Diff for /imach/src/imach.c between versions 1.50 and 1.124

version 1.50, 2002/06/26 23:25:02 version 1.124, 2006/03/22 17:13:53
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.124  2006/03/22 17:13:53  lievre
      Parameters are printed with %lf instead of %f (more numbers after the comma).
   This program computes Healthy Life Expectancies from    The log-likelihood is printed in the log file
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.123  2006/03/20 10:52:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Module): <title> changed, corresponds to .htm file
   case of a health survey which is our main interest) -2- at least a    name. <head> headers where missing.
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    * imach.c (Module): Weights can have a decimal point as for
   computed from the time spent in each health state according to a    English (a comma might work with a correct LC_NUMERIC environment,
   model. More health states you consider, more time is necessary to reach the    otherwise the weight is truncated).
   Maximum Likelihood of the parameters involved in the model.  The    Modification of warning when the covariates values are not 0 or
   simplest model is the multinomial logistic model where pij is the    1.
   probability to be observed in state j at the second wave    Version 0.98g
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.122  2006/03/20 09:45:41  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    (Module): Weights can have a decimal point as for
   complex model than "constant and age", you should modify the program    English (a comma might work with a correct LC_NUMERIC environment,
   where the markup *Covariates have to be included here again* invites    otherwise the weight is truncated).
   you to do it.  More covariates you add, slower the    Modification of warning when the covariates values are not 0 or
   convergence.    1.
     Version 0.98g
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.121  2006/03/16 17:45:01  lievre
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Comments concerning covariates added
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   hPijx is the probability to be observed in state i at age x+h    not 1 month. Version 0.98f
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.120  2006/03/16 15:10:38  lievre
   states. This elementary transition (by month or quarter trimester,    (Module): refinements in the computation of lli if
   semester or year) is model as a multinomial logistic.  The hPx    status=-2 in order to have more reliable computation if stepm is
   matrix is simply the matrix product of nh*stepm elementary matrices    not 1 month. Version 0.98f
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Also this programme outputs the covariance matrix of the parameters but also    computed as likelihood omitting the logarithm. Version O.98e
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.118  2006/03/14 18:20:07  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): varevsij Comments added explaining the second
            Institut national d'études démographiques, Paris.    table of variances if popbased=1 .
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   from the European Union.    (Module): Function pstamp added
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98d
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 #include <math.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #include <stdio.h>    (Module): Function pstamp added
 #include <stdlib.h>    (Module): Version 0.98d
 #include <unistd.h>  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define MAXLINE 256    (Module): Variance-covariance wrong links and
 #define GNUPLOTPROGRAM "gnuplot"    varian-covariance of ej. is needed (Saito).
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.115  2006/02/27 12:17:45  brouard
 /*#define DEBUG*/    (Module): One freematrix added in mlikeli! 0.98c
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.114  2006/02/26 12:57:58  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Some improvements in processing parameter
     filename with strsep.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
 #define NINTERVMAX 8    datafile was not closed, some imatrix were not freed and on matrix
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    allocation too.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.112  2006/01/30 09:55:26  brouard
 #define MAXN 20000    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.111  2006/01/25 20:38:18  brouard
 #define AGEBASE 40    (Module): Lots of cleaning and bugs added (Gompertz)
 #ifdef windows    (Module): Comments can be added in data file. Missing date values
 #define DIRSEPARATOR '\\'    can be a simple dot '.'.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.110  2006/01/25 00:51:50  brouard
 #define DIRSEPARATOR '/'    (Module): Lots of cleaning and bugs added (Gompertz)
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.108  2006/01/19 18:05:42  lievre
 int nvar;    Gnuplot problem appeared...
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    To be fixed
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.107  2006/01/19 16:20:37  brouard
 int ndeath=1; /* Number of dead states */    Test existence of gnuplot in imach path
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.105  2006/01/05 20:23:19  lievre
 int jmin, jmax; /* min, max spacing between 2 waves */    *** empty log message ***
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.104  2005/09/30 16:11:43  lievre
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): sump fixed, loop imx fixed, and simplifications.
 double jmean; /* Mean space between 2 waves */    (Module): If the status is missing at the last wave but we know
 double **oldm, **newm, **savm; /* Working pointers to matrices */    that the person is alive, then we can code his/her status as -2
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (instead of missing=-1 in earlier versions) and his/her
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    contributions to the likelihood is 1 - Prob of dying from last
 FILE *ficlog;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    the healthy state at last known wave). Version is 0.98
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.103  2005/09/30 15:54:49  lievre
 FILE *ficreseij;    (Module): sump fixed, loop imx fixed, and simplifications.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.102  2004/09/15 17:31:30  brouard
 char fileresv[FILENAMELENGTH];    Add the possibility to read data file including tab characters.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.101  2004/09/15 10:38:38  brouard
 char title[MAXLINE];    Fix on curr_time
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.99  2004/06/05 08:57:40  brouard
 char filerest[FILENAMELENGTH];    *** empty log message ***
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 #define NR_END 1    This is the basic analysis of mortality and should be done before any
 #define FREE_ARG char*    other analysis, in order to test if the mortality estimated from the
 #define FTOL 1.0e-10    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 #define NRANSI  
 #define ITMAX 200    The same imach parameter file can be used but the option for mle should be -3.
   
 #define TOL 2.0e-4    Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    The output is very simple: only an estimate of the intercept and of
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    the slope with 95% confident intervals.
   
 #define GOLD 1.618034    Current limitations:
 #define GLIMIT 100.0    A) Even if you enter covariates, i.e. with the
 #define TINY 1.0e-20    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.97  2004/02/20 13:25:42  lievre
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Version 0.96d. Population forecasting command line is (temporarily)
      suppressed.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 static double sqrarg;    rewritten within the same printf. Workaround: many printfs.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 int imx;    (Repository): Using imachwizard code to output a more meaningful covariance
 int stepm;    matrix (cov(a12,c31) instead of numbers.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.94  2003/06/27 13:00:02  brouard
 int estepm;    Just cleaning
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.93  2003/06/25 16:33:55  brouard
 int m,nb;    (Module): On windows (cygwin) function asctime_r doesn't
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    exist so I changed back to asctime which exists.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Version 0.96b
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double *weight;    exist so I changed back to asctime which exists.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.91  2003/06/25 15:30:29  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    helps to forecast when convergence will be reached. Elapsed time
 double ftolhess; /* Tolerance for computing hessian */    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
    char *s;                             /* pointer */    mle=-1 a template is output in file "or"mypar.txt with the design
    int  l1, l2;                         /* length counters */    of the covariance matrix to be input.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.89  2003/06/24 12:30:52  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Some bugs corrected for windows. Also, when
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    mle=-1 a template is output in file "or"mypar.txt with the design
    if ( s == NULL ) {                   /* no directory, so use current */    of the covariance matrix to be input.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.88  2003/06/23 17:54:56  brouard
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       extern char       *getwd( );  
     Revision 1.87  2003/06/18 12:26:01  brouard
       if ( getwd( dirc ) == NULL ) {    Version 0.96
 #else  
       extern char       *getcwd( );    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    routine fileappend.
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.85  2003/06/17 13:12:43  brouard
       }    * imach.c (Repository): Check when date of death was earlier that
       strcpy( name, path );             /* we've got it */    current date of interview. It may happen when the death was just
    } else {                             /* strip direcotry from path */    prior to the death. In this case, dh was negative and likelihood
       s++;                              /* after this, the filename */    was wrong (infinity). We still send an "Error" but patch by
       l2 = strlen( s );                 /* length of filename */    assuming that the date of death was just one stepm after the
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    interview.
       strcpy( name, s );                /* save file name */    (Repository): Because some people have very long ID (first column)
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    we changed int to long in num[] and we added a new lvector for
       dirc[l1-l2] = 0;                  /* add zero */    memory allocation. But we also truncated to 8 characters (left
    }    truncation)
    l1 = strlen( dirc );                 /* length of directory */    (Repository): No more line truncation errors.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.84  2003/06/13 21:44:43  brouard
 #else    * imach.c (Repository): Replace "freqsummary" at a correct
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
    s = strrchr( name, '.' );            /* find last / */    parcimony.
    s++;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.83  2003/06/10 13:39:11  lievre
    l2= strlen( s)+1;    *** empty log message ***
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.82  2003/06/05 15:57:20  brouard
    return( 0 );                         /* we're done */    Add log in  imach.c and  fullversion number is now printed.
 }  
   */
   /*
 /******************************************/     Interpolated Markov Chain
   
 void replace(char *s, char*t)    Short summary of the programme:
 {    
   int i;    This program computes Healthy Life Expectancies from
   int lg=20;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   i=0;    first survey ("cross") where individuals from different ages are
   lg=strlen(t);    interviewed on their health status or degree of disability (in the
   for(i=0; i<= lg; i++) {    case of a health survey which is our main interest) -2- at least a
     (s[i] = t[i]);    second wave of interviews ("longitudinal") which measure each change
     if (t[i]== '\\') s[i]='/';    (if any) in individual health status.  Health expectancies are
   }    computed from the time spent in each health state according to a
 }    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 int nbocc(char *s, char occ)    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   int i,j=0;    conditional to be observed in state i at the first wave. Therefore
   int lg=20;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   i=0;    'age' is age and 'sex' is a covariate. If you want to have a more
   lg=strlen(s);    complex model than "constant and age", you should modify the program
   for(i=0; i<= lg; i++) {    where the markup *Covariates have to be included here again* invites
   if  (s[i] == occ ) j++;    you to do it.  More covariates you add, slower the
   }    convergence.
   return j;  
 }    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 void cutv(char *u,char *v, char*t, char occ)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   /* cuts string t into u and v where u is ended by char occ excluding it    account using an interpolation or extrapolation.  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    hPijx is the probability to be observed in state i at age x+h
   int i,lg,j,p=0;    conditional to the observed state i at age x. The delay 'h' can be
   i=0;    split into an exact number (nh*stepm) of unobserved intermediate
   for(j=0; j<=strlen(t)-1; j++) {    states. This elementary transition (by month, quarter,
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    semester or year) is modelled as a multinomial logistic.  The hPx
   }    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
   lg=strlen(t);    hPijx.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
      u[p]='\0';    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
    for(j=0; j<= lg; j++) {             Institut national d'études démographiques, Paris.
     if (j>=(p+1))(v[j-p-1] = t[j]);    This software have been partly granted by Euro-REVES, a concerted action
   }    from the European Union.
 }    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 /********************** nrerror ********************/    can be accessed at http://euroreves.ined.fr/imach .
   
 void nrerror(char error_text[])    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   fprintf(stderr,"ERREUR ...\n");    
   fprintf(stderr,"%s\n",error_text);    **********************************************************************/
   exit(1);  /*
 }    main
 /*********************** vector *******************/    read parameterfile
 double *vector(int nl, int nh)    read datafile
 {    concatwav
   double *v;    freqsummary
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    if (mle >= 1)
   if (!v) nrerror("allocation failure in vector");      mlikeli
   return v-nl+NR_END;    print results files
 }    if mle==1 
        computes hessian
 /************************ free vector ******************/    read end of parameter file: agemin, agemax, bage, fage, estepm
 void free_vector(double*v, int nl, int nh)        begin-prev-date,...
 {    open gnuplot file
   free((FREE_ARG)(v+nl-NR_END));    open html file
 }    period (stable) prevalence
      for age prevalim()
 /************************ivector *******************************/    h Pij x
 int *ivector(long nl,long nh)    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
   int *v;    health expectancies
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Variance-covariance of DFLE
   if (!v) nrerror("allocation failure in ivector");    prevalence()
   return v-nl+NR_END;     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /******************free ivector **************************/    total life expectancies
 void free_ivector(int *v, long nl, long nh)    Variance of period (stable) prevalence
 {   end
   free((FREE_ARG)(v+nl-NR_END));  */
 }  
   
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <math.h>
 {  #include <stdio.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <stdlib.h>
   int **m;  #include <string.h>
    #include <unistd.h>
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <limits.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <sys/types.h>
   m += NR_END;  #include <sys/stat.h>
   m -= nrl;  #include <errno.h>
    extern int errno;
    
   /* allocate rows and set pointers to them */  /* #include <sys/time.h> */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #include <time.h>
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #include "timeval.h"
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /* #include <libintl.h> */
    /* #define _(String) gettext (String) */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define MAXLINE 256
   /* return pointer to array of pointers to rows */  
   return m;  #define GNUPLOTPROGRAM "gnuplot"
 }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       int **m;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  #define NINTERVMAX 8
 }  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 /******************* matrix *******************************/  #define NCOVMAX 8 /* Maximum number of covariates */
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define MAXN 20000
 {  #define YEARM 12. /* Number of months per year */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define AGESUP 130
   double **m;  #define AGEBASE 40
   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #ifdef UNIX
   if (!m) nrerror("allocation failure 1 in matrix()");  #define DIRSEPARATOR '/'
   m += NR_END;  #define CHARSEPARATOR "/"
   m -= nrl;  #define ODIRSEPARATOR '\\'
   #else
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define DIRSEPARATOR '\\'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CHARSEPARATOR "\\"
   m[nrl] += NR_END;  #define ODIRSEPARATOR '/'
   m[nrl] -= ncl;  #endif
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* $Id$ */
   return m;  /* $State$ */
 }  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 /*************************free matrix ************************/  char fullversion[]="$Revision$ $Date$"; 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  char strstart[80];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   free((FREE_ARG)(m+nrl-NR_END));  int nvar;
 }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 /******************* ma3x *******************************/  int nlstate=2; /* Number of live states */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int popbased=0;
   double ***m;  
   int *wav; /* Number of waves for this individuual 0 is possible */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int maxwav; /* Maxim number of waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int jmin, jmax; /* min, max spacing between 2 waves */
   m += NR_END;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   m -= nrl;  int gipmx, gsw; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int mle, weightopt;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl] += NR_END;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl] -= ncl;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl][ncl] += NR_END;  FILE *ficlog, *ficrespow;
   m[nrl][ncl] -= nll;  int globpr; /* Global variable for printing or not */
   for (j=ncl+1; j<=nch; j++)  double fretone; /* Only one call to likelihood */
     m[nrl][j]=m[nrl][j-1]+nlay;  long ipmx; /* Number of contributions */
    double sw; /* Sum of weights */
   for (i=nrl+1; i<=nrh; i++) {  char filerespow[FILENAMELENGTH];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     for (j=ncl+1; j<=nch; j++)  FILE *ficresilk;
       m[i][j]=m[i][j-1]+nlay;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   }  FILE *ficresprobmorprev;
   return m;  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /*************************free ma3x ************************/  FILE *ficresstdeij;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileresstde[FILENAMELENGTH];
 {  FILE *ficrescveij;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char filerescve[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE  *ficresvij;
   free((FREE_ARG)(m+nrl-NR_END));  char fileresv[FILENAMELENGTH];
 }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 /***************** f1dim *************************/  char title[MAXLINE];
 extern int ncom;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 extern double *pcom,*xicom;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
    char command[FILENAMELENGTH];
 double f1dim(double x)  int  outcmd=0;
 {  
   int j;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double f;  
   double *xt;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
   xt=vector(1,ncom);  char fileregp[FILENAMELENGTH];
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char popfile[FILENAMELENGTH];
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   return f;  
 }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   struct timezone tzp;
 /*****************brent *************************/  extern int gettimeofday();
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 {  long time_value;
   int iter;  extern long time();
   double a,b,d,etemp;  char strcurr[80], strfor[80];
   double fu,fv,fw,fx;  
   double ftemp;  char *endptr;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  long lval;
   double e=0.0;  double dval;
    
   a=(ax < cx ? ax : cx);  #define NR_END 1
   b=(ax > cx ? ax : cx);  #define FREE_ARG char*
   x=w=v=bx;  #define FTOL 1.0e-10
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #define NRANSI 
     xm=0.5*(a+b);  #define ITMAX 200 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define TOL 2.0e-4 
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  #define CGOLD 0.3819660 
 #ifdef DEBUG  #define ZEPS 1.0e-10 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define TINY 1.0e-20 
       *xmin=x;  
       return fx;  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     ftemp=fu;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       q=(x-v)*(fx-fw);  #define rint(a) floor(a+0.5)
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  static double sqrarg;
       if (q > 0.0) p = -p;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       q=fabs(q);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       etemp=e;  int agegomp= AGEGOMP;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int imx; 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int stepm=1;
       else {  /* Stepm, step in month: minimum step interpolation*/
         d=p/q;  
         u=x+d;  int estepm;
         if (u-a < tol2 || b-u < tol2)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
           d=SIGN(tol1,xm-x);  
       }  int m,nb;
     } else {  long *num;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double **pmmij, ***probs;
     fu=(*f)(u);  double *ageexmed,*agecens;
     if (fu <= fx) {  double dateintmean=0;
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  double *weight;
         SHFT(fv,fw,fx,fu)  int **s; /* Status */
         } else {  double *agedc, **covar, idx;
           if (u < x) a=u; else b=u;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           if (fu <= fw || w == x) {  double *lsurv, *lpop, *tpop;
             v=w;  
             w=u;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
             fv=fw;  double ftolhess; /* Tolerance for computing hessian */
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /**************** split *************************/
             v=u;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
             fv=fu;  {
           }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
   nrerror("Too many iterations in brent");    char  *ss;                            /* pointer */
   *xmin=x;    int   l1, l2;                         /* length counters */
   return fx;  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /****************** mnbrak ***********************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      strcpy( name, path );               /* we got the fullname name because no directory */
             double (*func)(double))      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double ulim,u,r,q, dum;      /* get current working directory */
   double fu;      /*    extern  char* getcwd ( char *buf , int len);*/
        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   *fa=(*func)(*ax);        return( GLOCK_ERROR_GETCWD );
   *fb=(*func)(*bx);      }
   if (*fb > *fa) {      /* got dirc from getcwd*/
     SHFT(dum,*ax,*bx,dum)      printf(" DIRC = %s \n",dirc);
       SHFT(dum,*fb,*fa,dum)    } else {                              /* strip direcotry from path */
       }      ss++;                               /* after this, the filename */
   *cx=(*bx)+GOLD*(*bx-*ax);      l2 = strlen( ss );                  /* length of filename */
   *fc=(*func)(*cx);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   while (*fb > *fc) {      strcpy( name, ss );         /* save file name */
     r=(*bx-*ax)*(*fb-*fc);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     q=(*bx-*cx)*(*fb-*fa);      dirc[l1-l2] = 0;                    /* add zero */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      printf(" DIRC2 = %s \n",dirc);
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    }
     ulim=(*bx)+GLIMIT*(*cx-*bx);    /* We add a separator at the end of dirc if not exists */
     if ((*bx-u)*(u-*cx) > 0.0) {    l1 = strlen( dirc );                  /* length of directory */
       fu=(*func)(u);    if( dirc[l1-1] != DIRSEPARATOR ){
     } else if ((*cx-u)*(u-ulim) > 0.0) {      dirc[l1] =  DIRSEPARATOR;
       fu=(*func)(u);      dirc[l1+1] = 0; 
       if (fu < *fc) {      printf(" DIRC3 = %s \n",dirc);
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    }
           SHFT(*fb,*fc,fu,(*func)(u))    ss = strrchr( name, '.' );            /* find last / */
           }    if (ss >0){
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      ss++;
       u=ulim;      strcpy(ext,ss);                     /* save extension */
       fu=(*func)(u);      l1= strlen( name);
     } else {      l2= strlen(ss)+1;
       u=(*cx)+GOLD*(*cx-*bx);      strncpy( finame, name, l1-l2);
       fu=(*func)(u);      finame[l1-l2]= 0;
     }    }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    return( 0 );                          /* we're done */
       }  }
 }  
   
