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         /*s2 += param[i][j][nc]*cov[nc];*/    if (!m) nrerror("allocation failure 1 in matrix()"); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m += NR_END; 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m -= nrl; 
       }    
       ps[i][j]=s2;    
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for(j=i+1; j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl] += NR_END; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl] -= ncl; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       ps[i][j]=s2;    
     }    /* return pointer to array of pointers to rows */ 
   }    return m; 
   for(i=1; i<= nlstate; i++){  } 
      s1=0;  
     for(j=1; j<i; j++)  /****************** free_imatrix *************************/
       s1+=exp(ps[i][j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
     for(j=i+1; j<=nlstate+ndeath; j++)        int **m;
       s1+=exp(ps[i][j]);        long nch,ncl,nrh,nrl; 
     ps[i][i]=1./(s1+1.);       /* free an int matrix allocated by imatrix() */ 
     for(j=1; j<i; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for(j=i+1; j<=nlstate+ndeath; j++)    free((FREE_ARG) (m+nrl-NR_END)); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       ps[ii][jj]=0;    double **m;
       ps[ii][ii]=1;  
     }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    m -= nrl;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
    }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n ");    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return m;
   goto end;*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     return ps;     */
 }  }
   
 /**************** Product of 2 matrices ******************/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free((FREE_ARG)(m+nrl-NR_END));
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /******************* ma3x *******************************/
      a pointer to pointers identical to out */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(k=ncolol; k<=ncoloh; k++)    double ***m;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   return out;    m += NR_END;
 }    m -= nrl;
   
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /************* Higher Matrix Product ***************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    m[nrl] -= ncl;
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
      (typically every 2 years instead of every month which is too big).    m[nrl][ncl] += NR_END;
      Model is determined by parameters x and covariates have to be    m[nrl][ncl] -= nll;
      included manually here.    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
      */    
     for (i=nrl+1; i<=nrh; i++) {
   int i, j, d, h, k;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double **out, cov[NCOVMAX];      for (j=ncl+1; j<=nch; j++) 
   double **newm;        m[i][j]=m[i][j-1]+nlay;
     }
   /* Hstepm could be zero and should return the unit matrix */    return m; 
   for (i=1;i<=nlstate+ndeath;i++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for (j=1;j<=nlstate+ndeath;j++){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       oldm[i][j]=(i==j ? 1.0 : 0.0);    */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************************free ma3x ************************/
   for(h=1; h <=nhstepm; h++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(d=1; d <=hstepm; d++){  {
       newm=savm;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       /* Covariates have to be included here again */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       cov[1]=1.;    free((FREE_ARG)(m+nrl-NR_END));
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  }
       if (cptcovn>0){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* Caution optionfilefiname is hidden */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    strcpy(tmpout,optionfilefiname);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    strcat(tmpout,"/"); /* Add to the right */
       savm=oldm;    strcat(tmpout,fileres);
       oldm=newm;    return tmpout;
     }  }
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /*************** function subdirf2 ***********/
         po[i][j][h]=newm[i][j];  char *subdirf2(char fileres[], char *preop)
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    
       }    /* Caution optionfilefiname is hidden */
   } /* end h */    strcpy(tmpout,optionfilefiname);
   return po;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     return tmpout;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /*************** function subdirf3 ***********/
   int i, ii, j, k, mi, d;  char *subdirf3(char fileres[], char *preop, char *preop2)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    
   double sw; /* Sum of weights */    /* Caution optionfilefiname is hidden */
   double lli; /* Individual log likelihood */    strcpy(tmpout,optionfilefiname);
   long ipmx;    strcat(tmpout,"/");
   /*extern weight */    strcat(tmpout,preop);
   /* We are differentiating ll according to initial status */    strcat(tmpout,preop2);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    strcat(tmpout,fileres);
   /*for(i=1;i<imx;i++)    return tmpout;
 printf(" %d\n",s[4][i]);  }
   */  
   /***************** f1dim *************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  extern int ncom; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  extern double *pcom,*xicom;
        for(mi=1; mi<= wav[i]-1; mi++){  extern double (*nrfunc)(double []); 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  double f1dim(double x) 
             for(d=0; d<dh[mi][i]; d++){  { 
         newm=savm;    int j; 
           cov[1]=1.;    double f;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    double *xt; 
           if (cptcovn>0){   
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];    xt=vector(1,ncom); 
             }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    f=(*nrfunc)(xt); 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    free_vector(xt,1,ncom); 
           savm=oldm;    return f; 
           oldm=newm;  } 
   
   /*****************brent *************************/
       } /* end mult */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    int iter; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double a,b,d,etemp;
       ipmx +=1;    double fu,fv,fw,fx;
       sw += weight[i];    double ftemp;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     } /* end of wave */    double e=0.0; 
   } /* end of individual */   
     a=(ax < cx ? ax : cx); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    b=(ax > cx ? ax : cx); 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    x=w=v=bx; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    fw=fv=fx=(*f)(x); 
   return -l;    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 /*********** Maximum Likelihood Estimation ***************/      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  #ifdef DEBUG
 {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i,j, iter;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double **xi,*delti;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double fret;  #endif
   xi=matrix(1,npar,1,npar);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (i=1;i<=npar;i++)        *xmin=x; 
     for (j=1;j<=npar;j++)        return fx; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      } 
   printf("Powell\n");      ftemp=fu;
   powell(p,xi,npar,ftol,&iter,&fret,func);      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        q=(x-v)*(fx-fw); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
 }        if (q > 0.0) p = -p; 
         q=fabs(q); 
 /**** Computes Hessian and covariance matrix ***/        etemp=e; 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        e=d; 
 {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double  **a,**y,*x,pd;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double **hess;        else { 
   int i, j,jk;          d=p/q; 
   int *indx;          u=x+d; 
           if (u-a < tol2 || b-u < tol2) 
   double hessii(double p[], double delta, int theta, double delti[]);            d=SIGN(tol1,xm-x); 
   double hessij(double p[], double delti[], int i, int j);        } 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      } else { 
   void ludcmp(double **a, int npar, int *indx, double *d) ;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   hess=matrix(1,npar,1,npar);      fu=(*f)(u); 
       if (fu <= fx) { 
   printf("\nCalculation of the hessian matrix. Wait...\n");        if (u >= x) a=x; else b=x; 
   for (i=1;i<=npar;i++){        SHFT(v,w,x,u) 
     printf("%d",i);fflush(stdout);          SHFT(fv,fw,fx,fu) 
     hess[i][i]=hessii(p,ftolhess,i,delti);          } else { 
     /*printf(" %f ",p[i]);*/            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
               v=w; 
   for (i=1;i<=npar;i++) {              w=u; 
     for (j=1;j<=npar;j++)  {              fv=fw; 
       if (j>i) {              fw=fu; 
         printf(".%d%d",i,j);fflush(stdout);            } else if (fu <= fv || v == x || v == w) { 
         hess[i][j]=hessij(p,delti,i,j);              v=u; 
         hess[j][i]=hess[i][j];              fv=fu; 
       }            } 
     }          } 
   }    } 
   printf("\n");    nrerror("Too many iterations in brent"); 
     *xmin=x; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    return fx; 
    } 
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /****************** mnbrak ***********************/
   x=vector(1,npar);  
   indx=ivector(1,npar);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (i=1;i<=npar;i++)              double (*func)(double)) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  { 
   ludcmp(a,npar,indx,&pd);    double ulim,u,r,q, dum;
     double fu; 
   for (j=1;j<=npar;j++) {   
     for (i=1;i<=npar;i++) x[i]=0;    *fa=(*func)(*ax); 
     x[j]=1;    *fb=(*func)(*bx); 
     lubksb(a,npar,indx,x);    if (*fb > *fa) { 
     for (i=1;i<=npar;i++){      SHFT(dum,*ax,*bx,dum) 
       matcov[i][j]=x[i];        SHFT(dum,*fb,*fa,dum) 
     }        } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   printf("\n#Hessian matrix#\n");    while (*fb > *fc) { 
   for (i=1;i<=npar;i++) {      r=(*bx-*ax)*(*fb-*fc); 
     for (j=1;j<=npar;j++) {      q=(*bx-*cx)*(*fb-*fa); 
       printf("%.3e ",hess[i][j]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     printf("\n");      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   }      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   /* Recompute Inverse */      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=npar;i++)        fu=(*func)(u); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        if (fu < *fc) { 
   ludcmp(a,npar,indx,&pd);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             SHFT(*fb,*fc,fu,(*func)(u)) 
   /*  printf("\n#Hessian matrix recomputed#\n");            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for (j=1;j<=npar;j++) {        u=ulim; 
     for (i=1;i<=npar;i++) x[i]=0;        fu=(*func)(u); 
