Diff for /imach/src/imach.c between versions 1.104 and 1.125

version 1.104, 2005/09/30 16:11:43 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    Errors in calculation of health expectancies. Age was not initialized.
   (Module): If the status is missing at the last wave but we know    Forecasting file added.
   that the person is alive, then we can code his/her status as -2  
   (instead of missing=-1 in earlier versions) and his/her    Revision 1.124  2006/03/22 17:13:53  lievre
   contributions to the likelihood is 1 - Prob of dying from last    Parameters are printed with %lf instead of %f (more numbers after the comma).
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    The log-likelihood is printed in the log file
   the healthy state at last known wave). Version is 0.98  
     Revision 1.123  2006/03/20 10:52:43  brouard
   Revision 1.103  2005/09/30 15:54:49  lievre    * imach.c (Module): <title> changed, corresponds to .htm file
   (Module): sump fixed, loop imx fixed, and simplifications.    name. <head> headers where missing.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    * imach.c (Module): Weights can have a decimal point as for
   Add the possibility to read data file including tab characters.    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.101  2004/09/15 10:38:38  brouard    Modification of warning when the covariates values are not 0 or
   Fix on curr_time    1.
     Version 0.98g
   Revision 1.100  2004/07/12 18:29:06  brouard  
   Add version for Mac OS X. Just define UNIX in Makefile    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
   Revision 1.99  2004/06/05 08:57:40  brouard    English (a comma might work with a correct LC_NUMERIC environment,
   *** empty log message ***    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   Revision 1.98  2004/05/16 15:05:56  brouard    1.
   New version 0.97 . First attempt to estimate force of mortality    Version 0.98g
   directly from the data i.e. without the need of knowing the health  
   state at each age, but using a Gompertz model: log u =a + b*age .    Revision 1.121  2006/03/16 17:45:01  lievre
   This is the basic analysis of mortality and should be done before any    * imach.c (Module): Comments concerning covariates added
   other analysis, in order to test if the mortality estimated from the  
   cross-longitudinal survey is different from the mortality estimated    * imach.c (Module): refinements in the computation of lli if
   from other sources like vital statistic data.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   The same imach parameter file can be used but the option for mle should be -3.  
     Revision 1.120  2006/03/16 15:10:38  lievre
   Agnès, who wrote this part of the code, tried to keep most of the    (Module): refinements in the computation of lli if
   former routines in order to include the new code within the former code.    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
   The output is very simple: only an estimate of the intercept and of  
   the slope with 95% confident intervals.    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
   Current limitations:    computed as likelihood omitting the logarithm. Version O.98e
   A) Even if you enter covariates, i.e. with the  
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    Revision 1.118  2006/03/14 18:20:07  brouard
   B) There is no computation of Life Expectancy nor Life Table.    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   Revision 1.97  2004/02/20 13:25:42  lievre    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Version 0.96d. Population forecasting command line is (temporarily)    (Module): Function pstamp added
   suppressed.    (Module): Version 0.98d
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    (Module): varevsij Comments added explaining the second
   rewritten within the same printf. Workaround: many printfs.    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.95  2003/07/08 07:54:34  brouard    (Module): Function pstamp added
   * imach.c (Repository):    (Module): Version 0.98d
   (Repository): Using imachwizard code to output a more meaningful covariance  
   matrix (cov(a12,c31) instead of numbers.    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
   Revision 1.94  2003/06/27 13:00:02  brouard    varian-covariance of ej. is needed (Saito).
   Just cleaning  
     Revision 1.115  2006/02/27 12:17:45  brouard
   Revision 1.93  2003/06/25 16:33:55  brouard    (Module): One freematrix added in mlikeli! 0.98c
   (Module): On windows (cygwin) function asctime_r doesn't  
   exist so I changed back to asctime which exists.    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Version 0.96b    (Module): Some improvements in processing parameter
     filename with strsep.
   Revision 1.92  2003/06/25 16:30:45  brouard  
   (Module): On windows (cygwin) function asctime_r doesn't    Revision 1.113  2006/02/24 14:20:24  brouard
   exist so I changed back to asctime which exists.    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
   Revision 1.91  2003/06/25 15:30:29  brouard    allocation too.
   * imach.c (Repository): Duplicated warning errors corrected.  
   (Repository): Elapsed time after each iteration is now output. It    Revision 1.112  2006/01/30 09:55:26  brouard
   helps to forecast when convergence will be reached. Elapsed time    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   is stamped in powell.  We created a new html file for the graphs  
   concerning matrix of covariance. It has extension -cov.htm.    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.90  2003/06/24 12:34:15  brouard    (Module): Comments can be added in data file. Missing date values
   (Module): Some bugs corrected for windows. Also, when    can be a simple dot '.'.
   mle=-1 a template is output in file "or"mypar.txt with the design  
   of the covariance matrix to be input.    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   Revision 1.89  2003/06/24 12:30:52  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.109  2006/01/24 19:37:15  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    (Module): Comments (lines starting with a #) are allowed in data.
   of the covariance matrix to be input.  
     Revision 1.108  2006/01/19 18:05:42  lievre
   Revision 1.88  2003/06/23 17:54:56  brouard    Gnuplot problem appeared...
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    To be fixed
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Version 0.96    Test existence of gnuplot in imach path
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   (Module): Change position of html and gnuplot routines and added    Some cleaning and links added in html output
   routine fileappend.  
     Revision 1.105  2006/01/05 20:23:19  lievre
   Revision 1.85  2003/06/17 13:12:43  brouard    *** empty log message ***
   * imach.c (Repository): Check when date of death was earlier that  
   current date of interview. It may happen when the death was just    Revision 1.104  2005/09/30 16:11:43  lievre
   prior to the death. In this case, dh was negative and likelihood    (Module): sump fixed, loop imx fixed, and simplifications.
   was wrong (infinity). We still send an "Error" but patch by    (Module): If the status is missing at the last wave but we know
   assuming that the date of death was just one stepm after the    that the person is alive, then we can code his/her status as -2
   interview.    (instead of missing=-1 in earlier versions) and his/her
   (Repository): Because some people have very long ID (first column)    contributions to the likelihood is 1 - Prob of dying from last
   we changed int to long in num[] and we added a new lvector for    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   memory allocation. But we also truncated to 8 characters (left    the healthy state at last known wave). Version is 0.98
   truncation)  
   (Repository): No more line truncation errors.    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   Revision 1.84  2003/06/13 21:44:43  brouard  
   * imach.c (Repository): Replace "freqsummary" at a correct    Revision 1.102  2004/09/15 17:31:30  brouard
   place. It differs from routine "prevalence" which may be called    Add the possibility to read data file including tab characters.
   many times. Probs is memory consuming and must be used with  
   parcimony.    Revision 1.101  2004/09/15 10:38:38  brouard
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Fix on curr_time
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.100  2004/07/12 18:29:06  brouard
   *** empty log message ***    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   Add log in  imach.c and  fullversion number is now printed.    *** empty log message ***
   
 */    Revision 1.98  2004/05/16 15:05:56  brouard
 /*    New version 0.97 . First attempt to estimate force of mortality
    Interpolated Markov Chain    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   Short summary of the programme:    This is the basic analysis of mortality and should be done before any
       other analysis, in order to test if the mortality estimated from the
   This program computes Healthy Life Expectancies from    cross-longitudinal survey is different from the mortality estimated
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    from other sources like vital statistic data.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    The same imach parameter file can be used but the option for mle should be -3.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Agnès, who wrote this part of the code, tried to keep most of the
   (if any) in individual health status.  Health expectancies are    former routines in order to include the new code within the former code.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    The output is very simple: only an estimate of the intercept and of
   Maximum Likelihood of the parameters involved in the model.  The    the slope with 95% confident intervals.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Current limitations:
   conditional to be observed in state i at the first wave. Therefore    A) Even if you enter covariates, i.e. with the
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   'age' is age and 'sex' is a covariate. If you want to have a more    B) There is no computation of Life Expectancy nor Life Table.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.97  2004/02/20 13:25:42  lievre
   you to do it.  More covariates you add, slower the    Version 0.96d. Population forecasting command line is (temporarily)
   convergence.    suppressed.
   
   The advantage of this computer programme, compared to a simple    Revision 1.96  2003/07/15 15:38:55  brouard
   multinomial logistic model, is clear when the delay between waves is not    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   identical for each individual. Also, if a individual missed an    rewritten within the same printf. Workaround: many printfs.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   hPijx is the probability to be observed in state i at age x+h    (Repository): Using imachwizard code to output a more meaningful covariance
   conditional to the observed state i at age x. The delay 'h' can be    matrix (cov(a12,c31) instead of numbers.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    Revision 1.94  2003/06/27 13:00:02  brouard
   semester or year) is modelled as a multinomial logistic.  The hPx    Just cleaning
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.93  2003/06/25 16:33:55  brouard
   hPijx.    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Version 0.96b
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.92  2003/06/25 16:30:45  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): On windows (cygwin) function asctime_r doesn't
            Institut national d'études démographiques, Paris.    exist so I changed back to asctime which exists.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.91  2003/06/25 15:30:29  brouard
   It is copyrighted identically to a GNU software product, ie programme and    * imach.c (Repository): Duplicated warning errors corrected.
   software can be distributed freely for non commercial use. Latest version    (Repository): Elapsed time after each iteration is now output. It
   can be accessed at http://euroreves.ined.fr/imach .    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    concerning matrix of covariance. It has extension -cov.htm.
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.90  2003/06/24 12:34:15  brouard
   **********************************************************************/    (Module): Some bugs corrected for windows. Also, when
 /*    mle=-1 a template is output in file "or"mypar.txt with the design
   main    of the covariance matrix to be input.
   read parameterfile  
   read datafile    Revision 1.89  2003/06/24 12:30:52  brouard
   concatwav    (Module): Some bugs corrected for windows. Also, when
   freqsummary    mle=-1 a template is output in file "or"mypar.txt with the design
   if (mle >= 1)    of the covariance matrix to be input.
     mlikeli  
   print results files    Revision 1.88  2003/06/23 17:54:56  brouard
   if mle==1     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
      computes hessian  
   read end of parameter file: agemin, agemax, bage, fage, estepm    Revision 1.87  2003/06/18 12:26:01  brouard
       begin-prev-date,...    Version 0.96
   open gnuplot file  
   open html file    Revision 1.86  2003/06/17 20:04:08  brouard
   stable prevalence    (Module): Change position of html and gnuplot routines and added
    for age prevalim()    routine fileappend.
   h Pij x  
   variance of p varprob    Revision 1.85  2003/06/17 13:12:43  brouard
   forecasting if prevfcast==1 prevforecast call prevalence()    * imach.c (Repository): Check when date of death was earlier that
   health expectancies    current date of interview. It may happen when the death was just
   Variance-covariance of DFLE    prior to the death. In this case, dh was negative and likelihood
   prevalence()    was wrong (infinity). We still send an "Error" but patch by
    movingaverage()    assuming that the date of death was just one stepm after the
   varevsij()     interview.
   if popbased==1 varevsij(,popbased)    (Repository): Because some people have very long ID (first column)
   total life expectancies    we changed int to long in num[] and we added a new lvector for
   Variance of stable prevalence    memory allocation. But we also truncated to 8 characters (left
  end    truncation)
 */    (Repository): No more line truncation errors.
   
     Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
      place. It differs from routine "prevalence" which may be called
 #include <math.h>    many times. Probs is memory consuming and must be used with
 #include <stdio.h>    parcimony.
 #include <stdlib.h>    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #include <unistd.h>  
     Revision 1.83  2003/06/10 13:39:11  lievre
 /* #include <sys/time.h> */    *** empty log message ***
 #include <time.h>  
 #include "timeval.h"    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /* #include <libintl.h> */  
 /* #define _(String) gettext (String) */  */
   /*
 #define MAXLINE 256     Interpolated Markov Chain
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Short summary of the programme:
 #define FILENAMELENGTH 132   
 /*#define DEBUG*/    This program computes Healthy Life Expectancies from
 /*#define windows*/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    first survey ("cross") where individuals from different ages are
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    second wave of interviews ("longitudinal") which measure each change
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 #define NINTERVMAX 8    model. More health states you consider, more time is necessary to reach the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Maximum Likelihood of the parameters involved in the model.  The
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    simplest model is the multinomial logistic model where pij is the
 #define NCOVMAX 8 /* Maximum number of covariates */    probability to be observed in state j at the second wave
 #define MAXN 20000    conditional to be observed in state i at the first wave. Therefore
 #define YEARM 12. /* Number of months per year */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define AGESUP 130    'age' is age and 'sex' is a covariate. If you want to have a more
 #define AGEBASE 40    complex model than "constant and age", you should modify the program
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */    where the markup *Covariates have to be included here again* invites
 #ifdef UNIX    you to do it.  More covariates you add, slower the
 #define DIRSEPARATOR '/'    convergence.
 #define ODIRSEPARATOR '\\'  
 #else    The advantage of this computer programme, compared to a simple
 #define DIRSEPARATOR '\\'    multinomial logistic model, is clear when the delay between waves is not
 #define ODIRSEPARATOR '/'    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /* $Id$ */  
 /* $State$ */    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 char version[]="Imach version 0.98, September 2005, INED-EUROREVES ";    split into an exact number (nh*stepm) of unobserved intermediate
 char fullversion[]="$Revision$ $Date$";     states. This elementary transition (by month, quarter,
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    semester or year) is modelled as a multinomial logistic.  The hPx
 int nvar;    matrix is simply the matrix product of nh*stepm elementary matrices
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    and the contribution of each individual to the likelihood is simply
 int npar=NPARMAX;    hPijx.
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Also this programme outputs the covariance matrix of the parameters but also
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    of the life expectancies. It also computes the period (stable) prevalence.
 int popbased=0;   
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 int *wav; /* Number of waves for this individuual 0 is possible */             Institut national d'études démographiques, Paris.
 int maxwav; /* Maxim number of waves */    This software have been partly granted by Euro-REVES, a concerted action
 int jmin, jmax; /* min, max spacing between 2 waves */    from the European Union.
 int gipmx, gsw; /* Global variables on the number of contributions     It is copyrighted identically to a GNU software product, ie programme and
                    to the likelihood and the sum of weights (done by funcone)*/    software can be distributed freely for non commercial use. Latest version
 int mle, weightopt;    can be accessed at http://euroreves.ined.fr/imach .
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
            * wave mi and wave mi+1 is not an exact multiple of stepm. */   
 double jmean; /* Mean space between 2 waves */    **********************************************************************/
 double **oldm, **newm, **savm; /* Working pointers to matrices */  /*
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    main
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    read parameterfile
 FILE *ficlog, *ficrespow;    read datafile
 int globpr; /* Global variable for printing or not */    concatwav
 double fretone; /* Only one call to likelihood */    freqsummary
 long ipmx; /* Number of contributions */    if (mle >= 1)
 double sw; /* Sum of weights */      mlikeli
 char filerespow[FILENAMELENGTH];    print results files
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    if mle==1
 FILE *ficresilk;       computes hessian
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    read end of parameter file: agemin, agemax, bage, fage, estepm
 FILE *ficresprobmorprev;        begin-prev-date,...
 FILE *fichtm, *fichtmcov; /* Html File */    open gnuplot file
 FILE *ficreseij;    open html file
 char filerese[FILENAMELENGTH];    period (stable) prevalence
 FILE  *ficresvij;     for age prevalim()
 char fileresv[FILENAMELENGTH];    h Pij x
 FILE  *ficresvpl;    variance of p varprob
 char fileresvpl[FILENAMELENGTH];    forecasting if prevfcast==1 prevforecast call prevalence()
 char title[MAXLINE];    health expectancies
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Variance-covariance of DFLE
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    prevalence()
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];      movingaverage()
 char command[FILENAMELENGTH];    varevsij()
 int  outcmd=0;    if popbased==1 varevsij(,popbased)
     total life expectancies
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Variance of period (stable) prevalence
    end
 char filelog[FILENAMELENGTH]; /* Log file */  */
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];  
    
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #include <math.h>
   #include <stdio.h>
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  #include <stdlib.h>
 struct timezone tzp;  #include <string.h>
 extern int gettimeofday();  #include <unistd.h>
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  
 long time_value;  #include <limits.h>
 extern long time();  #include <sys/types.h>
 char strcurr[80], strfor[80];  #include <sys/stat.h>
   #include <errno.h>
 #define NR_END 1  extern int errno;
 #define FREE_ARG char*  
 #define FTOL 1.0e-10  /* #include <sys/time.h> */
   #include <time.h>
 #define NRANSI   #include "timeval.h"
 #define ITMAX 200   
   /* #include <libintl.h> */
 #define TOL 2.0e-4   /* #define _(String) gettext (String) */
   
 #define CGOLD 0.3819660   #define MAXLINE 256
 #define ZEPS 1.0e-10   
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);   #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define GOLD 1.618034   #define FILENAMELENGTH 132
 #define GLIMIT 100.0   
 #define TINY 1.0e-20   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define NINTERVMAX 8
 #define rint(a) floor(a+0.5)  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 static double sqrarg;  #define NCOVMAX 8 /* Maximum number of covariates */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define MAXN 20000
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}   #define YEARM 12. /* Number of months per year */
 int agegomp= AGEGOMP;  #define AGESUP 130
   #define AGEBASE 40
 int imx;   #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 int stepm=1;  #ifdef UNIX
 /* Stepm, step in month: minimum step interpolation*/  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 int estepm;  #define ODIRSEPARATOR '\\'
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #else
   #define DIRSEPARATOR '\\'
 int m,nb;  #define CHARSEPARATOR "\\"
 long *num;  #define ODIRSEPARATOR '/'
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  #endif
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs;  /* $Id$ */
 double *ageexmed,*agecens;  /* $State$ */
 double dateintmean=0;  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 double *weight;  char fullversion[]="$Revision$ $Date$";
 int **s; /* Status */  char strstart[80];
 double *agedc, **covar, idx;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nvar;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double ftolhess; /* Tolerance for computing hessian */  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /**************** split *************************/  int ndeath=1; /* Number of dead states */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)  
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int *wav; /* Number of waves for this individuual 0 is possible */
   */   int maxwav; /* Maxim number of waves */
   char  *ss;                            /* pointer */  int jmin, jmax; /* min, max spacing between 2 waves */
   int   l1, l2;                         /* length counters */  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
   l1 = strlen(path );                   /* length of path */                     to the likelihood and the sum of weights (done by funcone)*/
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int mle, weightopt;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if ( ss == NULL ) {                   /* no directory, so use current */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     /* get current working directory */  double jmean; /* Mean space between 2 waves */
     /*    extern  char* getcwd ( char *buf , int len);*/  double **oldm, **newm, **savm; /* Working pointers to matrices */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       return( GLOCK_ERROR_GETCWD );  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     }  FILE *ficlog, *ficrespow;
     strcpy( name, path );               /* we've got it */  int globpr; /* Global variable for printing or not */
   } else {                              /* strip direcotry from path */  double fretone; /* Only one call to likelihood */
     ss++;                               /* after this, the filename */  long ipmx; /* Number of contributions */
     l2 = strlen( ss );                  /* length of filename */  double sw; /* Sum of weights */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char filerespow[FILENAMELENGTH];
     strcpy( name, ss );         /* save file name */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  FILE *ficresilk;
     dirc[l1-l2] = 0;                    /* add zero */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   }  FILE *ficresprobmorprev;
   l1 = strlen( dirc );                  /* length of directory */  FILE *fichtm, *fichtmcov; /* Html File */
   /*#ifdef windows  FILE *ficreseij;
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char filerese[FILENAMELENGTH];
 #else  FILE *ficresstdeij;
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char fileresstde[FILENAMELENGTH];
 #endif  FILE *ficrescveij;
   */  char filerescve[FILENAMELENGTH];
   ss = strrchr( name, '.' );            /* find last / */  FILE  *ficresvij;
   if (ss >0){  char fileresv[FILENAMELENGTH];
     ss++;  FILE  *ficresvpl;
     strcpy(ext,ss);                     /* save extension */  char fileresvpl[FILENAMELENGTH];
     l1= strlen( name);  char title[MAXLINE];
     l2= strlen(ss)+1;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     strncpy( finame, name, l1-l2);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     finame[l1-l2]= 0;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   }  char command[FILENAMELENGTH];
   return( 0 );                          /* we're done */  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /******************************************/  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 void replace_back_to_slash(char *s, char*t)  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   int i;  
   int lg=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   i=0;  
   lg=strlen(t);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   for(i=0; i<= lg; i++) {  struct timezone tzp;
     (s[i] = t[i]);  extern int gettimeofday();
     if (t[i]== '\\') s[i]='/';  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   }  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 int nbocc(char *s, char occ)  
 {  char *endptr;
   int i,j=0;  long lval;
   int lg=20;  double dval;
   i=0;  
   lg=strlen(s);  #define NR_END 1
   for(i=0; i<= lg; i++) {  #define FREE_ARG char*
   if  (s[i] == occ ) j++;  #define FTOL 1.0e-10
   }  
   return j;  #define NRANSI
 }  #define ITMAX 200
   
 void cutv(char *u,char *v, char*t, char occ)  #define TOL 2.0e-4
 {  
   /* cuts string t into u and v where u ends before first occurence of char 'occ'   #define CGOLD 0.3819660
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  #define ZEPS 1.0e-10
      gives u="abcedf" and v="ghi2j" */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   int i,lg,j,p=0;  
   i=0;  #define GOLD 1.618034
   for(j=0; j<=strlen(t)-1; j++) {  #define GLIMIT 100.0
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define TINY 1.0e-20
   }  
   static double maxarg1,maxarg2;
   lg=strlen(t);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(j=0; j<p; j++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     (u[j] = t[j]);   
   }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
      u[p]='\0';  #define rint(a) floor(a+0.5)
   
    for(j=0; j<= lg; j++) {  static double sqrarg;
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
 }  int agegomp= AGEGOMP;
   
 /********************** nrerror ********************/  int imx;
   int stepm=1;
 void nrerror(char error_text[])  /* Stepm, step in month: minimum step interpolation*/
 {  
   fprintf(stderr,"ERREUR ...\n");  int estepm;
   fprintf(stderr,"%s\n",error_text);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   exit(EXIT_FAILURE);  
 }  int m,nb;
 /*********************** vector *******************/  long *num;
 double *vector(int nl, int nh)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double *v;  double **pmmij, ***probs;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  double *ageexmed,*agecens;
   if (!v) nrerror("allocation failure in vector");  double dateintmean=0;
   return v-nl+NR_END;  
 }  double *weight;
   int **s; /* Status */
 /************************ free vector ******************/  double *agedc, **covar, idx;
 void free_vector(double*v, int nl, int nh)  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 {  double *lsurv, *lpop, *tpop;
   free((FREE_ARG)(v+nl-NR_END));  
 }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  /**************** split *************************/
 {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int *v;  {
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   if (!v) nrerror("allocation failure in ivector");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   return v-nl+NR_END;    */
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   free((FREE_ARG)(v+nl-NR_END));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 /************************lvector *******************************/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 long *lvector(long nl,long nh)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   long *v;      /*    extern  char* getcwd ( char *buf , int len);*/
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   if (!v) nrerror("allocation failure in ivector");        return( GLOCK_ERROR_GETCWD );
   return v-nl+NR_END;      }
 }      /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /******************free lvector **************************/    } else {                              /* strip direcotry from path */
 void free_lvector(long *v, long nl, long nh)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(v+nl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /******************* imatrix *******************************/      dirc[l1-l2] = 0;                    /* add zero */
 int **imatrix(long nrl, long nrh, long ncl, long nch)       printf(" DIRC2 = %s \n",dirc);
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */     }
 {     /* We add a separator at the end of dirc if not exists */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;     l1 = strlen( dirc );                  /* length of directory */
   int **m;     if( dirc[l1-1] != DIRSEPARATOR ){
         dirc[l1] =  DIRSEPARATOR;
   /* allocate pointers to rows */       dirc[l1+1] = 0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));       printf(" DIRC3 = %s \n",dirc);
   if (!m) nrerror("allocation failure 1 in matrix()");     }
   m += NR_END;     ss = strrchr( name, '.' );            /* find last / */
   m -= nrl;     if (ss >0){
         ss++;
         strcpy(ext,ss);                     /* save extension */
   /* allocate rows and set pointers to them */       l1= strlen( name);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));       l2= strlen(ss)+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");       strncpy( finame, name, l1-l2);
   m[nrl] += NR_END;       finame[l1-l2]= 0;
   m[nrl] -= ncl;     }
     