 /*************** linmin ************************/  /******************************************/
   
 int ncom;  void replace_back_to_slash(char *s, char*t)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);    int i;
      int lg=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    i=0;
 {    lg=strlen(t);
   double brent(double ax, double bx, double cx,    for(i=0; i<= lg; i++) {
                double (*f)(double), double tol, double *xmin);      (s[i] = t[i]);
   double f1dim(double x);      if (t[i]== '\\') s[i]='/';
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));  }
   int j;  
   double xx,xmin,bx,ax;  int nbocc(char *s, char occ)
   double fx,fb,fa;  {
      int i,j=0;
   ncom=n;    int lg=20;
   pcom=vector(1,n);    i=0;
   xicom=vector(1,n);    lg=strlen(s);
   nrfunc=func;    for(i=0; i<= lg; i++) {
   for (j=1;j<=n;j++) {    if  (s[i] == occ ) j++;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];    return j;
   }  }
   ax=0.0;  
   xx=1.0;  void cutv(char *u,char *v, char*t, char occ)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  {
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
 #ifdef DEBUG       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);       gives u="abcedf" and v="ghi2j" */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int i,lg,j,p=0;
 #endif    i=0;
   for (j=1;j<=n;j++) {    for(j=0; j<=strlen(t)-1; j++) {
     xi[j] *= xmin;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     p[j] += xi[j];    }
   }  
   free_vector(xicom,1,n);    lg=strlen(t);
   free_vector(pcom,1,n);    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /*************** powell ************************/       u[p]='\0';
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /********************** nrerror ********************/
   double fp,fptt;  
   double *xits;  void nrerror(char error_text[])
   pt=vector(1,n);  {
   ptt=vector(1,n);    fprintf(stderr,"ERREUR ...\n");
   xit=vector(1,n);    fprintf(stderr,"%s\n",error_text);
   xits=vector(1,n);    exit(EXIT_FAILURE);
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  /*********************** vector *******************/
   for (*iter=1;;++(*iter)) {  double *vector(int nl, int nh)
     fp=(*fret);  {
     ibig=0;    double *v;
     del=0.0;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!v) nrerror("allocation failure in vector");
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    return v-nl+NR_END;
     for (i=1;i<=n;i++)  }
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  /************************ free vector ******************/
     printf("\n");  void free_vector(double*v, int nl, int nh)
     fprintf(ficlog,"\n");  {
     for (i=1;i<=n;i++) {    free((FREE_ARG)(v+nl-NR_END));
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  }
       fptt=(*fret);  
 #ifdef DEBUG  /************************ivector *******************************/
       printf("fret=%lf \n",*fret);  int *ivector(long nl,long nh)
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    int *v;
       printf("%d",i);fflush(stdout);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       fprintf(ficlog,"%d",i);fflush(ficlog);    if (!v) nrerror("allocation failure in ivector");
       linmin(p,xit,n,fret,func);    return v-nl+NR_END;
       if (fabs(fptt-(*fret)) > del) {  }
         del=fabs(fptt-(*fret));  
         ibig=i;  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
 #ifdef DEBUG  {
       printf("%d %.12e",i,(*fret));    free((FREE_ARG)(v+nl-NR_END));
       fprintf(ficlog,"%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /************************lvector *******************************/
         printf(" x(%d)=%.12e",j,xit[j]);  long *lvector(long nl,long nh)
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  {
       }    long *v;
       for(j=1;j<=n;j++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         printf(" p=%.12e",p[j]);    if (!v) nrerror("allocation failure in ivector");
         fprintf(ficlog," p=%.12e",p[j]);    return v-nl+NR_END;
       }  }
       printf("\n");  
       fprintf(ficlog,"\n");  /******************free lvector **************************/
 #endif  void free_lvector(long *v, long nl, long nh)
     }  {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    free((FREE_ARG)(v+nl-NR_END));
 #ifdef DEBUG  }
       int k[2],l;  
       k[0]=1;  /******************* imatrix *******************************/
       k[1]=-1;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       printf("Max: %.12e",(*func)(p));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       fprintf(ficlog,"Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         printf(" %.12e",p[j]);    int **m; 
         fprintf(ficlog," %.12e",p[j]);    
       }    /* allocate pointers to rows */ 
       printf("\n");    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       fprintf(ficlog,"\n");    if (!m) nrerror("allocation failure 1 in matrix()"); 
       for(l=0;l<=1;l++) {    m += NR_END; 
         for (j=1;j<=n;j++) {    m -= nrl; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    /* allocate rows and set pointers to them */ 
         }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] += NR_END; 
       }    m[nrl] -= ncl; 
 #endif    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
       free_vector(xit,1,n);    /* return pointer to array of pointers to rows */ 
       free_vector(xits,1,n);    return m; 
       free_vector(ptt,1,n);  } 
       free_vector(pt,1,n);  
       return;  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        int **m;
     for (j=1;j<=n;j++) {        long nch,ncl,nrh,nrl; 
       ptt[j]=2.0*p[j]-pt[j];       /* free an int matrix allocated by imatrix() */ 
       xit[j]=p[j]-pt[j];  { 
       pt[j]=p[j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     }    free((FREE_ARG) (m+nrl-NR_END)); 
     fptt=(*func)(ptt);  } 
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /******************* matrix *******************************/
       if (t < 0.0) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           xi[j][ibig]=xi[j][n];    double **m;
           xi[j][n]=xit[j];  
         }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #ifdef DEBUG    if (!m) nrerror("allocation failure 1 in matrix()");
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m += NR_END;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m -= nrl;
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           fprintf(ficlog," %.12e",xit[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         }    m[nrl] += NR_END;
         printf("\n");    m[nrl] -= ncl;
         fprintf(ficlog,"\n");  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }    return m;
     }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   }     */
 }  }
   
 /**** Prevalence limit ****************/  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    free((FREE_ARG)(m+nrl-NR_END));
      matrix by transitions matrix until convergence is reached */  }
   
   int i, ii,j,k;  /******************* ma3x *******************************/
   double min, max, maxmin, maxmax,sumnew=0.;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **matprod2();  {
   double **out, cov[NCOVMAX], **pmij();    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double **newm;    double ***m;
   double agefin, delaymax=50 ; /* Max number of years to converge */  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (ii=1;ii<=nlstate+ndeath;ii++)    if (!m) nrerror("allocation failure 1 in matrix()");
     for (j=1;j<=nlstate+ndeath;j++){    m += NR_END;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m -= nrl;
     }  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
    cov[1]=1.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl] -= ncl;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  
     newm=savm;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /* Covariates have to be included here again */  
      cov[2]=agefin;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
      if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (k=1; k<=cptcovn;k++) {    m[nrl][ncl] += NR_END;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl][ncl] -= nll;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    for (i=nrl+1; i<=nrh; i++) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        m[i][j]=m[i][j-1]+nlay;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return m; 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     savm=oldm;    */
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /*************************free ma3x ************************/
       min=1.;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         sumnew=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    free((FREE_ARG)(m+nrl-NR_END));
         prlim[i][j]= newm[i][j]/(1-sumnew);  }
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /*************** function subdirf ***********/
       }  char *subdirf(char fileres[])
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     if(maxmax < ftolpl){    strcat(tmpout,"/"); /* Add to the right */
       return prlim;    strcat(tmpout,fileres);
     }    return tmpout;
   }  }
 }  
   /*************** function subdirf2 ***********/
 /*************** transition probabilities ***************/  char *subdirf2(char fileres[], char *preop)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    
 {    /* Caution optionfilefiname is hidden */
   double s1, s2;    strcpy(tmpout,optionfilefiname);
   /*double t34;*/    strcat(tmpout,"/");
   int i,j,j1, nc, ii, jj;    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     for(i=1; i<= nlstate; i++){    return tmpout;
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  /*************** function subdirf3 ***********/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char *subdirf3(char fileres[], char *preop, char *preop2)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  {
       }    
       ps[i][j]=s2;    /* Caution optionfilefiname is hidden */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
     for(j=i+1; j<=nlstate+ndeath;j++){    strcat(tmpout,preop);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,preop2);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,fileres);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    return tmpout;
       }  }
       ps[i][j]=s2;  
     }  /***************** f1dim *************************/
   }  extern int ncom; 
     /*ps[3][2]=1;*/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
   for(i=1; i<= nlstate; i++){   
      s1=0;  double f1dim(double x) 
     for(j=1; j<i; j++)  { 
       s1+=exp(ps[i][j]);    int j; 
     for(j=i+1; j<=nlstate+ndeath; j++)    double f;
       s1+=exp(ps[i][j]);    double *xt; 
     ps[i][i]=1./(s1+1.);   
     for(j=1; j<i; j++)    xt=vector(1,ncom); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)    f=(*nrfunc)(xt); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free_vector(xt,1,ncom); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    return f; 
   } /* end i */  } 
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*****************brent *************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       ps[ii][jj]=0;  { 
       ps[ii][ii]=1;    int iter; 
     }    double a,b,d,etemp;
   }    double fu,fv,fw,fx;
     double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double e=0.0; 
     for(jj=1; jj<= nlstate+ndeath; jj++){   
      printf("%lf ",ps[ii][jj]);    a=(ax < cx ? ax : cx); 
    }    b=(ax > cx ? ax : cx); 
     printf("\n ");    x=w=v=bx; 
     }    fw=fv=fx=(*f)(x); 
     printf("\n ");printf("%lf ",cov[2]);*/    for (iter=1;iter<=ITMAX;iter++) { 
 /*      xm=0.5*(a+b); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   goto end;*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     return ps;      printf(".");fflush(stdout);
 }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /**************** Product of 2 matrices ******************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 {  #endif
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        *xmin=x; 
   /* in, b, out are matrice of pointers which should have been initialized        return fx; 
      before: only the contents of out is modified. The function returns      } 
      a pointer to pointers identical to out */      ftemp=fu;
   long i, j, k;      if (fabs(e) > tol1) { 
   for(i=nrl; i<= nrh; i++)        r=(x-w)*(fx-fv); 
     for(k=ncolol; k<=ncoloh; k++)        q=(x-v)*(fx-fw); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        p=(x-v)*q-(x-w)*r; 
         out[i][k] +=in[i][j]*b[j][k];        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
   return out;        q=fabs(q); 
 }        etemp=e; 
         e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 /************* Higher Matrix Product ***************/          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          d=p/q; 
 {          u=x+d; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          if (u-a < tol2 || b-u < tol2) 
      duration (i.e. until            d=SIGN(tol1,xm-x); 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        } 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      } else { 
      (typically every 2 years instead of every month which is too big).        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      Model is determined by parameters x and covariates have to be      } 
      included manually here.      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
      */      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   int i, j, d, h, k;        SHFT(v,w,x,u) 
   double **out, cov[NCOVMAX];          SHFT(fv,fw,fx,fu) 
   double **newm;          } else { 
             if (u < x) a=u; else b=u; 
   /* Hstepm could be zero and should return the unit matrix */            if (fu <= fw || w == x) { 
   for (i=1;i<=nlstate+ndeath;i++)              v=w; 
     for (j=1;j<=nlstate+ndeath;j++){              w=u; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              fv=fw; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */              v=u; 
   for(h=1; h <=nhstepm; h++){              fv=fu; 
     for(d=1; d <=hstepm; d++){            } 
       newm=savm;          } 
       /* Covariates have to be included here again */    } 
       cov[1]=1.;    nrerror("Too many iterations in brent"); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    *xmin=x; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    return fx; 
       for (k=1; k<=cptcovage;k++)  } 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /****************** mnbrak ***********************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               double (*func)(double)) 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    double ulim,u,r,q, dum;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double fu; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   
       savm=oldm;    *fa=(*func)(*ax); 
       oldm=newm;    *fb=(*func)(*bx); 
     }    if (*fb > *fa) { 
     for(i=1; i<=nlstate+ndeath; i++)      SHFT(dum,*ax,*bx,dum) 
       for(j=1;j<=nlstate+ndeath;j++) {        SHFT(dum,*fb,*fa,dum) 
         po[i][j][h]=newm[i][j];        } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    *cx=(*bx)+GOLD*(*bx-*ax); 
          */    *fc=(*func)(*cx); 
       }    while (*fb > *fc) { 
   } /* end h */      r=(*bx-*ax)*(*fb-*fc); 
   return po;      q=(*bx-*cx)*(*fb-*fa); 
 }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
 /*************** log-likelihood *************/      if ((*bx-u)*(u-*cx) > 0.0) { 
 double func( double *x)        fu=(*func)(u); 
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   int i, ii, j, k, mi, d, kk;        fu=(*func)(u); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        if (fu < *fc) { 
   double **out;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double sw; /* Sum of weights */            SHFT(*fb,*fc,fu,(*func)(u)) 
   double lli; /* Individual log likelihood */            } 
   long ipmx;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   /*extern weight */        u=ulim; 
   /* We are differentiating ll according to initial status */        fu=(*func)(u); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } else { 
   /*for(i=1;i<imx;i++)        u=(*cx)+GOLD*(*cx-*bx); 
     printf(" %d\n",s[4][i]);        fu=(*func)(u); 
   */      } 
   cov[1]=1.;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  } 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /*************** linmin ************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int ncom; 
       for(d=0; d<dh[mi][i]; d++){  double *pcom,*xicom;
         newm=savm;  double (*nrfunc)(double []); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;   
         for (kk=1; kk<=cptcovage;kk++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  { 
         }    double brent(double ax, double bx, double cx, 
                         double (*f)(double), double tol, double *xmin); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double f1dim(double x); 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         savm=oldm;                double *fc, double (*func)(double)); 
         oldm=newm;    int j; 
            double xx,xmin,bx,ax; 
            double fx,fb,fa;
       } /* end mult */   
          ncom=n; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    pcom=vector(1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    xicom=vector(1,n); 
       ipmx +=1;    nrfunc=func; 
       sw += weight[i];    for (j=1;j<=n;j++) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      pcom[j]=p[j]; 
     } /* end of wave */      xicom[j]=xi[j]; 
   } /* end of individual */    } 
     ax=0.0; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    xx=1.0; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   return -l;  #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 /*********** Maximum Likelihood Estimation ***************/    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      p[j] += xi[j]; 
 {    } 
   int i,j, iter;    free_vector(xicom,1,n); 
   double **xi,*delti;    free_vector(pcom,1,n); 
   double fret;  } 
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  char *asc_diff_time(long time_sec, char ascdiff[])
     for (j=1;j<=npar;j++)  {
       xi[i][j]=(i==j ? 1.0 : 0.0);    long sec_left, days, hours, minutes;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    days = (time_sec) / (60*60*24);
   powell(p,xi,npar,ftol,&iter,&fret,func);    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    sec_left = (sec_left) %(60*60);
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    minutes = (sec_left) /60;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
 }    return ascdiff;
   }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*************** powell ************************/
 {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   double  **a,**y,*x,pd;              double (*func)(double [])) 
   double **hess;  { 
   int i, j,jk;    void linmin(double p[], double xi[], int n, double *fret, 
   int *indx;                double (*func)(double [])); 
     int i,ibig,j; 
   double hessii(double p[], double delta, int theta, double delti[]);    double del,t,*pt,*ptt,*xit;
   double hessij(double p[], double delti[], int i, int j);    double fp,fptt;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double *xits;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    int niterf, itmp;
   