     x[j]=1;      } else { 
     lubksb(a,npar,indx,x);        u=(*cx)+GOLD*(*cx-*bx); 
     for (i=1;i<=npar;i++){        fu=(*func)(u); 
       y[i][j]=x[i];      } 
       printf("%.3e ",y[i][j]);      SHFT(*ax,*bx,*cx,u) 
     }        SHFT(*fa,*fb,*fc,fu) 
     printf("\n");        } 
   }  } 
   */  
   /*************** linmin ************************/
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  int ncom; 
   free_vector(x,1,npar);  double *pcom,*xicom;
   free_ivector(indx,1,npar);  double (*nrfunc)(double []); 
   free_matrix(hess,1,npar,1,npar);   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /*************** hessian matrix ****************/    double f1dim(double x); 
 double hessii( double x[], double delta, int theta, double delti[])    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 {                double *fc, double (*func)(double)); 
   int i;    int j; 
   int l=1, lmax=20;    double xx,xmin,bx,ax; 
   double k1,k2;    double fx,fb,fa;
   double p2[NPARMAX+1];   
   double res;    ncom=n; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    pcom=vector(1,n); 
   double fx;    xicom=vector(1,n); 
   int k=0,kmax=10;    nrfunc=func; 
   double l1;    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   fx=func(x);      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++) p2[i]=x[i];    } 
   for(l=0 ; l <=lmax; l++){    ax=0.0; 
     l1=pow(10,l);    xx=1.0; 
     delts=delt;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for(k=1 ; k <kmax; k=k+1){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       delt = delta*(l1*k);  #ifdef DEBUG
       p2[theta]=x[theta] +delt;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       k1=func(p2)-fx;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       p2[theta]=x[theta]-delt;  #endif
       k2=func(p2)-fx;    for (j=1;j<=n;j++) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      xi[j] *= xmin; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      p[j] += xi[j]; 
          } 
 #ifdef DEBUG    free_vector(xicom,1,n); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free_vector(pcom,1,n); 
 #endif  } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  char *asc_diff_time(long time_sec, char ascdiff[])
         k=kmax;  {
       }    long sec_left, days, hours, minutes;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    days = (time_sec) / (60*60*24);
         k=kmax; l=lmax*10.;    sec_left = (time_sec) % (60*60*24);
       }    hours = (sec_left) / (60*60) ;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    sec_left = (sec_left) %(60*60);
         delts=delt;    minutes = (sec_left) /60;
       }    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   }    return ascdiff;
   delti[theta]=delts;  }
   return res;  
    /*************** powell ************************/
 }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 double hessij( double x[], double delti[], int thetai,int thetaj)  { 
 {    void linmin(double p[], double xi[], int n, double *fret, 
   int i;                double (*func)(double [])); 
   int l=1, l1, lmax=20;    int i,ibig,j; 
   double k1,k2,k3,k4,res,fx;    double del,t,*pt,*ptt,*xit;
   double p2[NPARMAX+1];    double fp,fptt;
   int k;    double *xits;
     int niterf, itmp;
   fx=func(x);  
   for (k=1; k<=2; k++) {    pt=vector(1,n); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    ptt=vector(1,n); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    xit=vector(1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    xits=vector(1,n); 
     k1=func(p2)-fx;    *fret=(*func)(p); 
      for (j=1;j<=n;j++) pt[j]=p[j]; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (*iter=1;;++(*iter)) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fp=(*fret); 
     k2=func(p2)-fx;      ibig=0; 
        del=0.0; 
     p2[thetai]=x[thetai]-delti[thetai]/k;      last_time=curr_time;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      (void) gettimeofday(&curr_time,&tzp);
     k3=func(p2)-fx;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;     for (i=1;i<=n;i++) {
     k4=func(p2)-fx;        printf(" %d %.12f",i, p[i]);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fprintf(ficlog," %d %.12lf",i, p[i]);
 #ifdef DEBUG        fprintf(ficrespow," %.12lf", p[i]);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      }
 #endif      printf("\n");
   }      fprintf(ficlog,"\n");
   return res;      fprintf(ficrespow,"\n");fflush(ficrespow);
 }      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
 /************** Inverse of matrix **************/        strcpy(strcurr,asctime(&tm));
 void ludcmp(double **a, int n, int *indx, double *d)  /*       asctime_r(&tm,strcurr); */
 {        forecast_time=curr_time; 
   int i,imax,j,k;        itmp = strlen(strcurr);
   double big,dum,sum,temp;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double *vv;          strcurr[itmp-1]='\0';
          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   vv=vector(1,n);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   *d=1.0;        for(niterf=10;niterf<=30;niterf+=10){
   for (i=1;i<=n;i++) {          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     big=0.0;          tmf = *localtime(&forecast_time.tv_sec);
     for (j=1;j<=n;j++)  /*      asctime_r(&tmf,strfor); */
       if ((temp=fabs(a[i][j])) > big) big=temp;          strcpy(strfor,asctime(&tmf));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          itmp = strlen(strfor);
     vv[i]=1.0/big;          if(strfor[itmp-1]=='\n')
   }          strfor[itmp-1]='\0';
   for (j=1;j<=n;j++) {          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for (i=1;i<j;i++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      }
       a[i][j]=sum;      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     big=0.0;        fptt=(*fret); 
     for (i=j;i<=n;i++) {  #ifdef DEBUG
       sum=a[i][j];        printf("fret=%lf \n",*fret);
       for (k=1;k<j;k++)        fprintf(ficlog,"fret=%lf \n",*fret);
         sum -= a[i][k]*a[k][j];  #endif
       a[i][j]=sum;        printf("%d",i);fflush(stdout);
       if ( (dum=vv[i]*fabs(sum)) >= big) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         big=dum;        linmin(p,xit,n,fret,func); 
         imax=i;        if (fabs(fptt-(*fret)) > del) { 
       }          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     if (j != imax) {        } 
       for (k=1;k<=n;k++) {  #ifdef DEBUG
         dum=a[imax][k];        printf("%d %.12e",i,(*fret));
         a[imax][k]=a[j][k];        fprintf(ficlog,"%d %.12e",i,(*fret));
         a[j][k]=dum;        for (j=1;j<=n;j++) {
       }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       *d = -(*d);          printf(" x(%d)=%.12e",j,xit[j]);
       vv[imax]=vv[j];          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
     indx[j]=imax;        for(j=1;j<=n;j++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;          printf(" p=%.12e",p[j]);
     if (j != n) {          fprintf(ficlog," p=%.12e",p[j]);
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        printf("\n");
     }        fprintf(ficlog,"\n");
   }  #endif
   free_vector(vv,1,n);  /* Doesn't work */      } 
 ;      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  #ifdef DEBUG
         int k[2],l;
 void lubksb(double **a, int n, int *indx, double b[])        k[0]=1;
 {        k[1]=-1;
   int i,ii=0,ip,j;        printf("Max: %.12e",(*func)(p));
   double sum;        fprintf(ficlog,"Max: %.12e",(*func)(p));
          for (j=1;j<=n;j++) {
   for (i=1;i<=n;i++) {          printf(" %.12e",p[j]);
     ip=indx[i];          fprintf(ficlog," %.12e",p[j]);
     sum=b[ip];        }
     b[ip]=b[i];        printf("\n");
     if (ii)        fprintf(ficlog,"\n");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(l=0;l<=1;l++) {
     else if (sum) ii=i;          for (j=1;j<=n;j++) {
     b[i]=sum;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for (i=n;i>=1;i--) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     sum=b[i];          }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     b[i]=sum/a[i][i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }        }
 }  #endif
   
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        free_vector(xit,1,n); 
 {  /* Some frequencies */        free_vector(xits,1,n); 
          free_vector(ptt,1,n); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        free_vector(pt,1,n); 
   double ***freq; /* Frequencies */        return; 
   double *pp;      } 
   double pos;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   FILE *ficresp;      for (j=1;j<=n;j++) { 
   char fileresp[FILENAMELENGTH];        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
   pp=vector(1,nlstate);        pt[j]=p[j]; 
       } 
   strcpy(fileresp,"p");      fptt=(*func)(ptt); 
   strcat(fileresp,fileres);      if (fptt < fp) { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        if (t < 0.0) { 
     exit(0);          linmin(p,xit,n,fret,func); 
   }          for (j=1;j<=n;j++) { 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            xi[j][ibig]=xi[j][n]; 
   j1=0;            xi[j][n]=xit[j]; 
           }
   j=cptcovn;  #ifdef DEBUG
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(k1=1; k1<=j;k1++){          for(j=1;j<=n;j++){
    for(i1=1; i1<=ncodemax[k1];i1++){            printf(" %.12e",xit[j]);
        j1++;            fprintf(ficlog," %.12e",xit[j]);
           }
         for (i=-1; i<=nlstate+ndeath; i++)            printf("\n");
          for (jk=-1; jk<=nlstate+ndeath; jk++)            fprintf(ficlog,"\n");
            for(m=agemin; m <= agemax+3; m++)  #endif
              freq[i][jk][m]=0;        }
              } 
        for (i=1; i<=imx; i++) {    } 
          bool=1;  } 
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcovn; z1++)  /**** Prevalence limit (stable or period prevalence)  ****************/
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  
          }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           if (bool==1) {  {
            for(m=firstpass; m<=lastpass-1; m++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
              if(agev[m][i]==0) agev[m][i]=agemax+1;       matrix by transitions matrix until convergence is reached */
              if(agev[m][i]==1) agev[m][i]=agemax+2;  
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int i, ii,j,k;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double min, max, maxmin, maxmax,sumnew=0.;
            }    double **matprod2();
          }    double **out, cov[NCOVMAX], **pmij();
        }    double **newm;
         if  (cptcovn>0) {    double agefin, delaymax=50 ; /* Max number of years to converge */
          fprintf(ficresp, "\n#Variable");  
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);    for (ii=1;ii<=nlstate+ndeath;ii++)
        }      for (j=1;j<=nlstate+ndeath;j++){
        fprintf(ficresp, "\n#");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        for(i=1; i<=nlstate;i++)      }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");     cov[1]=1.;
           