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;     return( 0 );                          /* we're done */
     }
   /* return pointer to array of pointers to rows */   
   return m;   
 }   /******************************************/
   
 /****************** free_imatrix *************************/  void replace_back_to_slash(char *s, char*t)
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    int i;
       long nch,ncl,nrh,nrl;     int lg=0;
      /* free an int matrix allocated by imatrix() */     i=0;
 {     lg=strlen(t);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     for(i=0; i<= lg; i++) {
   free((FREE_ARG) (m+nrl-NR_END));       (s[i] = t[i]);
 }       if (t[i]== '\\') s[i]='/';
     }
 /******************* matrix *******************************/  }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  int nbocc(char *s, char occ)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    int i,j=0;
     int lg=20;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(s);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;    if  (s[i] == occ ) j++;
     }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return j;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  void cutv(char *u,char *v, char*t, char occ)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    /* cuts string t into u and v where u ends before first occurence of char 'occ'
   return m;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])        gives u="abcedf" and v="ghi2j" */
    */    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /*************************free matrix ************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /******************* ma3x *******************************/       u[p]='\0';
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {     for(j=0; j<= lg; j++) {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double ***m;    }
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /********************** nrerror ********************/
   m += NR_END;  
   m -= nrl;  void nrerror(char error_text[])
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    fprintf(stderr,"ERREUR ...\n");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    fprintf(stderr,"%s\n",error_text);
   m[nrl] += NR_END;    exit(EXIT_FAILURE);
   m[nrl] -= ncl;  }
   /*********************** vector *******************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *vector(int nl, int nh)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    double *v;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl][ncl] += NR_END;    if (!v) nrerror("allocation failure in vector");
   m[nrl][ncl] -= nll;    return v-nl+NR_END;
   for (j=ncl+1; j<=nch; j++)   }
     m[nrl][j]=m[nrl][j-1]+nlay;  
     /************************ free vector ******************/
   for (i=nrl+1; i<=nrh; i++) {  void free_vector(double*v, int nl, int nh)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)     free((FREE_ARG)(v+nl-NR_END));
       m[i][j]=m[i][j-1]+nlay;  }
   }  
   return m;   /************************ivector *******************************/
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  int *ivector(long nl,long nh)
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  {
   */    int *v;
 }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /*************************free ma3x ************************/    return v-nl+NR_END;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  }
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  /******************free ivector **************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  void free_ivector(int *v, long nl, long nh)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** function subdirf ***********/  
 char *subdirf(char fileres[])  /************************lvector *******************************/
 {  long *lvector(long nl,long nh)
   /* Caution optionfilefiname is hidden */  {
   strcpy(tmpout,optionfilefiname);    long *v;
   strcat(tmpout,"/"); /* Add to the right */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   strcat(tmpout,fileres);    if (!v) nrerror("allocation failure in ivector");
   return tmpout;    return v-nl+NR_END;
 }  }
   
 /*************** function subdirf2 ***********/  /******************free lvector **************************/
 char *subdirf2(char fileres[], char *preop)  void free_lvector(long *v, long nl, long nh)
 {  {
       free((FREE_ARG)(v+nl-NR_END));
   /* Caution optionfilefiname is hidden */  }
   strcpy(tmpout,optionfilefiname);  
   strcat(tmpout,"/");  /******************* imatrix *******************************/
   strcat(tmpout,preop);  int **imatrix(long nrl, long nrh, long ncl, long nch)
   strcat(tmpout,fileres);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   return tmpout;  {
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
     int **m;
 /*************** function subdirf3 ***********/   
 char *subdirf3(char fileres[], char *preop, char *preop2)    /* allocate pointers to rows */
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       if (!m) nrerror("allocation failure 1 in matrix()");
   /* Caution optionfilefiname is hidden */    m += NR_END;
   strcpy(tmpout,optionfilefiname);    m -= nrl;
   strcat(tmpout,"/");   
   strcat(tmpout,preop);   
   strcat(tmpout,preop2);    /* allocate rows and set pointers to them */
   strcat(tmpout,fileres);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
   return tmpout;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 }    m[nrl] += NR_END;
     m[nrl] -= ncl;
 /***************** f1dim *************************/   
 extern int ncom;     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
 extern double *pcom,*xicom;   
 extern double (*nrfunc)(double []);     /* return pointer to array of pointers to rows */
      return m;
 double f1dim(double x)   }
 {   
   int j;   /****************** free_imatrix *************************/
   double f;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double *xt;         int **m;
          long nch,ncl,nrh,nrl;
   xt=vector(1,ncom);        /* free an int matrix allocated by imatrix() */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   {
   f=(*nrfunc)(xt);     free((FREE_ARG) (m[nrl]+ncl-NR_END));
   free_vector(xt,1,ncom);     free((FREE_ARG) (m+nrl-NR_END));
   return f;   }
 }   
   /******************* matrix *******************************/
 /*****************brent *************************/  double **matrix(long nrl, long nrh, long ncl, long nch)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   {
 {     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int iter;     double **m;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double ftemp;    if (!m) nrerror("allocation failure 1 in matrix()");
   double p,q,r,tol1,tol2,u,v,w,x,xm;     m += NR_END;
   double e=0.0;     m -= nrl;
    
   a=(ax < cx ? ax : cx);     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   b=(ax > cx ? ax : cx);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   x=w=v=bx;     m[nrl] += NR_END;
   fw=fv=fx=(*f)(x);     m[nrl] -= ncl;
   for (iter=1;iter<=ITMAX;iter++) {   
     xm=0.5*(a+b);     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     return m;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
     printf(".");fflush(stdout);     */
     fprintf(ficlog,".");fflush(ficlog);  }
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*************************free matrix ************************/
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     free((FREE_ARG)(m+nrl-NR_END));
       *xmin=x;   }
       return fx;   
     }   /******************* ma3x *******************************/
     ftemp=fu;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     if (fabs(e) > tol1) {   {
       r=(x-w)*(fx-fv);     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       q=(x-v)*(fx-fw);     double ***m;
       p=(x-v)*q-(x-w)*r;   
       q=2.0*(q-r);     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (q > 0.0) p = -p;     if (!m) nrerror("allocation failure 1 in matrix()");
       q=fabs(q);     m += NR_END;
       etemp=e;     m -= nrl;
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       else {     m[nrl] += NR_END;
         d=p/q;     m[nrl] -= ncl;
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           d=SIGN(tol1,xm-x);   
       }     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     } else {     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     m[nrl][ncl] += NR_END;
     }     m[nrl][ncl] -= nll;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     for (j=ncl+1; j<=nch; j++)
     fu=(*f)(u);       m[nrl][j]=m[nrl][j-1]+nlay;
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;     for (i=nrl+1; i<=nrh; i++) {
       SHFT(v,w,x,u)       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         SHFT(fv,fw,fx,fu)       for (j=ncl+1; j<=nch; j++)
         } else {         m[i][j]=m[i][j-1]+nlay;
           if (u < x) a=u; else b=u;     }
           if (fu <= fw || w == x) {     return m;
             v=w;     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             w=u;              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             fv=fw;     */
             fw=fu;   }
           } else if (fu <= fv || v == x || v == w) {   
             v=u;   /*************************free ma3x ************************/
             fv=fu;   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           }   {
         }     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   nrerror("Too many iterations in brent");     free((FREE_ARG)(m+nrl-NR_END));
   *xmin=x;   }
   return fx;   
 }   /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 /****************** mnbrak ***********************/  {
     /* Caution optionfilefiname is hidden */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,     strcpy(tmpout,optionfilefiname);
             double (*func)(double))     strcat(tmpout,"/"); /* Add to the right */
 {     strcat(tmpout,fileres);
   double ulim,u,r,q, dum;    return tmpout;
   double fu;   }
    
   *fa=(*func)(*ax);   /*************** function subdirf2 ***********/
   *fb=(*func)(*bx);   char *subdirf2(char fileres[], char *preop)
   if (*fb > *fa) {   {
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)     /* Caution optionfilefiname is hidden */
       }     strcpy(tmpout,optionfilefiname);
   *cx=(*bx)+GOLD*(*bx-*ax);     strcat(tmpout,"/");
   *fc=(*func)(*cx);     strcat(tmpout,preop);
   while (*fb > *fc) {     strcat(tmpout,fileres);
     r=(*bx-*ax)*(*fb-*fc);     return tmpout;
     q=(*bx-*cx)*(*fb-*fa);   }
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/   
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   /*************** function subdirf3 ***********/
     ulim=(*bx)+GLIMIT*(*cx-*bx);   char *subdirf3(char fileres[], char *preop, char *preop2)
     if ((*bx-u)*(u-*cx) > 0.0) {   {
       fu=(*func)(u);    
     } else if ((*cx-u)*(u-ulim) > 0.0) {     /* Caution optionfilefiname is hidden */
       fu=(*func)(u);     strcpy(tmpout,optionfilefiname);
       if (fu < *fc) {     strcat(tmpout,"/");
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     strcat(tmpout,preop);
           SHFT(*fb,*fc,fu,(*func)(u))     strcat(tmpout,preop2);
           }     strcat(tmpout,fileres);
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     return tmpout;
       u=ulim;   }
       fu=(*func)(u);   
     } else {   /***************** f1dim *************************/
       u=(*cx)+GOLD*(*cx-*bx);   extern int ncom;
       fu=(*func)(u);   extern double *pcom,*xicom;
     }   extern double (*nrfunc)(double []);
     SHFT(*ax,*bx,*cx,u)    
       SHFT(*fa,*fb,*fc,fu)   double f1dim(double x)
       }   {
 }     int j;
     double f;
 /*************** linmin ************************/    double *xt;
    
 int ncom;     xt=vector(1,ncom);
 double *pcom,*xicom;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
 double (*nrfunc)(double []);     f=(*nrfunc)(xt);
      free_vector(xt,1,ncom);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     return f;
 {   }
   double brent(double ax, double bx, double cx,   
                double (*f)(double), double tol, double *xmin);   /*****************brent *************************/
   double f1dim(double x);   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   {
               double *fc, double (*func)(double));     int iter;
   int j;     double a,b,d,etemp;
   double xx,xmin,bx,ax;     double fu,fv,fw,fx;
   double fx,fb,fa;    double ftemp;
      double p,q,r,tol1,tol2,u,v,w,x,xm;
   ncom=n;     double e=0.0;
   pcom=vector(1,n);    
   xicom=vector(1,n);     a=(ax < cx ? ax : cx);
   nrfunc=func;     b=(ax > cx ? ax : cx);
   for (j=1;j<=n;j++) {     x=w=v=bx;
     pcom[j]=p[j];     fw=fv=fx=(*f)(x);
     xicom[j]=xi[j];     for (iter=1;iter<=ITMAX;iter++) {
   }       xm=0.5*(a+b);
   ax=0.0;       tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
   xx=1.0;       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);       printf(".");fflush(stdout);
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for (j=1;j<=n;j++) {   #endif
     xi[j] *= xmin;       if (fabs(x-xm) <= (tol2-0.5*(b-a))){
     p[j] += xi[j];         *xmin=x;
   }         return fx;
   free_vector(xicom,1,n);       }
   free_vector(pcom,1,n);       ftemp=fu;
 }       if (fabs(e) > tol1) {
         r=(x-w)*(fx-fv);
 char *asc_diff_time(long time_sec, char ascdiff[])        q=(x-v)*(fx-fw);
 {        p=(x-v)*q-(x-w)*r;
   long sec_left, days, hours, minutes;        q=2.0*(q-r);
   days = (time_sec) / (60*60*24);        if (q > 0.0) p = -p;
   sec_left = (time_sec) % (60*60*24);        q=fabs(q);
   hours = (sec_left) / (60*60) ;        etemp=e;
   sec_left = (sec_left) %(60*60);        e=d;
   minutes = (sec_left) /60;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
   sec_left = (sec_left) % (60);          d=CGOLD*(e=(x >= xm ? a-x : b-x));
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);          else {
   return ascdiff;          d=p/q;
 }          u=x+d;
           if (u-a < tol2 || b-u < tol2)
 /*************** powell ************************/            d=SIGN(tol1,xm-x);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,         }
             double (*func)(double []))       } else {
 {         d=CGOLD*(e=(x >= xm ? a-x : b-x));
   void linmin(double p[], double xi[], int n, double *fret,       }
               double (*func)(double []));       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
   int i,ibig,j;       fu=(*f)(u);
   double del,t,*pt,*ptt,*xit;      if (fu <= fx) {
   double fp,fptt;        if (u >= x) a=x; else b=x;
   double *xits;        SHFT(v,w,x,u)
   int niterf, itmp;          SHFT(fv,fw,fx,fu)
           } else {
   pt=vector(1,n);             if (u < x) a=u; else b=u;
   ptt=vector(1,n);             if (fu <= fw || w == x) {
   xit=vector(1,n);               v=w;
   xits=vector(1,n);               w=u;
   *fret=(*func)(p);               fv=fw;
   for (j=1;j<=n;j++) pt[j]=p[j];               fw=fu;
   for (*iter=1;;++(*iter)) {             } else if (fu <= fv || v == x || v == w) {
     fp=(*fret);               v=u;
     ibig=0;               fv=fu;
     del=0.0;             }
     last_time=curr_time;          }
     (void) gettimeofday(&curr_time,&tzp);    }
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    nrerror("Too many iterations in brent");
     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    *xmin=x;
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    return fx;
     */  }
    for (i=1;i<=n;i++) {  
       printf(" %d %.12f",i, p[i]);  /****************** mnbrak ***********************/
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
     }              double (*func)(double))
     printf("\n");  {
     fprintf(ficlog,"\n");    double ulim,u,r,q, dum;
     fprintf(ficrespow,"\n");fflush(ficrespow);    double fu;
     if(*iter <=3){   
       tm = *localtime(&curr_time.tv_sec);    *fa=(*func)(*ax);
       strcpy(strcurr,asctime(&tm));    *fb=(*func)(*bx);
 /*       asctime_r(&tm,strcurr); */    if (*fb > *fa) {
       forecast_time=curr_time;       SHFT(dum,*ax,*bx,dum)
       itmp = strlen(strcurr);        SHFT(dum,*fb,*fa,dum)
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */        }
         strcurr[itmp-1]='\0';    *cx=(*bx)+GOLD*(*bx-*ax);
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    *fc=(*func)(*cx);
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    while (*fb > *fc) {
       for(niterf=10;niterf<=30;niterf+=10){      r=(*bx-*ax)*(*fb-*fc);
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);      q=(*bx-*cx)*(*fb-*fa);
         tmf = *localtime(&forecast_time.tv_sec);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
 /*      asctime_r(&tmf,strfor); */        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
         strcpy(strfor,asctime(&tmf));      ulim=(*bx)+GLIMIT*(*cx-*bx);
         itmp = strlen(strfor);      if ((*bx-u)*(u-*cx) > 0.0) {
         if(strfor[itmp-1]=='\n')        fu=(*func)(u);
         strfor[itmp-1]='\0';      } else if ((*cx-u)*(u-ulim) > 0.0) {
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        fu=(*func)(u);
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);        if (fu < *fc) {
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
     }            SHFT(*fb,*fc,fu,(*func)(u))
     for (i=1;i<=n;i++) {             }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];       } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       fptt=(*fret);         u=ulim;
 #ifdef DEBUG        fu=(*func)(u);
       printf("fret=%lf \n",*fret);      } else {
       fprintf(ficlog,"fret=%lf \n",*fret);        u=(*cx)+GOLD*(*cx-*bx);
 #endif        fu=(*func)(u);
       printf("%d",i);fflush(stdout);      }
       fprintf(ficlog,"%d",i);fflush(ficlog);      SHFT(*ax,*bx,*cx,u)
       linmin(p,xit,n,fret,func);         SHFT(*fa,*fb,*fc,fu)
       if (fabs(fptt-(*fret)) > del) {         }
         del=fabs(fptt-(*fret));   }
         ibig=i;   
       }   /*************** linmin ************************/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  int ncom;
       fprintf(ficlog,"%d %.12e",i,(*fret));  double *pcom,*xicom;
       for (j=1;j<=n;j++) {  double (*nrfunc)(double []);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);   
         printf(" x(%d)=%.12e",j,xit[j]);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  {
       }    double brent(double ax, double bx, double cx,
       for(j=1;j<=n;j++) {                 double (*f)(double), double tol, double *xmin);
         printf(" p=%.12e",p[j]);    double f1dim(double x);
         fprintf(ficlog," p=%.12e",p[j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       }                double *fc, double (*func)(double));
       printf("\n");    int j;
       fprintf(ficlog,"\n");    double xx,xmin,bx,ax;
 #endif    double fx,fb,fa;
     }    
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    ncom=n;
 #ifdef DEBUG    pcom=vector(1,n);
       int k[2],l;    xicom=vector(1,n);
       k[0]=1;    nrfunc=func;
       k[1]=-1;    for (j=1;j<=n;j++) {
       printf("Max: %.12e",(*func)(p));      pcom[j]=p[j];
       fprintf(ficlog,"Max: %.12e",(*func)(p));      xicom[j]=xi[j];
       for (j=1;j<=n;j++) {    }
         printf(" %.12e",p[j]);    ax=0.0;
         fprintf(ficlog," %.12e",p[j]);    xx=1.0;
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
       printf("\n");    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
       fprintf(ficlog,"\n");  #ifdef DEBUG
       for(l=0;l<=1;l++) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for (j=1;j<=n;j++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #endif
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (j=1;j<=n;j++) {
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      xi[j] *= xmin;
         }      p[j] += xi[j];
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free_vector(xicom,1,n);
       }    free_vector(pcom,1,n);
 #endif  }
   
   char *asc_diff_time(long time_sec, char ascdiff[])
       free_vector(xit,1,n);   {
       free_vector(xits,1,n);     long sec_left, days, hours, minutes;
       free_vector(ptt,1,n);     days = (time_sec) / (60*60*24);
       free_vector(pt,1,n);     sec_left = (time_sec) % (60*60*24);
       return;     hours = (sec_left) / (60*60) ;
     }     sec_left = (sec_left) %(60*60);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     minutes = (sec_left) /60;
     for (j=1;j<=n;j++) {     sec_left = (sec_left) % (60);
       ptt[j]=2.0*p[j]-pt[j];     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       xit[j]=p[j]-pt[j];     return ascdiff;
       pt[j]=p[j];   }
     }   
     fptt=(*func)(ptt);   /*************** powell ************************/
     if (fptt < fp) {   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);               double (*func)(double []))
       if (t < 0.0) {   {
         linmin(p,xit,n,fret,func);     void linmin(double p[], double xi[], int n, double *fret,
         for (j=1;j<=n;j++) {                 double (*func)(double []));
           xi[j][ibig]=xi[j][n];     int i,ibig,j;
           xi[j][n]=xit[j];     double del,t,*pt,*ptt,*xit;
         }    double fp,fptt;
 #ifdef DEBUG    double *xits;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    int niterf, itmp;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){    pt=vector(1,n);
           printf(" %.12e",xit[j]);    ptt=vector(1,n);
           fprintf(ficlog," %.12e",xit[j]);    xit=vector(1,n);
         }    xits=vector(1,n);
         printf("\n");    *fret=(*func)(p);
         fprintf(ficlog,"\n");    for (j=1;j<=n;j++) pt[j]=p[j];
 #endif    for (*iter=1;;++(*iter)) {
       }      fp=(*fret);
     }       ibig=0;
   }       del=0.0;
 }       last_time=curr_time;
       (void) gettimeofday(&curr_time,&tzp);
 /**** Prevalence limit (stable prevalence)  ****************/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 {     for (i=1;i<=n;i++) {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        printf(" %d %.12f",i, p[i]);
      matrix by transitions matrix until convergence is reached */        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   int i, ii,j,k;      }
   double min, max, maxmin, maxmax,sumnew=0.;      printf("\n");
   double **matprod2();      fprintf(ficlog,"\n");
   double **out, cov[NCOVMAX], **pmij();      fprintf(ficrespow,"\n");fflush(ficrespow);
   double **newm;      if(*iter <=3){
   double agefin, delaymax=50 ; /* Max number of years to converge */        tm = *localtime(&curr_time.tv_sec);
         strcpy(strcurr,asctime(&tm));
   for (ii=1;ii<=nlstate+ndeath;ii++)  /*       asctime_r(&tm,strcurr); */
     for (j=1;j<=nlstate+ndeath;j++){        forecast_time=curr_time;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
    cov[1]=1.;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for(niterf=10;niterf<=30;niterf+=10){
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     newm=savm;          tmf = *localtime(&forecast_time.tv_sec);
     /* Covariates have to be included here again */  /*      asctime_r(&tmf,strfor); */
      cov[2]=agefin;          strcpy(strfor,asctime(&tmf));
             itmp = strlen(strfor);
       for (k=1; k<=cptcovn;k++) {          if(strfor[itmp-1]=='\n')
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          strfor[itmp-1]='\0';
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        }
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for (i=1;i<=n;i++) {
         for (j=1;j<=n;j++) xit[j]=xi[j][i];
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fptt=(*fret);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #ifdef DEBUG
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        printf("fret=%lf \n",*fret);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
     savm=oldm;        printf("%d",i);fflush(stdout);
     oldm=newm;        fprintf(ficlog,"%d",i);fflush(ficlog);
     maxmax=0.;        linmin(p,xit,n,fret,func);
     for(j=1;j<=nlstate;j++){        if (fabs(fptt-(*fret)) > del) {
       min=1.;          del=fabs(fptt-(*fret));
       max=0.;          ibig=i;
       for(i=1; i<=nlstate; i++) {        }
         sumnew=0;  #ifdef DEBUG
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        printf("%d %.12e",i,(*fret));
         prlim[i][j]= newm[i][j]/(1-sumnew);        fprintf(ficlog,"%d %.12e",i,(*fret));
         max=FMAX(max,prlim[i][j]);        for (j=1;j<=n;j++) {
         min=FMIN(min,prlim[i][j]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       }          printf(" x(%d)=%.12e",j,xit[j]);
       maxmin=max-min;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       maxmax=FMAX(maxmax,maxmin);        }
     }        for(j=1;j<=n;j++) {
     if(maxmax < ftolpl){          printf(" p=%.12e",p[j]);
       return prlim;          fprintf(ficlog," p=%.12e",p[j]);
     }        }
   }        printf("\n");
 }        fprintf(ficlog,"\n");
   #endif
 /*************** transition probabilities ***************/       }
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #ifdef DEBUG
 {        int k[2],l;
   double s1, s2;        k[0]=1;
   /*double t34;*/        k[1]=-1;
   int i,j,j1, nc, ii, jj;        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(i=1; i<= nlstate; i++){        for (j=1;j<=n;j++) {
       for(j=1; j<i;j++){          printf(" %.12e",p[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog," %.12e",p[j]);
           /*s2 += param[i][j][nc]*cov[nc];*/        }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("\n");
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */        fprintf(ficlog,"\n");
         }        for(l=0;l<=1;l++) {
         ps[i][j]=s2;          for (j=1;j<=n;j++) {
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(j=i+1; j<=nlstate+ndeath;j++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){          }
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }        }
         ps[i][j]=s2;  #endif
       }  
     }  
     /*ps[3][2]=1;*/        free_vector(xit,1,n);
             free_vector(xits,1,n);
     for(i=1; i<= nlstate; i++){        free_vector(ptt,1,n);
       s1=0;        free_vector(pt,1,n);
       for(j=1; j<i; j++)        return;
         s1+=exp(ps[i][j]);      }
       for(j=i+1; j<=nlstate+ndeath; j++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         s1+=exp(ps[i][j]);      for (j=1;j<=n;j++) {
       ps[i][i]=1./(s1+1.);        ptt[j]=2.0*p[j]-pt[j];
       for(j=1; j<i; j++)        xit[j]=p[j]-pt[j];
         ps[i][j]= exp(ps[i][j])*ps[i][i];        pt[j]=p[j];
       for(j=i+1; j<=nlstate+ndeath; j++)      }
         ps[i][j]= exp(ps[i][j])*ps[i][i];      fptt=(*func)(ptt);
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      if (fptt < fp) {
     } /* end i */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
             if (t < 0.0) {
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){          linmin(p,xit,n,fret,func);
       for(jj=1; jj<= nlstate+ndeath; jj++){          for (j=1;j<=n;j++) {
         ps[ii][jj]=0;            xi[j][ibig]=xi[j][n];
         ps[ii][ii]=1;            xi[j][n]=xit[j];
       }          }
     }  #ifdef DEBUG
               printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */          for(j=1;j<=n;j++){
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */            printf(" %.12e",xit[j]);
 /*         printf("ddd %lf ",ps[ii][jj]); */            fprintf(ficlog," %.12e",xit[j]);
 /*       } */          }
 /*       printf("\n "); */          printf("\n");
 /*        } */          fprintf(ficlog,"\n");
 /*        printf("\n ");printf("%lf ",cov[2]); */  #endif
        /*        }
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      }
       goto end;*/    }
     return ps;  }
 }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /**************** Product of 2 matrices ******************/  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  {
 {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times       matrix by transitions matrix until convergence is reached */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized     int i, ii,j,k;
      before: only the contents of out is modified. The function returns    double min, max, maxmin, maxmax,sumnew=0.;
      a pointer to pointers identical to out */    double **matprod2();
   long i, j, k;    double **out, cov[NCOVMAX], **pmij();
   for(i=nrl; i<= nrh; i++)    double **newm;
     for(k=ncolol; k<=ncoloh; k++)    double agefin, delaymax=50 ; /* Max number of years to converge */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   return out;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }      }
   