   hess=matrix(1,npar,1,npar);    pt=vector(1,n); 
     ptt=vector(1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");    xit=vector(1,n); 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    xits=vector(1,n); 
   for (i=1;i<=npar;i++){    *fret=(*func)(p); 
     printf("%d",i);fflush(stdout);    for (j=1;j<=n;j++) pt[j]=p[j]; 
     fprintf(ficlog,"%d",i);fflush(ficlog);    for (*iter=1;;++(*iter)) { 
     hess[i][i]=hessii(p,ftolhess,i,delti);      fp=(*fret); 
     /*printf(" %f ",p[i]);*/      ibig=0; 
     /*printf(" %lf ",hess[i][i]);*/      del=0.0; 
   }      last_time=curr_time;
        (void) gettimeofday(&curr_time,&tzp);
   for (i=1;i<=npar;i++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     for (j=1;j<=npar;j++)  {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       if (j>i) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         printf(".%d%d",i,j);fflush(stdout);     for (i=1;i<=n;i++) {
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        printf(" %d %.12f",i, p[i]);
         hess[i][j]=hessij(p,delti,i,j);        fprintf(ficlog," %d %.12lf",i, p[i]);
         hess[j][i]=hess[i][j];            fprintf(ficrespow," %.12lf", p[i]);
         /*printf(" %lf ",hess[i][j]);*/      }
       }      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
   printf("\n");      if(*iter <=3){
   fprintf(ficlog,"\n");        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /*       asctime_r(&tm,strcurr); */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        forecast_time=curr_time; 
          itmp = strlen(strcurr);
   a=matrix(1,npar,1,npar);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   y=matrix(1,npar,1,npar);          strcurr[itmp-1]='\0';
   x=vector(1,npar);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   indx=ivector(1,npar);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=npar;i++)        for(niterf=10;niterf<=30;niterf+=10){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   ludcmp(a,npar,indx,&pd);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
   for (j=1;j<=npar;j++) {          strcpy(strfor,asctime(&tmf));
     for (i=1;i<=npar;i++) x[i]=0;          itmp = strlen(strfor);
     x[j]=1;          if(strfor[itmp-1]=='\n')
     lubksb(a,npar,indx,x);          strfor[itmp-1]='\0';
     for (i=1;i<=npar;i++){          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       matcov[i][j]=x[i];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }        }
   }      }
       for (i=1;i<=n;i++) { 
   printf("\n#Hessian matrix#\n");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   fprintf(ficlog,"\n#Hessian matrix#\n");        fptt=(*fret); 
   for (i=1;i<=npar;i++) {  #ifdef DEBUG
     for (j=1;j<=npar;j++) {        printf("fret=%lf \n",*fret);
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"fret=%lf \n",*fret);
       fprintf(ficlog,"%.3e ",hess[i][j]);  #endif
     }        printf("%d",i);fflush(stdout);
     printf("\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
     fprintf(ficlog,"\n");        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
   /* Recompute Inverse */          ibig=i; 
   for (i=1;i<=npar;i++)        } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #ifdef DEBUG
   ludcmp(a,npar,indx,&pd);        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   /*  printf("\n#Hessian matrix recomputed#\n");        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (j=1;j<=npar;j++) {          printf(" x(%d)=%.12e",j,xit[j]);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     x[j]=1;        }
     lubksb(a,npar,indx,x);        for(j=1;j<=n;j++) {
     for (i=1;i<=npar;i++){          printf(" p=%.12e",p[j]);
       y[i][j]=x[i];          fprintf(ficlog," p=%.12e",p[j]);
       printf("%.3e ",y[i][j]);        }
       fprintf(ficlog,"%.3e ",y[i][j]);        printf("\n");
     }        fprintf(ficlog,"\n");
     printf("\n");  #endif
     fprintf(ficlog,"\n");      } 
   }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   */  #ifdef DEBUG
         int k[2],l;
   free_matrix(a,1,npar,1,npar);        k[0]=1;
   free_matrix(y,1,npar,1,npar);        k[1]=-1;
   free_vector(x,1,npar);        printf("Max: %.12e",(*func)(p));
   free_ivector(indx,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_matrix(hess,1,npar,1,npar);        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /*************** hessian matrix ****************/        fprintf(ficlog,"\n");
 double hessii( double x[], double delta, int theta, double delti[])        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   int i;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int l=1, lmax=20;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double k1,k2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double p2[NPARMAX+1];          }
   double res;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double fx;        }
   int k=0,kmax=10;  #endif
   double l1;  
   
   fx=func(x);        free_vector(xit,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(xits,1,n); 
   for(l=0 ; l <=lmax; l++){        free_vector(ptt,1,n); 
     l1=pow(10,l);        free_vector(pt,1,n); 
     delts=delt;        return; 
     for(k=1 ; k <kmax; k=k+1){      } 
       delt = delta*(l1*k);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       p2[theta]=x[theta] +delt;      for (j=1;j<=n;j++) { 
       k1=func(p2)-fx;        ptt[j]=2.0*p[j]-pt[j]; 
       p2[theta]=x[theta]-delt;        xit[j]=p[j]-pt[j]; 
       k2=func(p2)-fx;        pt[j]=p[j]; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      } 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      fptt=(*func)(ptt); 
            if (fptt < fp) { 
 #ifdef DEBUG        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        if (t < 0.0) { 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          linmin(p,xit,n,fret,func); 
 #endif          for (j=1;j<=n;j++) { 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            xi[j][ibig]=xi[j][n]; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            xi[j][n]=xit[j]; 
         k=kmax;          }
       }  #ifdef DEBUG
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         k=kmax; l=lmax*10.;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            printf(" %.12e",xit[j]);
         delts=delt;            fprintf(ficlog," %.12e",xit[j]);
       }          }
     }          printf("\n");
   }          fprintf(ficlog,"\n");
   delti[theta]=delts;  #endif
   return res;        }
        } 
 }    } 
   } 
 double hessij( double x[], double delti[], int thetai,int thetaj)  
 {  /**** Prevalence limit (stable or period prevalence)  ****************/
   int i;  
   int l=1, l1, lmax=20;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double k1,k2,k3,k4,res,fx;  {
   double p2[NPARMAX+1];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int k;       matrix by transitions matrix until convergence is reached */
   
   fx=func(x);    int i, ii,j,k;
   for (k=1; k<=2; k++) {    double min, max, maxmin, maxmax,sumnew=0.;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double **matprod2();
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **out, cov[NCOVMAX], **pmij();
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double **newm;
     k1=func(p2)-fx;    double agefin, delaymax=50 ; /* Max number of years to converge */
    
     p2[thetai]=x[thetai]+delti[thetai]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for (j=1;j<=nlstate+ndeath;j++){
     k2=func(p2)-fx;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        }
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;     cov[1]=1.;
     k3=func(p2)-fx;   
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetai]=x[thetai]-delti[thetai]/k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      newm=savm;
     k4=func(p2)-fx;      /* Covariates have to be included here again */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */       cov[2]=agefin;
 #ifdef DEBUG    
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (k=1; k<=cptcovn;k++) {
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #endif          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
   return res;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i,imax,j,k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double big,dum,sum,temp;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double *vv;  
        savm=oldm;
   vv=vector(1,n);      oldm=newm;
   *d=1.0;      maxmax=0.;
   for (i=1;i<=n;i++) {      for(j=1;j<=nlstate;j++){
     big=0.0;        min=1.;
     for (j=1;j<=n;j++)        max=0.;
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(i=1; i<=nlstate; i++) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          sumnew=0;
     vv[i]=1.0/big;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (j=1;j<=n;j++) {          max=FMAX(max,prlim[i][j]);
     for (i=1;i<j;i++) {          min=FMIN(min,prlim[i][j]);
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        maxmin=max-min;
       a[i][j]=sum;        maxmax=FMAX(maxmax,maxmin);
     }      }
     big=0.0;      if(maxmax < ftolpl){
     for (i=j;i<=n;i++) {        return prlim;
       sum=a[i][j];      }
       for (k=1;k<j;k++)    }
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*************** transition probabilities ***************/ 
         big=dum;  
         imax=i;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }  {
     }    double s1, s2;
     if (j != imax) {    /*double t34;*/
       for (k=1;k<=n;k++) {    int i,j,j1, nc, ii, jj;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];      for(i=1; i<= nlstate; i++){
         a[j][k]=dum;        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       *d = -(*d);            /*s2 += param[i][j][nc]*cov[nc];*/
       vv[imax]=vv[j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     indx[j]=imax;          }
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[i][j]=s2;
     if (j != n) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(j=i+1; j<=nlstate+ndeath;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_vector(vv,1,n);  /* Doesn't work */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 ;          }
 }          ps[i][j]=s2;
         }
 void lubksb(double **a, int n, int *indx, double b[])      }
 {      /*ps[3][2]=1;*/
   int i,ii=0,ip,j;      
   double sum;      for(i=1; i<= nlstate; i++){
          s1=0;
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     ip=indx[i];          s1+=exp(ps[i][j]);
     sum=b[ip];        for(j=i+1; j<=nlstate+ndeath; j++)
     b[ip]=b[i];          s1+=exp(ps[i][j]);
     if (ii)        ps[i][i]=1./(s1+1.);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=1; j<i; j++)
     else if (sum) ii=i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     b[i]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=n;i>=1;i--) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     sum=b[i];      } /* end i */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      
     b[i]=sum/a[i][i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      }
 {  /* Some frequencies */      
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   int first;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double ***freq; /* Frequencies */  /*         printf("ddd %lf ",ps[ii][jj]); */
   double *pp;  /*       } */
   double pos, k2, dateintsum=0,k2cpt=0;  /*       printf("\n "); */
   FILE *ficresp;  /*        } */
   char fileresp[FILENAMELENGTH];  /*        printf("\n ");printf("%lf ",cov[2]); */
           /*
   pp=vector(1,nlstate);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        goto end;*/
   strcpy(fileresp,"p");      return ps;
   strcat(fileresp,fileres);  }
   if((ficresp=fopen(fileresp,"w"))==NULL) {  
     printf("Problem with prevalence resultfile: %s\n", fileresp);  /**************** Product of 2 matrices ******************/
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   j1=0;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
   j=cptcoveff;       before: only the contents of out is modified. The function returns
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       a pointer to pointers identical to out */
     long i, j, k;
   first=1;    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for(k1=1; k1<=j;k1++){        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for(i1=1; i1<=ncodemax[k1];i1++){          out[i][k] +=in[i][j]*b[j][k];
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    return out;
         scanf("%d", i);*/  }
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /************* Higher Matrix Product ***************/
             freq[i][jk][m]=0;  
        double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       dateintsum=0;  {
       k2cpt=0;    /* Computes the transition matrix starting at age 'age' over 
       for (i=1; i<=imx; i++) {       'nhstepm*hstepm*stepm' months (i.e. until
         bool=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         if  (cptcovn>0) {       nhstepm*hstepm matrices. 
           for (z1=1; z1<=cptcoveff; z1++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       (typically every 2 years instead of every month which is too big 
               bool=0;       for the memory).
         }       Model is determined by parameters x and covariates have to be 
         if (bool==1) {       included manually here. 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);       */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int i, j, d, h, k;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double **out, cov[NCOVMAX];
               if (m<lastpass) {    double **newm;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    /* Hstepm could be zero and should return the unit matrix */
               }    for (i=1;i<=nlstate+ndeath;i++)
                    for (j=1;j<=nlstate+ndeath;j++){
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;        po[i][j][0]=(i==j ? 1.0 : 0.0);
                 k2cpt++;      }
               }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             }    for(h=1; h <=nhstepm; h++){
           }      for(d=1; d <=hstepm; d++){
         }        newm=savm;
       }        /* Covariates have to be included here again */
                cov[1]=1.;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if  (cptcovn>0) {        for (k=1; k<=cptcovage;k++)
         fprintf(ficresp, "\n#********** Variable ");          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (k=1; k<=cptcovprod;k++)
         fprintf(ficresp, "**********\n#");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       fprintf(ficresp, "\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for(i=(int)agemin; i <= (int)agemax+3; i++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(i==(int)agemax+3){        savm=oldm;
           fprintf(ficlog,"Total");        oldm=newm;
         }else{      }
           if(first==1){      for(i=1; i<=nlstate+ndeath; i++)
             first=0;        for(j=1;j<=nlstate+ndeath;j++) {
             printf("See log file for details...\n");          po[i][j][h]=newm[i][j];
           }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           fprintf(ficlog,"Age %d", i);           */
         }        }
         for(jk=1; jk <=nlstate ; jk++){    } /* end h */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    return po;
             pp[jk] += freq[jk][m][i];  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)  /*************** log-likelihood *************/
             pos += freq[jk][m][i];  double func( double *x)
           if(pp[jk]>=1.e-10){  {
             if(first==1){    int i, ii, j, k, mi, d, kk;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             }    double **out;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double sw; /* Sum of weights */
           }else{    double lli; /* Individual log likelihood */
             if(first==1)    int s1, s2;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double bbh, survp;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    long ipmx;
           }    /*extern weight */
         }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         for(jk=1; jk <=nlstate ; jk++){    /*for(i=1;i<imx;i++) 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      printf(" %d\n",s[4][i]);
             pp[jk] += freq[jk][m][i];    */
         }    cov[1]=1.;
   
         for(jk=1,pos=0; jk <=nlstate ; jk++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    if(mle==1){
           if(pos>=1.e-5){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(first==1)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(mi=1; mi<= wav[i]-1; mi++){
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          for (ii=1;ii<=nlstate+ndeath;ii++)
           }else{            for (j=1;j<=nlstate+ndeath;j++){
             if(first==1)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
           }          for(d=0; d<dh[mi][i]; d++){
           if( i <= (int) agemax){            newm=savm;
             if(pos>=1.e-5){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            for (kk=1; kk<=cptcovage;kk++) {
               probs[i][jk][j1]= pp[jk]/pos;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            }
             }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
                
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           for(m=-1; m <=nlstate+ndeath; m++)          /* But now since version 0.9 we anticipate for bias at large stepm.
             if(freq[jk][m][i] !=0 ) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             if(first==1)           * (in months) between two waves is not a multiple of stepm, we rounded to 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * the nearest (and in case of equal distance, to the lowest) interval but now
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
         if(i <= (int) agemax)           * probability in order to take into account the bias as a fraction of the way
           fprintf(ficresp,"\n");           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         if(first==1)           * -stepm/2 to stepm/2 .
           printf("Others in log...\n");           * For stepm=1 the results are the same as for previous versions of Imach.
         fprintf(ficlog,"\n");           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
     }          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   dateintmean=dateintsum/k2cpt;          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias bh is positive if real duration
   fclose(ficresp);           * is higher than the multiple of stepm and negative otherwise.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);           */
   free_vector(pp,1,nlstate);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
   /* End of Freq */            /* i.e. if s2 is a death state and if the date of death is known 
 }               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
 /************ Prevalence ********************/               which is also equal to probability to die before dh 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)               minus probability to die before dh-stepm . 
 {  /* Some frequencies */               In version up to 0.92 likelihood was computed
            as if date of death was unknown. Death was treated as any other
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          health state: the date of the interview describes the actual state
   double ***freq; /* Frequencies */          and not the date of a change in health state. The former idea was
   double *pp;          to consider that at each interview the state was recorded
   double pos, k2;          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
   pp=vector(1,nlstate);          the contribution of an exact death to the likelihood. This new
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          and month of death but the probability to survive from last
   j1=0;          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   j=cptcoveff;          Jackson for correcting this bug.  Former versions increased
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   for(k1=1; k1<=j;k1++){          lower mortality.
     for(i1=1; i1<=ncodemax[k1];i1++){            */
       j1++;            lli=log(out[s1][s2] - savm[s1][s2]);
        