   for(i=(int)agemin; i <= (int)agemax+3; i++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if(i==(int)agemax+3)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       printf("Total");      newm=savm;
     else      /* Covariates have to be included here again */
       printf("Age %d", i);       cov[2]=agefin;
     for(jk=1; jk <=nlstate ; jk++){    
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) {
         pp[jk] += freq[jk][m][i];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pos=0; m <=0 ; m++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         pos += freq[jk][m][i];        for (k=1; k<=cptcovprod;k++)
       if(pp[jk]>=1.e-10)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for(jk=1; jk <=nlstate ; jk++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];      savm=oldm;
     }      oldm=newm;
     for(jk=1,pos=0; jk <=nlstate ; jk++)      maxmax=0.;
       pos += pp[jk];      for(j=1;j<=nlstate;j++){
     for(jk=1; jk <=nlstate ; jk++){        min=1.;
       if(pos>=1.e-5)        max=0.;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(i=1; i<=nlstate; i++) {
       else          sumnew=0;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       if( i <= (int) agemax){          prlim[i][j]= newm[i][j]/(1-sumnew);
         if(pos>=1.e-5)          max=FMAX(max,prlim[i][j]);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          min=FMIN(min,prlim[i][j]);
       else        }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
     }      }
     for(jk=-1; jk <=nlstate+ndeath; jk++)      if(maxmax < ftolpl){
       for(m=-1; m <=nlstate+ndeath; m++)        return prlim;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      }
     if(i <= (int) agemax)    }
       fprintf(ficresp,"\n");  }
     printf("\n");  
     }  /*************** transition probabilities ***************/ 
     }  
  }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
   fclose(ficresp);    double s1, s2;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /*double t34;*/
   free_vector(pp,1,nlstate);    int i,j,j1, nc, ii, jj;
   
 }  /* End of Freq */      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
 /************* Waves Concatenation ***************/          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             /*s2 += param[i][j][nc]*cov[nc];*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          }
      Death is a valid wave (if date is known).          ps[i][j]=s2;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        }
      and mw[mi+1][i]. dh depends on stepm.        for(j=i+1; j<=nlstate+ndeath;j++){
      */          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int i, mi, m;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          }
 float sum=0.;          ps[i][j]=s2;
         }
   for(i=1; i<=imx; i++){      }
     mi=0;      /*ps[3][2]=1;*/
     m=firstpass;      
     while(s[m][i] <= nlstate){      for(i=1; i<= nlstate; i++){
       if(s[m][i]>=1)        s1=0;
         mw[++mi][i]=m;        for(j=1; j<i; j++)
       if(m >=lastpass)          s1+=exp(ps[i][j]);
         break;        for(j=i+1; j<=nlstate+ndeath; j++)
       else          s1+=exp(ps[i][j]);
         m++;        ps[i][i]=1./(s1+1.);
     }/* end while */        for(j=1; j<i; j++)
     if (s[m][i] > nlstate){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       mi++;     /* Death is another wave */        for(j=i+1; j<=nlstate+ndeath; j++)
       /* if(mi==0)  never been interviewed correctly before death */          ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* Only death is a correct wave */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       mw[mi][i]=m;      } /* end i */
     }      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     wav[i]=mi;        for(jj=1; jj<= nlstate+ndeath; jj++){
     if(mi==0)          ps[ii][jj]=0;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          ps[ii][ii]=1;
   }        }
       }
   for(i=1; i<=imx; i++){      
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         dh[mi][i]=1;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       else{  /*         printf("ddd %lf ",ps[ii][jj]); */
         if (s[mw[mi+1][i]][i] > nlstate) {  /*       } */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /*       printf("\n "); */
           if(j=0) j=1;  /* Survives at least one month after exam */  /*        } */
         }  /*        printf("\n ");printf("%lf ",cov[2]); */
         else{         /*
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           k=k+1;        goto end;*/
           if (j >= jmax) jmax=j;      return ps;
           else if (j <= jmin)jmin=j;  }
           sum=sum+j;  
         }  /**************** Product of 2 matrices ******************/
         jk= j/stepm;  
         jl= j -jk*stepm;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         ju= j -(jk+1)*stepm;  {
         if(jl <= -ju)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           dh[mi][i]=jk;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         else    /* in, b, out are matrice of pointers which should have been initialized 
           dh[mi][i]=jk+1;       before: only the contents of out is modified. The function returns
         if(dh[mi][i]==0)       a pointer to pointers identical to out */
           dh[mi][i]=1; /* At least one step */    long i, j, k;
       }    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++)
   }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);          out[i][k] +=in[i][j]*b[j][k];
 }  
 /*********** Tricode ****************************/    return out;
 void tricode(int *Tvar, int **nbcode, int imx)  }
 {  
   int Ndum[80],ij, k, j, i;  
   int cptcode=0;  /************* Higher Matrix Product ***************/
   for (k=0; k<79; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    {
   for (j=1; j<=cptcovn; j++) {    /* Computes the transition matrix starting at age 'age' over 
     for (i=1; i<=imx; i++) {       'nhstepm*hstepm*stepm' months (i.e. until
       ij=(int)(covar[Tvar[j]][i]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       Ndum[ij]++;       nhstepm*hstepm matrices. 
       if (ij > cptcode) cptcode=ij;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     }       (typically every 2 years instead of every month which is too big 
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/       for the memory).
     for (i=0; i<=cptcode; i++) {       Model is determined by parameters x and covariates have to be 
       if(Ndum[i]!=0) ncodemax[j]++;       included manually here. 
     }  
         */
     ij=1;  
     for (i=1; i<=ncodemax[j]; i++) {    int i, j, d, h, k;
       for (k=0; k<=79; k++) {    double **out, cov[NCOVMAX];
         if (Ndum[k] != 0) {    double **newm;
           nbcode[Tvar[j]][ij]=k;  
           ij++;    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
         if (ij > ncodemax[j]) break;      for (j=1;j<=nlstate+ndeath;j++){
       }          oldm[i][j]=(i==j ? 1.0 : 0.0);
     }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }        }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 /*********** Health Expectancies ****************/        newm=savm;
         /* Covariates have to be included here again */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   /* Health expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i, j, nhstepm, hstepm, h;        for (k=1; k<=cptcovage;k++)
   double age, agelim,hf;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double ***p3mat;        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for(j=1; j<=nlstate;j++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       fprintf(ficreseij," %1d-%1d",i,j);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   fprintf(ficreseij,"\n");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   hstepm=1*YEARM; /*  Every j years of age (in month) */        oldm=newm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
       for(i=1; i<=nlstate+ndeath; i++)
   agelim=AGESUP;        for(j=1;j<=nlstate+ndeath;j++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          po[i][j][h]=newm[i][j];
     /* nhstepm age range expressed in number of stepm */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);           */
     /* Typically if 20 years = 20*12/6=40 stepm */        }
     if (stepm >= YEARM) hstepm=1;    } /* end h */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    return po;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*************** log-likelihood *************/
   double func( double *x)
   {
     for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       for(j=1; j<=nlstate;j++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    double **out;
           eij[i][j][(int)age] +=p3mat[i][j][h];    double sw; /* Sum of weights */
         }    double lli; /* Individual log likelihood */
        int s1, s2;
     hf=1;    double bbh, survp;
     if (stepm >= YEARM) hf=stepm/YEARM;    long ipmx;
     fprintf(ficreseij,"%.0f",age );    /*extern weight */
     for(i=1; i<=nlstate;i++)    /* We are differentiating ll according to initial status */
       for(j=1; j<=nlstate;j++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    /*for(i=1;i<imx;i++) 
       }      printf(" %d\n",s[4][i]);
     fprintf(ficreseij,"\n");    */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    cov[1]=1.;
   }  
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 /************ Variance ******************/    if(mle==1){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* Variance of health expectancies */        for(mi=1; mi<= wav[i]-1; mi++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **newm;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewm,**doldm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            }
    double *xp;          for(d=0; d<dh[mi][i]; d++){
   double **gp, **gm;            newm=savm;
   double ***gradg, ***trgradg;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double ***p3mat;            for (kk=1; kk<=cptcovage;kk++) {
   double age,agelim;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
    fprintf(ficresvij,"# Covariances of life expectancies\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficresvij,"# Age");            savm=oldm;
   for(i=1; i<=nlstate;i++)            oldm=newm;
     for(j=1; j<=nlstate;j++)          } /* end mult */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        
   fprintf(ficresvij,"\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
   xp=vector(1,npar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   dnewm=matrix(1,nlstate,1,npar);           * (in months) between two waves is not a multiple of stepm, we rounded to 
   doldm=matrix(1,nlstate,1,nlstate);           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   hstepm=1*YEARM; /* Every year of age */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * probability in order to take into account the bias as a fraction of the way
   agelim = AGESUP;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * -stepm/2 to stepm/2 .