      cov[1]=1.;
 /************* Higher Matrix Product ***************/   
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 {      newm=savm;
   /* Computes the transition matrix starting at age 'age' over       /* Covariates have to be included here again */
      'nhstepm*hstepm*stepm' months (i.e. until       cov[2]=agefin;
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying    
      nhstepm*hstepm matrices.         for (k=1; k<=cptcovn;k++) {
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      (typically every 2 years instead of every month which is too big           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      for the memory).        }
      Model is determined by parameters x and covariates have to be         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      included manually here.         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      */  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int i, j, d, h, k;        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   double **out, cov[NCOVMAX];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double **newm;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
   /* Hstepm could be zero and should return the unit matrix */      savm=oldm;
   for (i=1;i<=nlstate+ndeath;i++)      oldm=newm;
     for (j=1;j<=nlstate+ndeath;j++){      maxmax=0.;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      for(j=1;j<=nlstate;j++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);        min=1.;
     }        max=0.;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for(i=1; i<=nlstate; i++) {
   for(h=1; h <=nhstepm; h++){          sumnew=0;
     for(d=1; d <=hstepm; d++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       newm=savm;          prlim[i][j]= newm[i][j]/(1-sumnew);
       /* Covariates have to be included here again */          max=FMAX(max,prlim[i][j]);
       cov[1]=1.;          min=FMIN(min,prlim[i][j]);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        maxmin=max-min;
       for (k=1; k<=cptcovage;k++)        maxmax=FMAX(maxmax,maxmin);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      }
       for (k=1; k<=cptcovprod;k++)      if(maxmax < ftolpl){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return prlim;
       }
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   /*************** transition probabilities ***************/
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       oldm=newm;  {
     }    double s1, s2;
     for(i=1; i<=nlstate+ndeath; i++)    /*double t34;*/
       for(j=1;j<=nlstate+ndeath;j++) {    int i,j,j1, nc, ii, jj;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      for(i=1; i<= nlstate; i++){
          */        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   } /* end h */            /*s2 += param[i][j][nc]*cov[nc];*/
   return po;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
           }
           ps[i][j]=s2;
 /*************** log-likelihood *************/  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
 double func( double *x)        }
 {        for(j=i+1; j<=nlstate+ndeath;j++){
   int i, ii, j, k, mi, d, kk;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **out;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   double sw; /* Sum of weights */          }
   double lli; /* Individual log likelihood */          ps[i][j]=s2;
   int s1, s2;        }
   double bbh, survp;      }
   long ipmx;      /*ps[3][2]=1;*/
   /*extern weight */     
   /* We are differentiating ll according to initial status */      for(i=1; i<= nlstate; i++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        s1=0;
   /*for(i=1;i<imx;i++)         for(j=1; j<i; j++)
     printf(" %d\n",s[4][i]);          s1+=exp(ps[i][j]);
   */        for(j=i+1; j<=nlstate+ndeath; j++)
   cov[1]=1.;          s1+=exp(ps[i][j]);
         ps[i][i]=1./(s1+1.);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   if(mle==1){        for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(mi=1; mi<= wav[i]-1; mi++){      } /* end i */
         for (ii=1;ii<=nlstate+ndeath;ii++)     
           for (j=1;j<=nlstate+ndeath;j++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(jj=1; jj<= nlstate+ndeath; jj++){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          ps[ii][jj]=0;
           }          ps[ii][ii]=1;
         for(d=0; d<dh[mi][i]; d++){        }
           newm=savm;      }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;     
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*         printf("ddd %lf ",ps[ii][jj]); */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*       } */
           savm=oldm;  /*       printf("\n "); */
           oldm=newm;  /*        } */
         } /* end mult */  /*        printf("\n ");printf("%lf ",cov[2]); */
                /*
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         /* But now since version 0.9 we anticipate for bias at large stepm.        goto end;*/
          * If stepm is larger than one month (smallest stepm) and if the exact delay       return ps;
          * (in months) between two waves is not a multiple of stepm, we rounded to   }
          * the nearest (and in case of equal distance, to the lowest) interval but now  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  /**************** Product of 2 matrices ******************/
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  {
          * -stepm/2 to stepm/2 .    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
          * For stepm=1 the results are the same as for previous versions of Imach.       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          * For stepm > 1 the results are less biased than in previous versions.     /* in, b, out are matrice of pointers which should have been initialized
          */       before: only the contents of out is modified. The function returns
         s1=s[mw[mi][i]][i];       a pointer to pointers identical to out */
         s2=s[mw[mi+1][i]][i];    long i, j, k;
         bbh=(double)bh[mi][i]/(double)stepm;     for(i=nrl; i<= nrh; i++)
         /* bias bh is positive if real duration      for(k=ncolol; k<=ncoloh; k++)
          * is higher than the multiple of stepm and negative otherwise.        for(j=ncl,out[i][k]=0.; j<=nch; j++)
          */          out[i][k] +=in[i][j]*b[j][k];
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  
         if( s2 > nlstate){     return out;
           /* i.e. if s2 is a death state and if the date of death is known   }
              then the contribution to the likelihood is the probability to   
              die between last step unit time and current  step unit time,   
              which is also equal to probability to die before dh   /************* Higher Matrix Product ***************/
              minus probability to die before dh-stepm .   
              In version up to 0.92 likelihood was computed  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         as if date of death was unknown. Death was treated as any other  {
         health state: the date of the interview describes the actual state    /* Computes the transition matrix starting at age 'age' over
         and not the date of a change in health state. The former idea was       'nhstepm*hstepm*stepm' months (i.e. until
         to consider that at each interview the state was recorded       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         (healthy, disable or death) and IMaCh was corrected; but when we       nhstepm*hstepm matrices.
         introduced the exact date of death then we should have modified       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         the contribution of an exact death to the likelihood. This new       (typically every 2 years instead of every month which is too big
         contribution is smaller and very dependent of the step unit       for the memory).
         stepm. It is no more the probability to die between last interview       Model is determined by parameters x and covariates have to be
         and month of death but the probability to survive from last       included manually here.
         interview up to one month before death multiplied by the  
         probability to die within a month. Thanks to Chris       */
         Jackson for correcting this bug.  Former versions increased  
         mortality artificially. The bad side is that we add another loop    int i, j, d, h, k;
         which slows down the processing. The difference can be up to 10%    double **out, cov[NCOVMAX];
         lower mortality.    double **newm;
           */  
           lli=log(out[s1][s2] - savm[s1][s2]);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
         } else if  (s2==-2) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
           for (j=1,survp=0. ; j<=nlstate; j++)         po[i][j][0]=(i==j ? 1.0 : 0.0);
             survp += out[s1][j];      }
           lli= survp;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
         newm=savm;
         else{        /* Covariates have to be included here again */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        cov[1]=1.;
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         }         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        for (k=1; k<=cptcovage;k++)
         /*if(lli ==000.0)*/          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        for (k=1; k<=cptcovprod;k++)
         ipmx +=1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
       } /* end of wave */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     } /* end of individual */        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   }  else if(mle==2){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        savm=oldm;
       for(mi=1; mi<= wav[i]-1; mi++){        oldm=newm;
         for (ii=1;ii<=nlstate+ndeath;ii++)      }
           for (j=1;j<=nlstate+ndeath;j++){      for(i=1; i<=nlstate+ndeath; i++)
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for(j=1;j<=nlstate+ndeath;j++) {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          po[i][j][h]=newm[i][j];
           }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         for(d=0; d<=dh[mi][i]; d++){           */
           newm=savm;        }
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    } /* end h */
           for (kk=1; kk<=cptcovage;kk++) {    return po;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  }
           }  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** log-likelihood *************/
           savm=oldm;  double func( double *x)
           oldm=newm;  {
         } /* end mult */    int i, ii, j, k, mi, d, kk;
           double l, ll[NLSTATEMAX], cov[NCOVMAX];
         s1=s[mw[mi][i]][i];    double **out;
         s2=s[mw[mi+1][i]][i];    double sw; /* Sum of weights */
         bbh=(double)bh[mi][i]/(double)stepm;     double lli; /* Individual log likelihood */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */    int s1, s2;
         ipmx +=1;    double bbh, survp;
         sw += weight[i];    long ipmx;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /*extern weight */
       } /* end of wave */    /* We are differentiating ll according to initial status */
     } /* end of individual */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }  else if(mle==3){  /* exponential inter-extrapolation */    /*for(i=1;i<imx;i++)
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      printf(" %d\n",s[4][i]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    */
       for(mi=1; mi<= wav[i]-1; mi++){    cov[1]=1.;
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    if(mle==1){
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(d=0; d<dh[mi][i]; d++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           newm=savm;        for(mi=1; mi<= wav[i]-1; mi++){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for (ii=1;ii<=nlstate+ndeath;ii++)
           for (kk=1; kk<=cptcovage;kk++) {            for (j=1;j<=nlstate+ndeath;j++){
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for(d=0; d<dh[mi][i]; d++){
           savm=oldm;            newm=savm;
           oldm=newm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         } /* end mult */            for (kk=1; kk<=cptcovage;kk++) {
                     cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         s1=s[mw[mi][i]][i];            }
         s2=s[mw[mi+1][i]][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         bbh=(double)bh[mi][i]/(double)stepm;                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */            savm=oldm;
         ipmx +=1;            oldm=newm;
         sw += weight[i];          } /* end mult */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       
       } /* end of wave */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     } /* end of individual */          /* But now since version 0.9 we anticipate for bias at large stepm.
   }else if (mle==4){  /* ml=4 no inter-extrapolation */           * If stepm is larger than one month (smallest stepm) and if the exact delay
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){           * (in months) between two waves is not a multiple of stepm, we rounded to
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * the nearest (and in case of equal distance, to the lowest) interval but now
       for(mi=1; mi<= wav[i]-1; mi++){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (ii=1;ii<=nlstate+ndeath;ii++)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           for (j=1;j<=nlstate+ndeath;j++){           * probability in order to take into account the bias as a fraction of the way
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             savm[ii][j]=(ii==j ? 1.0 : 0.0);           * -stepm/2 to stepm/2 .
           }           * For stepm=1 the results are the same as for previous versions of Imach.
         for(d=0; d<dh[mi][i]; d++){           * For stepm > 1 the results are less biased than in previous versions.
           newm=savm;           */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          s1=s[mw[mi][i]][i];
           for (kk=1; kk<=cptcovage;kk++) {          s2=s[mw[mi+1][i]][i];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          bbh=(double)bh[mi][i]/(double)stepm;
           }          /* bias bh is positive if real duration
                    * is higher than the multiple of stepm and negative otherwise.
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,           */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           savm=oldm;          if( s2 > nlstate){
           oldm=newm;            /* i.e. if s2 is a death state and if the date of death is known
         } /* end mult */               then the contribution to the likelihood is the probability to
                      die between last step unit time and current  step unit time,
         s1=s[mw[mi][i]][i];               which is also equal to probability to die before dh
         s2=s[mw[mi+1][i]][i];               minus probability to die before dh-stepm .
         if( s2 > nlstate){                In version up to 0.92 likelihood was computed
           lli=log(out[s1][s2] - savm[s1][s2]);          as if date of death was unknown. Death was treated as any other
         }else{          health state: the date of the interview describes the actual state
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
         ipmx +=1;          (healthy, disable or death) and IMaCh was corrected; but when we
         sw += weight[i];          introduced the exact date of death then we should have modified
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          the contribution of an exact death to the likelihood. This new
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          contribution is smaller and very dependent of the step unit
       } /* end of wave */          stepm. It is no more the probability to die between last interview
     } /* end of individual */          and month of death but the probability to survive from last
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          interview up to one month before death multiplied by the
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          probability to die within a month. Thanks to Chris
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          Jackson for correcting this bug.  Former versions increased
       for(mi=1; mi<= wav[i]-1; mi++){          mortality artificially. The bad side is that we add another loop
         for (ii=1;ii<=nlstate+ndeath;ii++)          which slows down the processing. The difference can be up to 10%
           for (j=1;j<=nlstate+ndeath;j++){          lower mortality.
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);            lli=log(out[s1][s2] - savm[s1][s2]);
           }  
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;          } else if  (s2==-2) {
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            for (j=1,survp=0. ; j<=nlstate; j++)
           for (kk=1; kk<=cptcovage;kk++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            /*survp += out[s1][j]; */
           }            lli= log(survp);
                   }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,         
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          else if  (s2==-4) {
           savm=oldm;            for (j=3,survp=0. ; j<=nlstate; j++)  
           oldm=newm;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         } /* end mult */            lli= log(survp);
                 }
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];          else if  (s2==-5) {
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */            for (j=1,survp=0. ; j<=2; j++)  
         ipmx +=1;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         sw += weight[i];            lli= log(survp);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          }
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/         
       } /* end of wave */          else{
     } /* end of individual */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   } /* End of if */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];          }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          /*if(lli ==000.0)*/
   return -l;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 }          ipmx +=1;
           sw += weight[i];
 /*************** log-likelihood *************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 double funcone( double *x)        } /* end of wave */
 {      } /* end of individual */
   /* Same as likeli but slower because of a lot of printf and if */    }  else if(mle==2){
   int i, ii, j, k, mi, d, kk;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **out;        for(mi=1; mi<= wav[i]-1; mi++){
   double lli; /* Individual log likelihood */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double llt;            for (j=1;j<=nlstate+ndeath;j++){
   int s1, s2;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double bbh, survp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*extern weight */            }
   /* We are differentiating ll according to initial status */          for(d=0; d<=dh[mi][i]; d++){
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/            newm=savm;
   /*for(i=1;i<imx;i++)             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf(" %d\n",s[4][i]);            for (kk=1; kk<=cptcovage;kk++) {
   */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   cov[1]=1.;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(k=1; k<=nlstate; k++) ll[k]=0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){            oldm=newm;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          } /* end mult */
     for(mi=1; mi<= wav[i]-1; mi++){       
       for (ii=1;ii<=nlstate+ndeath;ii++)          s1=s[mw[mi][i]][i];
         for (j=1;j<=nlstate+ndeath;j++){          s2=s[mw[mi+1][i]][i];
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);          bbh=(double)bh[mi][i]/(double)stepm;
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }          ipmx +=1;
       for(d=0; d<dh[mi][i]; d++){          sw += weight[i];
         newm=savm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        } /* end of wave */
         for (kk=1; kk<=cptcovage;kk++) {      } /* end of individual */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    }  else if(mle==3){  /* exponential inter-extrapolation */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        for(mi=1; mi<= wav[i]-1; mi++){
         savm=oldm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         oldm=newm;            for (j=1;j<=nlstate+ndeath;j++){
       } /* end mult */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                     savm[ii][j]=(ii==j ? 1.0 : 0.0);
       s1=s[mw[mi][i]][i];            }
       s2=s[mw[mi+1][i]][i];          for(d=0; d<dh[mi][i]; d++){
       bbh=(double)bh[mi][i]/(double)stepm;             newm=savm;
       /* bias is positive if real duration            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        * is higher than the multiple of stepm and negative otherwise.            for (kk=1; kk<=cptcovage;kk++) {
        */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if( s2 > nlstate && (mle <5) ){  /* Jackson */            }
         lli=log(out[s1][s2] - savm[s1][s2]);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       } else if (mle==1){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */            savm=oldm;
       } else if(mle==2){            oldm=newm;
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          } /* end mult */
       } else if(mle==3){  /* exponential inter-extrapolation */       
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          s1=s[mw[mi][i]][i];
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          s2=s[mw[mi+1][i]][i];
         lli=log(out[s1][s2]); /* Original formula */          bbh=(double)bh[mi][i]/(double)stepm;
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         lli=log(out[s1][s2]); /* Original formula */          ipmx +=1;
       } /* End of if */          sw += weight[i];
       ipmx +=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       sw += weight[i];        } /* end of wave */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } /* end of individual */
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       if(globpr){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
  %10.6f %10.6f %10.6f ", \        for(mi=1; mi<= wav[i]-1; mi++){
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],          for (ii=1;ii<=nlstate+ndeath;ii++)
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);            for (j=1;j<=nlstate+ndeath;j++){
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           llt +=ll[k]*gipmx/gsw;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            }
         }          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficresilk," %10.6f\n", -llt);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     } /* end of wave */            for (kk=1; kk<=cptcovage;kk++) {
   } /* end of individual */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */         
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if(globpr==0){ /* First time we count the contributions and weights */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gipmx=ipmx;            savm=oldm;
     gsw=sw;            oldm=newm;
   }          } /* end mult */
   return -l;       
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){
 /*************** function likelione ***********/            lli=log(out[s1][s2] - savm[s1][s2]);
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          }else{
 {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* This routine should help understanding what is done with           }
      the selection of individuals/waves and          ipmx +=1;
      to check the exact contribution to the likelihood.          sw += weight[i];
      Plotting could be done.          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    */  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int k;        } /* end of wave */
       } /* end of individual */
   if(*globpri !=0){ /* Just counts and sums, no printings */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     strcpy(fileresilk,"ilk");       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     strcat(fileresilk,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Problem with resultfile: %s\n", fileresilk);          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            }
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */          for(d=0; d<dh[mi][i]; d++){
     for(k=1; k<=nlstate; k++)             newm=savm;
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   *fretone=(*funcone)(p);         
   if(*globpri !=0){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fclose(ficresilk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));            savm=oldm;
     fflush(fichtm);             oldm=newm;
   }           } /* end mult */
   return;       
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /*********** Maximum Likelihood Estimation ***************/          ipmx +=1;
           sw += weight[i];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int i,j, iter;        } /* end of wave */
   double **xi;      } /* end of individual */
   double fret;    } /* End of if */
   double fretone; /* Only one call to likelihood */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /*  char filerespow[FILENAMELENGTH];*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   xi=matrix(1,npar,1,npar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for (i=1;i<=npar;i++)    return -l;
     for (j=1;j<=npar;j++)  }
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  /*************** log-likelihood *************/
   strcpy(filerespow,"pow");   double funcone( double *x)
   strcat(filerespow,fileres);  {
   if((ficrespow=fopen(filerespow,"w"))==NULL) {    /* Same as likeli but slower because of a lot of printf and if */
     printf("Problem with resultfile: %s\n", filerespow);    int i, ii, j, k, mi, d, kk;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   }    double **out;
   fprintf(ficrespow,"# Powell\n# iter -2*LL");    double lli; /* Individual log likelihood */
   for (i=1;i<=nlstate;i++)    double llt;
     for(j=1;j<=nlstate+ndeath;j++)    int s1, s2;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);    double bbh, survp;
   fprintf(ficrespow,"\n");    /*extern weight */
     /* We are differentiating ll according to initial status */
   powell(p,xi,npar,ftol,&iter,&fret,func);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++)
   fclose(ficrespow);      printf(" %d\n",s[4][i]);
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    cov[1]=1.;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /**** Computes Hessian and covariance matrix ***/      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(mi=1; mi<= wav[i]-1; mi++){
 {        for (ii=1;ii<=nlstate+ndeath;ii++)
   double  **a,**y,*x,pd;          for (j=1;j<=nlstate+ndeath;j++){
   double **hess;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j,jk;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int *indx;          }
         for(d=0; d<dh[mi][i]; d++){
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);          newm=savm;
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   void lubksb(double **a, int npar, int *indx, double b[]) ;          for (kk=1; kk<=cptcovage;kk++) {
   void ludcmp(double **a, int npar, int *indx, double *d) ;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double gompertz(double p[]);          }
   hess=matrix(1,npar,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("\nCalculation of the hessian matrix. Wait...\n");          savm=oldm;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          oldm=newm;
   for (i=1;i<=npar;i++){        } /* end mult */
     printf("%d",i);fflush(stdout);       
     fprintf(ficlog,"%d",i);fflush(ficlog);        s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        bbh=(double)bh[mi][i]/(double)stepm;
             /* bias is positive if real duration
     /*  printf(" %f ",p[i]);         * is higher than the multiple of stepm and negative otherwise.
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/         */
   }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++) {        } else if  (s2==-2) {
     for (j=1;j<=npar;j++)  {          for (j=1,survp=0. ; j<=nlstate; j++)
       if (j>i) {             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         printf(".%d%d",i,j);fflush(stdout);          lli= log(survp);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        }else if (mle==1){
         hess[i][j]=hessij(p,delti,i,j,func,npar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 } else if(mle==2){
         hess[j][i]=hess[i][j];              lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         /*printf(" %lf ",hess[i][j]);*/        } else if(mle==3){  /* exponential inter-extrapolation */
       }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
   printf("\n");        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficlog,"\n");          lli=log(out[s1][s2]); /* Original formula */
         } /* End of if */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        ipmx +=1;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   a=matrix(1,npar,1,npar);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   y=matrix(1,npar,1,npar);        if(globpr){
   x=vector(1,npar);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   indx=ivector(1,npar);   %11.6f %11.6f %11.6f ", \
   for (i=1;i<=npar;i++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   ludcmp(a,npar,indx,&pd);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   for (j=1;j<=npar;j++) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for (i=1;i<=npar;i++) x[i]=0;          }
     x[j]=1;          fprintf(ficresilk," %10.6f\n", -llt);
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){       } /* end of wave */
       matcov[i][j]=x[i];    } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   printf("\n#Hessian matrix#\n");    if(globpr==0){ /* First time we count the contributions and weights */
   fprintf(ficlog,"\n#Hessian matrix#\n");      gipmx=ipmx;
   for (i=1;i<=npar;i++) {       gsw=sw;
     for (j=1;j<=npar;j++) {     }
       printf("%.3e ",hess[i][j]);    return -l;
       fprintf(ficlog,"%.3e ",hess[i][j]);  }
     }  
     printf("\n");  
     fprintf(ficlog,"\n");  /*************** function likelione ***********/
   }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
   /* Recompute Inverse */    /* This routine should help understanding what is done with
   for (i=1;i<=npar;i++)       the selection of individuals/waves and
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       to check the exact contribution to the likelihood.
   ludcmp(a,npar,indx,&pd);       Plotting could be done.
      */
   /*  printf("\n#Hessian matrix recomputed#\n");    int k;
   