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)            } else if  (s2==-2) {
           for(m=agemin; m <= agemax+3; m++)            for (j=1,survp=0. ; j<=nlstate; j++) 
             freq[i][jk][m]=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                  /*survp += out[s1][j]; */
       for (i=1; i<=imx; i++) {            lli= log(survp);
         bool=1;          }
         if  (cptcovn>0) {          
           for (z1=1; z1<=cptcoveff; z1++)          else if  (s2==-4) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            for (j=3,survp=0. ; j<=nlstate; j++)  
               bool=0;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            lli= log(survp); 
         if (bool==1) {          } 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);          else if  (s2==-5) { 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            for (j=1,survp=0. ; j<=2; j++)  
               if(agev[m][i]==0) agev[m][i]=agemax+1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               if(agev[m][i]==1) agev[m][i]=agemax+2;            lli= log(survp); 
               if (m<lastpass) {          } 
                 if (calagedate>0)          
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          else{
                 else            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          } 
               }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             }          /*if(lli ==000.0)*/
           }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         }          ipmx +=1;
       }          sw += weight[i];
       for(i=(int)agemin; i <= (int)agemax+3; i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      } /* end of individual */
             pp[jk] += freq[jk][m][i];    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1, pos=0; m <=0 ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pos += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
                      oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            }
             pp[jk] += freq[jk][m][i];          for(d=0; d<=dh[mi][i]; d++){
         }            newm=savm;
                    cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            for (kk=1; kk<=cptcovage;kk++) {
                      cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(jk=1; jk <=nlstate ; jk++){                }
           if( i <= (int) agemax){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             if(pos>=1.e-5){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               probs[i][jk][j1]= pp[jk]/pos;            savm=oldm;
             }            oldm=newm;
           }          } /* end mult */
         }/* end jk */        
       }/* end i */          s1=s[mw[mi][i]][i];
     } /* end i1 */          s2=s[mw[mi+1][i]][i];
   } /* end k1 */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            ipmx +=1;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          sw += weight[i];
   free_vector(pp,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
 }  /* End of Freq */      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
 /************* Waves Concatenation ***************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(mi=1; mi<= wav[i]-1; mi++){
 {          for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            for (j=1;j<=nlstate+ndeath;j++){
      Death is a valid wave (if date is known).              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            }
      and mw[mi+1][i]. dh depends on stepm.          for(d=0; d<dh[mi][i]; d++){
      */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, mi, m;            for (kk=1; kk<=cptcovage;kk++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      double sum=0., jmean=0.;*/            }
   int first;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int j, k=0,jk, ju, jl;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double sum=0.;            savm=oldm;
   first=0;            oldm=newm;
   jmin=1e+5;          } /* end mult */
   jmax=-1;        
   jmean=0.;          s1=s[mw[mi][i]][i];
   for(i=1; i<=imx; i++){          s2=s[mw[mi+1][i]][i];
     mi=0;          bbh=(double)bh[mi][i]/(double)stepm; 
     m=firstpass;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     while(s[m][i] <= nlstate){          ipmx +=1;
       if(s[m][i]>=1)          sw += weight[i];
         mw[++mi][i]=m;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(m >=lastpass)        } /* end of wave */
         break;      } /* end of individual */
       else    }else if (mle==4){  /* ml=4 no inter-extrapolation */
         m++;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }/* end while */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (s[m][i] > nlstate){        for(mi=1; mi<= wav[i]-1; mi++){
       mi++;     /* Death is another wave */          for (ii=1;ii<=nlstate+ndeath;ii++)
       /* if(mi==0)  never been interviewed correctly before death */            for (j=1;j<=nlstate+ndeath;j++){
          /* Only death is a correct wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       mw[mi][i]=m;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
           for(d=0; d<dh[mi][i]; d++){
     wav[i]=mi;            newm=savm;
     if(mi==0){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(first==0){            for (kk=1; kk<=cptcovage;kk++) {
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         first=1;            }
       }          
       if(first==1){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     } /* end mi==0 */            oldm=newm;
   }          } /* end mult */
         
   for(i=1; i<=imx; i++){          s1=s[mw[mi][i]][i];
     for(mi=1; mi<wav[i];mi++){          s2=s[mw[mi+1][i]][i];
       if (stepm <=0)          if( s2 > nlstate){ 
         dh[mi][i]=1;            lli=log(out[s1][s2] - savm[s1][s2]);
       else{          }else{
         if (s[mw[mi+1][i]][i] > nlstate) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           if (agedc[i] < 2*AGESUP) {          }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ipmx +=1;
           if(j==0) j=1;  /* Survives at least one month after exam */          sw += weight[i];
           k=k+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j >= jmax) jmax=j;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if (j <= jmin) jmin=j;        } /* end of wave */
           sum=sum+j;      } /* end of individual */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else{        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         jk= j/stepm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jl= j -jk*stepm;            for (kk=1; kk<=cptcovage;kk++) {
         ju= j -(jk+1)*stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(jl <= -ju)            }
           dh[mi][i]=jk;          
         else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(dh[mi][i]==0)            savm=oldm;
           dh[mi][i]=1; /* At least one step */            oldm=newm;
       }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
   jmean=sum/k;          s2=s[mw[mi+1][i]][i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ipmx +=1;
  }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Tricode ****************************/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 void tricode(int *Tvar, int **nbcode, int imx)        } /* end of wave */
 {      } /* end of individual */
   int Ndum[20],ij=1, k, j, i;    } /* End of if */
   int cptcode=0;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   cptcoveff=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (k=0; k<19; k++) Ndum[k]=0;    return -l;
   for (k=1; k<=7; k++) ncodemax[k]=0;  }
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*************** log-likelihood *************/
     for (i=1; i<=imx; i++) {  double funcone( double *x)
       ij=(int)(covar[Tvar[j]][i]);  {
       Ndum[ij]++;    /* Same as likeli but slower because of a lot of printf and if */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int i, ii, j, k, mi, d, kk;
       if (ij > cptcode) cptcode=ij;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     }    double **out;
     double lli; /* Individual log likelihood */
     for (i=0; i<=cptcode; i++) {    double llt;
       if(Ndum[i]!=0) ncodemax[j]++;    int s1, s2;
     }    double bbh, survp;
     ij=1;    /*extern weight */
     /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (i=1; i<=ncodemax[j]; i++) {    /*for(i=1;i<imx;i++) 
       for (k=0; k<=19; k++) {      printf(" %d\n",s[4][i]);
         if (Ndum[k] != 0) {    */
           nbcode[Tvar[j]][ij]=k;    cov[1]=1.;
            
           ij++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         if (ij > ncodemax[j]) break;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }      for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
  for (k=0; k<19; k++) Ndum[k]=0;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {          }
    ij=Tvar[i];        for(d=0; d<dh[mi][i]; d++){
    Ndum[ij]++;          newm=savm;
  }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
  ij=1;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  for (i=1; i<=10; i++) {          }
    if((Ndum[i]!=0) && (i<=ncovcol)){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;          savm=oldm;
    }          oldm=newm;
  }        } /* end mult */
          
  cptcoveff=ij-1;        s1=s[mw[mi][i]][i];
 }        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
 /*********** Health Expectancies ****************/        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
 {          lli=log(out[s1][s2] - savm[s1][s2]);
   /* Health expectancies */        } else if  (s2==-2) {
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double age, agelim, hf;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***p3mat,***varhe;          lli= log(survp);
   double **dnewm,**doldm;        }else if (mle==1){
   double *xp;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **gp, **gm;        } else if(mle==2){
   double ***gradg, ***trgradg;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int theta;        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   xp=vector(1,npar);          lli=log(out[s1][s2]); /* Original formula */
   dnewm=matrix(1,nlstate*2,1,npar);        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   doldm=matrix(1,nlstate*2,1,nlstate*2);          lli=log(out[s1][s2]); /* Original formula */
          } /* End of if */
   fprintf(ficreseij,"# Health expectancies\n");        ipmx +=1;
   fprintf(ficreseij,"# Age");        sw += weight[i];
   for(i=1; i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if(globpr){
   fprintf(ficreseij,"\n");          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   if(estepm < stepm){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     printf ("Problem %d lower than %d\n",estepm, stepm);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   else  hstepm=estepm;              llt +=ll[k]*gipmx/gsw;
   /* We compute the life expectancy from trapezoids spaced every estepm months            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
    * This is mainly to measure the difference between two models: for example          }
    * if stepm=24 months pijx are given only every 2 years and by summing them          fprintf(ficresilk," %10.6f\n", -llt);
    * we are calculating an estimate of the Life Expectancy assuming a linear        }
    * progression inbetween and thus overestimating or underestimating according      } /* end of wave */
    * to the curvature of the survival function. If, for the same date, we    } /* end of individual */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    * to compare the new estimate of Life expectancy with the same linear    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * hypothesis. A more precise result, taking into account a more precise    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * curvature will be obtained if estepm is as small as stepm. */    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   /* For example we decided to compute the life expectancy with the smallest unit */      gsw=sw;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    }
      nhstepm is the number of hstepm from age to agelim    return -l;
      nstepm is the number of stepm from age to agelin.  }
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /*************** function likelione ***********/
      survival function given by stepm (the optimization length). Unfortunately it  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      means that if the survival funtion is printed only each two years of age and if  {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    /* This routine should help understanding what is done with 
      results. So we changed our mind and took the option of the best precision.       the selection of individuals/waves and
   */       to check the exact contribution to the likelihood.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       Plotting could be done.
      */
   agelim=AGESUP;    int k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */    if(*globpri !=0){ /* Just counts and sums, no printings */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      strcpy(fileresilk,"ilk"); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      strcat(fileresilk,fileres);
     /* if (stepm >= YEARM) hstepm=1;*/      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        printf("Problem with resultfile: %s\n", fileresilk);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      }
     gp=matrix(0,nhstepm,1,nlstate*2);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     gm=matrix(0,nhstepm,1,nlstate*2);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      for(k=1; k<=nlstate; k++) 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
      }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    *fretone=(*funcone)(p);
     if(*globpri !=0){
     /* Computing Variances of health expectancies */      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      for(theta=1; theta <=npar; theta++){      fflush(fichtm); 
       for(i=1; i<=npar; i++){    } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    return;
       }  }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
    
       cptj=0;  /*********** Maximum Likelihood Estimation ***************/
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           cptj=cptj+1;  {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    int i,j, iter;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double **xi;
           }    double fret;
         }    double fretone; /* Only one call to likelihood */
       }    /*  char filerespow[FILENAMELENGTH];*/
          xi=matrix(1,npar,1,npar);
          for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++)      for (j=1;j<=npar;j++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        xi[i][j]=(i==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("Powell\n");  fprintf(ficlog,"Powell\n");
          strcpy(filerespow,"pow"); 
       cptj=0;    strcat(filerespow,fileres);
       for(j=1; j<= nlstate; j++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         for(i=1;i<=nlstate;i++){      printf("Problem with resultfile: %s\n", filerespow);
           cptj=cptj+1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           }    for (i=1;i<=nlstate;i++)
         }      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1; j<= nlstate*2; j++)    fprintf(ficrespow,"\n");
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    powell(p,xi,npar,ftol,&iter,&fret,func);
         }  
      }    free_matrix(xi,1,npar,1,npar);
        fclose(ficrespow);
 /* End theta */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
      for(h=0; h<=nhstepm-1; h++)  }
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)  /**** Computes Hessian and covariance matrix ***/
           trgradg[h][j][theta]=gradg[h][theta][j];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        {
     double  **a,**y,*x,pd;
      for(i=1;i<=nlstate*2;i++)    double **hess;
       for(j=1;j<=nlstate*2;j++)    int i, j,jk;
         varhe[i][j][(int)age] =0.;    int *indx;
   
      printf("%d|",(int)age);fflush(stdout);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      for(h=0;h<=nhstepm-1;h++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(k=0;k<=nhstepm-1;k++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    double gompertz(double p[]);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    hess=matrix(1,npar,1,npar);
         for(i=1;i<=nlstate*2;i++)  
           for(j=1;j<=nlstate*2;j++)    printf("\nCalculation of the hessian matrix. Wait...\n");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
     /* Computing expectancies */      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i=1; i<=nlstate;i++)     
       for(j=1; j<=nlstate;j++)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      /*  printf(" %f ",p[i]);
                    printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    }
     
         }    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
     fprintf(ficreseij,"%3.0f",age );        if (j>i) { 
     cptj=0;          printf(".%d%d",i,j);fflush(stdout);
     for(i=1; i<=nlstate;i++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(j=1; j<=nlstate;j++){          hess[i][j]=hessij(p,delti,i,j,func,npar);
         cptj++;          
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          hess[j][i]=hess[i][j];    
       }          /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficreseij,"\n");        }
          }
     free_matrix(gm,0,nhstepm,1,nlstate*2);    }
     free_matrix(gp,0,nhstepm,1,nlstate*2);    printf("\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   printf("\n");    
   fprintf(ficlog,"\n");    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   free_vector(xp,1,npar);    x=vector(1,npar);
   free_matrix(dnewm,1,nlstate*2,1,npar);    indx=ivector(1,npar);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    for (i=1;i<=npar;i++)
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 }    ludcmp(a,npar,indx,&pd);
   
 /************ Variance ******************/    for (j=1;j<=npar;j++) {
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      for (i=1;i<=npar;i++) x[i]=0;
 {      x[j]=1;
   /* Variance of health expectancies */      lubksb(a,npar,indx,x);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (i=1;i<=npar;i++){ 
   /* double **newm;*/        matcov[i][j]=x[i];
   double **dnewm,**doldm;      }
   double **dnewmp,**doldmp;    }
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    printf("\n#Hessian matrix#\n");
   double *xp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **gp, **gm;  /* for var eij */    for (i=1;i<=npar;i++) { 
   double ***gradg, ***trgradg; /*for var eij */      for (j=1;j<=npar;j++) { 
   double **gradgp, **trgradgp; /* for var p point j */        printf("%.3e ",hess[i][j]);
   double *gpp, *gmp; /* for var p point j */        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      }
   double ***p3mat;      printf("\n");
   double age,agelim, hf;      fprintf(ficlog,"\n");
   int theta;    }
   char digit[4];  
   char digitp[16];    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
   char fileresprobmorprev[FILENAMELENGTH];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   if(popbased==1)  
     strcpy(digitp,"-populbased-");    /*  printf("\n#Hessian matrix recomputed#\n");
   else  
     strcpy(digitp,"-stablbased-");    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   strcpy(fileresprobmorprev,"prmorprev");      x[j]=1;
   sprintf(digit,"%-d",ij);      lubksb(a,npar,indx,x);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      for (i=1;i<=npar;i++){ 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        y[i][j]=x[i];
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        printf("%.3e ",y[i][j]);
   strcat(fileresprobmorprev,fileres);        fprintf(ficlog,"%.3e ",y[i][j]);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      printf("\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      fprintf(ficlog,"\n");
   }    }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    free_matrix(a,1,npar,1,npar);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    free_matrix(y,1,npar,1,npar);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    free_vector(x,1,npar);
     fprintf(ficresprobmorprev," p.%-d SE",j);    free_ivector(indx,1,npar);
     for(i=1; i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }    
   fprintf(ficresprobmorprev,"\n");  }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  /*************** hessian matrix ****************/
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     exit(0);  {
   }    int i;
   else{    int l=1, lmax=20;
     fprintf(ficgp,"\n# Routine varevsij");    double k1,k2;
   }    double p2[NPARMAX+1];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double res;
     printf("Problem with html file: %s\n", optionfilehtm);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    double fx;
     exit(0);    int k=0,kmax=10;
   }    double l1;
   else{  
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    fx=func(x);
   }    for (i=1;i<=npar;i++) p2[i]=x[i];
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      delts=delt;
   fprintf(ficresvij,"# Age");      for(k=1 ; k <kmax; k=k+1){
   for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
     for(j=1; j<=nlstate;j++)        p2[theta]=x[theta] +delt;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        k1=func(p2)-fx;
   fprintf(ficresvij,"\n");        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   xp=vector(1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   dnewm=matrix(1,nlstate,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   doldm=matrix(1,nlstate,1,nlstate);        
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  #ifdef DEBUG
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);  #endif
   gpp=vector(nlstate+1,nlstate+ndeath);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   gmp=vector(nlstate+1,nlstate+ndeath);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          k=kmax;
          }
   if(estepm < stepm){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     printf ("Problem %d lower than %d\n",estepm, stepm);          k=kmax; l=lmax*10.;
   }        }
   else  hstepm=estepm;          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   /* For example we decided to compute the life expectancy with the smallest unit */          delts=delt;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        }
      nhstepm is the number of hstepm from age to agelim      }
      nstepm is the number of stepm from age to agelin.    }
      Look at hpijx to understand the reason of that which relies in memory size    delti[theta]=delts;
      and note for a fixed period like k years */    return res; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      results. So we changed our mind and took the option of the best precision.  {
   */    int i;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int l=1, l1, lmax=20;
   agelim = AGESUP;    double k1,k2,k3,k4,res,fx;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double p2[NPARMAX+1];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int k;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fx=func(x);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    for (k=1; k<=2; k++) {
     gp=matrix(0,nhstepm,1,nlstate);      for (i=1;i<=npar;i++) p2[i]=x[i];
     gm=matrix(0,nhstepm,1,nlstate);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     for(theta=1; theta <=npar; theta++){    
       for(i=1; i<=npar; i++){ /* Computes gradient */      p2[thetai]=x[thetai]+delti[thetai]/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }      k2=func(p2)-fx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if (popbased==1) {      k3=func(p2)-fx;
         for(i=1; i<=nlstate;i++)    
           prlim[i][i]=probs[(int)age][i][ij];      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
       for(j=1; j<= nlstate; j++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(h=0; h<=nhstepm; h++){  #ifdef DEBUG
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         }  #endif
       }    }
       /* This for computing forces of mortality (h=1)as a weighted average */    return res;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  }
         for(i=1; i<= nlstate; i++)  
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  /************** Inverse of matrix **************/
       }      void ludcmp(double **a, int n, int *indx, double *d) 
       /* end force of mortality */  { 
     int i,imax,j,k; 
       for(i=1; i<=npar; i++) /* Computes gradient */    double big,dum,sum,temp; 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double *vv; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    vv=vector(1,n); 
      *d=1.0; 
       if (popbased==1) {    for (i=1;i<=n;i++) { 
         for(i=1; i<=nlstate;i++)      big=0.0; 
           prlim[i][i]=probs[(int)age][i][ij];      for (j=1;j<=n;j++) 
       }        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(j=1; j<= nlstate; j++){      vv[i]=1.0/big; 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    for (j=1;j<=n;j++) { 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1;i<j;i++) { 
         }        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       /* This for computing force of mortality (h=1)as a weighted average */        a[i][j]=sum; 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      } 
         for(i=1; i<= nlstate; i++)      big=0.0; 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      for (i=j;i<=n;i++) { 
       }            sum=a[i][j]; 
       /* end force of mortality */        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
       for(j=1; j<= nlstate; j++) /* vareij */        a[i][j]=sum; 
         for(h=0; h<=nhstepm; h++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          big=dum; 
         }          imax=i; 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        } 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      } 
       }      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     } /* End theta */          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          a[j][k]=dum; 
         } 
     for(h=0; h<=nhstepm; h++) /* veij */        *d = -(*d); 
       for(j=1; j<=nlstate;j++)        vv[imax]=vv[j]; 
         for(theta=1; theta <=npar; theta++)      } 
           trgradg[h][j][theta]=gradg[h][theta][j];      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      if (j != n) { 
       for(theta=1; theta <=npar; theta++)        dum=1.0/(a[j][j]); 
         trgradgp[j][theta]=gradgp[theta][j];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } 
     for(i=1;i<=nlstate;i++)    free_vector(vv,1,n);  /* Doesn't work */
       for(j=1;j<=nlstate;j++)  ;
         vareij[i][j][(int)age] =0.;  } 
   