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           * For stepm=1 the results are the same as for previous versions of Imach.
     if (stepm >= YEARM) hstepm=1;           * For stepm > 1 the results are less biased than in previous versions. 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */           */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s1=s[mw[mi][i]][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          s2=s[mw[mi+1][i]][i];
     gp=matrix(0,nhstepm,1,nlstate);          bbh=(double)bh[mi][i]/(double)stepm; 
     gm=matrix(0,nhstepm,1,nlstate);          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
     for(theta=1; theta <=npar; theta++){           */
       for(i=1; i<=npar; i++){ /* Computes gradient */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          if( s2 > nlstate){ 
       }            /* i.e. if s2 is a death state and if the date of death is known 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                 then the contribution to the likelihood is the probability to 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);               die between last step unit time and current  step unit time, 
       for(j=1; j<= nlstate; j++){               which is also equal to probability to die before dh 
         for(h=0; h<=nhstepm; h++){               minus probability to die before dh-stepm . 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)               In version up to 0.92 likelihood was computed
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          as if date of death was unknown. Death was treated as any other
         }          health state: the date of the interview describes the actual state
       }          and not the date of a change in health state. The former idea was
              to consider that at each interview the state was recorded
       for(i=1; i<=npar; i++) /* Computes gradient */          (healthy, disable or death) and IMaCh was corrected; but when we
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          introduced the exact date of death then we should have modified
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            the contribution of an exact death to the likelihood. This new
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          contribution is smaller and very dependent of the step unit
       for(j=1; j<= nlstate; j++){          stepm. It is no more the probability to die between last interview
         for(h=0; h<=nhstepm; h++){          and month of death but the probability to survive from last
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          interview up to one month before death multiplied by the
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
       for(j=1; j<= nlstate; j++)          which slows down the processing. The difference can be up to 10%
         for(h=0; h<=nhstepm; h++){          lower mortality.
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            */
         }            lli=log(out[s1][s2] - savm[s1][s2]);
     } /* End theta */  
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
     for(h=0; h<=nhstepm; h++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<=nlstate;j++)            /*survp += out[s1][j]; */
         for(theta=1; theta <=npar; theta++)            lli= log(survp);
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           
     for(i=1;i<=nlstate;i++)          else if  (s2==-4) { 
       for(j=1;j<=nlstate;j++)            for (j=3,survp=0. ; j<=nlstate; j++)  
         vareij[i][j][(int)age] =0.;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(h=0;h<=nhstepm;h++){            lli= log(survp); 
       for(k=0;k<=nhstepm;k++){          } 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          else if  (s2==-5) { 
         for(i=1;i<=nlstate;i++)            for (j=1,survp=0. ; j<=2; j++)  
           for(j=1;j<=nlstate;j++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             vareij[i][j][(int)age] += doldm[i][j];            lli= log(survp); 
       }          } 
     }          
     h=1;          else{
     if (stepm >= YEARM) h=stepm/YEARM;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficresvij,"%.0f ",age );            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for(i=1; i<=nlstate;i++)          } 
       for(j=1; j<=nlstate;j++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          /*if(lli ==000.0)*/
       }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     fprintf(ficresvij,"\n");          ipmx +=1;
     free_matrix(gp,0,nhstepm,1,nlstate);          sw += weight[i];
     free_matrix(gm,0,nhstepm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        } /* end of wave */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      } /* end of individual */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  else if(mle==2){
   } /* End age */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(xp,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(doldm,1,nlstate,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(dnewm,1,nlstate,1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /************ Variance of prevlim ******************/          for(d=0; d<=dh[mi][i]; d++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* Variance of prevalence limit */            for (kk=1; kk<=cptcovage;kk++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **newm;            }
   double **dnewm,**doldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k, cptcode;            savm=oldm;
   double *xp;            oldm=newm;
   double *gp, *gm;          } /* end mult */
   double **gradg, **trgradg;        
   double age,agelim;          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fprintf(ficresvpl,"# Age");          ipmx +=1;
   for(i=1; i<=nlstate;i++)          sw += weight[i];
       fprintf(ficresvpl," %1d-%1d",i,i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvpl,"\n");        } /* end of wave */
       } /* end of individual */
   xp=vector(1,npar);    }  else if(mle==3){  /* exponential inter-extrapolation */
   dnewm=matrix(1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=1*YEARM; /* Every year of age */          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (j=1;j<=nlstate+ndeath;j++){
   agelim = AGESUP;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;          for(d=0; d<dh[mi][i]; d++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            newm=savm;
     gradg=matrix(1,npar,1,nlstate);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     gp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
     gm=vector(1,nlstate);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(theta=1; theta <=npar; theta++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++){ /* Computes gradient */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            savm=oldm;
       }            oldm=newm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          } /* end mult */
       for(i=1;i<=nlstate;i++)        
         gp[i] = prlim[i][i];          s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
       for(i=1; i<=npar; i++) /* Computes gradient */          bbh=(double)bh[mi][i]/(double)stepm; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gm[i] = prlim[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       for(i=1;i<=nlstate;i++)      } /* end of individual */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     } /* End theta */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     trgradg =matrix(1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
       for(theta=1; theta <=npar; theta++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         trgradg[j][theta]=gradg[theta][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(i=1;i<=nlstate;i++)          for(d=0; d<dh[mi][i]; d++){
       varpl[i][(int)age] =0.;            newm=savm;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            for (kk=1; kk<=cptcovage;kk++) {
     for(i=1;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            }
           
     fprintf(ficresvpl,"%.0f ",age );            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            savm=oldm;
     fprintf(ficresvpl,"\n");            oldm=newm;
     free_vector(gp,1,nlstate);          } /* end mult */
     free_vector(gm,1,nlstate);        
     free_matrix(gradg,1,npar,1,nlstate);          s1=s[mw[mi][i]][i];
     free_matrix(trgradg,1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
   } /* End age */          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(xp,1,npar);          }else{
   free_matrix(doldm,1,nlstate,1,npar);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_matrix(dnewm,1,nlstate,1,nlstate);          }
           ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 /***********************************************/      } /* end of individual */
 /**************** Main Program *****************/    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 /***********************************************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /*int main(int argc, char *argv[])*/        for(mi=1; mi<= wav[i]-1; mi++){
 int main()          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double agedeb, agefin,hf;            }
   double agemin=1.e20, agemax=-1.e20;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   double fret;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **xi,tmp,delta;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double dum; /* Dummy variable */            }
   double ***p3mat;          
   int *indx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   char line[MAXLINE], linepar[MAXLINE];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char title[MAXLINE];            savm=oldm;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            oldm=newm;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];          } /* end mult */
   char filerest[FILENAMELENGTH];        
   char fileregp[FILENAMELENGTH];          s1=s[mw[mi][i]][i];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          s2=s[mw[mi+1][i]][i];
   int firstobs=1, lastobs=10;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int sdeb, sfin; /* Status at beginning and end */          ipmx +=1;
   int c,  h , cpt,l;          sw += weight[i];
   int ju,jl, mi;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i1,j1, k1,jk,aa,bb, stepsize;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        } /* end of wave */
        } /* end of individual */
   int hstepm, nhstepm;    } /* End of if */
   double bage, fage, age, agelim, agebase;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double ftolpl=FTOL;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double **prlim;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *severity;    return -l;
   double ***param; /* Matrix of parameters */  }
   double  *p;  
   double **matcov; /* Matrix of covariance */  /*************** log-likelihood *************/
   double ***delti3; /* Scale */  double funcone( double *x)
   double *delti; /* Scale */  {
   double ***eij, ***vareij;    /* Same as likeli but slower because of a lot of printf and if */
   double **varpl; /* Variances of prevalence limits by age */    int i, ii, j, k, mi, d, kk;
   double *epj, vepp;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    double **out;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double lli; /* Individual log likelihood */
   char z[1]="c", occ;    double llt;
 #include <sys/time.h>    int s1, s2;
 #include <time.h>    double bbh, survp;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /*extern weight */
   /* long total_usecs;    /* We are differentiating ll according to initial status */
   struct timeval start_time, end_time;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
      /*for(i=1;i<imx;i++) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      printf(" %d\n",s[4][i]);
     */
     cov[1]=1.;
   printf("\nIMACH, Version 0.63");  
   printf("\nEnter the parameter file name: ");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
 #ifdef windows    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   scanf("%s",pathtot);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   getcwd(pathcd, size);      for(mi=1; mi<= wav[i]-1; mi++){
   cutv(path,optionfile,pathtot,'\\');        for (ii=1;ii<=nlstate+ndeath;ii++)
   chdir(path);          for (j=1;j<=nlstate+ndeath;j++){
   replace(pathc,path);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 #endif            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 #ifdef unix          }
   scanf("%s",optionfile);        for(d=0; d<dh[mi][i]; d++){
 #endif          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*-------- arguments in the command line --------*/          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcpy(fileres,"r");          }
   strcat(fileres, optionfile);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*---------arguments file --------*/          savm=oldm;
           oldm=newm;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        } /* end mult */
     printf("Problem with optionfile %s\n",optionfile);        
     goto end;        s1=s[mw[mi][i]][i];
   }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(filereso,"o");        /* bias is positive if real duration
   strcat(filereso,fileres);         * is higher than the multiple of stepm and negative otherwise.