   for (j=1;j<=npar;j++) {    if(*globpri !=0){ /* Just counts and sums, no printings */
     for (i=1;i<=npar;i++) x[i]=0;      strcpy(fileresilk,"ilk");
     x[j]=1;      strcat(fileresilk,fileres);
     lubksb(a,npar,indx,x);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for (i=1;i<=npar;i++){         printf("Problem with resultfile: %s\n", fileresilk);
       y[i][j]=x[i];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       printf("%.3e ",y[i][j]);      }
       fprintf(ficlog,"%.3e ",y[i][j]);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     printf("\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fprintf(ficlog,"\n");      for(k=1; k<=nlstate; k++)
   }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    *fretone=(*funcone)(p);
   free_vector(x,1,npar);    if(*globpri !=0){
   free_ivector(indx,1,npar);      fclose(ficresilk);
   free_matrix(hess,1,npar,1,npar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm);
     }
 }    return;
   }
 /*************** hessian matrix ****************/  
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)  
 {  /*********** Maximum Likelihood Estimation ***************/
   int i;  
   int l=1, lmax=20;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double k1,k2;  {
   double p2[NPARMAX+1];    int i,j, iter;
   double res;    double **xi;
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double fret;
   double fx;    double fretone; /* Only one call to likelihood */
   int k=0,kmax=10;    /*  char filerespow[FILENAMELENGTH];*/
   double l1;    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   fx=func(x);      for (j=1;j<=npar;j++)
   for (i=1;i<=npar;i++) p2[i]=x[i];        xi[i][j]=(i==j ? 1.0 : 0.0);
   for(l=0 ; l <=lmax; l++){    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     l1=pow(10,l);    strcpy(filerespow,"pow");
     delts=delt;    strcat(filerespow,fileres);
     for(k=1 ; k <kmax; k=k+1){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       delt = delta*(l1*k);      printf("Problem with resultfile: %s\n", filerespow);
       p2[theta]=x[theta] +delt;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       k1=func(p2)-fx;    }
       p2[theta]=x[theta]-delt;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       k2=func(p2)-fx;    for (i=1;i<=nlstate;i++)
       /*res= (k1-2.0*fx+k2)/delt/delt; */      for(j=1;j<=nlstate+ndeath;j++)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           fprintf(ficrespow,"\n");
 #ifdef DEBUG  
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    powell(p,xi,npar,ftol,&iter,&fret,func);
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif    free_matrix(xi,1,npar,1,npar);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    fclose(ficrespow);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         k=kmax;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  }
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   /**** Computes Hessian and covariance matrix ***/
         delts=delt;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     }    double  **a,**y,*x,pd;
   }    double **hess;
   delti[theta]=delts;    int i, j,jk;
   return res;     int *indx;
     
 }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)    void lubksb(double **a, int npar, int *indx, double b[]) ;
 {    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int i;    double gompertz(double p[]);
   int l=1, l1, lmax=20;    hess=matrix(1,npar,1,npar);
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    printf("\nCalculation of the hessian matrix. Wait...\n");
   int k;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   fx=func(x);      printf("%d",i);fflush(stdout);
   for (k=1; k<=2; k++) {      fprintf(ficlog,"%d",i);fflush(ficlog);
     for (i=1;i<=npar;i++) p2[i]=x[i];     
     p2[thetai]=x[thetai]+delti[thetai]/k;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;     
     k1=func(p2)-fx;      /*  printf(" %f ",p[i]);
             printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;    }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   
     k2=func(p2)-fx;    for (i=1;i<=npar;i++) {
         for (j=1;j<=npar;j++)  {
     p2[thetai]=x[thetai]-delti[thetai]/k;        if (j>i) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          printf(".%d%d",i,j);fflush(stdout);
     k3=func(p2)-fx;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
             hess[i][j]=hessij(p,delti,i,j,func,npar);
     p2[thetai]=x[thetai]-delti[thetai]/k;         
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          hess[j][i]=hess[i][j];    
     k4=func(p2)-fx;          /*printf(" %lf ",hess[i][j]);*/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        }
 #ifdef DEBUG      }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    printf("\n");
 #endif    fprintf(ficlog,"\n");
   }  
   return res;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    
 /************** Inverse of matrix **************/    a=matrix(1,npar,1,npar);
 void ludcmp(double **a, int n, int *indx, double *d)     y=matrix(1,npar,1,npar);
 {     x=vector(1,npar);
   int i,imax,j,k;     indx=ivector(1,npar);
   double big,dum,sum,temp;     for (i=1;i<=npar;i++)
   double *vv;       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      ludcmp(a,npar,indx,&pd);
   vv=vector(1,n);   
   *d=1.0;     for (j=1;j<=npar;j++) {
   for (i=1;i<=n;i++) {       for (i=1;i<=npar;i++) x[i]=0;
     big=0.0;       x[j]=1;
     for (j=1;j<=n;j++)       lubksb(a,npar,indx,x);
       if ((temp=fabs(a[i][j])) > big) big=temp;       for (i=1;i<=npar;i++){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");         matcov[i][j]=x[i];
     vv[i]=1.0/big;       }
   }     }
   for (j=1;j<=n;j++) {   
     for (i=1;i<j;i++) {     printf("\n#Hessian matrix#\n");
       sum=a[i][j];     fprintf(ficlog,"\n#Hessian matrix#\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];     for (i=1;i<=npar;i++) {
       a[i][j]=sum;       for (j=1;j<=npar;j++) {
     }         printf("%.3e ",hess[i][j]);
     big=0.0;         fprintf(ficlog,"%.3e ",hess[i][j]);
     for (i=j;i<=n;i++) {       }
       sum=a[i][j];       printf("\n");
       for (k=1;k<j;k++)       fprintf(ficlog,"\n");
         sum -= a[i][k]*a[k][j];     }
       a[i][j]=sum;   
       if ( (dum=vv[i]*fabs(sum)) >= big) {     /* Recompute Inverse */
         big=dum;     for (i=1;i<=npar;i++)
         imax=i;       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }     ludcmp(a,npar,indx,&pd);
     }   
     if (j != imax) {     /*  printf("\n#Hessian matrix recomputed#\n");
       for (k=1;k<=n;k++) {   
         dum=a[imax][k];     for (j=1;j<=npar;j++) {
         a[imax][k]=a[j][k];       for (i=1;i<=npar;i++) x[i]=0;
         a[j][k]=dum;       x[j]=1;
       }       lubksb(a,npar,indx,x);
       *d = -(*d);       for (i=1;i<=npar;i++){
       vv[imax]=vv[j];         y[i][j]=x[i];
     }         printf("%.3e ",y[i][j]);
     indx[j]=imax;         fprintf(ficlog,"%.3e ",y[i][j]);
     if (a[j][j] == 0.0) a[j][j]=TINY;       }
     if (j != n) {       printf("\n");
       dum=1.0/(a[j][j]);       fprintf(ficlog,"\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;     }
     }     */
   }   
   free_vector(vv,1,n);  /* Doesn't work */    free_matrix(a,1,npar,1,npar);
 ;    free_matrix(y,1,npar,1,npar);
 }     free_vector(x,1,npar);
     free_ivector(indx,1,npar);
 void lubksb(double **a, int n, int *indx, double b[])     free_matrix(hess,1,npar,1,npar);
 {   
   int i,ii=0,ip,j;   
   double sum;   }
    
   for (i=1;i<=n;i++) {   /*************** hessian matrix ****************/
     ip=indx[i];   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     sum=b[ip];   {
     b[ip]=b[i];     int i;
     if (ii)     int l=1, lmax=20;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     double k1,k2;
     else if (sum) ii=i;     double p2[NPARMAX+1];
     b[i]=sum;     double res;
   }     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   for (i=n;i>=1;i--) {     double fx;
     sum=b[i];     int k=0,kmax=10;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     double l1;
     b[i]=sum/a[i][i];   
   }     fx=func(x);
 }     for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
 /************ Frequencies ********************/      l1=pow(10,l);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)      delts=delt;
 {  /* Some frequencies */      for(k=1 ; k <kmax; k=k+1){
           delt = delta*(l1*k);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        p2[theta]=x[theta] +delt;
   int first;        k1=func(p2)-fx;
   double ***freq; /* Frequencies */        p2[theta]=x[theta]-delt;
   double *pp, **prop;        k2=func(p2)-fx;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   FILE *ficresp;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   char fileresp[FILENAMELENGTH];       
     #ifdef DEBUG
   pp=vector(1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   prop=matrix(1,nlstate,iagemin,iagemax+3);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   strcpy(fileresp,"p");  #endif
   strcat(fileresp,fileres);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   if((ficresp=fopen(fileresp,"w"))==NULL) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     printf("Problem with prevalence resultfile: %s\n", fileresp);          k=kmax;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        }
     exit(0);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
   freq= ma3x(-2,nlstate+ndeath,-2,nlstate+ndeath,iagemin,iagemax+3);        }
   j1=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
             delts=delt;
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      }
     }
   first=1;    delti[theta]=delts;
     return res;
   for(k1=1; k1<=j;k1++){   
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         scanf("%d", i);*/  {
       for (i=-2; i<=nlstate+ndeath; i++)      int i;
         for (jk=-2; jk<=nlstate+ndeath; jk++)      int l=1, l1, lmax=20;
           for(m=iagemin; m <= iagemax+3; m++)    double k1,k2,k3,k4,res,fx;
             freq[i][jk][m]=0;    double p2[NPARMAX+1];
     int k;
     for (i=1; i<=nlstate; i++)    
       for(m=iagemin; m <= iagemax+3; m++)    fx=func(x);
         prop[i][m]=0;    for (k=1; k<=2; k++) {
             for (i=1;i<=npar;i++) p2[i]=x[i];
       dateintsum=0;      p2[thetai]=x[thetai]+delti[thetai]/k;
       k2cpt=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for (i=1; i<=imx; i++) {      k1=func(p2)-fx;
         bool=1;   
         if  (cptcovn>0) {      p2[thetai]=x[thetai]+delti[thetai]/k;
           for (z1=1; z1<=cptcoveff; z1++)       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       k2=func(p2)-fx;
               bool=0;   
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
         if (bool==1){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           for(m=firstpass; m<=lastpass; m++){      k3=func(p2)-fx;
             k2=anint[m][i]+(mint[m][i]/12.);   
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/      p2[thetai]=x[thetai]-delti[thetai]/k;
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;      k4=func(p2)-fx;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
               if (m<lastpass) {  #ifdef DEBUG
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               }  #endif
                   }
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    return res;
                 dateintsum=dateintsum+k2;  }
                 k2cpt++;  
               }  /************** Inverse of matrix **************/
               /*}*/  void ludcmp(double **a, int n, int *indx, double *d)
           }  {
         }    int i,imax,j,k;
       }    double big,dum,sum,temp;
            double *vv;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/   
     vv=vector(1,n);
       if  (cptcovn>0) {    *d=1.0;
         fprintf(ficresp, "\n#********** Variable ");     for (i=1;i<=n;i++) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      big=0.0;
         fprintf(ficresp, "**********\n#");      for (j=1;j<=n;j++)
       }        if ((temp=fabs(a[i][j])) > big) big=temp;
       for(i=1; i<=nlstate;i++)       if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);      vv[i]=1.0/big;
       fprintf(ficresp, "\n");    }
           for (j=1;j<=n;j++) {
       for(i=iagemin; i <= iagemax+3; i++){      for (i=1;i<j;i++) {
         if(i==iagemax+3){        sum=a[i][j];
           fprintf(ficlog,"Total");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
         }else{        a[i][j]=sum;
           if(first==1){      }
             first=0;      big=0.0;
             printf("See log file for details...\n");      for (i=j;i<=n;i++) {
           }        sum=a[i][j];
           fprintf(ficlog,"Age %d", i);        for (k=1;k<j;k++)
         }          sum -= a[i][k]*a[k][j];
         for(jk=1; jk <=nlstate ; jk++){        a[i][j]=sum;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        if ( (dum=vv[i]*fabs(sum)) >= big) {
             pp[jk] += freq[jk][m][i];           big=dum;
         }          imax=i;
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pos=0; m <=0 ; m++)      }
             pos += freq[jk][m][i];      if (j != imax) {
           if(pp[jk]>=1.e-10){        for (k=1;k<=n;k++) {
             if(first==1){          dum=a[imax][k];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          a[imax][k]=a[j][k];
             }          a[j][k]=dum;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           }else{        *d = -(*d);
             if(first==1)        vv[imax]=vv[j];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      indx[j]=imax;
           }      if (a[j][j] == 0.0) a[j][j]=TINY;
         }      if (j != n) {
         dum=1.0/(a[j][j]);
         for(jk=1; jk <=nlstate ; jk++){        for (i=j+1;i<=n;i++) a[i][j] *= dum;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
             pp[jk] += freq[jk][m][i];    }
         }           free_vector(vv,1,n);  /* Doesn't work */
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){  ;
           pos += pp[jk];  }
           posprop += prop[jk][i];  
         }  void lubksb(double **a, int n, int *indx, double b[])
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5){    int i,ii=0,ip,j;
             if(first==1)    double sum;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);   
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (i=1;i<=n;i++) {
           }else{      ip=indx[i];
             if(first==1)      sum=b[ip];
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      b[ip]=b[i];
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      if (ii)
           }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
           if( i <= iagemax){      else if (sum) ii=i;
             if(pos>=1.e-5){      b[i]=sum;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    }
               /*probs[i][jk][j1]= pp[jk]/pos;*/    for (i=n;i>=1;i--) {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      sum=b[i];
             }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
             else      b[i]=sum/a[i][i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    }
           }  }
         }  
           void pstamp(FILE *fichier)
         for(jk=-1; jk <=nlstate+ndeath; jk++)  {
           for(m=-1; m <=nlstate+ndeath; m++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             if(freq[jk][m][i] !=0 ) {  }
             if(first==1)  
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /************ Frequencies ********************/
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             }  {  /* Some frequencies */
         if(i <= iagemax)   
           fprintf(ficresp,"\n");    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         if(first==1)    int first;
           printf("Others in log...\n");    double ***freq; /* Frequencies */
         fprintf(ficlog,"\n");    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    char fileresp[FILENAMELENGTH];
   }   
   dateintmean=dateintsum/k2cpt;     pp=vector(1,nlstate);
      prop=matrix(1,nlstate,iagemin,iagemax+3);
   fclose(ficresp);    strcpy(fileresp,"p");
   free_ma3x(freq,-2,nlstate+ndeath,-2,nlstate+ndeath, iagemin, iagemax+3);    strcat(fileresp,fileres);
   free_vector(pp,1,nlstate);    if((ficresp=fopen(fileresp,"w"))==NULL) {
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   /* End of Freq */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 }      exit(0);
     }
 /************ Prevalence ********************/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    j1=0;
 {     
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    j=cptcoveff;
      in each health status at the date of interview (if between dateprev1 and dateprev2).    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      We still use firstpass and lastpass as another selection.  
   */    first=1;
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for(k1=1; k1<=j;k1++){
   double ***freq; /* Frequencies */      for(i1=1; i1<=ncodemax[k1];i1++){
   double *pp, **prop;        j1++;
   double pos,posprop;         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double  y2; /* in fractional years */          scanf("%d", i);*/
   int iagemin, iagemax;        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
   iagemin= (int) agemin;            for(m=iagemin; m <= iagemax+3; m++)
   iagemax= (int) agemax;              freq[i][jk][m]=0;
   /*pp=vector(1,nlstate);*/  
   prop=matrix(1,nlstate,iagemin,iagemax+3);       for (i=1; i<=nlstate; i++)  
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        for(m=iagemin; m <= iagemax+3; m++)
   j1=0;          prop[i][m]=0;
          
   j=cptcoveff;        dateintsum=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        k2cpt=0;
           for (i=1; i<=imx; i++) {
   for(k1=1; k1<=j;k1++){          bool=1;
     for(i1=1; i1<=ncodemax[k1];i1++){          if  (cptcovn>0) {
       j1++;            for (z1=1; z1<=cptcoveff; z1++)
                     if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
       for (i=1; i<=nlstate; i++)                  bool=0;
         for(m=iagemin; m <= iagemax+3; m++)          }
           prop[i][m]=0.0;          if (bool==1){
                  for(m=firstpass; m<=lastpass; m++){
       for (i=1; i<=imx; i++) { /* Each individual */              k2=anint[m][i]+(mint[m][i]/12.);
         bool=1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         if  (cptcovn>0) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           for (z1=1; z1<=cptcoveff; z1++)                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               bool=0;                if (m<lastpass) {
         }                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         if (bool==1) {                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/                }
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */               
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;                  dateintsum=dateintsum+k2;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;                  k2cpt++;
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);                 }
               if (s[m][i]>0 && s[m][i]<=nlstate) {                 /*}*/
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/            }
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];          }
                 prop[s[m][i]][iagemax+3] += weight[i];         }
               }          
             }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           } /* end selection of waves */        pstamp(ficresp);
         }        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable ");
       for(i=iagemin; i <= iagemax+3; i++){            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   fprintf(ficresp, "**********\n#");
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {         }
           posprop += prop[jk][i];         for(i=1; i<=nlstate;i++)
         }           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
         for(jk=1; jk <=nlstate ; jk++){            
           if( i <=  iagemax){         for(i=iagemin; i <= iagemax+3; i++){
             if(posprop>=1.e-5){           if(i==iagemax+3){
               probs[i][jk][j1]= prop[jk][i]/posprop;            fprintf(ficlog,"Total");
             }           }else{
           }             if(first==1){
         }/* end jk */               first=0;
       }/* end i */               printf("See log file for details...\n");
     } /* end i1 */            }
   } /* end k1 */            fprintf(ficlog,"Age %d", i);
             }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/          for(jk=1; jk <=nlstate ; jk++){
   /*free_vector(pp,1,nlstate);*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);              pp[jk] += freq[jk][m][i];
 }  /* End of prevalence */          }
           for(jk=1; jk <=nlstate ; jk++){
 /************* Waves Concatenation ***************/            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            if(pp[jk]>=1.e-10){
 {              if(first==1){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      Death is a valid wave (if date is known).              }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]            }else{
      and mw[mi+1][i]. dh depends on stepm.              if(first==1)
      */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, mi, m;            }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          }
      double sum=0., jmean=0.;*/  
   int first;          for(jk=1; jk <=nlstate ; jk++){
   int j, k=0,jk, ju, jl;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double sum=0.;              pp[jk] += freq[jk][m][i];
   first=0;          }      
   jmin=1e+5;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   jmax=-1;            pos += pp[jk];
   jmean=0.;            posprop += prop[jk][i];
   for(i=1; i<=imx; i++){          }
     mi=0;          for(jk=1; jk <=nlstate ; jk++){
     m=firstpass;            if(pos>=1.e-5){
     while(s[m][i] <= nlstate){              if(first==1)
       if(s[m][i]>=1 || s[m][i]==-2)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         mw[++mi][i]=m;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if(m >=lastpass)            }else{
         break;              if(first==1)
       else                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         m++;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }/* end while */            }
     if (s[m][i] > nlstate){            if( i <= iagemax){
       mi++;     /* Death is another wave */              if(pos>=1.e-5){
       /* if(mi==0)  never been interviewed correctly before death */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
          /* Only death is a correct wave */                /*probs[i][jk][j1]= pp[jk]/pos;*/
       mw[mi][i]=m;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     }              }
               else
     wav[i]=mi;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     if(mi==0){            }
       nbwarn++;          }
       if(first==0){         
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);          for(jk=-1; jk <=nlstate+ndeath; jk++)
         first=1;            for(m=-1; m <=nlstate+ndeath; m++)
       }              if(freq[jk][m][i] !=0 ) {
       if(first==1){              if(first==1)
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     } /* end mi==0 */              }
   } /* End individuals */          if(i <= iagemax)
             fprintf(ficresp,"\n");
   for(i=1; i<=imx; i++){          if(first==1)
     for(mi=1; mi<wav[i];mi++){            printf("Others in log...\n");
       if (stepm <=0)          fprintf(ficlog,"\n");
         dh[mi][i]=1;        }
       else{      }
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    }
           if (agedc[i] < 2*AGESUP) {    dateintmean=dateintsum/k2cpt;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    
             if(j==0) j=1;  /* Survives at least one month after exam */    fclose(ficresp);
             else if(j<0){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
               nberr++;    free_vector(pp,1,nlstate);
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
               j=1; /* Temporary Dangerous patch */    /* End of Freq */
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);  }
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);  /************ Prevalence ********************/
             }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             k=k+1;  {  
             if (j >= jmax) jmax=j;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             if (j <= jmin) jmin=j;       in each health status at the date of interview (if between dateprev1 and dateprev2).
             sum=sum+j;       We still use firstpass and lastpass as another selection.
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    */
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/   
           }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         }    double ***freq; /* Frequencies */
         else{    double *pp, **prop;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double pos,posprop;
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */    double  y2; /* in fractional years */
     int iagemin, iagemax;
           k=k+1;  
           if (j >= jmax) jmax=j;    iagemin= (int) agemin;
           else if (j <= jmin)jmin=j;    iagemax= (int) agemax;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    /*pp=vector(1,nlstate);*/
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
           if(j<0){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             nberr++;    j1=0;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);   
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    j=cptcoveff;
           }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           sum=sum+j;   
         }    for(k1=1; k1<=j;k1++){
         jk= j/stepm;      for(i1=1; i1<=ncodemax[k1];i1++){
         jl= j -jk*stepm;        j1++;
         ju= j -(jk+1)*stepm;       
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */        for (i=1; i<=nlstate; i++)  
           if(jl==0){          for(m=iagemin; m <= iagemax+3; m++)
             dh[mi][i]=jk;            prop[i][m]=0.0;
             bh[mi][i]=0;       
           }else{ /* We want a negative bias in order to only have interpolation ie        for (i=1; i<=imx; i++) { /* Each individual */
                   * at the price of an extra matrix product in likelihood */          bool=1;
             dh[mi][i]=jk+1;          if  (cptcovn>0) {
             bh[mi][i]=ju;            for (z1=1; z1<=cptcoveff; z1++)
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
         }else{                bool=0;
           if(jl <= -ju){          }
             dh[mi][i]=jk;          if (bool==1) {
             bh[mi][i]=jl;       /* bias is positive if real duration            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                                  * is higher than the multiple of stepm and negative otherwise.              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                                  */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           else{                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             dh[mi][i]=jk+1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
             bh[mi][i]=ju;                if (s[m][i]>0 && s[m][i]<=nlstate) {
           }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           if(dh[mi][i]==0){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             dh[mi][i]=1; /* At least one step */                  prop[s[m][i]][iagemax+3] += weight[i];
             bh[mi][i]=ju; /* At least one step */                }
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/              }
           }            } /* end selection of waves */
         } /* end if mle */          }
       }        }
     } /* end wave */        for(i=iagemin; i <= iagemax+3; i++){  
   }         
   jmean=sum/k;          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);            posprop += prop[jk][i];
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          }
  }  
           for(jk=1; jk <=nlstate ; jk++){    
 /*********** Tricode ****************************/            if( i <=  iagemax){
 void tricode(int *Tvar, int **nbcode, int imx)              if(posprop>=1.e-5){
 {                probs[i][jk][j1]= prop[jk][i]/posprop;
                 }
   int Ndum[20],ij=1, k, j, i, maxncov=19;            }
   int cptcode=0;          }/* end jk */
   cptcoveff=0;         }/* end i */
        } /* end i1 */
   for (k=0; k<maxncov; k++) Ndum[k]=0;    } /* end k1 */
   for (k=1; k<=7; k++) ncodemax[k]=0;   
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /*free_vector(pp,1,nlstate);*/
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                                modality*/   }  /* End of prevalence */
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/  
       Ndum[ij]++; /*store the modality */  /************* Waves Concatenation ***************/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                                        Tvar[j]. If V=sex and male is 0 and   {
                                        female is 1, then  cptcode=1.*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     for (i=0; i<=cptcode; i++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */       and mw[mi+1][i]. dh depends on stepm.
     }       */
   