     for(h=0;h<=nhstepm;h++){  void lubksb(double **a, int n, int *indx, double b[]) 
       for(k=0;k<=nhstepm;k++){  { 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int i,ii=0,ip,j; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double sum; 
         for(i=1;i<=nlstate;i++)   
           for(j=1;j<=nlstate;j++)    for (i=1;i<=n;i++) { 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      ip=indx[i]; 
       }      sum=b[ip]; 
     }      b[ip]=b[i]; 
       if (ii) 
     /* pptj */        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      else if (sum) ii=i; 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      b[i]=sum; 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    } 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    for (i=n;i>=1;i--) { 
         varppt[j][i]=doldmp[j][i];      sum=b[i]; 
     /* end ppptj */      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        b[i]=sum/a[i][i]; 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    } 
    } 
     if (popbased==1) {  
       for(i=1; i<=nlstate;i++)  void pstamp(FILE *fichier)
         prlim[i][i]=probs[(int)age][i][ij];  {
     }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
      }
     /* This for computing force of mortality (h=1)as a weighted average */  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  /************ Frequencies ********************/
       for(i=1; i<= nlstate; i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  {  /* Some frequencies */
     }        
     /* end force of mortality */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double ***freq; /* Frequencies */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    double *pp, **prop;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(i=1; i<=nlstate;i++){    char fileresp[FILENAMELENGTH];
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    
       }    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fprintf(ficresprobmorprev,"\n");    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     fprintf(ficresvij,"%.0f ",age );    if((ficresp=fopen(fileresp,"w"))==NULL) {
     for(i=1; i<=nlstate;i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
       for(j=1; j<=nlstate;j++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      exit(0);
       }    }
     fprintf(ficresvij,"\n");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_matrix(gp,0,nhstepm,1,nlstate);    j1=0;
     free_matrix(gm,0,nhstepm,1,nlstate);    
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    j=cptcoveff;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    first=1;
   free_vector(gpp,nlstate+1,nlstate+ndeath);  
   free_vector(gmp,nlstate+1,nlstate+ndeath);    for(k1=1; k1<=j;k1++){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        j1++;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          scanf("%d", i);*/
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        for (i=-5; i<=nlstate+ndeath; i++)  
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);              freq[i][jk][m]=0;
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      for (i=1; i<=nlstate; i++)  
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   free_vector(xp,1,npar);        
   free_matrix(doldm,1,nlstate,1,nlstate);        dateintsum=0;
   free_matrix(dnewm,1,nlstate,1,npar);        k2cpt=0;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for (i=1; i<=imx; i++) {
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          bool=1;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          if  (cptcovn>0) {
   fclose(ficresprobmorprev);            for (z1=1; z1<=cptcoveff; z1++) 
   fclose(ficgp);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   fclose(fichtm);                bool=0;
           }
 }          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
 /************ Variance of prevlim ******************/              k2=anint[m][i]+(mint[m][i]/12.);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* Variance of prevalence limit */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double **newm;                if (m<lastpass) {
   double **dnewm,**doldm;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   int i, j, nhstepm, hstepm;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   int k, cptcode;                }
   double *xp;                
   double *gp, *gm;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double **gradg, **trgradg;                  dateintsum=dateintsum+k2;
   double age,agelim;                  k2cpt++;
   int theta;                }
                    /*}*/
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            }
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);         
   fprintf(ficresvpl,"\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
   xp=vector(1,npar);        if  (cptcovn>0) {
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   doldm=matrix(1,nlstate,1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(i=1; i<=nlstate;i++) 
   agelim = AGESUP;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresp, "\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        
     if (stepm >= YEARM) hstepm=1;        for(i=iagemin; i <= iagemax+3; i++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if(i==iagemax+3){
     gradg=matrix(1,npar,1,nlstate);            fprintf(ficlog,"Total");
     gp=vector(1,nlstate);            fprintf(fichtm,"<br>Total<br>");
     gm=vector(1,nlstate);          }else{
             if(first==1){
     for(theta=1; theta <=npar; theta++){              first=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */              printf("See log file for details...\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }            fprintf(ficlog,"Age %d", i);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         gp[i] = prlim[i][i];            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                  pp[jk] += freq[jk][m][i]; 
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=-1, pos=0; m <=0 ; m++)
       for(i=1;i<=nlstate;i++)              pos += freq[jk][m][i];
         gm[i] = prlim[i][i];            if(pp[jk]>=1.e-10){
               if(first==1){
       for(i=1;i<=nlstate;i++)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              }
     } /* End theta */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
     trgradg =matrix(1,nlstate,1,npar);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     for(j=1; j<=nlstate;j++)              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(theta=1; theta <=npar; theta++)            }
         trgradg[j][theta]=gradg[theta][j];          }
   
     for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       varpl[i][(int)age] =0.;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              pp[jk] += freq[jk][m][i];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }       
     for(i=1;i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            pos += pp[jk];
             posprop += prop[jk][i];
     fprintf(ficresvpl,"%.0f ",age );          }
     for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            if(pos>=1.e-5){
     fprintf(ficresvpl,"\n");              if(first==1)
     free_vector(gp,1,nlstate);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_vector(gm,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     free_matrix(gradg,1,npar,1,nlstate);            }else{
     free_matrix(trgradg,1,nlstate,1,npar);              if(first==1)
   } /* End age */                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,npar);            if( i <= iagemax){
   free_matrix(dnewm,1,nlstate,1,nlstate);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 /************ Variance of one-step probabilities  ******************/              }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              else
 {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int i, j=0,  i1, k1, l1, t, tj;            }
   int k2, l2, j1,  z1;          }
   int k=0,l, cptcode;          
   int first=1, first1;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            for(m=-1; m <=nlstate+ndeath; m++)
   double **dnewm,**doldm;              if(freq[jk][m][i] !=0 ) {
   double *xp;              if(first==1)
   double *gp, *gm;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **gradg, **trgradg;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **mu;              }
   double age,agelim, cov[NCOVMAX];          if(i <= iagemax)
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */            fprintf(ficresp,"\n");
   int theta;          if(first==1)
   char fileresprob[FILENAMELENGTH];            printf("Others in log...\n");
   char fileresprobcov[FILENAMELENGTH];          fprintf(ficlog,"\n");
   char fileresprobcor[FILENAMELENGTH];        }
       }
   double ***varpij;    }
     dateintmean=dateintsum/k2cpt; 
   strcpy(fileresprob,"prob");   
   strcat(fileresprob,fileres);    fclose(ficresp);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     printf("Problem with resultfile: %s\n", fileresprob);    free_vector(pp,1,nlstate);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   strcpy(fileresprobcov,"probcov");  }
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  /************ Prevalence ********************/
     printf("Problem with resultfile: %s\n", fileresprobcov);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   strcpy(fileresprobcor,"probcor");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   strcat(fileresprobcor,fileres);       We still use firstpass and lastpass as another selection.
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    */
     printf("Problem with resultfile: %s\n", fileresprobcor);   
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   }    double ***freq; /* Frequencies */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double *pp, **prop;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double pos,posprop; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double  y2; /* in fractional years */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    int iagemin, iagemax;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    iagemin= (int) agemin;
      iagemax= (int) agemax;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    /*pp=vector(1,nlstate);*/
   fprintf(ficresprob,"# Age");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficresprobcov,"# Age");    j1=0;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    
   fprintf(ficresprobcov,"# Age");    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   for(i=1; i<=nlstate;i++)    for(k1=1; k1<=j;k1++){
     for(j=1; j<=(nlstate+ndeath);j++){      for(i1=1; i1<=ncodemax[k1];i1++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        j1++;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for (i=1; i<=nlstate; i++)  
     }            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresprob,"\n");            prop[i][m]=0.0;
   fprintf(ficresprobcov,"\n");       
   fprintf(ficresprobcor,"\n");        for (i=1; i<=imx; i++) { /* Each individual */
   xp=vector(1,npar);          bool=1;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          if  (cptcovn>0) {
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            for (z1=1; z1<=cptcoveff; z1++) 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);                bool=0;
   first=1;          } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if (bool==1) { 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     exit(0);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   else{                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\n# Routine varprob");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     printf("Problem with html file: %s\n", optionfilehtm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     exit(0);                } 
   }              }
   else{            } /* end selection of waves */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          }
     fprintf(fichtm,"\n");        }
         for(i=iagemin; i <= iagemax+3; i++){  
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            posprop += prop[jk][i]; 
           } 
   }  
           for(jk=1; jk <=nlstate ; jk++){     
              if( i <=  iagemax){ 
   cov[1]=1;              if(posprop>=1.e-5){ 
   tj=cptcoveff;                probs[i][jk][j1]= prop[jk][i]/posprop;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}              } 
   j1=0;            } 
   for(t=1; t<=tj;t++){          }/* end jk */ 
     for(i1=1; i1<=ncodemax[t];i1++){        }/* end i */ 
       j1++;      } /* end i1 */
          } /* end k1 */
       if  (cptcovn>0) {    
         fprintf(ficresprob, "\n#********** Variable ");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /*free_vector(pp,1,nlstate);*/
         fprintf(ficresprob, "**********\n#");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         fprintf(ficresprobcov, "\n#********** Variable ");  }  /* End of prevalence */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#");  /************* Waves Concatenation ***************/
          
         fprintf(ficgp, "\n#********** Variable ");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
         fprintf(ficgp, "**********\n#");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               Death is a valid wave (if date is known).
               mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       and mw[mi+1][i]. dh depends on stepm.
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");       */
          
         fprintf(ficresprobcor, "\n#********** Variable ");        int i, mi, m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         fprintf(ficgp, "**********\n#");           double sum=0., jmean=0.;*/
       }    int first;
          int j, k=0,jk, ju, jl;
       for (age=bage; age<=fage; age ++){    double sum=0.;
         cov[2]=age;    first=0;
         for (k=1; k<=cptcovn;k++) {    jmin=1e+5;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    jmax=-1;
         }    jmean=0.;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for(i=1; i<=imx; i++){
         for (k=1; k<=cptcovprod;k++)      mi=0;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      m=firstpass;
              while(s[m][i] <= nlstate){
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          mw[++mi][i]=m;
         gp=vector(1,(nlstate)*(nlstate+ndeath));        if(m >=lastpass)
         gm=vector(1,(nlstate)*(nlstate+ndeath));          break;
            else
         for(theta=1; theta <=npar; theta++){          m++;
           for(i=1; i<=npar; i++)      }/* end while */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (s[m][i] > nlstate){
                  mi++;     /* Death is another wave */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        /* if(mi==0)  never been interviewed correctly before death */
                     /* Only death is a correct wave */
           k=0;        mw[mi][i]=m;
           for(i=1; i<= (nlstate); i++){      }
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      wav[i]=mi;
               gp[k]=pmmij[i][j];      if(mi==0){
             }        nbwarn++;
           }        if(first==0){
                    printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           for(i=1; i<=npar; i++)          first=1;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
            if(first==1){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           k=0;        }
           for(i=1; i<=(nlstate); i++){      } /* end mi==0 */
             for(j=1; j<=(nlstate+ndeath);j++){    } /* End individuals */
               k=k+1;  
               gm[k]=pmmij[i][j];    for(i=1; i<=imx; i++){
             }      for(mi=1; mi<wav[i];mi++){
           }        if (stepm <=0)
                dh[mi][i]=1;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        else{
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)              if(j==0) j=1;  /* Survives at least one month after exam */
           for(theta=1; theta <=npar; theta++)              else if(j<0){
             trgradg[j][theta]=gradg[theta][j];                nberr++;
                        printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                j=1; /* Temporary Dangerous patch */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                        fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         pmij(pmmij,cov,ncovmodel,x,nlstate);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                      }
         k=0;              k=k+1;
         for(i=1; i<=(nlstate); i++){              if (j >= jmax){
           for(j=1; j<=(nlstate+ndeath);j++){                jmax=j;
             k=k+1;                ijmax=i;
             mu[k][(int) age]=pmmij[i][j];              }
           }              if (j <= jmin){
         }                jmin=j;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                ijmin=i;
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              }
             varpij[i][j][(int)age] = doldm[i][j];              sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         /*printf("\n%d ",(int)age);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          else{
      }*/            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);            k=k+1;
         fprintf(ficresprobcor,"\n%d ",(int)age);            if (j >= jmax) {
               jmax=j;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              ijmax=i;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            else if (j <= jmin){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              jmin=j;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);              ijmin=i;
         }            }
         i=0;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         for (k=1; k<=(nlstate);k++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           for (l=1; l<=(nlstate+ndeath);l++){            if(j<0){
             i=i++;              nberr++;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             for (j=1; j<=i;j++){            }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            sum=sum+j;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          }
             }          jk= j/stepm;
           }          jl= j -jk*stepm;
         }/* end of loop for state */          ju= j -(jk+1)*stepm;
       } /* end of loop for age */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
       /* Confidence intervalle of pij  */              dh[mi][i]=jk;
       /*              bh[mi][i]=0;
       fprintf(ficgp,"\nset noparametric;unset label");            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");                    * at the price of an extra matrix product in likelihood */
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              dh[mi][i]=jk+1;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              bh[mi][i]=ju;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);            }
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          }else{
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);            if(jl <= -ju){
       */              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/                                   * is higher than the multiple of stepm and negative otherwise.
       first1=1;                                   */
       for (k1=1; k1<=(nlstate);k1++){            }
         for (l1=1; l1<=(nlstate+ndeath);l1++){            else{
           if(l1==k1) continue;              dh[mi][i]=jk+1;
           i=(k1-1)*(nlstate+ndeath)+l1;              bh[mi][i]=ju;
           for (k2=1; k2<=(nlstate);k2++){            }
             for (l2=1; l2<=(nlstate+ndeath);l2++){            if(dh[mi][i]==0){
               if(l2==k2) continue;              dh[mi][i]=1; /* At least one step */
               j=(k2-1)*(nlstate+ndeath)+l2;              bh[mi][i]=ju; /* At least one step */
               if(j<=i) continue;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
               for (age=bage; age<=fage; age ++){            }
                 if ((int)age %5==0){          } /* end if mle */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      } /* end wave */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   mu1=mu[i][(int) age]/stepm*YEARM ;    jmean=sum/k;
                   mu2=mu[j][(int) age]/stepm*YEARM;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                   /* Computing eigen value of matrix of covariance */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));   }
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   if(first1==1){  /*********** Tricode ****************************/
                     first1=0;  void tricode(int *Tvar, int **nbcode, int imx)
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);  {
                   }    
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    int Ndum[20],ij=1, k, j, i, maxncov=19;
                   /* Eigen vectors */    int cptcode=0;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    cptcoveff=0; 
                   v21=sqrt(1.-v11*v11);   
                   v12=-v21;    for (k=0; k<maxncov; k++) Ndum[k]=0;
                   v22=v11;    for (k=1; k<=7; k++) ncodemax[k]=0;
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   if(first==1){                                 modality*/ 
                     first=0;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                     fprintf(ficgp,"\nset parametric;set nolabel");        Ndum[ij]++; /*store the modality */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);                                         Tvar[j]. If V=sex and male is 0 and 
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);                                         female is 1, then  cptcode=1.*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);      }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      for (i=0; i<=cptcode; i++) {
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                     */      ij=1; 
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for (i=1; i<=ncodemax[j]; i++) {
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        for (k=0; k<= maxncov; k++) {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          if (Ndum[k] != 0) {
                   }else{            nbcode[Tvar[j]][ij]=k; 
                     first=0;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            ij++;
                     /*          }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if (ij > ncodemax[j]) break; 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        }  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      } 
                     */    }  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \   for (k=0; k< maxncov; k++) Ndum[k]=0;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));  
                   }/* if first */   for (i=1; i<=ncovmodel-2; i++) { 
                 } /* age mod 5 */     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               } /* end loop age */     ij=Tvar[i];
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);     Ndum[ij]++;
               first=1;   }
             } /*l12 */  
           } /* k12 */   ij=1;
         } /*l1 */   for (i=1; i<= maxncov; i++) {
       }/* k1 */     if((Ndum[i]!=0) && (i<=ncovcol)){
     } /* loop covariates */       Tvaraff[ij]=i; /*For printing */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);       ij++;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));     }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));   }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);   
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   cptcoveff=ij-1; /*Number of simple covariates*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  }
   }  
   free_vector(xp,1,npar);  /*********** Health Expectancies ****************/
   fclose(ficresprob);  
   fclose(ficresprobcov);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fclose(ficresprobcor);  
   fclose(ficgp);  {
   fclose(fichtm);    /* Health expectancies, no variances */
 }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     double age, agelim, hf;
     double ***p3mat;
 /******************* Printing html file ***********/    double eip;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\    pstamp(ficreseij);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   int popforecast, int estepm ,\    fprintf(ficreseij,"# Age");
                   double jprev1, double mprev1,double anprev1, \    for(i=1; i<=nlstate;i++){
                   double jprev2, double mprev2,double anprev2){      for(j=1; j<=nlstate;j++){
   int jj1, k1, i1, cpt;        fprintf(ficreseij," e%1d%1d ",i,j);
   /*char optionfilehtm[FILENAMELENGTH];*/      }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      fprintf(ficreseij," e%1d. ",i);
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    fprintf(ficreseij,"\n");
   }  
     