   if((ficparo=fopen(filereso,"w"))==NULL) {         */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
   /* Reads comments: lines beginning with '#' */          for (j=1,survp=0. ; j<=nlstate; j++) 
   while((c=getc(ficpar))=='#' && c!= EOF){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     ungetc(c,ficpar);          lli= log(survp);
     fgets(line, MAXLINE, ficpar);        }else if (mle==1){
     puts(line);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fputs(line,ficparo);        } else if(mle==2){
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   ungetc(c,ficpar);        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   covar=matrix(1,NCOVMAX,1,n);            } /* End of if */
   if (strlen(model)<=1) cptcovn=0;        ipmx +=1;
   else {        sw += weight[i];
     j=0;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     j=nbocc(model,'+');  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     cptcovn=j+1;        if(globpr){
   }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   ncovmodel=2+cptcovn;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   /* Read guess parameters */            llt +=ll[k]*gipmx/gsw;
   /* Reads comments: lines beginning with '#' */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          fprintf(ficresilk," %10.6f\n", -llt);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      } /* end of wave */
     fputs(line,ficparo);    } /* end of individual */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   ungetc(c,ficpar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1; i <=nlstate; i++)      gipmx=ipmx;
     for(j=1; j <=nlstate+ndeath-1; j++){      gsw=sw;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);    return -l;
       printf("%1d%1d",i,j);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);  /*************** function likelione ***********/
         fprintf(ficparo," %lf",param[i][j][k]);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
       fscanf(ficpar,"\n");    /* This routine should help understanding what is done with 
       printf("\n");       the selection of individuals/waves and
       fprintf(ficparo,"\n");       to check the exact contribution to the likelihood.
     }       Plotting could be done.
       */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    int k;
   p=param[1][1];  
      if(*globpri !=0){ /* Just counts and sums, no printings */
   /* Reads comments: lines beginning with '#' */      strcpy(fileresilk,"ilk"); 
   while((c=getc(ficpar))=='#' && c!= EOF){      strcat(fileresilk,fileres);
     ungetc(c,ficpar);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);        printf("Problem with resultfile: %s\n", fileresilk);
     puts(line);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     fputs(line,ficparo);      }
   }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   ungetc(c,ficpar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(k=1; k<=nlstate; k++) 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   for(i=1; i <=nlstate; i++){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);    *fretone=(*funcone)(p);
       fprintf(ficparo,"%1d%1d",i1,j1);    if(*globpri !=0){
       for(k=1; k<=ncovmodel;k++){      fclose(ficresilk);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         printf(" %le",delti3[i][j][k]);      fflush(fichtm); 
         fprintf(ficparo," %le",delti3[i][j][k]);    } 
       }    return;
       fscanf(ficpar,"\n");  }
       printf("\n");  
       fprintf(ficparo,"\n");  
     }  /*********** Maximum Likelihood Estimation ***************/
   }  
   delti=delti3[1][1];  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
    {
   /* Reads comments: lines beginning with '#' */    int i,j, iter;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **xi;
     ungetc(c,ficpar);    double fret;
     fgets(line, MAXLINE, ficpar);    double fretone; /* Only one call to likelihood */
     puts(line);    /*  char filerespow[FILENAMELENGTH];*/
     fputs(line,ficparo);    xi=matrix(1,npar,1,npar);
   }    for (i=1;i<=npar;i++)
   ungetc(c,ficpar);      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
   matcov=matrix(1,npar,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for(i=1; i <=npar; i++){    strcpy(filerespow,"pow"); 
     fscanf(ficpar,"%s",&str);    strcat(filerespow,fileres);
     printf("%s",str);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fprintf(ficparo,"%s",str);      printf("Problem with resultfile: %s\n", filerespow);
     for(j=1; j <=i; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       fscanf(ficpar," %le",&matcov[i][j]);    }
       printf(" %.5le",matcov[i][j]);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fprintf(ficparo," %.5le",matcov[i][j]);    for (i=1;i<=nlstate;i++)
     }      for(j=1;j<=nlstate+ndeath;j++)
     fscanf(ficpar,"\n");        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     printf("\n");    fprintf(ficrespow,"\n");
     fprintf(ficparo,"\n");  
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    free_matrix(xi,1,npar,1,npar);
       matcov[i][j]=matcov[j][i];    fclose(ficrespow);
        printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   printf("\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
    if(mle==1){  }
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {  /**** Computes Hessian and covariance matrix ***/
       printf("Problem with resultfile: %s\n", fileres);goto end;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     }  {
     fprintf(ficres,"#%s\n",version);    double  **a,**y,*x,pd;
        double **hess;
     if((fic=fopen(datafile,"r"))==NULL)    {    int i, j,jk;
       printf("Problem with datafile: %s\n", datafile);goto end;    int *indx;
     }  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     n= lastobs;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     severity = vector(1,maxwav);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     outcome=imatrix(1,maxwav+1,1,n);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     num=ivector(1,n);    double gompertz(double p[]);
     moisnais=vector(1,n);    hess=matrix(1,npar,1,npar);
     annais=vector(1,n);  
     moisdc=vector(1,n);    printf("\nCalculation of the hessian matrix. Wait...\n");
     andc=vector(1,n);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     agedc=vector(1,n);    for (i=1;i<=npar;i++){
     cod=ivector(1,n);      printf("%d",i);fflush(stdout);
     weight=vector(1,n);      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */     
     mint=matrix(1,maxwav,1,n);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     anint=matrix(1,maxwav,1,n);      
     s=imatrix(1,maxwav+1,1,n);      /*  printf(" %f ",p[i]);
     adl=imatrix(1,maxwav+1,1,n);              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     tab=ivector(1,NCOVMAX);    }
     ncodemax=ivector(1,8);    
     for (i=1;i<=npar;i++) {
     i=1;      for (j=1;j<=npar;j++)  {
     while (fgets(line, MAXLINE, fic) != NULL)    {        if (j>i) { 
       if ((i >= firstobs) && (i <=lastobs)) {          printf(".%d%d",i,j);fflush(stdout);
                  fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for (j=maxwav;j>=1;j--){          hess[i][j]=hessij(p,delti,i,j,func,npar);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          
           strcpy(line,stra);          hess[j][i]=hess[i][j];    
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /*printf(" %lf ",hess[i][j]);*/
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }      }
            }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    a=matrix(1,npar,1,npar);
         for (j=ncov;j>=1;j--){    y=matrix(1,npar,1,npar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    x=vector(1,npar);
         }    indx=ivector(1,npar);
         num[i]=atol(stra);    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/    ludcmp(a,npar,indx,&pd);
   
         i=i+1;    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
     }      x[j]=1;
       lubksb(a,npar,indx,x);
     /*scanf("%d",i);*/      for (i=1;i<=npar;i++){ 
   imx=i-1; /* Number of individuals */        matcov[i][j]=x[i];
       }
   /* Calculation of the number of parameter from char model*/    }
   Tvar=ivector(1,8);      
        printf("\n#Hessian matrix#\n");
   if (strlen(model) >1){    fprintf(ficlog,"\n#Hessian matrix#\n");
     j=0;    for (i=1;i<=npar;i++) { 
     j=nbocc(model,'+');      for (j=1;j<=npar;j++) { 
     cptcovn=j+1;        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
     strcpy(modelsav,model);      }
     if (j==0) {      printf("\n");
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);      fprintf(ficlog,"\n");
     }    }
     else {  
       for(i=j; i>=1;i--){    /* Recompute Inverse */
         cutv(stra,strb,modelsav,'+');    for (i=1;i<=npar;i++)
         if (strchr(strb,'*')) {      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           cutv(strd,strc,strb,'*');    ludcmp(a,npar,indx,&pd);
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;  
           cutv(strb,strc,strd,'V');    /*  printf("\n#Hessian matrix recomputed#\n");
           for (k=1; k<=lastobs;k++)  
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
         else {cutv(strd,strc,strb,'V');      x[j]=1;
         Tvar[i+1]=atoi(strc);      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
         strcpy(modelsav,stra);          y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
       cutv(strd,strc,stra,'V');        fprintf(ficlog,"%.3e ",y[i][j]);
       Tvar[1]=atoi(strc);      }
     }      printf("\n");
   }      fprintf(ficlog,"\n");
   /*printf("tvar=%d ",Tvar[1]);    }
   scanf("%d ",i);*/    */
     fclose(fic);  
     free_matrix(a,1,npar,1,npar);