     ij=1;     int i, mi, m;
     for (i=1; i<=ncodemax[j]; i++) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for (k=0; k<= maxncov; k++) {       double sum=0., jmean=0.;*/
         if (Ndum[k] != 0) {    int first;
           nbcode[Tvar[j]][ij]=k;     int j, k=0,jk, ju, jl;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    double sum=0.;
               first=0;
           ij++;    jmin=1e+5;
         }    jmax=-1;
         if (ij > ncodemax[j]) break;     jmean=0.;
       }      for(i=1; i<=imx; i++){
     }       mi=0;
   }        m=firstpass;
       while(s[m][i] <= nlstate){
  for (k=0; k< maxncov; k++) Ndum[k]=0;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
  for (i=1; i<=ncovmodel-2; i++) {         if(m >=lastpass)
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          break;
    ij=Tvar[i];        else
    Ndum[ij]++;          m++;
  }      }/* end while */
       if (s[m][i] > nlstate){
  ij=1;        mi++;     /* Death is another wave */
  for (i=1; i<= maxncov; i++) {        /* if(mi==0)  never been interviewed correctly before death */
    if((Ndum[i]!=0) && (i<=ncovcol)){           /* Only death is a correct wave */
      Tvaraff[ij]=i; /*For printing */        mw[mi][i]=m;
      ij++;      }
    }  
  }      wav[i]=mi;
        if(mi==0){
  cptcoveff=ij-1; /*Number of simple covariates*/        nbwarn++;
 }        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 /*********** Health Expectancies ****************/          first=1;
         }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 {        }
   /* Health expectancies */      } /* end mi==0 */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    } /* End individuals */
   double age, agelim, hf;  
   double ***p3mat,***varhe;    for(i=1; i<=imx; i++){
   double **dnewm,**doldm;      for(mi=1; mi<wav[i];mi++){
   double *xp;        if (stepm <=0)
   double **gp, **gm;          dh[mi][i]=1;
   double ***gradg, ***trgradg;        else{
   int theta;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
   xp=vector(1,npar);              if(j==0) j=1;  /* Survives at least one month after exam */
   dnewm=matrix(1,nlstate*nlstate,1,npar);              else if(j<0){
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);                nberr++;
                   printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficreseij,"# Health expectancies\n");                j=1; /* Temporary Dangerous patch */
   fprintf(ficreseij,"# Age");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for(i=1; i<=nlstate;i++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=1; j<=nlstate;j++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);              }
   fprintf(ficreseij,"\n");              k=k+1;
               if (j >= jmax){
   if(estepm < stepm){                jmax=j;
     printf ("Problem %d lower than %d\n",estepm, stepm);                ijmax=i;
   }              }
   else  hstepm=estepm;                 if (j <= jmin){
   /* We compute the life expectancy from trapezoids spaced every estepm months                jmin=j;
    * This is mainly to measure the difference between two models: for example                ijmin=i;
    * if stepm=24 months pijx are given only every 2 years and by summing them              }
    * we are calculating an estimate of the Life Expectancy assuming a linear               sum=sum+j;
    * progression in between and thus overestimating or underestimating according              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    * to the curvature of the survival function. If, for the same date, we               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            }
    * to compare the new estimate of Life expectancy with the same linear           }
    * hypothesis. A more precise result, taking into account a more precise          else{
    * curvature will be obtained if estepm is as small as stepm. */            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.             k=k+1;
      nhstepm is the number of hstepm from age to agelim             if (j >= jmax) {
      nstepm is the number of stepm from age to agelin.               jmax=j;
      Look at hpijx to understand the reason of that which relies in memory size              ijmax=i;
      and note for a fixed period like estepm months */            }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            else if (j <= jmin){
      survival function given by stepm (the optimization length). Unfortunately it              jmin=j;
      means that if the survival funtion is printed only each two years of age and if              ijmin=i;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same             }
      results. So we changed our mind and took the option of the best precision.            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */             if(j<0){
               nberr++;
   agelim=AGESUP;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     /* nhstepm age range expressed in number of stepm */            }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);             sum=sum+j;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           }
     /* if (stepm >= YEARM) hstepm=1;*/          jk= j/stepm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          jl= j -jk*stepm;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ju= j -(jk+1)*stepm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     gp=matrix(0,nhstepm,1,nlstate*nlstate);            if(jl==0){
     gm=matrix(0,nhstepm,1,nlstate*nlstate);              dh[mi][i]=jk;
               bh[mi][i]=0;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            }else{ /* We want a negative bias in order to only have interpolation ie
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */                    * at the price of an extra matrix product in likelihood */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                dh[mi][i]=jk+1;
                bh[mi][i]=ju;
             }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          }else{
             if(jl <= -ju){
     /* Computing  Variances of health expectancies */              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
      for(theta=1; theta <=npar; theta++){                                   * is higher than the multiple of stepm and negative otherwise.
       for(i=1; i<=npar; i++){                                    */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }            else{
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                dh[mi][i]=jk+1;
                 bh[mi][i]=ju;
       cptj=0;            }
       for(j=1; j<= nlstate; j++){            if(dh[mi][i]==0){
         for(i=1; i<=nlstate; i++){              dh[mi][i]=1; /* At least one step */
           cptj=cptj+1;              bh[mi][i]=ju; /* At least one step */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            }
           }          } /* end if mle */
         }        }
       }      } /* end wave */
          }
          jmean=sum/k;
       for(i=1; i<=npar; i++)     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     }
         
       cptj=0;  /*********** Tricode ****************************/
       for(j=1; j<= nlstate; j++){  void tricode(int *Tvar, int **nbcode, int imx)
         for(i=1;i<=nlstate;i++){  {
           cptj=cptj+1;   
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    cptcoveff=0;
           }   
         }    for (k=0; k<maxncov; k++) Ndum[k]=0;
       }    for (k=1; k<=7; k++) ncodemax[k]=0;
       for(j=1; j<= nlstate*nlstate; j++)  
         for(h=0; h<=nhstepm-1; h++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
         }                                 modality*/
      }         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
            Ndum[ij]++; /*store the modality */
 /* End theta */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);                                         Tvar[j]. If V=sex and male is 0 and
                                          female is 1, then  cptcode=1.*/
      for(h=0; h<=nhstepm-1; h++)      }
       for(j=1; j<=nlstate*nlstate;j++)  
         for(theta=1; theta <=npar; theta++)      for (i=0; i<=cptcode; i++) {
           trgradg[h][j][theta]=gradg[h][theta][j];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
            }
   
      for(i=1;i<=nlstate*nlstate;i++)      ij=1;
       for(j=1;j<=nlstate*nlstate;j++)      for (i=1; i<=ncodemax[j]; i++) {
         varhe[i][j][(int)age] =0.;        for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
      printf("%d|",(int)age);fflush(stdout);            nbcode[Tvar[j]][ij]=k;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      for(h=0;h<=nhstepm-1;h++){           
       for(k=0;k<=nhstepm-1;k++){            ij++;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          if (ij > ncodemax[j]) break;
         for(i=1;i<=nlstate*nlstate;i++)        }  
           for(j=1;j<=nlstate*nlstate;j++)      }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    }  
       }  
     }   for (k=0; k< maxncov; k++) Ndum[k]=0;
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)   for (i=1; i<=ncovmodel-2; i++) {
       for(j=1; j<=nlstate;j++)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){     ij=Tvar[i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;     Ndum[ij]++;
              }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
    ij=1;
         }   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
     fprintf(ficreseij,"%3.0f",age );       Tvaraff[ij]=i; /*For printing */
     cptj=0;       ij++;
     for(i=1; i<=nlstate;i++)     }
       for(j=1; j<=nlstate;j++){   }
         cptj++;   
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );   cptcoveff=ij-1; /*Number of simple covariates*/
       }  }
     fprintf(ficreseij,"\n");  
      /*********** Health Expectancies ****************/
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);  
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Health expectancies, no variances */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   printf("\n");    double age, agelim, hf;
   fprintf(ficlog,"\n");    double ***p3mat;
     double eip;
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    pstamp(ficreseij);
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    fprintf(ficreseij,"# Age");
 }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
 /************ Variance ******************/        fprintf(ficreseij," e%1d%1d ",i,j);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)      }
 {      fprintf(ficreseij," e%1d. ",i);
   /* Variance of health expectancies */    }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficreseij,"\n");
   /* double **newm;*/  
   double **dnewm,**doldm;   
   double **dnewmp,**doldmp;    if(estepm < stepm){
   int i, j, nhstepm, hstepm, h, nstepm ;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int k, cptcode;    }
   double *xp;    else  hstepm=estepm;  
   double **gp, **gm;  /* for var eij */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double ***gradg, ***trgradg; /*for var eij */     * This is mainly to measure the difference between two models: for example
   double **gradgp, **trgradgp; /* for var p point j */     * if stepm=24 months pijx are given only every 2 years and by summing them
   double *gpp, *gmp; /* for var p point j */     * we are calculating an estimate of the Life Expectancy assuming a linear
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */     * progression in between and thus overestimating or underestimating according
   double ***p3mat;     * to the curvature of the survival function. If, for the same date, we
   double age,agelim, hf;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double ***mobaverage;     * to compare the new estimate of Life expectancy with the same linear
   int theta;     * hypothesis. A more precise result, taking into account a more precise
   char digit[4];     * curvature will be obtained if estepm is as small as stepm. */
   char digitp[25];  
     /* For example we decided to compute the life expectancy with the smallest unit */
   char fileresprobmorprev[FILENAMELENGTH];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
        nhstepm is the number of hstepm from age to agelim
   if(popbased==1){       nstepm is the number of stepm from age to agelin.
     if(mobilav!=0)       Look at hpijx to understand the reason of that which relies in memory size
       strcpy(digitp,"-populbased-mobilav-");       and note for a fixed period like estepm months */
     else strcpy(digitp,"-populbased-nomobil-");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   else        means that if the survival funtion is printed only each two years of age and if
     strcpy(digitp,"-stablbased-");       you sum them up and add 1 year (area under the trapezoids) you won't get the same
        results. So we changed our mind and took the option of the best precision.
   if (mobilav!=0) {    */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){  
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    agelim=AGESUP;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    /* If stepm=6 months */
     }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
      
   strcpy(fileresprobmorprev,"prmorprev");   /* nhstepm age range expressed in number of stepm */
   sprintf(digit,"%-d",ij);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    /* if (stepm >= YEARM) hstepm=1;*/
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(fileresprobmorprev,fileres);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    for (age=bage; age<=fage; age ++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);     
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);     
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){      printf("%d|",(int)age);fflush(stdout);
     fprintf(ficresprobmorprev," p.%-d SE",j);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=1; i<=nlstate;i++)     
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }        /* Computing expectancies */
   fprintf(ficresprobmorprev,"\n");      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\n# Routine varevsij");        for(j=1; j<=nlstate;j++)
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
 /*   } */           
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");     
   for(i=1; i<=nlstate;i++)      fprintf(ficreseij,"%3.0f",age );
     for(j=1; j<=nlstate;j++)      for(i=1; i<=nlstate;i++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        eip=0;
   fprintf(ficresvij,"\n");        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   xp=vector(1,npar);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficreseij,"%9.4f", eip );
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);      }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficreseij,"\n");
      
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    }
   gpp=vector(nlstate+1,nlstate+ndeath);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   gmp=vector(nlstate+1,nlstate+ndeath);    printf("\n");
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    fprintf(ficlog,"\n");
      
   if(estepm < stepm){  }
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   else  hstepm=estepm;     
   /* For example we decided to compute the life expectancy with the smallest unit */  {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     /* Covariances of health expectancies eij and of total life expectancies according
      nhstepm is the number of hstepm from age to agelim      to initial status i, ei. .
      nstepm is the number of stepm from age to agelin.     */
      Look at hpijx to understand the reason of that which relies in memory size    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      and note for a fixed period like k years */    double age, agelim, hf;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double ***p3matp, ***p3matm, ***varhe;
      survival function given by stepm (the optimization length). Unfortunately it    double **dnewm,**doldm;
      means that if the survival funtion is printed every two years of age and if    double *xp, *xm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same     double **gp, **gm;
      results. So we changed our mind and took the option of the best precision.    double ***gradg, ***trgradg;
   */    int theta;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   agelim = AGESUP;    double eip, vip;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    xp=vector(1,npar);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    xm=vector(1,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate);   
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     for(theta=1; theta <=npar; theta++){    fprintf(ficresstdeij,"# Age");
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    for(i=1; i<=nlstate;i++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficresstdeij," e%1d. ",i);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
     fprintf(ficresstdeij,"\n");
       if (popbased==1) {  
         if(mobilav ==0){    pstamp(ficrescveij);
           for(i=1; i<=nlstate;i++)    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
             prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficrescveij,"# Age");
         }else{ /* mobilav */     for(i=1; i<=nlstate;i++)
           for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate;j++){
             prlim[i][i]=mobaverage[(int)age][i][ij];        cptj= (j-1)*nlstate+i;
         }        for(i2=1; i2<=nlstate;i2++)
       }          for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
       for(j=1; j<= nlstate; j++){            if(cptj2 <= cptj)
         for(h=0; h<=nhstepm; h++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }    fprintf(ficrescveij,"\n");
       }   
       /* This for computing probability of death (h=1 means    if(estepm < stepm){
          computed over hstepm matrices product = hstepm*stepm months)       printf ("Problem %d lower than %d\n",estepm, stepm);
          as a weighted average of prlim.    }
       */    else  hstepm=estepm;  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    /* We compute the life expectancy from trapezoids spaced every estepm months
         for(i=1,gpp[j]=0.; i<= nlstate; i++)     * This is mainly to measure the difference between two models: for example
           gpp[j] += prlim[i][i]*p3mat[i][j][1];     * if stepm=24 months pijx are given only every 2 years and by summing them
       }         * we are calculating an estimate of the Life Expectancy assuming a linear
       /* end probability of death */     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         xp[i] = x[i] - (i==theta ?delti[theta]:0);     * to compare the new estimate of Life expectancy with the same linear
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       * hypothesis. A more precise result, taking into account a more precise
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     * curvature will be obtained if estepm is as small as stepm. */
    
       if (popbased==1) {    /* For example we decided to compute the life expectancy with the smallest unit */
         if(mobilav ==0){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
           for(i=1; i<=nlstate;i++)       nhstepm is the number of hstepm from age to agelim
             prlim[i][i]=probs[(int)age][i][ij];       nstepm is the number of stepm from age to agelin.
         }else{ /* mobilav */        Look at hpijx to understand the reason of that which relies in memory size
           for(i=1; i<=nlstate;i++)       and note for a fixed period like estepm months */
             prlim[i][i]=mobaverage[(int)age][i][ij];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         }       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same
       for(j=1; j<= nlstate; j++){       results. So we changed our mind and took the option of the best precision.
         for(h=0; h<=nhstepm; h++){    */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
       /* This for computing probability of death (h=1 means    agelim=AGESUP;
          computed over hstepm matrices product = hstepm*stepm months)     nstepm=(int) rint((agelim-bage)*YEARM/stepm);
          as a weighted average of prlim.    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
       */    /* if (stepm >= YEARM) hstepm=1;*/
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(i=1,gmp[j]=0.; i<= nlstate; i++)   
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }        p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /* end probability of death */    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       for(j=1; j<= nlstate; j++) /* vareij */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         for(h=0; h<=nhstepm; h++){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }    for (age=bage; age<=fage; age ++){
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       }   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     } /* End theta */  
       /* Computing  Variances of health expectancies */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
     for(h=0; h<=nhstepm; h++) /* veij */      for(theta=1; theta <=npar; theta++){
       for(j=1; j<=nlstate;j++)        for(i=1; i<=npar; i++){
         for(theta=1; theta <=npar; theta++)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           trgradg[h][j][theta]=gradg[h][theta][j];          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       for(theta=1; theta <=npar; theta++)        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         trgradgp[j][theta]=gradgp[theta][j];   
           for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            for(h=0; h<=nhstepm-1; h++){
     for(i=1;i<=nlstate;i++)              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       for(j=1;j<=nlstate;j++)              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         vareij[i][j][(int)age] =0.;            }
           }
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){       
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        for(ij=1; ij<= nlstate*nlstate; ij++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          for(h=0; h<=nhstepm-1; h++){
         for(i=1;i<=nlstate;i++)            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           for(j=1;j<=nlstate;j++)          }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      }/* End theta */
       }     
     }     
         for(h=0; h<=nhstepm-1; h++)
     /* pptj */        for(j=1; j<=nlstate*nlstate;j++)
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          for(theta=1; theta <=npar; theta++)
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            trgradg[h][j][theta]=gradg[h][theta][j];
     for(j=nlstate+1;j<=nlstate+ndeath;j++)     
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];       for(ij=1;ij<=nlstate*nlstate;ij++)
     /* end ppptj */        for(ji=1;ji<=nlstate*nlstate;ji++)
     /*  x centered again */          varhe[ij][ji][(int)age] =0.;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     if (popbased==1) {       for(h=0;h<=nhstepm-1;h++){
       if(mobilav ==0){        for(k=0;k<=nhstepm-1;k++){
         for(i=1; i<=nlstate;i++)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           prlim[i][i]=probs[(int)age][i][ij];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       }else{ /* mobilav */           for(ij=1;ij<=nlstate*nlstate;ij++)
         for(i=1; i<=nlstate;i++)            for(ji=1;ji<=nlstate*nlstate;ji++)
           prlim[i][i]=mobaverage[(int)age][i][ij];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       }        }
     }      }
                
     /* This for computing probability of death (h=1 means      /* Computing expectancies */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        as a weighted average of prlim.      for(i=1; i<=nlstate;i++)
     */        for(j=1; j<=nlstate;j++)
     for(j=nlstate+1;j<=nlstate+ndeath;j++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(i=1,gmp[j]=0.;i<= nlstate; i++)             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            
     }                /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     /* end probability of death */  
           }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      fprintf(ficresstdeij,"%3.0f",age );
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      for(i=1; i<=nlstate;i++){
       for(i=1; i<=nlstate;i++){        eip=0.;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        vip=0.;
       }        for(j=1; j<=nlstate;j++){
     }           eip += eij[i][j][(int)age];
     fprintf(ficresprobmorprev,"\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     fprintf(ficresvij,"%.0f ",age );          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      }
       }      fprintf(ficresstdeij,"\n");
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);      fprintf(ficrescveij,"%3.0f",age );
     free_matrix(gm,0,nhstepm,1,nlstate);      for(i=1; i<=nlstate;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for(j=1; j<=nlstate;j++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          cptj= (j-1)*nlstate+i;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i2=1; i2<=nlstate;i2++)
   } /* End age */            for(j2=1; j2<=nlstate;j2++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);              cptj2= (j2-1)*nlstate+i2;
   free_vector(gmp,nlstate+1,nlstate+ndeath);              if(cptj2 <= cptj)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      fprintf(ficrescveij,"\n");
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");     
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */    }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    printf("\n");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    fprintf(ficlog,"\n");
 */  
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */    free_vector(xm,1,npar);
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   free_vector(xp,1,npar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_matrix(doldm,1,nlstate,1,nlstate);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   free_matrix(dnewm,1,nlstate,1,npar);  }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  /************ Variance ******************/
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  {
   fclose(ficresprobmorprev);    /* Variance of health expectancies */
   fflush(ficgp);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fflush(fichtm);     /* double **newm;*/
 }  /* end varevsij */    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
 /************ Variance of prevlim ******************/    int i, j, nhstepm, hstepm, h, nstepm ;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int k, cptcode;
 {    double *xp;
   /* Variance of prevalence limit */    double **gp, **gm;  /* for var eij */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/    double ***gradg, ***trgradg; /*for var eij */
   double **newm;    double **gradgp, **trgradgp; /* for var p point j */
   double **dnewm,**doldm;    double *gpp, *gmp; /* for var p point j */
   int i, j, nhstepm, hstepm;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   int k, cptcode;    double ***p3mat;
   double *xp;    double age,agelim, hf;
   double *gp, *gm;    double ***mobaverage;
   double **gradg, **trgradg;    int theta;
   double age,agelim;    char digit[4];
   int theta;    char digitp[25];
      