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    if(estepm < stepm){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    else  hstepm=estepm;   
  - Life expectancies by age and initial health status (estepm=%2d months):    /* We compute the life expectancy from trapezoids spaced every estepm months
    <a href=\"e%s\">e%s</a> <br>\n</li>", \     * This is mainly to measure the difference between two models: for example
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
  m=cptcoveff;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  jj1=0;     * curvature will be obtained if estepm is as small as stepm. */
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    /* For example we decided to compute the life expectancy with the smallest unit */
      jj1++;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
      if (cptcovn > 0) {       nhstepm is the number of hstepm from age to agelim 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       nstepm is the number of stepm from age to agelin. 
        for (cpt=1; cpt<=cptcoveff;cpt++)       Look at hpijx to understand the reason of that which relies in memory size
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       and note for a fixed period like estepm months */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      }       survival function given by stepm (the optimization length). Unfortunately it
      /* Pij */       means that if the survival funtion is printed only each two years of age and if
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           results. So we changed our mind and took the option of the best precision.
      /* Quasi-incidences */    */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  
        /* Stable prevalence in each health state */    agelim=AGESUP;
        for(cpt=1; cpt<nlstate;cpt++){    /* nhstepm age range expressed in number of stepm */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        }    /* if (stepm >= YEARM) hstepm=1;*/
      for(cpt=1; cpt<=nlstate;cpt++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 health expectancies in states (1) and (2): e%s%d.png<br>         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      
    } /* end i1 */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  }/* End k1 */      
  fprintf(fichtm,"</ul>");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      /* Computing expectancies */
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      for(i=1; i<=nlstate;i++)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        for(j=1; j<=nlstate;j++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  if(popforecast==1) fprintf(fichtm,"\n  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);      fprintf(ficreseij,"%3.0f",age );
  else      for(i=1; i<=nlstate;i++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        eip=0;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
  m=cptcoveff;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        }
         fprintf(ficreseij,"%9.4f", eip );
  jj1=0;      }
  for(k1=1; k1<=m;k1++){      fprintf(ficreseij,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){      
      jj1++;    }
      if (cptcovn > 0) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    printf("\n");
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(ficlog,"\n");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  }
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>  {
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      /* Covariances of health expectancies eij and of total life expectancies according
      }     to initial status i, ei. .
    } /* end i1 */    */
  }/* End k1 */    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
  fprintf(fichtm,"</ul>");    double age, agelim, hf;
 fclose(fichtm);    double ***p3matp, ***p3matm, ***varhe;
 }    double **dnewm,**doldm;
     double *xp, *xm;
 /******************* Gnuplot file **************/    double **gp, **gm;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double ***gradg, ***trgradg;
     int theta;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;    double eip, vip;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    xp=vector(1,npar);
   }    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
 #ifdef windows    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    
 #endif    pstamp(ficresstdeij);
 m=pow(2,cptcoveff);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
      fprintf(ficresstdeij,"# Age");
  /* 1eme*/    for(i=1; i<=nlstate;i++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {      for(j=1; j<=nlstate;j++)
    for (k1=1; k1<= m ; k1 ++) {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
 #ifdef windows    }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresstdeij,"\n");
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif    pstamp(ficrescveij);
 #ifdef unix    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficrescveij,"# Age");
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    for(i=1; i<=nlstate;i++)
 #endif      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
 for (i=1; i<= nlstate ; i ++) {        for(i2=1; i2<=nlstate;i2++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(j2=1; j2<=nlstate;j2++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            cptj2= (j2-1)*nlstate+i2;
 }            if(cptj2 <= cptj)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficrescveij,"\n");
 }    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if(estepm < stepm){
      for (i=1; i<= nlstate ; i ++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    else  hstepm=estepm;   
 }      /* We compute the life expectancy from trapezoids spaced every estepm months
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));     * This is mainly to measure the difference between two models: for example
 #ifdef unix     * if stepm=24 months pijx are given only every 2 years and by summing them
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");     * we are calculating an estimate of the Life Expectancy assuming a linear 
 #endif     * progression in between and thus overestimating or underestimating according
    }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /*2 eme*/     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   for (k1=1; k1<= m ; k1 ++) {     * curvature will be obtained if estepm is as small as stepm. */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (i=1; i<= nlstate+1 ; i ++) {       nhstepm is the number of hstepm from age to agelim 
       k=2*i;       nstepm is the number of stepm from age to agelin. 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       Look at hpijx to understand the reason of that which relies in memory size
       for (j=1; j<= nlstate+1 ; j ++) {       and note for a fixed period like estepm months */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   else fprintf(ficgp," \%%*lf (\%%*lf)");       survival function given by stepm (the optimization length). Unfortunately it
 }         means that if the survival funtion is printed only each two years of age and if
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    */
       for (j=1; j<= nlstate+1 ; j ++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    /* If stepm=6 months */
 }      /* nhstepm age range expressed in number of stepm */
       fprintf(ficgp,"\" t\"\" w l 0,");    agelim=AGESUP;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       for (j=1; j<= nlstate+1 ; j ++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /* if (stepm >= YEARM) hstepm=1;*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }      
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       else fprintf(ficgp,"\" t\"\" w l 0,");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   /*3eme*/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   for (k1=1; k1<= m ; k1 ++) {    for (age=bage; age<=fage; age ++){ 
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);   
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* Computing  Variances of health expectancies */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");         decrease memory allocation */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
 */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for (i=1; i< nlstate ; i ++) {          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     }    
   }        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   /* CV preval stat */            for(h=0; h<=nhstepm-1; h++){
     for (k1=1; k1<= m ; k1 ++) {              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     for (cpt=1; cpt<nlstate ; cpt ++) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       k=3;            }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        }
        
       for (i=1; i< nlstate ; i ++)        for(ij=1; ij<= nlstate*nlstate; ij++)
         fprintf(ficgp,"+$%d",k+i+1);          for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                }
       l=3+(nlstate+ndeath)*cpt;      }/* End theta */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      
       for (i=1; i< nlstate ; i ++) {      
         l=3+(nlstate+ndeath)*cpt;      for(h=0; h<=nhstepm-1; h++)
         fprintf(ficgp,"+$%d",l+i+1);        for(j=1; j<=nlstate*nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              trgradg[h][j][theta]=gradg[h][theta][j];
     }      
   }    
         for(ij=1;ij<=nlstate*nlstate;ij++)
   /* proba elementaires */        for(ji=1;ji<=nlstate*nlstate;ji++)
    for(i=1,jk=1; i <=nlstate; i++){          varhe[ij][ji][(int)age] =0.;
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {       printf("%d|",(int)age);fflush(stdout);
         for(j=1; j <=ncovmodel; j++){       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       for(h=0;h<=nhstepm-1;h++){
           jk++;        for(k=0;k<=nhstepm-1;k++){
           fprintf(ficgp,"\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }          for(ij=1;ij<=nlstate*nlstate;ij++)
     }            for(ji=1;ji<=nlstate*nlstate;ji++)
    }              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      }
      for(jk=1; jk <=m; jk++) {      /* Computing expectancies */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        if (ng==2)      for(i=1; i<=nlstate;i++)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        for(j=1; j<=nlstate;j++)
        else          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
          fprintf(ficgp,"\nset title \"Probability\"\n");            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            
        i=1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;          }
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){      fprintf(ficresstdeij,"%3.0f",age );
              if(ng==2)      for(i=1; i<=nlstate;i++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        eip=0.;
              else        vip=0.;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(j=1; j<=nlstate;j++){
              ij=1;          eip += eij[i][j][(int)age];
              for(j=3; j <=ncovmodel; j++) {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                  ij++;        }
                }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                else      }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(ficresstdeij,"\n");
              }  
              fprintf(ficgp,")/(1");      fprintf(ficrescveij,"%3.0f",age );
                    for(i=1; i<=nlstate;i++)
              for(k1=1; k1 <=nlstate; k1++){          for(j=1; j<=nlstate;j++){
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          cptj= (j-1)*nlstate+i;
                ij=1;          for(i2=1; i2<=nlstate;i2++)
                for(j=3; j <=ncovmodel; j++){            for(j2=1; j2<=nlstate;j2++){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              cptj2= (j2-1)*nlstate+i2;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              if(cptj2 <= cptj)
                    ij++;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                  }            }
                  else        }
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(ficrescveij,"\n");
                }     
                fprintf(ficgp,")");    }
              }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
              i=i+ncovmodel;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
            }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          } /* end k */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        } /* end k2 */    printf("\n");
      } /* end jk */    fprintf(ficlog,"\n");
    } /* end ng */  
    fclose(ficgp);    free_vector(xm,1,npar);
 }  /* end gnuplot */    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
 /*************** Moving average **************/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  }
   
   int i, cpt, cptcod;  /************ Variance ******************/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       for (i=1; i<=nlstate;i++)  {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* Variance of health expectancies */
           mobaverage[(int)agedeb][i][cptcod]=0.;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        /* double **newm;*/
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double **dnewm,**doldm;
       for (i=1; i<=nlstate;i++){    double **dnewmp,**doldmp;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, j, nhstepm, hstepm, h, nstepm ;
           for (cpt=0;cpt<=4;cpt++){    int k, cptcode;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double *xp;
           }    double **gp, **gm;  /* for var eij */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double ***gradg, ***trgradg; /*for var eij */
         }    double **gradgp, **trgradgp; /* for var p point j */
       }    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        double ***p3mat;
 }    double age,agelim, hf;
     double ***mobaverage;
     int theta;
 /************** Forecasting ******************/    char digit[4];
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    char digitp[25];
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    char fileresprobmorprev[FILENAMELENGTH];
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    if(popbased==1){
   double *popeffectif,*popcount;      if(mobilav!=0)
   double ***p3mat;        strcpy(digitp,"-populbased-mobilav-");
   char fileresf[FILENAMELENGTH];      else strcpy(digitp,"-populbased-nomobil-");
     }
  agelim=AGESUP;    else 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      strcpy(digitp,"-stablbased-");
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   strcpy(fileresf,"f");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileresf,fileres);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      }
     printf("Problem with forecast resultfile: %s\n", fileresf);    }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
   printf("Computing forecasting: result on file '%s' \n", fileresf);    sprintf(digit,"%-d",ij);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   if (mobilav==1) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   }    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   if (stepm<=12) stepsize=1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
   agelim=AGESUP;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   hstepm=1;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   hstepm=hstepm/stepm;      fprintf(ficresprobmorprev," p.%-d SE",j);
   yp1=modf(dateintmean,&yp);      for(i=1; i<=nlstate;i++)
   anprojmean=yp;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   yp2=modf((yp1*12),&yp);    }  
   mprojmean=yp;    fprintf(ficresprobmorprev,"\n");
   yp1=modf((yp2*30.5),&yp);    fprintf(ficgp,"\n# Routine varevsij");
   jprojmean=yp;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   if(jprojmean==0) jprojmean=1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   if(mprojmean==0) jprojmean=1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    if(popbased==1)
       k=k+1;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
       fprintf(ficresf,"\n#******");    else
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficresvij,"# Age");
       }    for(i=1; i<=nlstate;i++)
       fprintf(ficresf,"******\n");      for(j=1; j<=nlstate;j++)
       fprintf(ficresf,"# StartingAge FinalAge");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficresvij,"\n");
        
          xp=vector(1,npar);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficresf,"\n");    doldm=matrix(1,nlstate,1,nlstate);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm;    gpp=vector(nlstate+1,nlstate+ndeath);
              gmp=vector(nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           oldm=oldms;savm=savms;    
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if(estepm < stepm){
              printf ("Problem %d lower than %d\n",estepm, stepm);
           for (h=0; h<=nhstepm; h++){    }
             if (h==(int) (calagedate+YEARM*cpt)) {    else  hstepm=estepm;   
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /* For example we decided to compute the life expectancy with the smallest unit */
             }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             for(j=1; j<=nlstate+ndeath;j++) {       nhstepm is the number of hstepm from age to agelim 
               kk1=0.;kk2=0;       nstepm is the number of stepm from age to agelin. 
               for(i=1; i<=nlstate;i++) {                     Look at hpijx to understand the reason of that which relies in memory size
                 if (mobilav==1)       and note for a fixed period like k years */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 else {       survival function given by stepm (the optimization length). Unfortunately it
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       means that if the survival funtion is printed every two years of age and if
                 }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                       results. So we changed our mind and took the option of the best precision.
               }    */
               if (h==(int)(calagedate+12*cpt)){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 fprintf(ficresf," %.3f", kk1);    agelim = AGESUP;
                            for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         }      gp=matrix(0,nhstepm,1,nlstate);
       }      gm=matrix(0,nhstepm,1,nlstate);
     }  
   }  
              for(theta=1; theta <=npar; theta++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fclose(ficresf);        }
 }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /************** Forecasting ******************/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
          if (popbased==1) {
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          if(mobilav ==0){
   int *popage;            for(i=1; i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              prlim[i][i]=probs[(int)age][i][ij];
   double *popeffectif,*popcount;          }else{ /* mobilav */ 
   double ***p3mat,***tabpop,***tabpopprev;            for(i=1; i<=nlstate;i++)
   char filerespop[FILENAMELENGTH];              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
   strcpy(filerespop,"pop");        /* This for computing probability of death (h=1 means
   strcat(filerespop,fileres);           computed over hstepm matrices product = hstepm*stepm months) 
   if((ficrespop=fopen(filerespop,"w"))==NULL) {           as a weighted average of prlim.
     printf("Problem with forecast resultfile: %s\n", filerespop);        */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        }    
         /* end probability of death */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   if (mobilav==1) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   }   
         if (popbased==1) {
   stepsize=(int) (stepm+YEARM-1)/YEARM;          if(mobilav ==0){
   if (stepm<=12) stepsize=1;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   agelim=AGESUP;          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   hstepm=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
   hstepm=hstepm/stepm;          }
          }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(j=1; j<= nlstate; j++){
       printf("Problem with population file : %s\n",popfile);exit(0);          for(h=0; h<=nhstepm; h++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     popage=ivector(0,AGESUP);          }
     popeffectif=vector(0,AGESUP);        }
     popcount=vector(0,AGESUP);        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     i=1;             as a weighted average of prlim.
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
     imx=i;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   for(cptcov=1;cptcov<=i2;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1; j<= nlstate; j++) /* vareij */
       k=k+1;          for(h=0; h<=nhstepm; h++){
       fprintf(ficrespop,"\n#******");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       for(j=1;j<=cptcoveff;j++) {          }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       fprintf(ficrespop,"******\n");          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       fprintf(ficrespop,"# Age");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");      } /* End theta */
        
       for (cpt=0; cpt<=0;cpt++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
              for(h=0; h<=nhstepm; h++) /* veij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<=nlstate;j++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(theta=1; theta <=npar; theta++)
           nhstepm = nhstepm/hstepm;            trgradg[h][j][theta]=gradg[h][theta][j];
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           oldm=oldms;savm=savms;        for(theta=1; theta <=npar; theta++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            trgradgp[j][theta]=gradgp[theta][j];
            