     if (weightopt != 1) { /* Maximisation without weights*/    free_matrix(y,1,npar,1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    free_vector(x,1,npar);
     }    free_ivector(indx,1,npar);
     /*-calculation of age at interview from date of interview and age at death -*/    free_matrix(hess,1,npar,1,npar);
     agev=matrix(1,maxwav,1,imx);  
      
     for (i=1; i<=imx; i++)  {  }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){  /*************** hessian matrix ****************/
         if(s[m][i] >0){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           if (s[m][i] == nlstate+1) {  {
             if(agedc[i]>0)    int i;
               if(moisdc[i]!=99 && andc[i]!=9999)    int l=1, lmax=20;
               agev[m][i]=agedc[i];    double k1,k2;
             else{    double p2[NPARMAX+1];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double res;
               agev[m][i]=-1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             }    double fx;
           }    int k=0,kmax=10;
           else if(s[m][i] !=9){ /* Should no more exist */    double l1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)    fx=func(x);
               agev[m][i]=1;    for (i=1;i<=npar;i++) p2[i]=x[i];
             else if(agev[m][i] <agemin){    for(l=0 ; l <=lmax; l++){
               agemin=agev[m][i];      l1=pow(10,l);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      delts=delt;
             }      for(k=1 ; k <kmax; k=k+1){
             else if(agev[m][i] >agemax){        delt = delta*(l1*k);
               agemax=agev[m][i];        p2[theta]=x[theta] +delt;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        k1=func(p2)-fx;
             }        p2[theta]=x[theta]-delt;
             /*agev[m][i]=anint[m][i]-annais[i];*/        k2=func(p2)-fx;
             /*   agev[m][i] = age[i]+2*m;*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
           }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           else { /* =9 */        
             agev[m][i]=1;  #ifdef DEBUG
             s[m][i]=-1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         }  #endif
         else /*= 0 Unknown */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           agev[m][i]=1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
            }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for (i=1; i<=imx; i++)  {          k=kmax; l=lmax*10.;
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
           printf("Error: Wrong value in nlstate or ndeath\n");            delts=delt;
           goto end;        }
         }      }
       }    }
     }    delti[theta]=delts;
     return res; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
   }
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     free_vector(moisnais,1,n);  {
     free_vector(annais,1,n);    int i;
     free_matrix(mint,1,maxwav,1,n);    int l=1, l1, lmax=20;
     free_matrix(anint,1,maxwav,1,n);    double k1,k2,k3,k4,res,fx;
     free_vector(moisdc,1,n);    double p2[NPARMAX+1];
     free_vector(andc,1,n);    int k;
   
        fx=func(x);
     wav=ivector(1,imx);    for (k=1; k<=2; k++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for (i=1;i<=npar;i++) p2[i]=x[i];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     /* Concatenates waves */      k1=func(p2)-fx;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 Tcode=ivector(1,100);      k2=func(p2)-fx;
    nbcode=imatrix(1,nvar,1,8);      
    ncodemax[1]=1;      p2[thetai]=x[thetai]-delti[thetai]/k;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k3=func(p2)-fx;
    codtab=imatrix(1,100,1,10);    
    h=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
    m=pow(2,cptcovn);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
    for(k=1;k<=cptcovn; k++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      for(i=1; i <=(m/pow(2,k));i++){  #ifdef DEBUG
        for(j=1; j <= ncodemax[k]; j++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
            h++;  #endif
            if (h>m) h=1;codtab[h][k]=j;    }
          }    return res;
        }  }
      }  
    }  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
    /*for(i=1; i <=m ;i++){  { 
      for(k=1; k <=cptcovn; k++){    int i,imax,j,k; 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    double big,dum,sum,temp; 
      }    double *vv; 
      printf("\n");   
    }*/    vv=vector(1,n); 
    /*scanf("%d",i);*/    *d=1.0; 
        for (i=1;i<=n;i++) { 
    /* Calculates basic frequencies. Computes observed prevalence at single age      big=0.0; 
        and prints on file fileres'p'. */      for (j=1;j<=n;j++) 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
   /*scanf("%d ",i);*/    } 
     for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        sum=a[i][j]; 
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        a[i][j]=sum; 
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } 
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      big=0.0; 
          for (i=j;i<=n;i++) { 
     /* For Powell, parameters are in a vector p[] starting at p[1]        sum=a[i][j]; 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for (k=1;k<j;k++) 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          sum -= a[i][k]*a[k][j]; 
            a[i][j]=sum; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
              imax=i; 
     /*--------- results files --------------*/        } 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      } 
          if (j != imax) { 
    jk=1;        for (k=1;k<=n;k++) { 
    fprintf(ficres,"# Parameters\n");          dum=a[imax][k]; 
    printf("# Parameters\n");          a[imax][k]=a[j][k]; 
    for(i=1,jk=1; i <=nlstate; i++){          a[j][k]=dum; 
      for(k=1; k <=(nlstate+ndeath); k++){        } 
        if (k != i)        *d = -(*d); 
          {        vv[imax]=vv[j]; 
            printf("%d%d ",i,k);      } 
            fprintf(ficres,"%1d%1d ",i,k);      indx[j]=imax; 
            for(j=1; j <=ncovmodel; j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
              printf("%f ",p[jk]);      if (j != n) { 
              fprintf(ficres,"%f ",p[jk]);        dum=1.0/(a[j][j]); 
              jk++;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
            }      } 
            printf("\n");    } 
            fprintf(ficres,"\n");    free_vector(vv,1,n);  /* Doesn't work */
          }  ;
      }  } 
    }  
   void lubksb(double **a, int n, int *indx, double b[]) 
     /* Computing hessian and covariance matrix */  { 
     ftolhess=ftol; /* Usually correct */    int i,ii=0,ip,j; 
     hesscov(matcov, p, npar, delti, ftolhess, func);    double sum; 
     fprintf(ficres,"# Scales\n");   
     printf("# Scales\n");    for (i=1;i<=n;i++) { 
      for(i=1,jk=1; i <=nlstate; i++){      ip=indx[i]; 
       for(j=1; j <=nlstate+ndeath; j++){      sum=b[ip]; 
         if (j!=i) {      b[ip]=b[i]; 
           fprintf(ficres,"%1d%1d",i,j);      if (ii) 
           printf("%1d%1d",i,j);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           for(k=1; k<=ncovmodel;k++){      else if (sum) ii=i; 
             printf(" %.5e",delti[jk]);      b[i]=sum; 
             fprintf(ficres," %.5e",delti[jk]);    } 
             jk++;    for (i=n;i>=1;i--) { 
           }      sum=b[i]; 
           printf("\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           fprintf(ficres,"\n");      b[i]=sum/a[i][i]; 
         }    } 
       }  } 
       }  
      void pstamp(FILE *fichier)
     k=1;  {
     fprintf(ficres,"# Covariance\n");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     printf("# Covariance\n");  }
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;  /************ Frequencies ********************/
       i1=(i-1)/(ncovmodel*nlstate)+1;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  {  /* Some frequencies */
       printf("%s%d%d",alph[k],i1,tab[i]);*/    
       fprintf(ficres,"%3d",i);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
       printf("%3d",i);    int first;
       for(j=1; j<=i;j++){    double ***freq; /* Frequencies */
         fprintf(ficres," %.5e",matcov[i][j]);    double *pp, **prop;
         printf(" %.5e",matcov[i][j]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       }    char fileresp[FILENAMELENGTH];
       fprintf(ficres,"\n");    
       printf("\n");    pp=vector(1,nlstate);
       k++;    prop=matrix(1,nlstate,iagemin,iagemax+3);
     }    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
     while((c=getc(ficpar))=='#' && c!= EOF){    if((ficresp=fopen(fileresp,"w"))==NULL) {
       ungetc(c,ficpar);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       puts(line);      exit(0);
       fputs(line,ficparo);    }
     }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     ungetc(c,ficpar);    j1=0;
      
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    j=cptcoveff;
        if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if (fage <= 2) {  
       bage = agemin;    first=1;
       fage = agemax;  
     }    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        j1++;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 /*------------ gnuplot -------------*/          scanf("%d", i);*/
 chdir(pathcd);        for (i=-5; i<=nlstate+ndeath; i++)  
   if((ficgp=fopen("graph.plt","w"))==NULL) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     printf("Problem with file graph.gp");goto end;            for(m=iagemin; m <= iagemax+3; m++)
   }              freq[i][jk][m]=0;
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);      for (i=1; i<=nlstate; i++)  
 #endif        for(m=iagemin; m <= iagemax+3; m++)
 m=pow(2,cptcovn);          prop[i][m]=0;
          
  /* 1eme*/        dateintsum=0;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        k2cpt=0;
    for (k1=1; k1<= m ; k1 ++) {        for (i=1; i<=imx; i++) {