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");    char fileresprobmorprev[FILENAMELENGTH];
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    if(popbased==1){
       fprintf(ficresvpl," %1d-%1d",i,i);      if(mobilav!=0)
   fprintf(ficresvpl,"\n");        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   xp=vector(1,npar);    }
   dnewm=matrix(1,nlstate,1,npar);    else
   doldm=matrix(1,nlstate,1,nlstate);      strcpy(digitp,"-stablbased-");
     
   hstepm=1*YEARM; /* Every year of age */    if (mobilav!=0) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   agelim = AGESUP;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */         printf(" Error in movingaverage mobilav=%d\n",mobilav);
     if (stepm >= YEARM) hstepm=1;      }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);    strcpy(fileresprobmorprev,"prmorprev");
     gm=vector(1,nlstate);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for(theta=1; theta <=npar; theta++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for(i=1; i<=npar; i++){ /* Computes gradient */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    strcat(fileresprobmorprev,fileres);
       }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for(i=1;i<=nlstate;i++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         gp[i] = prlim[i][i];    }
         printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       for(i=1; i<=npar; i++) /* Computes gradient */   
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    pstamp(ficresprobmorprev);
       for(i=1;i<=nlstate;i++)    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         gm[i] = prlim[i][i];    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for(i=1;i<=nlstate;i++)      fprintf(ficresprobmorprev," p.%-d SE",j);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      for(i=1; i<=nlstate;i++)
     } /* End theta */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     trgradg =matrix(1,nlstate,1,npar);    fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     for(j=1; j<=nlstate;j++)    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       for(theta=1; theta <=npar; theta++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         trgradg[j][theta]=gradg[theta][j];    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     for(i=1;i<=nlstate;i++)    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       varpl[i][(int)age] =0.;    pstamp(ficresvij);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    if(popbased==1)
     for(i=1;i<=nlstate;i++)      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvpl,"%.0f ",age );    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for(j=1; j<=nlstate;j++)
     fprintf(ficresvpl,"\n");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     free_vector(gp,1,nlstate);    fprintf(ficresvij,"\n");
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    xp=vector(1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);    dnewm=matrix(1,nlstate,1,npar);
   } /* End age */    doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   free_vector(xp,1,npar);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
 }    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 /************ Variance of one-step probabilities  ******************/   
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    if(estepm < stepm){
 {      printf ("Problem %d lower than %d\n",estepm, stepm);
   int i, j=0,  i1, k1, l1, t, tj;    }
   int k2, l2, j1,  z1;    else  hstepm=estepm;  
   int k=0,l, cptcode;    /* For example we decided to compute the life expectancy with the smallest unit */
   int first=1, first1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       nhstepm is the number of hstepm from age to agelim
   double **dnewm,**doldm;       nstepm is the number of stepm from age to agelin.
   double *xp;       Look at hpijx to understand the reason of that which relies in memory size
   double *gp, *gm;       and note for a fixed period like k years */
   double **gradg, **trgradg;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double **mu;       survival function given by stepm (the optimization length). Unfortunately it
   double age,agelim, cov[NCOVMAX];       means that if the survival funtion is printed every two years of age and if
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   int theta;       results. So we changed our mind and took the option of the best precision.
   char fileresprob[FILENAMELENGTH];    */
   char fileresprobcov[FILENAMELENGTH];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   char fileresprobcor[FILENAMELENGTH];    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   double ***varpij;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcpy(fileresprob,"prob");       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(fileresprob,fileres);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      gp=matrix(0,nhstepm,1,nlstate);
     printf("Problem with resultfile: %s\n", fileresprob);      gm=matrix(0,nhstepm,1,nlstate);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }  
   strcpy(fileresprobcov,"probcov");       for(theta=1; theta <=npar; theta++){
   strcat(fileresprobcov,fileres);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     printf("Problem with resultfile: %s\n", fileresprobcov);        }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   strcpy(fileresprobcor,"probcor");   
   strcat(fileresprobcor,fileres);        if (popbased==1) {
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          if(mobilav ==0){
     printf("Problem with resultfile: %s\n", fileresprobcor);            for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              prlim[i][i]=mobaverage[(int)age][i][ij];
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);   
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        for(j=1; j<= nlstate; j++){
             for(h=0; h<=nhstepm; h++){
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   fprintf(ficresprob,"# Age");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          }
   fprintf(ficresprobcov,"# Age");        }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        /* This for computing probability of death (h=1 means
   fprintf(ficresprobcov,"# Age");           computed over hstepm matrices product = hstepm*stepm months)
            as a weighted average of prlim.
         */
   for(i=1; i<=nlstate;i++)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for(j=1; j<=(nlstate+ndeath);j++){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        }    
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        /* end probability of death */
     }    
  /* fprintf(ficresprob,"\n");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   fprintf(ficresprobcov,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficresprobcor,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  xp=vector(1,npar);   
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        if (popbased==1) {
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          if(mobilav ==0){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            for(i=1; i<=nlstate;i++)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);              prlim[i][i]=probs[(int)age][i][ij];
   first=1;          }else{ /* mobilav */
   fprintf(ficgp,"\n# Routine varprob");            for(i=1; i<=nlstate;i++)
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(fichtm,"\n");          }
         }
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);  
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\        for(j=1; j<= nlstate; j++){
   file %s<br>\n",optionfilehtmcov);          for(h=0; h<=nhstepm; h++){
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
 and drawn. It helps understanding how is the covariance between two incidences.\              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          }
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \        }
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \        /* This for computing probability of death (h=1 means
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \           computed over hstepm matrices product = hstepm*stepm months)
 standard deviations wide on each axis. <br>\           as a weighted average of prlim.
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\        */
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   cov[1]=1;        }    
   tj=cptcoveff;        /* end probability of death */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;        for(j=1; j<= nlstate; j++) /* vareij */
   for(t=1; t<=tj;t++){          for(h=0; h<=nhstepm; h++){
     for(i1=1; i1<=ncodemax[t];i1++){             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       j1++;          }
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         fprintf(ficresprob, "**********\n#\n");        }
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } /* End theta */
         fprintf(ficresprobcov, "**********\n#\n");  
               trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficgp, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(h=0; h<=nhstepm; h++) /* veij */
         fprintf(ficgp, "**********\n#\n");        for(j=1; j<=nlstate;j++)
                   for(theta=1; theta <=npar; theta++)
                     trgradg[h][j][theta]=gradg[h][theta][j];
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(theta=1; theta <=npar; theta++)
                   trgradgp[j][theta]=gradgp[theta][j];
         fprintf(ficresprobcor, "\n#********** Variable ");       
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcor, "**********\n#");          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }      for(i=1;i<=nlstate;i++)
               for(j=1;j<=nlstate;j++)
       for (age=bage; age<=fage; age ++){           vareij[i][j][(int)age] =0.;
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {      for(h=0;h<=nhstepm;h++){
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for (k=1; k<=cptcovprod;k++)          for(i=1;i<=nlstate;i++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            for(j=1;j<=nlstate;j++)
                       vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        }
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      }
         gp=vector(1,(nlstate)*(nlstate+ndeath));   
         gm=vector(1,(nlstate)*(nlstate+ndeath));      /* pptj */
           matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for(theta=1; theta <=npar; theta++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           for(i=1; i<=npar; i++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                     varppt[j][i]=doldmp[j][i];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      /* end ppptj */
                 /*  x centered again */
           k=0;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           for(i=1; i<= (nlstate); i++){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             for(j=1; j<=(nlstate+ndeath);j++){   
               k=k+1;      if (popbased==1) {
               gp[k]=pmmij[i][j];        if(mobilav ==0){
             }          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=probs[(int)age][i][ij];
                   }else{ /* mobilav */
           for(i=1; i<=npar; i++)          for(i=1; i<=nlstate;i++)
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);            prlim[i][i]=mobaverage[(int)age][i][ij];
             }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      }
           k=0;               
           for(i=1; i<=(nlstate); i++){      /* This for computing probability of death (h=1 means
             for(j=1; j<=(nlstate+ndeath);j++){         computed over hstepm (estepm) matrices product = hstepm*stepm months)
               k=k+1;         as a weighted average of prlim.
               gm[k]=pmmij[i][j];      */
             }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           }        for(i=1,gmp[j]=0.;i<= nlstate; i++)
                gmp[j] += prlim[i][i]*p3mat[i][j][1];
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       }    
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        /* end probability of death */
         }  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for(theta=1; theta <=npar; theta++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             trgradg[j][theta]=gradg[theta][j];        for(i=1; i<=nlstate;i++){
                   fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);         }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      }
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficresprobmorprev,"\n");
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficresvij,"%.0f ",age );
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                 }
         k=0;      fprintf(ficresvij,"\n");
         for(i=1; i<=(nlstate); i++){      free_matrix(gp,0,nhstepm,1,nlstate);
           for(j=1; j<=(nlstate+ndeath);j++){      free_matrix(gm,0,nhstepm,1,nlstate);
             k=k+1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             mu[k][(int) age]=pmmij[i][j];      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    } /* End age */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    free_vector(gpp,nlstate+1,nlstate+ndeath);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    free_vector(gmp,nlstate+1,nlstate+ndeath);
             varpij[i][j][(int)age] = doldm[i][j];    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         /*printf("\n%d ",(int)age);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           }*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficresprob,"\n%d ",(int)age);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
         fprintf(ficresprobcov,"\n%d ",(int)age);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         fprintf(ficresprobcor,"\n%d ",(int)age);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         }  
         i=0;    free_vector(xp,1,npar);
         for (k=1; k<=(nlstate);k++){    free_matrix(doldm,1,nlstate,1,nlstate);
           for (l=1; l<=(nlstate+ndeath);l++){     free_matrix(dnewm,1,nlstate,1,npar);
             i=i++;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             for (j=1; j<=i;j++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    fclose(ficresprobmorprev);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    fflush(ficgp);
             }    fflush(fichtm);
           }  }  /* end varevsij */
         }/* end of loop for state */  
       } /* end of loop for age */  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       /* Confidence intervalle of pij  */  {
       /*    /* Variance of prevalence limit */
         fprintf(ficgp,"\nset noparametric;unset label");    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double **newm;
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double **dnewm,**doldm;
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    int i, j, nhstepm, hstepm;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    int k, cptcode;
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    double *xp;
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    double *gp, *gm;
       */    double **gradg, **trgradg;
     double age,agelim;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    int theta;
       first1=1;   
       for (k2=1; k2<=(nlstate);k2++){    pstamp(ficresvpl);
         for (l2=1; l2<=(nlstate+ndeath);l2++){     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           if(l2==k2) continue;    fprintf(ficresvpl,"# Age");
           j=(k2-1)*(nlstate+ndeath)+l2;    for(i=1; i<=nlstate;i++)
           for (k1=1; k1<=(nlstate);k1++){        fprintf(ficresvpl," %1d-%1d",i,i);
             for (l1=1; l1<=(nlstate+ndeath);l1++){     fprintf(ficresvpl,"\n");
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;    xp=vector(1,npar);
               if(i<=j) continue;    dnewm=matrix(1,nlstate,1,npar);
               for (age=bage; age<=fage; age ++){     doldm=matrix(1,nlstate,1,nlstate);
                 if ((int)age %5==0){   
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    hstepm=1*YEARM; /* Every year of age */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    agelim = AGESUP;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   mu2=mu[j][(int) age]/stepm*YEARM;      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
                   c12=cv12/sqrt(v1*v2);      if (stepm >= YEARM) hstepm=1;
                   /* Computing eigen value of matrix of covariance */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      gradg=matrix(1,npar,1,nlstate);
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      gp=vector(1,nlstate);
                   /* Eigen vectors */      gm=vector(1,nlstate);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */      for(theta=1; theta <=npar; theta++){
                   v21=(lc1-v1)/cv12*v11;        for(i=1; i<=npar; i++){ /* Computes gradient */
                   v12=-v21;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   v22=v11;        }
                   tnalp=v21/v11;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   if(first1==1){        for(i=1;i<=nlstate;i++)
                     first1=0;          gp[i] = prlim[i][i];
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);     
                   }        for(i=1; i<=npar; i++) /* Computes gradient */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   /*printf(fignu*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        for(i=1;i<=nlstate;i++)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          gm[i] = prlim[i][i];
                   if(first==1){  
                     first=0;        for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset parametric;unset label");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      } /* End theta */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\      trgradg =matrix(1,nlstate,1,npar);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\  
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\      for(j=1; j<=nlstate;j++)
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\        for(theta=1; theta <=npar; theta++)
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);          trgradg[j][theta]=gradg[theta][j];
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      for(i=1;i<=nlstate;i++)
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        varpl[i][(int)age] =0.;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(i=1;i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }else{      fprintf(ficresvpl,"%.0f ",age );
                     first=0;      for(i=1; i<=nlstate;i++)
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      fprintf(ficresvpl,"\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      free_vector(gp,1,nlstate);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      free_vector(gm,1,nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      free_matrix(gradg,1,npar,1,nlstate);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      free_matrix(trgradg,1,nlstate,1,npar);
                   }/* if first */    } /* End age */
                 } /* age mod 5 */  
               } /* end loop age */    free_vector(xp,1,npar);
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_matrix(doldm,1,nlstate,1,npar);
               first=1;    free_matrix(dnewm,1,nlstate,1,nlstate);
             } /*l12 */  
           } /* k12 */  }
         } /*l1 */  
       }/* k1 */  /************ Variance of one-step probabilities  ******************/
     } /* loop covariates */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    int i, j=0,  i1, k1, l1, t, tj;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    int k2, l2, j1,  z1;
   free_vector(xp,1,npar);    int k=0,l, cptcode;
   fclose(ficresprob);    int first=1, first1;
   fclose(ficresprobcov);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fclose(ficresprobcor);    double **dnewm,**doldm;
   fflush(ficgp);    double *xp;
   fflush(fichtmcov);    double *gp, *gm;
 }    double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
 /******************* Printing html file ***********/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int theta;
                   int lastpass, int stepm, int weightopt, char model[],\    char fileresprob[FILENAMELENGTH];
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    char fileresprobcov[FILENAMELENGTH];
                   int popforecast, int estepm ,\    char fileresprobcor[FILENAMELENGTH];
                   double jprev1, double mprev1,double anprev1, \  
                   double jprev2, double mprev2,double anprev2){    double ***varpij;
   int jj1, k1, i1, cpt;  
     strcpy(fileresprob,"prob");
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \    strcat(fileresprob,fileres);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));      printf("Problem with resultfile: %s\n", fileresprob);
    fprintf(fichtm,"\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    }
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    strcpy(fileresprobcov,"probcov");
    fprintf(fichtm,"\    strcat(fileresprobcov,fileres);
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));      printf("Problem with resultfile: %s\n", fileresprobcov);
    fprintf(fichtm,"\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
  - Life expectancies by age and initial health status (estepm=%2d months): \    }
    <a href=\"%s\">%s</a> <br>\n</li>",    strcpy(fileresprobcor,"probcor");
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  m=cptcoveff;    }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  jj1=0;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  for(k1=1; k1<=m;k1++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    for(i1=1; i1<=ncodemax[k1];i1++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      jj1++;    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      if (cptcovn > 0) {    pstamp(ficresprob);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        for (cpt=1; cpt<=cptcoveff;cpt++)     fprintf(ficresprob,"# Age");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    pstamp(ficresprobcov);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      }    fprintf(ficresprobcov,"# Age");
      /* Pij */    pstamp(ficresprobcor);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);         fprintf(ficresprobcor,"# Age");
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \    for(i=1; i<=nlstate;i++)
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);       for(j=1; j<=(nlstate+ndeath);j++){
        /* Stable prevalence in each health state */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
        for(cpt=1; cpt<nlstate;cpt++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);      }  
        }   /* fprintf(ficresprob,"\n");
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresprobcov,"\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \    fprintf(ficresprobcor,"\n");
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);   */
      }   xp=vector(1,npar);
    } /* end i1 */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  }/* End k1 */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  fprintf(fichtm,"</ul>");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
  fprintf(fichtm,"\    fprintf(ficgp,"\n# Routine varprob");
 \n<br><li><h4> Result files (second order: variances)</h4>\n\    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);    fprintf(fichtm,"\n");
   
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
  fprintf(fichtm,"\    file %s<br>\n",optionfilehtmcov);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
  fprintf(fichtm,"\    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
  fprintf(fichtm,"\  standard deviations wide on each axis. <br>\
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
  fprintf(fichtm,"\  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    cov[1]=1;
  fprintf(fichtm,"\    tj=cptcoveff;
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));    j1=0;
     for(t=1; t<=tj;t++){
 /*  if(popforecast==1) fprintf(fichtm,"\n */      for(i1=1; i1<=ncodemax[t];i1++){
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */        j1++;
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */        if  (cptcovn>0) {
 /*      <br>",fileres,fileres,fileres,fileres); */          fprintf(ficresprob, "\n#********** Variable ");
 /*  else  */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */          fprintf(ficresprob, "**********\n#\n");
  fflush(fichtm);          fprintf(ficresprobcov, "\n#********** Variable ");
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
  m=cptcoveff;         
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          fprintf(ficgp, "\n#********** Variable ");
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  jj1=0;          fprintf(ficgp, "**********\n#\n");
  for(k1=1; k1<=m;k1++){         
    for(i1=1; i1<=ncodemax[k1];i1++){         
      jj1++;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
      if (cptcovn > 0) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
        for (cpt=1; cpt<=cptcoveff;cpt++)          
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          fprintf(ficresprobcor, "\n#********** Variable ");    
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprobcor, "**********\n#");    
      for(cpt=1; cpt<=nlstate;cpt++) {        }
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \       
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\        for (age=bage; age<=fage; age ++){
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);            cov[2]=age;
      }          for (k=1; k<=cptcovn;k++) {
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 health expectancies in states (1) and (2): %s%d.png<br>\          }
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    } /* end i1 */          for (k=1; k<=cptcovprod;k++)
  }/* End k1 */            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  fprintf(fichtm,"</ul>");         
  fflush(fichtm);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 }          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
 /******************* Gnuplot file **************/          gm=vector(1,(nlstate)*(nlstate+ndeath));
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){     
           for(theta=1; theta <=npar; theta++){
   char dirfileres[132],optfileres[132];            for(i=1; i<=npar; i++)
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   int ng;           
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 /*     printf("Problem with file %s",optionfilegnuplot); */           
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */            k=0;
 /*   } */            for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   /*#ifdef windows */                k=k+1;
   fprintf(ficgp,"cd \"%s\" \n",pathc);                gp[k]=pmmij[i][j];
     /*#endif */              }
   m=pow(2,cptcoveff);            }
            
   strcpy(dirfileres,optionfilefiname);            for(i=1; i<=npar; i++)
   strcpy(optfileres,"vpl");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
  /* 1eme*/     
   for (cpt=1; cpt<= nlstate ; cpt ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    for (k1=1; k1<= m ; k1 ++) {            k=0;
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);            for(i=1; i<=(nlstate); i++){
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);              for(j=1; j<=(nlstate+ndeath);j++){
      fprintf(ficgp,"set xlabel \"Age\" \n\                k=k+1;
 set ylabel \"Probability\" \n\                gm[k]=pmmij[i][j];
 set ter png small\n\              }
 set size 0.65,0.65\n\            }
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
      for (i=1; i<= nlstate ; i ++) {              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);            for(theta=1; theta <=npar; theta++)
      for (i=1; i<= nlstate ; i ++) {              trgradg[j][theta]=gradg[theta][j];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");         
        else fprintf(ficgp," \%%*lf (\%%*lf)");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
      }           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
      for (i=1; i<= nlstate ; i ++) {          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        else fprintf(ficgp," \%%*lf (\%%*lf)");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      }    
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          pmij(pmmij,cov,ncovmodel,x,nlstate);
    }         
   }          k=0;
   /*2 eme*/          for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   for (k1=1; k1<= m ; k1 ++) {               k=k+1;
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);              mu[k][(int) age]=pmmij[i][j];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            }
               }
     for (i=1; i<= nlstate+1 ; i ++) {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       k=2*i;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);              varpij[i][j][(int)age] = doldm[i][j];
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          /*printf("\n%d ",(int)age);
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       }               printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            }*/
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficresprob,"\n%d ",(int)age);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresprobcov,"\n%d ",(int)age);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprobcor,"\n%d ",(int)age);
       }     
       fprintf(ficgp,"\" t\"\" w l 0,");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       for (j=1; j<= nlstate+1 ; j ++) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       }             }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          i=0;
       else fprintf(ficgp,"\" t\"\" w l 0,");          for (k=1; k<=(nlstate);k++){
     }            for (l=1; l<=(nlstate+ndeath);l++){
   }              i=i++;
                 fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   /*3eme*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                 for (j=1; j<=i;j++){
   for (k1=1; k1<= m ; k1 ++) {                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     for (cpt=1; cpt<= nlstate ; cpt ++) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       k=2+nlstate*(2*cpt-2);              }
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);            }
       fprintf(ficgp,"set ter png small\n\          }/* end of loop for state */
 set size 0.65,0.65\n\        } /* end of loop for age */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        /* Confidence intervalle of pij  */
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        /*
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          fprintf(ficgp,"\nset noparametric;unset label");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       */          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
       for (i=1; i< nlstate ; i ++) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);        */
           