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
             for(j=1; j<=nlstate+ndeath;j++) {          vareij[i][j][(int)age] =0.;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                    for(h=0;h<=nhstepm;h++){
                 if (mobilav==1)        for(k=0;k<=nhstepm;k++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                 else {          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          for(i=1;i<=nlstate;i++)
                 }            for(j=1;j<=nlstate;j++)
               }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               if (h==(int)(calagedate+12*cpt)){        }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      }
                   /*fprintf(ficrespop," %.3f", kk1);    
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      /* pptj */
               }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             for(i=1; i<=nlstate;i++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
               kk1=0.;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                 for(j=1; j<=nlstate;j++){          varppt[j][i]=doldmp[j][i];
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      /* end ppptj */
                 }      /*  x centered again */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      if (popbased==1) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        if(mobilav ==0){
           }          for(i=1; i<=nlstate;i++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            prlim[i][i]=probs[(int)age][i][ij];
         }        }else{ /* mobilav */ 
       }          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
   /******/        }
       }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {               
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* This for computing probability of death (h=1 means
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         as a weighted average of prlim.
           nhstepm = nhstepm/hstepm;      */
                for(j=nlstate+1;j<=nlstate+ndeath;j++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           oldm=oldms;savm=savms;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        }    
           for (h=0; h<=nhstepm; h++){      /* end probability of death */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
             }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
               kk1=0.;kk2=0;        for(i=1; i<=nlstate;i++){
               for(i=1; i<=nlstate;i++) {                        fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            }
               }      } 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      fprintf(ficresprobmorprev,"\n");
             }  
           }      fprintf(ficresvij,"%.0f ",age );
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
    }        }
   }      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if (popforecast==1) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     free_ivector(popage,0,AGESUP);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popeffectif,0,AGESUP);    } /* End age */
     free_vector(popcount,0,AGESUP);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   }    free_vector(gmp,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   fclose(ficrespop);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 /***********************************************/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 /**************** Main Program *****************/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 /***********************************************/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 int main(int argc, char *argv[])    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double agedeb, agefin,hf;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   double fret;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double **xi,tmp,delta;  
     free_vector(xp,1,npar);
   double dum; /* Dummy variable */    free_matrix(doldm,1,nlstate,1,nlstate);
   double ***p3mat;    free_matrix(dnewm,1,nlstate,1,npar);
   int *indx;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char line[MAXLINE], linepar[MAXLINE];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int firstobs=1, lastobs=10;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int sdeb, sfin; /* Status at beginning and end */    fclose(ficresprobmorprev);
   int c,  h , cpt,l;    fflush(ficgp);
   int ju,jl, mi;    fflush(fichtm); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  }  /* end varevsij */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;  /************ Variance of prevlim ******************/
   int hstepm, nhstepm;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  {
     /* Variance of prevalence limit */
   double bage, fage, age, agelim, agebase;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   double ftolpl=FTOL;    double **newm;
   double **prlim;    double **dnewm,**doldm;
   double *severity;    int i, j, nhstepm, hstepm;
   double ***param; /* Matrix of parameters */    int k, cptcode;
   double  *p;    double *xp;
   double **matcov; /* Matrix of covariance */    double *gp, *gm;
   double ***delti3; /* Scale */    double **gradg, **trgradg;
   double *delti; /* Scale */    double age,agelim;
   double ***eij, ***vareij;    int theta;
   double **varpl; /* Variances of prevalence limits by age */    
   double *epj, vepp;    pstamp(ficresvpl);
   double kk1, kk2;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
   char z[1]="c", occ;    dnewm=matrix(1,nlstate,1,npar);
 #include <sys/time.h>    doldm=matrix(1,nlstate,1,nlstate);
 #include <time.h>    
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    hstepm=1*YEARM; /* Every year of age */
      hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   /* long total_usecs;    agelim = AGESUP;
   struct timeval start_time, end_time;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      if (stepm >= YEARM) hstepm=1;
   getcwd(pathcd, size);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
   printf("\n%s",version);      gp=vector(1,nlstate);
   if(argc <=1){      gm=vector(1,nlstate);
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient */
   else{          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     strcpy(pathtot,argv[1]);        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        for(i=1;i<=nlstate;i++)
   /*cygwin_split_path(pathtot,path,optionfile);          gp[i] = prlim[i][i];
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      
   /* cutv(path,optionfile,pathtot,'\\');*/        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(i=1;i<=nlstate;i++)
   chdir(path);          gm[i] = prlim[i][i];
   replace(pathc,path);  
         for(i=1;i<=nlstate;i++)
 /*-------- arguments in the command line --------*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   /* Log file */  
   strcat(filelog, optionfilefiname);      trgradg =matrix(1,nlstate,1,npar);
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {      for(j=1; j<=nlstate;j++)
     printf("Problem with logfile %s\n",filelog);        for(theta=1; theta <=npar; theta++)
     goto end;          trgradg[j][theta]=gradg[theta][j];
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);      for(i=1;i<=nlstate;i++)
   fprintf(ficlog,"\n%s",version);        varpl[i][(int)age] =0.;
   fprintf(ficlog,"\nEnter the parameter file name: ");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   fflush(ficlog);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /* */  
   strcpy(fileres,"r");      fprintf(ficresvpl,"%.0f ",age );
   strcat(fileres, optionfilefiname);      for(i=1; i<=nlstate;i++)
   strcat(fileres,".txt");    /* Other files have txt extension */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   /*---------arguments file --------*/      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      free_matrix(gradg,1,npar,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);      free_matrix(trgradg,1,nlstate,1,npar);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    } /* End age */
     goto end;  
   }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   strcpy(filereso,"o");    free_matrix(dnewm,1,nlstate,1,nlstate);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {  }
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  /************ Variance of one-step probabilities  ******************/
     goto end;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
     int i, j=0,  i1, k1, l1, t, tj;
   /* Reads comments: lines beginning with '#' */    int k2, l2, j1,  z1;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k=0,l, cptcode;
     ungetc(c,ficpar);    int first=1, first1;
     fgets(line, MAXLINE, ficpar);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     puts(line);    double **dnewm,**doldm;
     fputs(line,ficparo);    double *xp;
   }    double *gp, *gm;
   ungetc(c,ficpar);    double **gradg, **trgradg;
     double **mu;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double age,agelim, cov[NCOVMAX];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int theta;
 while((c=getc(ficpar))=='#' && c!= EOF){    char fileresprob[FILENAMELENGTH];
     ungetc(c,ficpar);    char fileresprobcov[FILENAMELENGTH];
     fgets(line, MAXLINE, ficpar);    char fileresprobcor[FILENAMELENGTH];
     puts(line);  
     fputs(line,ficparo);    double ***varpij;
   }  
   ungetc(c,ficpar);    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
        if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   covar=matrix(0,NCOVMAX,1,n);      printf("Problem with resultfile: %s\n", fileresprob);
   cptcovn=0;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    }
     strcpy(fileresprobcov,"probcov"); 
   ncovmodel=2+cptcovn;    strcat(fileresprobcov,fileres);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
   /* Read guess parameters */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    strcpy(fileresprobcor,"probcor"); 
     ungetc(c,ficpar);    strcat(fileresprobcor,fileres);
     fgets(line, MAXLINE, ficpar);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     puts(line);      printf("Problem with resultfile: %s\n", fileresprobcor);
     fputs(line,ficparo);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
   ungetc(c,ficpar);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for(i=1; i <=nlstate; i++)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficparo,"%1d%1d",i1,j1);    pstamp(ficresprob);
       if(mle==1)    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         printf("%1d%1d",i,j);    fprintf(ficresprob,"# Age");
       fprintf(ficlog,"%1d%1d",i,j);    pstamp(ficresprobcov);
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficresprobcov,"# Age");
         if(mle==1){    pstamp(ficresprobcor);
           printf(" %lf",param[i][j][k]);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
           fprintf(ficlog," %lf",param[i][j][k]);    fprintf(ficresprobcor,"# Age");
         }  
         else  
           fprintf(ficlog," %lf",param[i][j][k]);    for(i=1; i<=nlstate;i++)
         fprintf(ficparo," %lf",param[i][j][k]);      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       fscanf(ficpar,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       if(mle==1)        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         printf("\n");      }  
       fprintf(ficlog,"\n");   /* fprintf(ficresprob,"\n");
       fprintf(ficparo,"\n");    fprintf(ficresprobcov,"\n");
     }    fprintf(ficresprobcor,"\n");
     */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   p=param[1][1];    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   /* Reads comments: lines beginning with '#' */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   while((c=getc(ficpar))=='#' && c!= EOF){    first=1;
     ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varprob");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     puts(line);    fprintf(fichtm,"\n");
     fputs(line,ficparo);  
   }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   ungetc(c,ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  and drawn. It helps understanding how is the covariance between two incidences.\
   for(i=1; i <=nlstate; i++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fscanf(ficpar,"%1d%1d",&i1,&j1);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       printf("%1d%1d",i,j);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       fprintf(ficparo,"%1d%1d",i1,j1);  standard deviations wide on each axis. <br>\
       for(k=1; k<=ncovmodel;k++){   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fscanf(ficpar,"%le",&delti3[i][j][k]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         printf(" %le",delti3[i][j][k]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    cov[1]=1;
       fscanf(ficpar,"\n");    tj=cptcoveff;
       printf("\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficparo,"\n");    j1=0;
     }    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
   delti=delti3[1][1];        j1++;
          if  (cptcovn>0) {
   /* Reads comments: lines beginning with '#' */          fprintf(ficresprob, "\n#********** Variable "); 
   while((c=getc(ficpar))=='#' && c!= EOF){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     ungetc(c,ficpar);          fprintf(ficresprob, "**********\n#\n");
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficresprobcov, "**********\n#\n");
   }          
   ungetc(c,ficpar);          fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   matcov=matrix(1,npar,1,npar);          fprintf(ficgp, "**********\n#\n");
   for(i=1; i <=npar; i++){          
     fscanf(ficpar,"%s",&str);          
     if(mle==1)          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       printf("%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficlog,"%s",str);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficparo,"%s",str);          
     for(j=1; j <=i; j++){          fprintf(ficresprobcor, "\n#********** Variable ");    
       fscanf(ficpar," %le",&matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if(mle==1){          fprintf(ficresprobcor, "**********\n#");    
         printf(" %.5le",matcov[i][j]);        }
         fprintf(ficlog," %.5le",matcov[i][j]);        
       }        for (age=bage; age<=fage; age ++){ 
       else          cov[2]=age;
         fprintf(ficlog," %.5le",matcov[i][j]);          for (k=1; k<=cptcovn;k++) {
       fprintf(ficparo," %.5le",matcov[i][j]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     }          }
     fscanf(ficpar,"\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     if(mle==1)          for (k=1; k<=cptcovprod;k++)
       printf("\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fprintf(ficlog,"\n");          
     fprintf(ficparo,"\n");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   for(i=1; i <=npar; i++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
     for(j=i+1;j<=npar;j++)          gm=vector(1,(nlstate)*(nlstate+ndeath));
       matcov[i][j]=matcov[j][i];      
              for(theta=1; theta <=npar; theta++){
   if(mle==1)            for(i=1; i<=npar; i++)
     printf("\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fprintf(ficlog,"\n");            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
     /*-------- Rewriting paramater file ----------*/            k=0;
      strcpy(rfileres,"r");    /* "Rparameterfile */            for(i=1; i<= (nlstate); i++){
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              for(j=1; j<=(nlstate+ndeath);j++){
      strcat(rfileres,".");    /* */                k=k+1;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                gp[k]=pmmij[i][j];
     if((ficres =fopen(rfileres,"w"))==NULL) {              }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            
     }            for(i=1; i<=npar; i++)
     fprintf(ficres,"#%s\n",version);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          
     /*-------- data file ----------*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     if((fic=fopen(datafile,"r"))==NULL)    {            k=0;
       printf("Problem with datafile: %s\n", datafile);goto end;            for(i=1; i<=(nlstate); i++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;              for(j=1; j<=(nlstate+ndeath);j++){
     }                k=k+1;
                 gm[k]=pmmij[i][j];
     n= lastobs;              }
     severity = vector(1,maxwav);            }
     outcome=imatrix(1,maxwav+1,1,n);       
     num=ivector(1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     moisnais=vector(1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     annais=vector(1,n);          }
     moisdc=vector(1,n);  
     andc=vector(1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     agedc=vector(1,n);            for(theta=1; theta <=npar; theta++)
     cod=ivector(1,n);              trgradg[j][theta]=gradg[theta][j];
     weight=vector(1,n);          
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     mint=matrix(1,maxwav,1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     anint=matrix(1,maxwav,1,n);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     s=imatrix(1,maxwav+1,1,n);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     adl=imatrix(1,maxwav+1,1,n);              free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     tab=ivector(1,NCOVMAX);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     ncodemax=ivector(1,8);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
     i=1;          
     while (fgets(line, MAXLINE, fic) != NULL)    {          k=0;
       if ((i >= firstobs) && (i <=lastobs)) {          for(i=1; i<=(nlstate); i++){
                    for(j=1; j<=(nlstate+ndeath);j++){
         for (j=maxwav;j>=1;j--){              k=k+1;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              mu[k][(int) age]=pmmij[i][j];
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                      varpij[i][j][(int)age] = doldm[i][j];
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  
         for (j=ncovcol;j>=1;j--){          fprintf(ficresprob,"\n%d ",(int)age);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficresprobcov,"\n%d ",(int)age);
         }          fprintf(ficresprobcor,"\n%d ",(int)age);
         num[i]=atol(stra);  
                  for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         i=i+1;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }          }
     }          i=0;
     /* printf("ii=%d", ij);          for (k=1; k<=(nlstate);k++){
        scanf("%d",i);*/            for (l=1; l<=(nlstate+ndeath);l++){ 
   imx=i-1; /* Number of individuals */              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   /* for (i=1; i<=imx; i++){              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              for (j=1; j<=i;j++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     }*/              }
    /*  for (i=1; i<=imx; i++){            }
      if (s[4][i]==9)  s[4][i]=-1;          }/* end of loop for state */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        } /* end of loop for age */
    
          /* Confidence intervalle of pij  */
   /* Calculation of the number of parameter from char model*/        /*
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          fprintf(ficgp,"\nset noparametric;unset label");
   Tprod=ivector(1,15);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   Tvaraff=ivector(1,15);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   Tvard=imatrix(1,15,1,2);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   Tage=ivector(1,15);                fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
              fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   if (strlen(model) >1){          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     j=0, j1=0, k1=1, k2=1;        */
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     cptcovn=j+1;        first1=1;
     cptcovprod=j1;        for (k2=1; k2<=(nlstate);k2++){
              for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     strcpy(modelsav,model);            if(l2==k2) continue;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            j=(k2-1)*(nlstate+ndeath)+l2;
       printf("Error. Non available option model=%s ",model);            for (k1=1; k1<=(nlstate);k1++){
       fprintf(ficlog,"Error. Non available option model=%s ",model);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
       goto end;                if(l1==k1) continue;
     }                i=(k1-1)*(nlstate+ndeath)+l1;
                    if(i<=j) continue;
     for(i=(j+1); i>=1;i--){                for (age=bage; age<=fage; age ++){ 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                  if ((int)age %5==0){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       /*scanf("%d",i);*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       if (strchr(strb,'*')) {  /* Model includes a product */                    mu1=mu[i][(int) age]/stepm*YEARM ;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                    mu2=mu[j][(int) age]/stepm*YEARM;
         if (strcmp(strc,"age")==0) { /* Vn*age */                    c12=cv12/sqrt(v1*v2);
           cptcovprod--;                    /* Computing eigen value of matrix of covariance */
           cutv(strb,stre,strd,'V');                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cptcovage++;                    /* Eigen vectors */
             Tage[cptcovage]=i;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             /*printf("stre=%s ", stre);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
         }                    v21=(lc1-v1)/cv12*v11;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                    v12=-v21;
           cptcovprod--;                    v22=v11;
           cutv(strb,stre,strc,'V');                    tnalp=v21/v11;
           Tvar[i]=atoi(stre);                    if(first1==1){
           cptcovage++;                      first1=0;
           Tage[cptcovage]=i;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    }
         else {  /* Age is not in the model */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                    /*printf(fignu*/
           Tvar[i]=ncovcol+k1;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           Tprod[k1]=i;                    if(first==1){
           Tvard[k1][1]=atoi(strc); /* m*/                      first=0;
           Tvard[k1][2]=atoi(stre); /* n */                      fprintf(ficgp,"\nset parametric;unset label");
           Tvar[cptcovn+k2]=Tvard[k1][1];                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           for (k=1; k<=lastobs;k++)                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
           k1++;  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           k2=k2+2;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
         }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       }                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       else { /* no more sum */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        /*  scanf("%d",i);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       cutv(strd,strc,strb,'V');                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       Tvar[i]=atoi(strc);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       strcpy(modelsav,stra);                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                    }else{
         scanf("%d",i);*/                      first=0;
     } /* end of loop + */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   } /* end model */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   printf("cptcovprod=%d ", cptcovprod);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   scanf("%d ",i);*/                    }/* if first */
     fclose(fic);                  } /* age mod 5 */
                 } /* end loop age */
     /*  if(mle==1){*/                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     if (weightopt != 1) { /* Maximisation without weights*/                first=1;
       for(i=1;i<=n;i++) weight[i]=1.0;              } /*l12 */
     }            } /* k12 */
     /*-calculation of age at interview from date of interview and age at death -*/          } /*l1 */
     agev=matrix(1,maxwav,1,imx);        }/* k1 */
       } /* loop covariates */
     for (i=1; i<=imx; i++) {    }
       for(m=2; (m<= maxwav); m++) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
          anint[m][i]=9999;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          s[m][i]=-1;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
        }    free_vector(xp,1,npar);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fclose(ficresprob);
       }    fclose(ficresprobcov);
     }    fclose(ficresprobcor);
     fflush(ficgp);
     for (i=1; i<=imx; i++)  {    fflush(fichtmcov);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  }
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {  /******************* Printing html file ***********/
             if(agedc[i]>0)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
               if(moisdc[i]!=99 && andc[i]!=9999)                    int lastpass, int stepm, int weightopt, char model[],\
                 agev[m][i]=agedc[i];                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                    int popforecast, int estepm ,\
            else {                    double jprev1, double mprev1,double anprev1, \
               if (andc[i]!=9999){                    double jprev2, double mprev2,double anprev2){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    int jj1, k1, i1, cpt;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
               }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
             }  </ul>");
           }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           else if(s[m][i] !=9){ /* Should no more exist */   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
             if(mint[m][i]==99 || anint[m][i]==9999)     fprintf(fichtm,"\
               agev[m][i]=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
             else if(agev[m][i] <agemin){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
               agemin=agev[m][i];     fprintf(fichtm,"\
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             }             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
             else if(agev[m][i] >agemax){     fprintf(fichtm,"\
               agemax=agev[m][i];   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     <a href=\"%s\">%s</a> <br>\n</li>",
             }             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/  
           }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           else { /* =9 */  
             agev[m][i]=1;   m=cptcoveff;
             s[m][i]=-1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           }  
         }   jj1=0;
         else /*= 0 Unknown */   for(k1=1; k1<=m;k1++){
           agev[m][i]=1;     for(i1=1; i1<=ncodemax[k1];i1++){
       }       jj1++;
           if (cptcovn > 0) {
     }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for (i=1; i<=imx; i++)  {         for (cpt=1; cpt<=cptcoveff;cpt++) 
       for(m=1; (m<= maxwav); m++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         if (s[m][i] > (nlstate+ndeath)) {         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         /* Pij */
           goto end;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
       }       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
     free_vector(severity,1,maxwav);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     free_imatrix(outcome,1,maxwav+1,1,n);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     free_vector(moisnais,1,n);         }
     free_vector(annais,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
     /* free_matrix(mint,1,maxwav,1,n);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
        free_matrix(anint,1,maxwav,1,n);*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     free_vector(moisdc,1,n);       }
     free_vector(andc,1,n);     } /* end i1 */
    }/* End k1 */
       fprintf(fichtm,"</ul>");
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"\
      \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     /* Concatenates waves */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       Tcode=ivector(1,100);   fprintf(fichtm,"\
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       ncodemax[1]=1;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
         fprintf(fichtm,"\
    codtab=imatrix(1,100,1,10);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
    h=0;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    m=pow(2,cptcoveff);   fprintf(fichtm,"\
     - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
    for(k=1;k<=cptcoveff; k++){     <a href=\"%s\">%s</a> <br>\n</li>",
      for(i=1; i <=(m/pow(2,k));i++){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
        for(j=1; j <= ncodemax[k]; j++){   fprintf(fichtm,"\
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
            h++;     <a href=\"%s\">%s</a> <br>\n</li>",
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   fprintf(fichtm,"\
          }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
        }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
      }   fprintf(fichtm,"\
    }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       codtab[1][2]=1;codtab[2][2]=2; */   fprintf(fichtm,"\
    /* for(i=1; i <=m ;i++){   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       for(k=1; k <=cptcovn; k++){           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
       printf("\n");  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       scanf("%d",i);*/  /*      <br>",fileres,fileres,fileres,fileres); */
      /*  else  */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
        and prints on file fileres'p'. */   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
      