           bool=1;
 #ifdef windows          if  (cptcovn>0) {
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);            for (z1=1; z1<=cptcoveff; z1++) 
 #endif              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 #ifdef unix                bool=0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);          }
 #endif          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
 for (i=1; i<= nlstate ; i ++) {              k2=anint[m][i]+(mint[m][i]/12.);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (i=1; i<= nlstate ; i ++) {                if (m<lastpass) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 }                }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                
      for (i=1; i<= nlstate ; i ++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  dateintsum=dateintsum+k2;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  k2cpt++;
 }                  }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                /*}*/
 #ifdef unix            }
 fprintf(ficgp,"\nset ter gif small size 400,300");          }
 #endif        }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);         
    }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   }        pstamp(ficresp);
   /*2 eme*/        if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
   for (k1=1; k1<= m ; k1 ++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          fprintf(ficresp, "**********\n#");
            }
     for (i=1; i<= nlstate+1 ; i ++) {        for(i=1; i<=nlstate;i++) 
       k=2*i;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresp, "\n");
       for (j=1; j<= nlstate+1 ; j ++) {        
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        for(i=iagemin; i <= iagemax+3; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if(i==iagemax+3){
 }              fprintf(ficlog,"Total");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            fprintf(fichtm,"<br>Total<br>");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          }else{
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(first==1){
       for (j=1; j<= nlstate+1 ; j ++) {              first=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("See log file for details...\n");
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              fprintf(ficlog,"Age %d", i);
       fprintf(ficgp,"\" t\"\" w l 0,");          }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            for(jk=1; jk <=nlstate ; jk++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for(m=-1, pos=0; m <=0 ; m++)
       else fprintf(ficgp,"\" t\"\" w l 0,");              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              if(first==1){
   }              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                }
   /*3eme*/              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
    for (k1=1; k1<= m ; k1 ++) {              if(first==1)
     for (cpt=1; cpt<= nlstate ; cpt ++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       k=2+nlstate*(cpt-1);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);            }
       for (i=1; i< nlstate ; i ++) {          }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }              pp[jk] += freq[jk][m][i];
    }          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   /* CV preval stat */            pos += pp[jk];
     for (k1=1; k1<= m ; k1 ++) {            posprop += prop[jk][i];
     for (cpt=1; cpt<nlstate ; cpt ++) {          }
       k=3;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            if(pos>=1.e-5){
       for (i=1; i< nlstate ; i ++)              if(first==1)
         fprintf(ficgp,"+$%d",k+i+1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                  }else{
       l=3+(nlstate+ndeath)*cpt;              if(first==1)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for (i=1; i< nlstate ; i ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);            if( i <= iagemax){
       }              if(pos>=1.e-5){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   }              }
                else
   /* proba elementaires */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   for(i=1,jk=1; i <=nlstate; i++){            }
     for(k=1; k <=(nlstate+ndeath); k++){          }
       if (k != i) {          
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(j=1; j <=ncovmodel; j++){            for(m=-1; m <=nlstate+ndeath; m++)
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);              if(freq[jk][m][i] !=0 ) {
           jk++;              if(first==1)
           fprintf(ficgp,"\n");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       }              }
     }          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
   for(jk=1; jk <=m; jk++) {          if(first==1)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);            printf("Others in log...\n");
   for(i=1; i <=nlstate; i++) {          fprintf(ficlog,"\n");
     for(k=1; k <=(nlstate+ndeath); k++){        }
       if (k != i) {      }
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);    }
         for(j=3; j <=ncovmodel; j++)    dateintmean=dateintsum/k2cpt; 
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);   
         fprintf(ficgp,")/(1");    fclose(ficresp);
         for(k1=1; k1 <=(nlstate+ndeath); k1++)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
           if (k1 != i) {    free_vector(pp,1,nlstate);
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             for(j=3; j <=ncovmodel; j++)    /* End of Freq */
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }
             fprintf(ficgp,")");  
           }  /************ Prevalence ********************/
         fprintf(ficgp,") t \"p%d%d\" ", i,k);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  {  
       }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     }       in each health status at the date of interview (if between dateprev1 and dateprev2).
   }       We still use firstpass and lastpass as another selection.
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      */
   }   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
  fclose(ficgp);    double ***freq; /* Frequencies */
     double *pp, **prop;
     chdir(path);    double pos,posprop; 
     free_matrix(agev,1,maxwav,1,imx);    double  y2; /* in fractional years */
     free_ivector(wav,1,imx);    int iagemin, iagemax;
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    iagemin= (int) agemin;
        iagemax= (int) agemax;
     free_imatrix(s,1,maxwav+1,1,n);    /*pp=vector(1,nlstate);*/
        prop=matrix(1,nlstate,iagemin,iagemax+3); 
        /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     free_ivector(num,1,n);    j1=0;
     free_vector(agedc,1,n);    
     free_vector(weight,1,n);    j=cptcoveff;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fclose(ficparo);    
     fclose(ficres);    for(k1=1; k1<=j;k1++){
    }      for(i1=1; i1<=ncodemax[k1];i1++){
            j1++;
    /*________fin mle=1_________*/        
            for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
     /* No more information from the sample is required now */       
   /* Reads comments: lines beginning with '#' */        for (i=1; i<=imx; i++) { /* Each individual */
   while((c=getc(ficpar))=='#' && c!= EOF){          bool=1;
     ungetc(c,ficpar);          if  (cptcovn>0) {
     fgets(line, MAXLINE, ficpar);            for (z1=1; z1<=cptcoveff; z1++) 
     puts(line);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     fputs(line,ficparo);                bool=0;
   }          } 
   ungetc(c,ficpar);          if (bool==1) { 
              for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /*--------- index.htm --------*/                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if((fichtm=fopen("index.htm","w"))==NULL)    {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     printf("Problem with index.htm \n");goto end;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n              }
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            } /* end selection of waves */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          }
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        for(i=iagemin; i <= iagemax+3; i++){  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>            posprop += prop[jk][i]; 
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>          } 
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
           for(jk=1; jk <=nlstate ; jk++){     
  fprintf(fichtm," <li>Graphs</li>\n<p>");            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
  m=cptcovn;                probs[i][jk][j1]= prop[jk][i]/posprop;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              } 
             } 
  j1=0;          }/* end jk */ 
  for(k1=1; k1<=m;k1++){        }/* end i */ 
    for(i1=1; i1<=ncodemax[k1];i1++){      } /* end i1 */
        j1++;    } /* end k1 */
        if (cptcovn > 0) {    
          fprintf(fichtm,"<hr>************ Results for covariates");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
          for (cpt=1; cpt<=cptcovn;cpt++)    /*free_vector(pp,1,nlstate);*/
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
          fprintf(fichtm," ************\n<hr>");  }  /* End of prevalence */
        }  
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>  /************* Waves Concatenation ***************/
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  {
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        }       Death is a valid wave (if date is known).
     for(cpt=1; cpt<=nlstate;cpt++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 interval) in state (%d): v%s%d%d.gif <br>       and mw[mi+1][i]. dh depends on stepm.