       }         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     }        first1=1;
   }        for (k2=1; k2<=(nlstate);k2++){
             for (l2=1; l2<=(nlstate+ndeath);l2++){
   /* CV preval stable (period) */            if(l2==k2) continue;
   for (k1=1; k1<= m ; k1 ++) {             j=(k2-1)*(nlstate+ndeath)+l2;
     for (cpt=1; cpt<=nlstate ; cpt ++) {            for (k1=1; k1<=(nlstate);k1++){
       k=3;              for (l1=1; l1<=(nlstate+ndeath);l1++){
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);                if(l1==k1) continue;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\                i=(k1-1)*(nlstate+ndeath)+l1;
 set ter png small\nset size 0.65,0.65\n\                if(i<=j) continue;
 unset log y\n\                for (age=bage; age<=fage; age ++){
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);                  if ((int)age %5==0){
                           v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for (i=1; i< nlstate ; i ++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficgp,"+$%d",k+i+1);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                           mu2=mu[j][(int) age]/stepm*YEARM;
       l=3+(nlstate+ndeath)*cpt;                    c12=cv12/sqrt(v1*v2);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);                    /* Computing eigen value of matrix of covariance */
       for (i=1; i< nlstate ; i ++) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         l=3+(nlstate+ndeath)*cpt;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fprintf(ficgp,"+$%d",l+i+1);                    /* Eigen vectors */
       }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                       /*v21=sqrt(1.-v11*v11); *//* error */
     }                     v21=(lc1-v1)/cv12*v11;
   }                      v12=-v21;
                       v22=v11;
   /* proba elementaires */                    tnalp=v21/v11;
   for(i=1,jk=1; i <=nlstate; i++){                    if(first1==1){
     for(k=1; k <=(nlstate+ndeath); k++){                      first1=0;
       if (k != i) {                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for(j=1; j <=ncovmodel; j++){                    }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           jk++;                     /*printf(fignu*/
           fprintf(ficgp,"\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       }                    if(first==1){
     }                      first=0;
    }                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
      for(jk=1; jk <=m; jk++) {                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
        if (ng==2)  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
        else                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
          fprintf(ficgp,"\nset title \"Probability\"\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
        i=1;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        for(k2=1; k2<=nlstate; k2++) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
          k3=i;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
          for(k=1; k<=(nlstate+ndeath); k++) {                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
            if (k != k2){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
              if(ng==2)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                    }else{
              else                      first=0;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
              ij=1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
              for(j=3; j <=ncovmodel; j++) {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                  ij++;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                }                    }/* if first */
                else                  } /* age mod 5 */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                } /* end loop age */
              }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
              fprintf(ficgp,")/(1");                first=1;
                            } /*l12 */
              for(k1=1; k1 <=nlstate; k1++){               } /* k12 */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          } /*l1 */
                ij=1;        }/* k1 */
                for(j=3; j <=ncovmodel; j++){      } /* loop covariates */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                    ij++;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                  }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                  else    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(xp,1,npar);
                }    fclose(ficresprob);
                fprintf(ficgp,")");    fclose(ficresprobcov);
              }    fclose(ficresprobcor);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fflush(ficgp);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fflush(fichtmcov);
              i=i+ncovmodel;  }
            }  
          } /* end k */  
        } /* end k2 */  /******************* Printing html file ***********/
      } /* end jk */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
    } /* end ng */                    int lastpass, int stepm, int weightopt, char model[],\
    fflush(ficgp);                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
 }  /* end gnuplot */                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
 /*************** Moving average **************/    int jj1, k1, i1, cpt;
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   int i, cpt, cptcod;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   int modcovmax =1;  </ul>");
   int mobilavrange, mob;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   double age;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose      fprintf(fichtm,"\
                            a covariate has 2 modalities */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     if(mobilav==1) mobilavrange=5; /* default */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     else mobilavrange=mobilav;     fprintf(fichtm,"\
     for (age=bage; age<=fage; age++)   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       for (i=1; i<=nlstate;i++)     <a href=\"%s\">%s</a> <br>\n",
         for (cptcod=1;cptcod<=modcovmax;cptcod++)             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];     fprintf(fichtm,"\
     /* We keep the original values on the extreme ages bage, fage and for    - Population projections by age and states: \
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
        we use a 5 terms etc. until the borders are no more concerned.   
     */   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     for (mob=3;mob <=mobilavrange;mob=mob+2){  
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){   m=cptcoveff;
         for (i=1; i<=nlstate;i++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for (cptcod=1;cptcod<=modcovmax;cptcod++){  
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];   jj1=0;
               for (cpt=1;cpt<=(mob-1)/2;cpt++){   for(k1=1; k1<=m;k1++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];     for(i1=1; i1<=ncodemax[k1];i1++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];       jj1++;
               }       if (cptcovn > 0) {
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           }         for (cpt=1; cpt<=cptcoveff;cpt++)
         }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       }/* end age */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }/* end mob */       }
   }else return -1;       /* Pij */
   return 0;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
 }/* End movingaverage */  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
 /************** Forecasting ******************/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
   /* proj1, year, month, day of starting projection          /* Period (stable) prevalence in each health state */
      agemin, agemax range of age         for(cpt=1; cpt<nlstate;cpt++){
      dateprev1 dateprev2 range of dates during which prevalence is computed           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
      anproj2 year of en of projection (same day and month as proj1).  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   */         }
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;       for(cpt=1; cpt<=nlstate;cpt++) {
   int *popage;          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   double agec; /* generic age */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       }
   double *popeffectif,*popcount;     } /* end i1 */
   double ***p3mat;   }/* End k1 */
   double ***mobaverage;   fprintf(fichtm,"</ul>");
   char fileresf[FILENAMELENGTH];  
   
   agelim=AGESUP;   fprintf(fichtm,"\
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   strcpy(fileresf,"f");   
   strcat(fileresf,fileres);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if((ficresf=fopen(fileresf,"w"))==NULL) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     printf("Problem with forecast resultfile: %s\n", fileresf);   fprintf(fichtm,"\
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   if (mobilav!=0) {   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     <a href=\"%s\">%s</a> <br>\n</li>",
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);   fprintf(fichtm,"\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     }     <a href=\"%s\">%s</a> <br>\n</li>",
   }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
   stepsize=(int) (stepm+YEARM-1)/YEARM;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   if (stepm<=12) stepsize=1;           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   if(estepm < stepm){   fprintf(fichtm,"\
     printf ("Problem %d lower than %d\n",estepm, stepm);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   else  hstepm=estepm;      fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   hstepm=hstepm/stepm;            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and  
                                fractional in yp1 */  /*  if(popforecast==1) fprintf(fichtm,"\n */
   anprojmean=yp;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   yp2=modf((yp1*12),&yp);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   mprojmean=yp;  /*      <br>",fileres,fileres,fileres,fileres); */
   yp1=modf((yp2*30.5),&yp);  /*  else  */
   jprojmean=yp;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   if(jprojmean==0) jprojmean=1;   fflush(fichtm);
   if(mprojmean==0) jprojmean=1;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
   i1=cptcoveff;   m=cptcoveff;
   if (cptcovn < 1){i1=1;}   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    jj1=0;
      for(k1=1; k1<=m;k1++){
   fprintf(ficresf,"#****** Routine prevforecast **\n");     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
 /*            if (h==(int)(YEARM*yearp)){ */       if (cptcovn > 0) {
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         for (cpt=1; cpt<=cptcoveff;cpt++)
       k=k+1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficresf,"\n#******");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1;j<=cptcoveff;j++) {       }
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(cpt=1; cpt<=nlstate;cpt++) {
       }         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       fprintf(ficresf,"******\n");  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       for(j=1; j<=nlstate+ndeath;j++){        }
         for(i=1; i<=nlstate;i++)                     fprintf(fichtm,"\n<br>- Total life expectancy by age and \
           fprintf(ficresf," p%d%d",i,j);  health expectancies in states (1) and (2): %s%d.png<br>\
         fprintf(ficresf," p.%d",j);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       }     } /* end i1 */
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    }/* End k1 */
         fprintf(ficresf,"\n");   fprintf(fichtm,"</ul>");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      fflush(fichtm);
   }
         for (agec=fage; agec>=(ageminpar-1); agec--){   
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);   /******************* Gnuplot file **************/
           nhstepm = nhstepm/hstepm;   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    char dirfileres[132],optfileres[132];
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             int ng;
           for (h=0; h<=nhstepm; h++){  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
             if (h*hstepm/YEARM*stepm ==yearp) {  /*     printf("Problem with file %s",optionfilegnuplot); */
               fprintf(ficresf,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
               for(j=1;j<=cptcoveff;j++)   /*   } */
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    /*#ifdef windows */
             }     fprintf(ficgp,"cd \"%s\" \n",pathc);
             for(j=1; j<=nlstate+ndeath;j++) {      /*#endif */
               ppij=0.;    m=pow(2,cptcoveff);
               for(i=1; i<=nlstate;i++) {  
                 if (mobilav==1)     strcpy(dirfileres,optionfilefiname);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    strcpy(optfileres,"vpl");
                 else {   /* 1eme*/
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    for (cpt=1; cpt<= nlstate ; cpt ++) {
                 }     for (k1=1; k1<= m ; k1 ++) {
                 if (h*hstepm/YEARM*stepm== yearp) {       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
                 }       fprintf(ficgp,"set xlabel \"Age\" \n\
               } /* end i */  set ylabel \"Probability\" \n\
               if (h*hstepm/YEARM*stepm==yearp) {  set ter png small\n\
                 fprintf(ficresf," %.3f", ppij);  set size 0.65,0.65\n\
               }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
             }/* end j */  
           } /* end h */       for (i=1; i<= nlstate ; i ++) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         } /* end agec */         else fprintf(ficgp," \%%*lf (\%%*lf)");
       } /* end yearp */       }
     } /* end cptcod */       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   } /* end  cptcov */       for (i=1; i<= nlstate ; i ++) {
                 if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
   fclose(ficresf);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
 }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 /************** Forecasting *****not tested NB*************/         else fprintf(ficgp," \%%*lf (\%%*lf)");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       }  
          fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     }
   int *popage;    }
   double calagedatem, agelim, kk1, kk2;    /*2 eme*/
   double *popeffectif,*popcount;   
   double ***p3mat,***tabpop,***tabpopprev;    for (k1=1; k1<= m ; k1 ++) {
   double ***mobaverage;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   char filerespop[FILENAMELENGTH];      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1; i<= nlstate+1 ; i ++) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        k=2*i;
   agelim=AGESUP;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           }  
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   strcpy(filerespop,"pop");         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   strcat(filerespop,fileres);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for (j=1; j<= nlstate+1 ; j ++) {
     printf("Problem with forecast resultfile: %s\n", filerespop);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);        fprintf(ficgp,"\" t\"\" w l 0,");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   if (mobilav!=0) {        }  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        else fprintf(ficgp,"\" t\"\" w l 0,");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    }
     }   
   }    /*3eme*/
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for (k1=1; k1<= m ; k1 ++) {
   if (stepm<=12) stepsize=1;      for (cpt=1; cpt<= nlstate ; cpt ++) {
           /*       k=2+nlstate*(2*cpt-2); */
   agelim=AGESUP;        k=2+(nlstate+1)*(cpt-1);
           fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   hstepm=1;        fprintf(ficgp,"set ter png small\n\
   hstepm=hstepm/stepm;   set size 0.65,0.65\n\
     plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   if (popforecast==1) {        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     if((ficpop=fopen(popfile,"r"))==NULL) {          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       printf("Problem with population file : %s\n",popfile);exit(0);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     }           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     popage=ivector(0,AGESUP);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     popeffectif=vector(0,AGESUP);         
     popcount=vector(0,AGESUP);        */
             for (i=1; i< nlstate ; i ++) {
     i=1;             fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
             
     imx=i;        }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   }      }
     }
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){   
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* CV preval stable (period) */
       k=k+1;    for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficrespop,"\n#******");      for (cpt=1; cpt<=nlstate ; cpt ++) {
       for(j=1;j<=cptcoveff;j++) {        k=3;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       fprintf(ficrespop,"******\n");  set ter png small\nset size 0.65,0.65\n\
       fprintf(ficrespop,"# Age");  unset log y\n\
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       if (popforecast==1)  fprintf(ficrespop," [Population]");       
               for (i=1; i< nlstate ; i ++)
       for (cpt=0; cpt<=0;cpt++) {           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){         l=3+(nlstate+ndeath)*cpt;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
           nhstepm = nhstepm/hstepm;         for (i=1; i< nlstate ; i ++) {
                     l=3+(nlstate+ndeath)*cpt;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"+$%d",l+i+1);
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
               }
           for (h=0; h<=nhstepm; h++){    }  
             if (h==(int) (calagedatem+YEARM*cpt)) {   
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* proba elementaires */
             }     for(i=1,jk=1; i <=nlstate; i++){
             for(j=1; j<=nlstate+ndeath;j++) {      for(k=1; k <=(nlstate+ndeath); k++){
               kk1=0.;kk2=0;        if (k != i) {
               for(i=1; i<=nlstate;i++) {                        for(j=1; j <=ncovmodel; j++){
                 if (mobilav==1)             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            jk++;
                 else {            fprintf(ficgp,"\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }        }
               }      }
               if (h==(int)(calagedatem+12*cpt)){     }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       for(jk=1; jk <=m; jk++) {
               }         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
             }         if (ng==2)
             for(i=1; i<=nlstate;i++){           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
               kk1=0.;         else
                 for(j=1; j<=nlstate;j++){           fprintf(ficgp,"\nset title \"Probability\"\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                 }         i=1;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];         for(k2=1; k2<=nlstate; k2++) {
             }           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)              if (k != k2){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);               if(ng==2)
           }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               else
         }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       }               ij=1;
                 for(j=3; j <=ncovmodel; j++) {
   /******/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                    ij++;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                    }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){                  else
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           nhstepm = nhstepm/hstepm;                }
                          fprintf(ficgp,")/(1");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               
           oldm=oldms;savm=savms;               for(k1=1; k1 <=nlstate; k1++){  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           for (h=0; h<=nhstepm; h++){                 ij=1;
             if (h==(int) (calagedatem+YEARM*cpt)) {                 for(j=3; j <=ncovmodel; j++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
             }                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             for(j=1; j<=nlstate+ndeath;j++) {                     ij++;
               kk1=0.;kk2=0;                   }
               for(i=1; i<=nlstate;i++) {                                 else
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                         fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
               }                 }
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                         fprintf(ficgp,")");
             }               }
           }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         }               i=i+ncovmodel;
       }             }
    }            } /* end k */
   }         } /* end k2 */
         } /* end jk */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     } /* end ng */
      fflush(ficgp);
   if (popforecast==1) {  }  /* end gnuplot */
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);  /*************** Moving average **************/
   }  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, cpt, cptcod;
   fclose(ficrespop);    int modcovmax =1;
 } /* End of popforecast */    int mobilavrange, mob;
     double age;
 int fileappend(FILE *fichier, char *optionfich)  
 {    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
   if((fichier=fopen(optionfich,"a"))==NULL) {                             a covariate has 2 modalities */
     printf("Problem with file: %s\n", optionfich);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     fprintf(ficlog,"Problem with file: %s\n", optionfich);  
     return (0);    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   }      if(mobilav==1) mobilavrange=5; /* default */
   fflush(fichier);      else mobilavrange=mobilav;
   return (1);      for (age=bage; age<=fage; age++)
 }        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
 /**************** function prwizard **********************/      /* We keep the original values on the extreme ages bage, fage and for
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
 {         we use a 5 terms etc. until the borders are no more concerned.
       */
   /* Wizard to print covariance matrix template */      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   char ca[32], cb[32], cc[32];          for (i=1; i<=nlstate;i++){
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   int numlinepar;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   for(i=1; i <=nlstate; i++){                }
     jj=0;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     for(j=1; j <=nlstate+ndeath; j++){            }
       if(j==i) continue;          }
       jj++;        }/* end age */
       /*ca[0]= k+'a'-1;ca[1]='\0';*/      }/* end mob */
       printf("%1d%1d",i,j);    }else return -1;
       fprintf(ficparo,"%1d%1d",i,j);    return 0;
       for(k=1; k<=ncovmodel;k++){  }/* End movingaverage */
         /*        printf(" %lf",param[i][j][k]); */  
         /*        fprintf(ficparo," %lf",param[i][j][k]); */  
         printf(" 0.");  /************** Forecasting ******************/
         fprintf(ficparo," 0.");  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       }    /* proj1, year, month, day of starting projection
       printf("\n");       agemin, agemax range of age
       fprintf(ficparo,"\n");       dateprev1 dateprev2 range of dates during which prevalence is computed
     }       anproj2 year of en of projection (same day and month as proj1).
   }    */
   printf("# Scales (for hessian or gradient estimation)\n");    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");    int *popage;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/     double agec; /* generic age */
   for(i=1; i <=nlstate; i++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     jj=0;    double *popeffectif,*popcount;
     for(j=1; j <=nlstate+ndeath; j++){    double ***p3mat;
       if(j==i) continue;    double ***mobaverage;
       jj++;    char fileresf[FILENAMELENGTH];
       fprintf(ficparo,"%1d%1d",i,j);  
       printf("%1d%1d",i,j);    agelim=AGESUP;
       fflush(stdout);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       for(k=1; k<=ncovmodel;k++){   
         /*      printf(" %le",delti3[i][j][k]); */    strcpy(fileresf,"f");
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */    strcat(fileresf,fileres);
         printf(" 0.");    if((ficresf=fopen(fileresf,"w"))==NULL) {
         fprintf(ficparo," 0.");      printf("Problem with forecast resultfile: %s\n", fileresf);
       }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
       numlinepar++;    }
       printf("\n");    printf("Computing forecasting: result on file '%s' \n", fileresf);
       fprintf(ficparo,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     }  
   }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   printf("# Covariance matrix\n");  
 /* # 121 Var(a12)\n\ */    if (mobilav!=0) {
 /* # 122 Cov(b12,a12) Var(b12)\n\ */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      }
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    }
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */  
   fflush(stdout);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fprintf(ficparo,"# Covariance matrix\n");    if (stepm<=12) stepsize=1;
   /* # 121 Var(a12)\n\ */    if(estepm < stepm){
   /* # 122 Cov(b12,a12) Var(b12)\n\ */      printf ("Problem %d lower than %d\n",estepm, stepm);
   /* #   ...\n\ */    }
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    else  hstepm=estepm;  
     
   for(itimes=1;itimes<=2;itimes++){    hstepm=hstepm/stepm;
     jj=0;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     for(i=1; i <=nlstate; i++){                                 fractional in yp1 */
       for(j=1; j <=nlstate+ndeath; j++){    anprojmean=yp;
         if(j==i) continue;    yp2=modf((yp1*12),&yp);
         for(k=1; k<=ncovmodel;k++){    mprojmean=yp;
           jj++;    yp1=modf((yp2*30.5),&yp);
           ca[0]= k+'a'-1;ca[1]='\0';    jprojmean=yp;
           if(itimes==1){    if(jprojmean==0) jprojmean=1;
             printf("#%1d%1d%d",i,j,k);    if(mprojmean==0) jprojmean=1;
             fprintf(ficparo,"#%1d%1d%d",i,j,k);  
           }else{    i1=cptcoveff;
             printf("%1d%1d%d",i,j,k);    if (cptcovn < 1){i1=1;}
             fprintf(ficparo,"%1d%1d%d",i,j,k);   
             /*  printf(" %.5le",matcov[i][j]); */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
           }   
           ll=0;    fprintf(ficresf,"#****** Routine prevforecast **\n");
           for(li=1;li <=nlstate; li++){  
             for(lj=1;lj <=nlstate+ndeath; lj++){  /*            if (h==(int)(YEARM*yearp)){ */
               if(lj==li) continue;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
               for(lk=1;lk<=ncovmodel;lk++){      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                 ll++;        k=k+1;
                 if(ll<=jj){        fprintf(ficresf,"\n#******");
                   cb[0]= lk +'a'-1;cb[1]='\0';        for(j=1;j<=cptcoveff;j++) {
                   if(ll<jj){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                     if(itimes==1){        }
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        fprintf(ficresf,"******\n");
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                     }else{        for(j=1; j<=nlstate+ndeath;j++){
                       printf(" 0.");          for(i=1; i<=nlstate;i++)              
                       fprintf(ficparo," 0.");            fprintf(ficresf," p%d%d",i,j);
                     }          fprintf(ficresf," p.%d",j);
                   }else{        }
                     if(itimes==1){        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
                       printf(" Var(%s%1d%1d)",ca,i,j);          fprintf(ficresf,"\n");
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
                     }else{  
                       printf(" 0.");          for (agec=fage; agec>=(ageminpar-1); agec--){
                       fprintf(ficparo," 0.");            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
                     }            nhstepm = nhstepm/hstepm;
                   }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 }            oldm=oldms;savm=savms;
               } /* end lk */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
             } /* end lj */         
           } /* end li */            for (h=0; h<=nhstepm; h++){
           printf("\n");              if (h*hstepm/YEARM*stepm ==yearp) {
           fprintf(ficparo,"\n");                fprintf(ficresf,"\n");
           numlinepar++;                for(j=1;j<=cptcoveff;j++)
         } /* end k*/                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       } /*end j */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     } /* end i */              }
   } /* end itimes */              for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
 } /* end of prwizard */                for(i=1; i<=nlstate;i++) {
 /******************* Gompertz Likelihood ******************************/                  if (mobilav==1)
 double gompertz(double x[])                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 {                   else {
   double A,B,L=0.0,sump=0.,num=0.;                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   int i,n=0; /* n is the size of the sample */                  }
   for (i=0;i<=imx-1 ; i++) {                  if (h*hstepm/YEARM*stepm== yearp) {
     sump=sump+weight[i];                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     /*    sump=sump+1;*/                  }
     num=num+1;                } /* end i */
   }                if (h*hstepm/YEARM*stepm==yearp) {
                    fprintf(ficresf," %.3f", ppij);
                  }
   /* for (i=0; i<=imx; i++)               }/* end j */
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for (i=1;i<=imx ; i++)          } /* end agec */
     {        } /* end yearp */
       if (cens[i]==1 & wav[i]>1)      } /* end cptcod */
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));    } /* end  cptcov */
                
       if (cens[i]==0 & wav[i]>1)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))  
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      fclose(ficresf);
         }
       if (wav[i]>1 & agecens[i]>15) {  
         L=L+A*weight[i];  /************** Forecasting *****not tested NB*************/
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       }   
     }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/    double calagedatem, agelim, kk1, kk2;
      double *popeffectif,*popcount;
   return -2*L*num/sump;    double ***p3mat,***tabpop,***tabpopprev;
 }    double ***mobaverage;
     char filerespop[FILENAMELENGTH];
 /******************* Printing html file ***********/  
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   int lastpass, int stepm, int weightopt, char model[],\    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   int imx,  double p[],double **matcov){    agelim=AGESUP;
   int i;    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
    
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);   
   for (i=1;i<=2;i++)    
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    strcpy(filerespop,"pop");
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");    strcat(filerespop,fileres);
   fprintf(fichtm,"</ul>");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fflush(fichtm);      printf("Problem with forecast resultfile: %s\n", filerespop);
 }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
 /******************* Gnuplot file **************/    printf("Computing forecasting: result on file '%s' \n", filerespop);
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
   char dirfileres[132],optfileres[132];    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   /*#ifdef windows */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficgp,"cd \"%s\" \n",pathc);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     /*#endif */      }
     }
   
   strcpy(dirfileres,optionfilefiname);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   strcpy(optfileres,"vpl");    if (stepm<=12) stepsize=1;
   fprintf(ficgp,"set out \"graphmort.png\"\n ");    
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");     agelim=AGESUP;
   fprintf(ficgp, "set ter png small\n set log y\n");    
   fprintf(ficgp, "set size 0.65,0.65\n");    hstepm=1;
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);    hstepm=hstepm/stepm;
    
 }     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       }
 /***********************************************/      popage=ivector(0,AGESUP);
 /**************** Main Program *****************/      popeffectif=vector(0,AGESUP);
 /***********************************************/      popcount=vector(0,AGESUP);
      
 int main(int argc, char *argv[])      i=1;  
 {      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);     
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;      imx=i;
   int jj, ll, li, lj, lk, imk;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   int numlinepar=0; /* Current linenumber of parameter file */    }
   int itimes;  
   int NDIM=2;    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   char ca[32], cb[32], cc[32];        k=k+1;
   /*  FILE *fichtm; *//* Html File */        fprintf(ficrespop,"\n#******");
   /* FILE *ficgp;*/ /*Gnuplot File */        for(j=1;j<=cptcoveff;j++) {
   double agedeb, agefin,hf;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        }
         fprintf(ficrespop,"******\n");
   double fret;        fprintf(ficrespop,"# Age");
   double **xi,tmp,delta;        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
   double dum; /* Dummy variable */       
   double ***p3mat;        for (cpt=0; cpt<=0;cpt++) {
   double ***mobaverage;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   int *indx;         
   char line[MAXLINE], linepar[MAXLINE];          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   char pathr[MAXLINE], pathimach[MAXLINE];             nhstepm = nhstepm/hstepm;
   int firstobs=1, lastobs=10;           
   int sdeb, sfin; /* Status at beginning and end */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int c,  h , cpt,l;            oldm=oldms;savm=savms;
   int ju,jl, mi;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;         
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;             for (h=0; h<=nhstepm; h++){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */              if (h==(int) (calagedatem+YEARM*cpt)) {
   int mobilav=0,popforecast=0;                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   int hstepm, nhstepm;              }
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;              for(j=1; j<=nlstate+ndeath;j++) {
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   double bage, fage, age, agelim, agebase;                  if (mobilav==1)
   double ftolpl=FTOL;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   double **prlim;                  else {
   double *severity;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   double ***param; /* Matrix of parameters */                  }
   double  *p;                }
   double **matcov; /* Matrix of covariance */                if (h==(int)(calagedatem+12*cpt)){
   double ***delti3; /* Scale */                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   double *delti; /* Scale */                    /*fprintf(ficrespop," %.3f", kk1);
   double ***eij, ***vareij;                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   double **varpl; /* Variances of prevalence limits by age */                }
   double *epj, vepp;              }
   double kk1, kk2;              for(i=1; i<=nlstate;i++){
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;                kk1=0.;
   double **ximort;                  for(j=1; j<=nlstate;j++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   int *dcwave;                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   char z[1]="c", occ;              }
   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   char strstart[80], *strt, strtend[80];                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   char *stratrunc;            }
   int lstra;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   long total_usecs;        }
     