       m=cptcoveff;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   jj1=0;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   for(k1=1; k1<=m;k1++){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     for(i1=1; i1<=ncodemax[k1];i1++){
             jj1++;
     /* For Powell, parameters are in a vector p[] starting at p[1]       if (cptcovn > 0) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     if(mle==1){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);       }
     }       for(cpt=1; cpt<=nlstate;cpt++) {
             fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
     /*--------- results files --------------*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    jk=1;  health expectancies in states (1) and (2): %s%d.png<br>\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");     } /* end i1 */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   }/* End k1 */
    for(i=1,jk=1; i <=nlstate; i++){   fprintf(fichtm,"</ul>");
      for(k=1; k <=(nlstate+ndeath); k++){   fflush(fichtm);
        if (k != i)  }
          {  
            printf("%d%d ",i,k);  /******************* Gnuplot file **************/
            fprintf(ficlog,"%d%d ",i,k);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    char dirfileres[132],optfileres[132];
              printf("%f ",p[jk]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
              fprintf(ficlog,"%f ",p[jk]);    int ng;
              fprintf(ficres,"%f ",p[jk]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
              jk++;  /*     printf("Problem with file %s",optionfilegnuplot); */
            }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
            printf("\n");  /*   } */
            fprintf(ficlog,"\n");  
            fprintf(ficres,"\n");    /*#ifdef windows */
          }    fprintf(ficgp,"cd \"%s\" \n",pathc);
      }      /*#endif */
    }    m=pow(2,cptcoveff);
    if(mle==1){  
      /* Computing hessian and covariance matrix */    strcpy(dirfileres,optionfilefiname);
      ftolhess=ftol; /* Usually correct */    strcpy(optfileres,"vpl");
      hesscov(matcov, p, npar, delti, ftolhess, func);   /* 1eme*/
    }    for (cpt=1; cpt<= nlstate ; cpt ++) {
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     for (k1=1; k1<= m ; k1 ++) {
    printf("# Scales (for hessian or gradient estimation)\n");       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
    for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"set xlabel \"Age\" \n\
      for(j=1; j <=nlstate+ndeath; j++){  set ylabel \"Probability\" \n\
        if (j!=i) {  set ter png small\n\
          fprintf(ficres,"%1d%1d",i,j);  set size 0.65,0.65\n\
          printf("%1d%1d",i,j);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
          fprintf(ficlog,"%1d%1d",i,j);  
          for(k=1; k<=ncovmodel;k++){       for (i=1; i<= nlstate ; i ++) {
            printf(" %.5e",delti[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            fprintf(ficlog," %.5e",delti[jk]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
            fprintf(ficres," %.5e",delti[jk]);       }
            jk++;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
          }       for (i=1; i<= nlstate ; i ++) {
          printf("\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          fprintf(ficlog,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
          fprintf(ficres,"\n");       } 
        }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
      }       for (i=1; i<= nlstate ; i ++) {
    }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             else fprintf(ficgp," \%%*lf (\%%*lf)");
    k=1;       }  
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    if(mle==1)     }
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /*2 eme*/
    for(i=1;i<=npar;i++){    
      /*  if (k>nlstate) k=1;    for (k1=1; k1<= m ; k1 ++) { 
          i1=(i-1)/(ncovmodel*nlstate)+1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
          printf("%s%d%d",alph[k],i1,tab[i]);*/      
      fprintf(ficres,"%3d",i);      for (i=1; i<= nlstate+1 ; i ++) {
      if(mle==1)        k=2*i;
        printf("%3d",i);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
      fprintf(ficlog,"%3d",i);        for (j=1; j<= nlstate+1 ; j ++) {
      for(j=1; j<=i;j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
        fprintf(ficres," %.5e",matcov[i][j]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
        if(mle==1)        }   
          printf(" %.5e",matcov[i][j]);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
        fprintf(ficlog," %.5e",matcov[i][j]);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
      }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
      fprintf(ficres,"\n");        for (j=1; j<= nlstate+1 ; j ++) {
      if(mle==1)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
        printf("\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
      fprintf(ficlog,"\n");        }   
      k++;        fprintf(ficgp,"\" t\"\" w l 0,");
    }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
    while((c=getc(ficpar))=='#' && c!= EOF){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
      fgets(line, MAXLINE, ficpar);        }   
      puts(line);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
      fputs(line,ficparo);        else fprintf(ficgp,"\" t\"\" w l 0,");
    }      }
    ungetc(c,ficpar);    }
    estepm=0;    
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    /*3eme*/
    if (estepm==0 || estepm < stepm) estepm=stepm;    
    if (fage <= 2) {    for (k1=1; k1<= m ; k1 ++) { 
      bage = ageminpar;      for (cpt=1; cpt<= nlstate ; cpt ++) {
      fage = agemaxpar;        /*       k=2+nlstate*(2*cpt-2); */
    }        k=2+(nlstate+1)*(cpt-1);
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficgp,"set ter png small\n\
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  set size 0.65,0.65\n\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
            /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
    while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      ungetc(c,ficpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      fgets(line, MAXLINE, ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      puts(line);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      fputs(line,ficparo);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    }          
    ungetc(c,ficpar);        */
          for (i=1; i< nlstate ; i ++) {
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
            } 
    while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
      ungetc(c,ficpar);      }
      fgets(line, MAXLINE, ficpar);    }
      puts(line);    
      fputs(line,ficparo);    /* CV preval stable (period) */
    }    for (k1=1; k1<= m ; k1 ++) { 
    ungetc(c,ficpar);      for (cpt=1; cpt<=nlstate ; cpt ++) {
          k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   fscanf(ficpar,"pop_based=%d\n",&popbased);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
   fprintf(ficparo,"pop_based=%d\n",popbased);          
   fprintf(ficres,"pop_based=%d\n",popbased);          for (i=1; i< nlstate ; i ++)
            fprintf(ficgp,"+$%d",k+i+1);
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     ungetc(c,ficpar);        
     fgets(line, MAXLINE, ficpar);        l=3+(nlstate+ndeath)*cpt;
     puts(line);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     fputs(line,ficparo);        for (i=1; i< nlstate ; i ++) {
   }          l=3+(nlstate+ndeath)*cpt;
   ungetc(c,ficpar);          fprintf(ficgp,"+$%d",l+i+1);
         }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      } 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }  
     
     /* proba elementaires */
 while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1,jk=1; i <=nlstate; i++){
     ungetc(c,ficpar);      for(k=1; k <=(nlstate+ndeath); k++){
     fgets(line, MAXLINE, ficpar);        if (k != i) {
     puts(line);          for(j=1; j <=ncovmodel; j++){
     fputs(line,ficparo);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   }            jk++; 
   ungetc(c,ficpar);            fprintf(ficgp,"\n");
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);     }
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
 /*------------ gnuplot -------------*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   strcpy(optionfilegnuplot,optionfilefiname);         if (ng==2)
   strcat(optionfilegnuplot,".gp");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {         else
     printf("Problem with file %s",optionfilegnuplot);           fprintf(ficgp,"\nset title \"Probability\"\n");
   }         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   fclose(ficgp);         i=1;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);         for(k2=1; k2<=nlstate; k2++) {
 /*--------- index.htm --------*/           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   strcpy(optionfilehtm,optionfile);             if (k != k2){
   strcat(optionfilehtm,".htm");               if(ng==2)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     printf("Problem with %s \n",optionfilehtm), exit(0);               else
   }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n               for(j=3; j <=ncovmodel; j++) {
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 \n                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 Total number of observations=%d <br>\n                   ij++;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                 }
 <hr  size=\"2\" color=\"#EC5E5E\">                 else
  <ul><li><h4>Parameter files</h4>\n                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n               }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n               fprintf(ficgp,")/(1");
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);               
   fclose(fichtm);               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                 ij=1;
                   for(j=3; j <=ncovmodel; j++){
 /*------------ free_vector  -------------*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  chdir(path);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                       ij++;
  free_ivector(wav,1,imx);                   }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                   else
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  free_ivector(num,1,n);                 }
  free_vector(agedc,1,n);                 fprintf(ficgp,")");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/               }
  fclose(ficparo);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
  fclose(ficres);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
   /*--------------- Prevalence limit --------------*/           } /* end k */
           } /* end k2 */
   strcpy(filerespl,"pl");       } /* end jk */
   strcat(filerespl,fileres);     } /* end ng */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {     fflush(ficgp); 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  }  /* end gnuplot */
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  /*************** Moving average **************/
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");    int i, cpt, cptcod;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int modcovmax =1;
   fprintf(ficrespl,"\n");    int mobilavrange, mob;
      double age;
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                             a covariate has 2 modalities */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   k=0;      if(mobilav==1) mobilavrange=5; /* default */
   agebase=ageminpar;      else mobilavrange=mobilav;
   agelim=agemaxpar;      for (age=bage; age<=fage; age++)
   ftolpl=1.e-10;        for (i=1; i<=nlstate;i++)
   i1=cptcoveff;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
   if (cptcovn < 1){i1=1;}            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
   for(cptcov=1;cptcov<=i1;cptcov++){         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         we use a 5 terms etc. until the borders are no more concerned. 
         k=k+1;      */ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
         fprintf(ficrespl,"\n#******");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         printf("\n#******");          for (i=1; i<=nlstate;i++){
         fprintf(ficlog,"\n#******");            for (cptcod=1;cptcod<=modcovmax;cptcod++){
         for(j=1;j<=cptcoveff;j++) {              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
         fprintf(ficrespl,"******\n");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
         printf("******\n");            }
         fprintf(ficlog,"******\n");          }
                }/* end age */
         for (age=agebase; age<=agelim; age++){      }/* end mob */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    }else return -1;
           fprintf(ficrespl,"%.0f",age );    return 0;
           for(i=1; i<=nlstate;i++)  }/* End movingaverage */
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  
         }  /************** Forecasting ******************/
       }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     }    /* proj1, year, month, day of starting projection 
   fclose(ficrespl);       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
   /*------------- h Pij x at various ages ------------*/       anproj2 year of en of projection (same day and month as proj1).
      */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int *popage;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double agec; /* generic age */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   }    double *popeffectif,*popcount;
   printf("Computing pij: result on file '%s' \n", filerespij);    double ***p3mat;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    double ***mobaverage;
      char fileresf[FILENAMELENGTH];
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   agelim=AGESUP;   
   hstepm=stepsize*YEARM; /* Every year of age */    strcpy(fileresf,"f"); 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
   /* hstepm=1;   aff par mois*/      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){    printf("Computing forecasting: result on file '%s' \n", fileresf);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (mobilav!=0) {
         fprintf(ficrespij,"******\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     }
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if (stepm<=12) stepsize=1;
           oldm=oldms;savm=savms;    if(estepm < stepm){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficrespij,"# Age");    }
           for(i=1; i<=nlstate;i++)    else  hstepm=estepm;   
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    hstepm=hstepm/stepm; 
           fprintf(ficrespij,"\n");    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
            for (h=0; h<=nhstepm; h++){                                 fractional in yp1 */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    anprojmean=yp;
             for(i=1; i<=nlstate;i++)    yp2=modf((yp1*12),&yp);
               for(j=1; j<=nlstate+ndeath;j++)    mprojmean=yp;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    yp1=modf((yp2*30.5),&yp);
             fprintf(ficrespij,"\n");    jprojmean=yp;
              }    if(jprojmean==0) jprojmean=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(mprojmean==0) jprojmean=1;
           fprintf(ficrespij,"\n");  
         }    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
   }    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   fclose(ficrespij);  
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   /*---------- Forecasting ------------------*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   if((stepm == 1) && (strcmp(model,".")==0)){        k=k+1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        fprintf(ficresf,"\n#******");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   else{        }
     erreur=108;        fprintf(ficresf,"******\n");
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        for(j=1; j<=nlstate+ndeath;j++){ 
   }          for(i=1; i<=nlstate;i++)              
              fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   /*---------- Health expectancies and variances ------------*/        }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   strcpy(filerest,"t");          fprintf(ficresf,"\n");
   strcat(filerest,fileres);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   }            nhstepm = nhstepm/hstepm; 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
   strcpy(filerese,"e");            for (h=0; h<=nhstepm; h++){
   strcat(filerese,fileres);              if (h*hstepm/YEARM*stepm ==yearp) {
   if((ficreseij=fopen(filerese,"w"))==NULL) {                fprintf(ficresf,"\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                for(j=1;j<=cptcoveff;j++) 
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              } 
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
   strcpy(fileresv,"v");                for(i=1; i<=nlstate;i++) {
   strcat(fileresv,fileres);                  if (mobilav==1) 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                  else {
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   }                  }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                  if (h*hstepm/YEARM*stepm== yearp) {
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   calagedate=-1;                  }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
   k=0;                  fprintf(ficresf," %.3f", ppij);
   for(cptcov=1;cptcov<=i1;cptcov++){                }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              }/* end j */
       k=k+1;            } /* end h */
       fprintf(ficrest,"\n#****** ");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1;j<=cptcoveff;j++)          } /* end agec */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        } /* end yearp */
       fprintf(ficrest,"******\n");      } /* end cptcod */
     } /* end  cptcov */
       fprintf(ficreseij,"\n#****** ");         
       for(j=1;j<=cptcoveff;j++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    fclose(ficresf);
   }
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /************** Forecasting *****not tested NB*************/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       fprintf(ficresvij,"******\n");    
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int *popage;
       oldm=oldms;savm=savms;    double calagedatem, agelim, kk1, kk2;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      double *popeffectif,*popcount;
      double ***p3mat,***tabpop,***tabpopprev;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double ***mobaverage;
       oldm=oldms;savm=savms;    char filerespop[FILENAMELENGTH];
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        }    agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    
     strcpy(filerespop,"pop"); 
       epj=vector(1,nlstate+1);    strcat(filerespop,fileres);
       for(age=bage; age <=fage ;age++){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf("Problem with forecast resultfile: %s\n", filerespop);
         if (popbased==1) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           for(i=1; i<=nlstate;i++)    }
             prlim[i][i]=probs[(int)age][i][k];    printf("Computing forecasting: result on file '%s' \n", filerespop);
         }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
          
         fprintf(ficrest," %4.0f",age);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if (mobilav!=0) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           epj[nlstate+1] +=epj[j];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
     }
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    stepsize=(int) (stepm+YEARM-1)/YEARM;
             vepp += vareij[i][j][(int)age];    if (stepm<=12) stepsize=1;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    
         for(j=1;j <=nlstate;j++){    agelim=AGESUP;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    hstepm=1;
         fprintf(ficrest,"\n");    hstepm=hstepm/stepm; 
       }    
     }    if (popforecast==1) {
   }      if((ficpop=fopen(popfile,"r"))==NULL) {
 free_matrix(mint,1,maxwav,1,n);        printf("Problem with population file : %s\n",popfile);exit(0);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     free_vector(weight,1,n);      } 
   fclose(ficreseij);      popage=ivector(0,AGESUP);
   fclose(ficresvij);      popeffectif=vector(0,AGESUP);
   fclose(ficrest);      popcount=vector(0,AGESUP);
   fclose(ficpar);      
   free_vector(epj,1,nlstate+1);      i=1;   
        while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   /*------- Variance limit prevalence------*/       
       imx=i;
   strcpy(fileresvpl,"vpl");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     exit(0);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   }        k=k+1;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   k=0;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficrespop,"******\n");
       k=k+1;        fprintf(ficrespop,"# Age");
       fprintf(ficresvpl,"\n#****** ");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
       for(j=1;j<=cptcoveff;j++)        if (popforecast==1)  fprintf(ficrespop," [Population]");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        
       fprintf(ficresvpl,"******\n");        for (cpt=0; cpt<=0;cpt++) { 
                fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          
       oldm=oldms;savm=savms;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     }            nhstepm = nhstepm/hstepm; 
  }            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresvpl);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*---------- End : free ----------------*/          
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              } 
                for(j=1; j<=nlstate+ndeath;j++) {
                  kk1=0.;kk2=0;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                for(i=1; i<=nlstate;i++) {              
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                  if (mobilav==1) 
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                  else {
                      kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   free_matrix(matcov,1,npar,1,npar);                  }
   free_vector(delti,1,npar);                }
   free_matrix(agev,1,maxwav,1,imx);                if (h==(int)(calagedatem+12*cpt)){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   fprintf(fichtm,"\n</body>");                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   fclose(fichtm);                }
   fclose(ficgp);              }
                for(i=1; i<=nlstate;i++){
                 kk1=0.;
   if(erreur >0){                  for(j=1; j<=nlstate;j++){
     printf("End of Imach with error or warning %d\n",erreur);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);                  }
   }else{                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
    printf("End of Imach\n");              }
    fprintf(ficlog,"End of Imach\n");  
   }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   printf("See log file on %s\n",filelog);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   fclose(ficlog);            }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        }
   /*printf("Total time was %d uSec.\n", total_usecs);*/   
   /*------ End -----------*/    /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
  end:          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 #ifdef windows          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   /* chdir(pathcd);*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
 #endif            nhstepm = nhstepm/hstepm; 
  /*system("wgnuplot graph.plt");*/            
  /*system("../gp37mgw/wgnuplot graph.plt");*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*system("cd ../gp37mgw");*/            oldm=oldms;savm=savms;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  strcpy(plotcmd,GNUPLOTPROGRAM);            for (h=0; h<=nhstepm; h++){
  strcat(plotcmd," ");              if (h==(int) (calagedatem+YEARM*cpt)) {
  strcat(plotcmd,optionfilegnuplot);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
  system(plotcmd);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
 #ifdef windows                kk1=0.;kk2=0;
   while (z[0] != 'q') {                for(i=1; i<=nlstate;i++) {              
     /* chdir(path); */                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                }
     scanf("%s",z);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     if (z[0] == 'c') system("./imach");              }
     else if (z[0] == 'e') system(optionfilehtm);            }
     else if (z[0] == 'g') system(plotcmd);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'q') exit(0);          }
   }        }
 #endif     } 
 }    }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.124


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>