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);         */
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    int i, mi, m;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);       double sum=0., jmean=0.;*/
      }    int first;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    int j, k=0,jk, ju, jl;
 health expectancies in states (1) and (2): e%s%d.gif<br>    double sum=0.;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    first=0;
 fprintf(fichtm,"\n</body>");    jmin=1e+5;
    }    jmax=-1;
  }    jmean=0.;
 fclose(fichtm);    for(i=1; i<=imx; i++){
       mi=0;
   /*--------------- Prevalence limit --------------*/      m=firstpass;
        while(s[m][i] <= nlstate){
   strcpy(filerespl,"pl");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   strcat(filerespl,fileres);          mw[++mi][i]=m;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {        if(m >=lastpass)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          break;
   }        else
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          m++;
   fprintf(ficrespl,"#Prevalence limit\n");      }/* end while */
   fprintf(ficrespl,"#Age ");      if (s[m][i] > nlstate){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        mi++;     /* Death is another wave */
   fprintf(ficrespl,"\n");        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   prlim=matrix(1,nlstate,1,nlstate);        mw[mi][i]=m;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      wav[i]=mi;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if(mi==0){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        nbwarn++;
   k=0;        if(first==0){
   agebase=agemin;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   agelim=agemax;          first=1;
   ftolpl=1.e-10;        }
   i1=cptcovn;        if(first==1){
   if (cptcovn < 1){i1=1;}          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   for(cptcov=1;cptcov<=i1;cptcov++){      } /* end mi==0 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    } /* End individuals */
         k=k+1;  
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    for(i=1; i<=imx; i++){
         fprintf(ficrespl,"\n#****** ");      for(mi=1; mi<wav[i];mi++){
         for(j=1;j<=cptcovn;j++)        if (stepm <=0)
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          dh[mi][i]=1;
         fprintf(ficrespl,"******\n");        else{
                  if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for (age=agebase; age<=agelim; age++){            if (agedc[i] < 2*AGESUP) {
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           fprintf(ficrespl,"%.0f",age );              if(j==0) j=1;  /* Survives at least one month after exam */
           for(i=1; i<=nlstate;i++)              else if(j<0){
           fprintf(ficrespl," %.5f", prlim[i][i]);                nberr++;
           fprintf(ficrespl,"\n");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
       }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fclose(ficrespl);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /*------------- h Pij x at various ages ------------*/              }
                k=k+1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              if (j >= jmax){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                jmax=j;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                ijmax=i;
   }              }
   printf("Computing pij: result on file '%s' \n", filerespij);              if (j <= jmin){
                  jmin=j;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                ijmin=i;
   if (stepm<=24) stepsize=2;              }
               sum=sum+j;
   agelim=AGESUP;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   hstepm=stepsize*YEARM; /* Every year of age */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            }
            }
   k=0;          else{
   for(cptcov=1;cptcov<=i1;cptcov++){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");            k=k+1;
         for(j=1;j<=cptcovn;j++)            if (j >= jmax) {
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              jmax=j;
         fprintf(ficrespij,"******\n");              ijmax=i;
                    }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            else if (j <= jmin){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              jmin=j;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              ijmin=i;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           fprintf(ficrespij,"# Age");            if(j<0){
           for(i=1; i<=nlstate;i++)              nberr++;
             for(j=1; j<=nlstate+ndeath;j++)              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficrespij," %1d-%1d",i,j);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficrespij,"\n");            }
           for (h=0; h<=nhstepm; h++){            sum=sum+j;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          }
             for(i=1; i<=nlstate;i++)          jk= j/stepm;
               for(j=1; j<=nlstate+ndeath;j++)          jl= j -jk*stepm;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          ju= j -(jk+1)*stepm;
             fprintf(ficrespij,"\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           }            if(jl==0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              dh[mi][i]=jk;
           fprintf(ficrespij,"\n");              bh[mi][i]=0;
         }            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * at the price of an extra matrix product in likelihood */
   }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   fclose(ficrespij);            }
           }else{
   /*---------- Health expectancies and variances ------------*/            if(jl <= -ju){
               dh[mi][i]=jk;
   strcpy(filerest,"t");              bh[mi][i]=jl;       /* bias is positive if real duration
   strcat(filerest,fileres);                                   * is higher than the multiple of stepm and negative otherwise.
   if((ficrest=fopen(filerest,"w"))==NULL) {                                   */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            }
   }            else{
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
   strcpy(filerese,"e");            if(dh[mi][i]==0){
   strcat(filerese,fileres);              dh[mi][i]=1; /* At least one step */
   if((ficreseij=fopen(filerese,"w"))==NULL) {              bh[mi][i]=ju; /* At least one step */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          } /* end if mle */
         }
  strcpy(fileresv,"v");      } /* end wave */
   strcat(fileresv,fileres);    }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    jmean=sum/k;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   }
   
   k=0;  /*********** Tricode ****************************/
   for(cptcov=1;cptcov<=i1;cptcov++){  void tricode(int *Tvar, int **nbcode, int imx)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  {
       k=k+1;    
       fprintf(ficrest,"\n#****** ");    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for(j=1;j<=cptcovn;j++)    int cptcode=0;
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    cptcoveff=0; 
       fprintf(ficrest,"******\n");   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
       fprintf(ficreseij,"\n#****** ");    for (k=1; k<=7; k++) ncodemax[k]=0;
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       fprintf(ficreseij,"******\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
       fprintf(ficresvij,"\n#****** ");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for(j=1;j<=cptcovn;j++)        Ndum[ij]++; /*store the modality */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(ficresvij,"******\n");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                                         female is 1, then  cptcode=1.*/
       oldm=oldms;savm=savms;      }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for (i=0; i<=cptcode; i++) {
       oldm=oldms;savm=savms;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      }
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      ij=1; 
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for (i=1; i<=ncodemax[j]; i++) {
       fprintf(ficrest,"\n");        for (k=0; k<= maxncov; k++) {
                  if (Ndum[k] != 0) {
       hf=1;            nbcode[Tvar[j]][ij]=k; 
       if (stepm >= YEARM) hf=stepm/YEARM;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       epj=vector(1,nlstate+1);            
       for(age=bage; age <=fage ;age++){            ij++;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          }
         fprintf(ficrest," %.0f",age);          if (ij > ncodemax[j]) break; 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        }  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      } 
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    }  
           }  
           epj[nlstate+1] +=epj[j];   for (k=0; k< maxncov; k++) Ndum[k]=0;
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)   for (i=1; i<=ncovmodel-2; i++) { 
           for(j=1;j <=nlstate;j++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
             vepp += vareij[i][j][(int)age];     ij=Tvar[i];
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));     Ndum[ij]++;
         for(j=1;j <=nlstate;j++){   }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  
         }   ij=1;
         fprintf(ficrest,"\n");   for (i=1; i<= maxncov; i++) {
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
     }       Tvaraff[ij]=i; /*For printing */
   }       ij++;
             }
  fclose(ficreseij);   }
  fclose(ficresvij);   
   fclose(ficrest);   cptcoveff=ij-1; /*Number of simple covariates*/
   fclose(ficpar);  }
   free_vector(epj,1,nlstate+1);  
   /*scanf("%d ",i); */  /*********** Health Expectancies ****************/
   
   /*------- Variance limit prevalence------*/    void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
 strcpy(fileresvpl,"vpl");  {
   strcat(fileresvpl,fileres);    /* Health expectancies, no variances */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double age, agelim, hf;
     exit(0);    double ***p3mat;
   }    double eip;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     pstamp(ficreseij);
  k=0;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
  for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficreseij,"# Age");
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(i=1; i<=nlstate;i++){
      k=k+1;      for(j=1; j<=nlstate;j++){
      fprintf(ficresvpl,"\n#****** ");        fprintf(ficreseij," e%1d%1d ",i,j);
      for(j=1;j<=cptcovn;j++)      }
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      fprintf(ficreseij," e%1d. ",i);
      fprintf(ficresvpl,"******\n");    }
          fprintf(ficreseij,"\n");
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;    
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if(estepm < stepm){
    }      printf ("Problem %d lower than %d\n",estepm, stepm);
  }    }
     else  hstepm=estepm;   
   fclose(ficresvpl);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   /*---------- End : free ----------------*/     * if stepm=24 months pijx are given only every 2 years and by summing them
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);     * to the curvature of the survival function. If, for the same date, we 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
       * hypothesis. A more precise result, taking into account a more precise
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     * curvature will be obtained if estepm is as small as stepm. */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* For example we decided to compute the life expectancy with the smallest unit */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   free_matrix(matcov,1,npar,1,npar);       nstepm is the number of stepm from age to agelin. 
   free_vector(delti,1,npar);       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   printf("End of Imach\n");       means that if the survival funtion is printed only each two years of age and if
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   /*------ End -----------*/  
     agelim=AGESUP;
  end:    /* nhstepm age range expressed in number of stepm */
 #ifdef windows    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
  chdir(pathcd);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #endif    /* if (stepm >= YEARM) hstepm=1;*/
  system("wgnuplot graph.plt");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef windows  
   while (z[0] != 'q') {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     chdir(pathcd);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     printf("\nType e to edit output files, c to start again, and q for exiting: ");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     scanf("%s",z);      
     if (z[0] == 'c') system("./imach");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     else if (z[0] == 'e') {      
       chdir(path);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       system("index.htm");      
     }      printf("%d|",(int)age);fflush(stdout);
     else if (z[0] == 'q') exit(0);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
 #endif      /* Computing expectancies */
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.3  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>