 /*   setlocale (LC_ALL, ""); */    /******/
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */  
 /*   textdomain (PACKAGE); */        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
 /*   setlocale (LC_CTYPE, ""); */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
 /*   setlocale (LC_MESSAGES, ""); */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            nhstepm = nhstepm/hstepm;
   (void) gettimeofday(&start_time,&tzp);           
   curr_time=start_time;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   tm = *localtime(&start_time.tv_sec);            oldm=oldms;savm=savms;
   tmg = *gmtime(&start_time.tv_sec);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcpy(strstart,asctime(&tm));            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 /*  printf("Localtime (at start)=%s",strstart); */                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 /*  tp.tv_sec = tp.tv_sec +86400; */              }
 /*  tm = *localtime(&start_time.tv_sec); */              for(j=1; j<=nlstate+ndeath;j++) {
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                kk1=0.;kk2=0;
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */                for(i=1; i<=nlstate;i++) {              
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
 /*   tp.tv_sec = mktime(&tmg); */                }
 /*   strt=asctime(&tmg); */                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
 /*   printf("Time(after) =%s",strstart);  */              }
 /*  (void) time (&time_value);            }
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 *  tm = *localtime(&time_value);          }
 *  strstart=asctime(&tm);        }
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);      }
 */    }
    
   nberr=0; /* Number of errors and warnings */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   nbwarn=0;  
   getcwd(pathcd, size);    if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
   printf("\n%s\n%s",version,fullversion);      free_vector(popeffectif,0,AGESUP);
   if(argc <=1){      free_vector(popcount,0,AGESUP);
     printf("\nEnter the parameter file name: ");    }
     scanf("%s",pathtot);    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else{    fclose(ficrespop);
     strcpy(pathtot,argv[1]);  } /* End of popforecast */
   }  
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/  int fileappend(FILE *fichier, char *optionfich)
   /*cygwin_split_path(pathtot,path,optionfile);  {
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    if((fichier=fopen(optionfich,"a"))==NULL) {
   /* cutv(path,optionfile,pathtot,'\\');*/      printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);      return (0);
  /*   strcpy(pathimach,argv[0]); */    }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fflush(fichier);
   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    return (1);
   chdir(path);  }
   strcpy(command,"mkdir ");  
   strcat(command,optionfilefiname);  
   if((outcmd=system(command)) != 0){  /**************** function prwizard **********************/
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */  {
     /* fclose(ficlog); */  
 /*     exit(1); */    /* Wizard to print covariance matrix template */
   }  
 /*   if((imk=mkdir(optionfilefiname))<0){ */    char ca[32], cb[32], cc[32];
 /*     perror("mkdir"); */    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
 /*   } */    int numlinepar;
   
   /*-------- arguments in the command line --------*/    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   /* Log file */    for(i=1; i <=nlstate; i++){
   strcat(filelog, optionfilefiname);      jj=0;
   strcat(filelog,".log");    /* */      for(j=1; j <=nlstate+ndeath; j++){
   if((ficlog=fopen(filelog,"w"))==NULL)    {        if(j==i) continue;
     printf("Problem with logfile %s\n",filelog);        jj++;
     goto end;        /*ca[0]= k+'a'-1;ca[1]='\0';*/
   }        printf("%1d%1d",i,j);
   fprintf(ficlog,"Log filename:%s\n",filelog);        fprintf(ficparo,"%1d%1d",i,j);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);        for(k=1; k<=ncovmodel;k++){
   fprintf(ficlog,"\nEnter the parameter file name: \n");          /*        printf(" %lf",param[i][j][k]); */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\          /*        fprintf(ficparo," %lf",param[i][j][k]); */
  path=%s \n\          printf(" 0.");
  optionfile=%s\n\          fprintf(ficparo," 0.");
  optionfilext=%s\n\        }
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);        printf("\n");
         fprintf(ficparo,"\n");
   printf("Local time (at start):%s",strstart);      }
   fprintf(ficlog,"Local time (at start): %s",strstart);    }
   fflush(ficlog);    printf("# Scales (for hessian or gradient estimation)\n");
 /*   (void) gettimeofday(&curr_time,&tzp); */    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(i=1; i <=nlstate; i++){
   /* */      jj=0;
   strcpy(fileres,"r");      for(j=1; j <=nlstate+ndeath; j++){
   strcat(fileres, optionfilefiname);        if(j==i) continue;
   strcat(fileres,".txt");    /* Other files have txt extension */        jj++;
         fprintf(ficparo,"%1d%1d",i,j);
   /*---------arguments file --------*/        printf("%1d%1d",i,j);
         fflush(stdout);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(k=1; k<=ncovmodel;k++){
     printf("Problem with optionfile %s\n",optionfile);          /*      printf(" %le",delti3[i][j][k]); */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
     fflush(ficlog);          printf(" 0.");
     goto end;          fprintf(ficparo," 0.");
   }        }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
   strcpy(filereso,"o");      }
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */    printf("# Covariance matrix\n");
     printf("Problem with Output resultfile: %s\n", filereso);  /* # 121 Var(a12)\n\ */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fflush(ficlog);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     goto end;  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   }  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* Reads comments: lines beginning with '#' */  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   numlinepar=0;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   while((c=getc(ficpar))=='#' && c!= EOF){    fflush(stdout);
     ungetc(c,ficpar);    fprintf(ficparo,"# Covariance matrix\n");
     fgets(line, MAXLINE, ficpar);    /* # 121 Var(a12)\n\ */
     numlinepar++;    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     puts(line);    /* #   ...\n\ */
     fputs(line,ficparo);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     fputs(line,ficlog);   
   }    for(itimes=1;itimes<=2;itimes++){
   ungetc(c,ficpar);      jj=0;
       for(i=1; i <=nlstate; i++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for(j=1; j <=nlstate+ndeath; j++){
   numlinepar++;          if(j==i) continue;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          for(k=1; k<=ncovmodel;k++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            jj++;
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            ca[0]= k+'a'-1;ca[1]='\0';
   fflush(ficlog);            if(itimes==1){
   while((c=getc(ficpar))=='#' && c!= EOF){              printf("#%1d%1d%d",i,j,k);
     ungetc(c,ficpar);              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     fgets(line, MAXLINE, ficpar);            }else{
     numlinepar++;              printf("%1d%1d%d",i,j,k);
     puts(line);              fprintf(ficparo,"%1d%1d%d",i,j,k);
     fputs(line,ficparo);              /*  printf(" %.5le",matcov[i][j]); */
     fputs(line,ficlog);            }
   }            ll=0;
   ungetc(c,ficpar);            for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                    if(lj==li) continue;
   covar=matrix(0,NCOVMAX,1,n);                 for(lk=1;lk<=ncovmodel;lk++){
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/                  ll++;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */                    if(ll<jj){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                      if(itimes==1){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                      }else{
   delti=delti3[1][1];                        printf(" 0.");
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/                        fprintf(ficparo," 0.");
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */                      }
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                    }else{
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                      if(itimes==1){
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                        printf(" Var(%s%1d%1d)",ca,i,j);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     fclose (ficparo);                      }else{
     fclose (ficlog);                        printf(" 0.");
     exit(0);                        fprintf(ficparo," 0.");
   }                      }
   else if(mle==-3) {                    }
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                  }
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);                } /* end lk */
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);              } /* end lj */
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            } /* end li */
     matcov=matrix(1,npar,1,npar);            printf("\n");
   }            fprintf(ficparo,"\n");
   else{            numlinepar++;
     /* Read guess parameters */          } /* end k*/
     /* Reads comments: lines beginning with '#' */        } /*end j */
     while((c=getc(ficpar))=='#' && c!= EOF){      } /* end i */
       ungetc(c,ficpar);    } /* end itimes */
       fgets(line, MAXLINE, ficpar);  
       numlinepar++;  } /* end of prwizard */
       puts(line);  /******************* Gompertz Likelihood ******************************/
       fputs(line,ficparo);  double gompertz(double x[])
       fputs(line,ficlog);  {
     }    double A,B,L=0.0,sump=0.,num=0.;
     ungetc(c,ficpar);    int i,n=0; /* n is the size of the sample */
       
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (i=0;i<=imx-1 ; i++) {
     for(i=1; i <=nlstate; i++){      sump=sump+weight[i];
       j=0;      /*    sump=sump+1;*/
       for(jj=1; jj <=nlstate+ndeath; jj++){      num=num+1;
         if(jj==i) continue;    }
         j++;   
         fscanf(ficpar,"%1d%1d",&i1,&j1);   
         if ((i1 != i) && (j1 != j)){    /* for (i=0; i<=imx; i++)
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
           exit(1);  
         }    for (i=1;i<=imx ; i++)
         fprintf(ficparo,"%1d%1d",i1,j1);      {
         if(mle==1)        if (cens[i] == 1 && wav[i]>1)
           printf("%1d%1d",i,j);          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         fprintf(ficlog,"%1d%1d",i,j);       
         for(k=1; k<=ncovmodel;k++){        if (cens[i] == 0 && wav[i]>1)
           fscanf(ficpar," %lf",&param[i][j][k]);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
           if(mle==1){               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
             printf(" %lf",param[i][j][k]);       
             fprintf(ficlog," %lf",param[i][j][k]);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
           }        if (wav[i] > 1 ) { /* ??? */
           else          L=L+A*weight[i];
             fprintf(ficlog," %lf",param[i][j][k]);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
           fprintf(ficparo," %lf",param[i][j][k]);        }
         }      }
         fscanf(ficpar,"\n");  
         numlinepar++;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
         if(mle==1)   
           printf("\n");    return -2*L*num/sump;
         fprintf(ficlog,"\n");  }
         fprintf(ficparo,"\n");  
       }  /******************* Printing html file ***********/
     }    void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
     fflush(ficlog);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
     p=param[1][1];  
         fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     /* Reads comments: lines beginning with '#' */    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     while((c=getc(ficpar))=='#' && c!= EOF){    for (i=1;i<=2;i++)
       ungetc(c,ficpar);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
       numlinepar++;    fprintf(fichtm,"</ul>");
       puts(line);  
       fputs(line,ficparo);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
       fputs(line,ficlog);  
     }   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     ungetc(c,ficpar);  
    for (k=agegomp;k<(agemortsup-2);k++)
     for(i=1; i <=nlstate; i++){     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       for(j=1; j <=nlstate+ndeath-1; j++){  
         fscanf(ficpar,"%1d%1d",&i1,&j1);   
         if ((i1-i)*(j1-j)!=0){    fflush(fichtm);
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);  }
           exit(1);  
         }  /******************* Gnuplot file **************/
         printf("%1d%1d",i,j);  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         fprintf(ficparo,"%1d%1d",i1,j1);  
         fprintf(ficlog,"%1d%1d",i1,j1);    char dirfileres[132],optfileres[132];
         for(k=1; k<=ncovmodel;k++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
           fscanf(ficpar,"%le",&delti3[i][j][k]);    int ng;
           printf(" %le",delti3[i][j][k]);  
           fprintf(ficparo," %le",delti3[i][j][k]);  
           fprintf(ficlog," %le",delti3[i][j][k]);    /*#ifdef windows */
         }    fprintf(ficgp,"cd \"%s\" \n",pathc);
         fscanf(ficpar,"\n");      /*#endif */
         numlinepar++;  
         printf("\n");  
         fprintf(ficparo,"\n");    strcpy(dirfileres,optionfilefiname);
         fprintf(ficlog,"\n");    strcpy(optfileres,"vpl");
       }    fprintf(ficgp,"set out \"graphmort.png\"\n ");
     }    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
     fflush(ficlog);    fprintf(ficgp, "set ter png small\n set log y\n");
     fprintf(ficgp, "set size 0.65,0.65\n");
     delti=delti3[1][1];    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   }
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  
     
     /* Reads comments: lines beginning with '#' */  
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  /***********************************************/
       numlinepar++;  /**************** Main Program *****************/
       puts(line);  /***********************************************/
       fputs(line,ficparo);  
       fputs(line,ficlog);  int main(int argc, char *argv[])
     }  {
     ungetc(c,ficpar);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
       int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     matcov=matrix(1,npar,1,npar);    int linei, month, year,iout;
     for(i=1; i <=npar; i++){    int jj, ll, li, lj, lk, imk;
       fscanf(ficpar,"%s",&str);    int numlinepar=0; /* Current linenumber of parameter file */
       if(mle==1)    int itimes;
         printf("%s",str);    int NDIM=2;
       fprintf(ficlog,"%s",str);  
       fprintf(ficparo,"%s",str);    char ca[32], cb[32], cc[32];
       for(j=1; j <=i; j++){    char dummy[]="                         ";
         fscanf(ficpar," %le",&matcov[i][j]);    /*  FILE *fichtm; *//* Html File */
         if(mle==1){    /* FILE *ficgp;*/ /*Gnuplot File */
           printf(" %.5le",matcov[i][j]);    struct stat info;
         }    double agedeb, agefin,hf;
         fprintf(ficlog," %.5le",matcov[i][j]);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         fprintf(ficparo," %.5le",matcov[i][j]);  
       }    double fret;
       fscanf(ficpar,"\n");    double **xi,tmp,delta;
       numlinepar++;  
       if(mle==1)    double dum; /* Dummy variable */
         printf("\n");    double ***p3mat;
       fprintf(ficlog,"\n");    double ***mobaverage;
       fprintf(ficparo,"\n");    int *indx;
     }    char line[MAXLINE], linepar[MAXLINE];
     for(i=1; i <=npar; i++)    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       for(j=i+1;j<=npar;j++)    char pathr[MAXLINE], pathimach[MAXLINE];
         matcov[i][j]=matcov[j][i];    char **bp, *tok, *val; /* pathtot */
         int firstobs=1, lastobs=10;
     if(mle==1)    int sdeb, sfin; /* Status at beginning and end */
       printf("\n");    int c,  h , cpt,l;
     fprintf(ficlog,"\n");    int ju,jl, mi;
         int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     fflush(ficlog);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
         int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     /*-------- Rewriting parameter file ----------*/    int mobilav=0,popforecast=0;
     strcpy(rfileres,"r");    /* "Rparameterfile */    int hstepm, nhstepm;
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int agemortsup;
     strcat(rfileres,".");    /* */    float  sumlpop=0.;
     strcat(rfileres,optionfilext);    /* Other files have txt extension */    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     if((ficres =fopen(rfileres,"w"))==NULL) {    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    double bage, fage, age, agelim, agebase;
     }    double ftolpl=FTOL;
     fprintf(ficres,"#%s\n",version);    double **prlim;
   }    /* End of mle != -3 */    double *severity;
     double ***param; /* Matrix of parameters */
   /*-------- data file ----------*/    double  *p;
   if((fic=fopen(datafile,"r"))==NULL)    {    double **matcov; /* Matrix of covariance */
     printf("Problem with datafile: %s\n", datafile);goto end;    double ***delti3; /* Scale */
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    double *delti; /* Scale */
   }    double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
   n= lastobs;    double *epj, vepp;
   severity = vector(1,maxwav);    double kk1, kk2;
   outcome=imatrix(1,maxwav+1,1,n);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   num=lvector(1,n);    double **ximort;
   moisnais=vector(1,n);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   annais=vector(1,n);    int *dcwave;
   moisdc=vector(1,n);  
   andc=vector(1,n);    char z[1]="c", occ;
   agedc=vector(1,n);  
   cod=ivector(1,n);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   weight=vector(1,n);    char  *strt, strtend[80];
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    char *stratrunc;
   mint=matrix(1,maxwav,1,n);    int lstra;
   anint=matrix(1,maxwav,1,n);  
   s=imatrix(1,maxwav+1,1,n);    long total_usecs;
   tab=ivector(1,NCOVMAX);   
   ncodemax=ivector(1,8);  /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   i=1;  /*   textdomain (PACKAGE); */
   while (fgets(line, MAXLINE, fic) != NULL)    {  /*   setlocale (LC_CTYPE, ""); */
     if ((i >= firstobs) && (i <=lastobs)) {  /*   setlocale (LC_MESSAGES, ""); */
       for(j=0; line[j] != '\n';j++){  /* Untabifies line */  
         if(line[j] == '\t')    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
           line[j] = ' ';    (void) gettimeofday(&start_time,&tzp);
       }    curr_time=start_time;
       for (j=maxwav;j>=1;j--){    tm = *localtime(&start_time.tv_sec);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);     tmg = *gmtime(&start_time.tv_sec);
         strcpy(line,stra);    strcpy(strstart,asctime(&tm));
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*  printf("Localtime (at start)=%s",strstart); */
       }  /*  tp.tv_sec = tp.tv_sec +86400; */
           /*  tm = *localtime(&start_time.tv_sec); */
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   tp.tv_sec = mktime(&tmg); */
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);  /*  (void) time (&time_value);
       for (j=ncovcol;j>=1;j--){  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  *  tm = *localtime(&time_value);
       }   *  strstart=asctime(&tm);
       lstra=strlen(stra);  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */  */
         stratrunc = &(stra[lstra-9]);  
         num[i]=atol(stratrunc);    nberr=0; /* Number of errors and warnings */
       }    nbwarn=0;
       else    getcwd(pathcd, size);
         num[i]=atol(stra);  
             printf("\n%s\n%s",version,fullversion);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    if(argc <=1){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=i+1;      i=strlen(pathr);
     }      if(pathr[i-1]=='\n')
   }        pathr[i-1]='\0';
   /* printf("ii=%d", ij);     for (tok = pathr; tok != NULL; ){
      scanf("%d",i);*/        printf("Pathr |%s|\n",pathr);
   imx=i-1; /* Number of individuals */        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
   /* for (i=1; i<=imx; i++){        strcpy (pathtot, val);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        if(pathr[0] == '\0') break; /* Dirty */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    }
     }*/    else{
    /*  for (i=1; i<=imx; i++){      strcpy(pathtot,argv[1]);
      if (s[4][i]==9)  s[4][i]=-1;     }
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       /*cygwin_split_path(pathtot,path,optionfile);
  for (i=1; i<=imx; i++)      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
      /* cutv(path,optionfile,pathtot,'\\');*/
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;  
      else weight[i]=1;*/    /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   /* Calculation of the number of parameter from char model*/    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   Tprod=ivector(1,15);    /*   strcpy(pathimach,argv[0]); */
   Tvaraff=ivector(1,15);     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
   Tvard=imatrix(1,15,1,2);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   Tage=ivector(1,15);          printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
        chdir(path); /* Can be a relative path */
   if (strlen(model) >1){ /* If there is at least 1 covariate */    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
     j=0, j1=0, k1=1, k2=1;      printf("Current directory %s!\n",pathcd);
     j=nbocc(model,'+'); /* j=Number of '+' */    strcpy(command,"mkdir ");
     j1=nbocc(model,'*'); /* j1=Number of '*' */    strcat(command,optionfilefiname);
     cptcovn=j+1;     if((outcmd=system(command)) != 0){
     cptcovprod=j1; /*Number of products */      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
           /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
     strcpy(modelsav,model);       /* fclose(ficlog); */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){  /*     exit(1); */
       printf("Error. Non available option model=%s ",model);    }
       fprintf(ficlog,"Error. Non available option model=%s ",model);  /*   if((imk=mkdir(optionfilefiname))<0){ */
       goto end;  /*     perror("mkdir"); */
     }  /*   } */
       
     /* This loop fills the array Tvar from the string 'model'.*/    /*-------- arguments in the command line --------*/
   
     for(i=(j+1); i>=1;i--){    /* Log file */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */     strcat(filelog, optionfilefiname);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    strcat(filelog,".log");    /* */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    if((ficlog=fopen(filelog,"w"))==NULL)    {
       /*scanf("%d",i);*/      printf("Problem with logfile %s\n",filelog);
       if (strchr(strb,'*')) {  /* Model includes a product */      goto end;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    }
         if (strcmp(strc,"age")==0) { /* Vn*age */    fprintf(ficlog,"Log filename:%s\n",filelog);
           cptcovprod--;    fprintf(ficlog,"\n%s\n%s",version,fullversion);
           cutv(strb,stre,strd,'V');    fprintf(ficlog,"\nEnter the parameter file name: \n");
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
           cptcovage++;   path=%s \n\
             Tage[cptcovage]=i;   optionfile=%s\n\
             /*printf("stre=%s ", stre);*/   optionfilext=%s\n\
         }   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;    printf("Local time (at start):%s",strstart);
           cutv(strb,stre,strc,'V');    fprintf(ficlog,"Local time (at start): %s",strstart);
           Tvar[i]=atoi(stre);    fflush(ficlog);
           cptcovage++;  /*   (void) gettimeofday(&curr_time,&tzp); */
           Tage[cptcovage]=i;  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
         }  
         else {  /* Age is not in the model */    /* */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    strcpy(fileres,"r");
           Tvar[i]=ncovcol+k1;    strcat(fileres, optionfilefiname);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    strcat(fileres,".txt");    /* Other files have txt extension */
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/    /*---------arguments file --------*/
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];    if((ficpar=fopen(optionfile,"r"))==NULL)    {
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       printf("Problem with optionfile %s\n",optionfile);
           for (k=1; k<=lastobs;k++)       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      fflush(ficlog);
           k1++;      goto end;
           k2=k2+2;    }
         }  
       }  
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    strcpy(filereso,"o");
        /*  scanf("%d",i);*/    strcat(filereso,fileres);
       cutv(strd,strc,strb,'V');    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       Tvar[i]=atoi(strc);      printf("Problem with Output resultfile: %s\n", filereso);
       }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       strcpy(modelsav,stra);        fflush(ficlog);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      goto end;
         scanf("%d",i);*/    }
     } /* end of loop + */  
   } /* end model */    /* Reads comments: lines beginning with '#' */
       numlinepar=0;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    while((c=getc(ficpar))=='#' && c!= EOF){
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      numlinepar++;
   printf("cptcovprod=%d ", cptcovprod);      puts(line);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      fputs(line,ficparo);
       fputs(line,ficlog);
   scanf("%d ",i);    }
   fclose(fic);*/    ungetc(c,ficpar);
   
     /*  if(mle==1){*/    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   if (weightopt != 1) { /* Maximisation without weights*/    numlinepar++;
     for(i=1;i<=n;i++) weight[i]=1.0;    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   agev=matrix(1,maxwav,1,imx);    fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
   for (i=1; i<=imx; i++) {      ungetc(c,ficpar);
     for(m=2; (m<= maxwav); m++) {      fgets(line, MAXLINE, ficpar);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){      numlinepar++;
         anint[m][i]=9999;      puts(line);
         s[m][i]=-1;      fputs(line,ficparo);
       }      fputs(line,ficlog);
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    }
         nberr++;    ungetc(c,ficpar);
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);  
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);     
         s[m][i]=-1;    covar=matrix(0,NCOVMAX,1,n);
       }    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
         nberr++;  
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       }  
     }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   }    delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
   for (i=1; i<=imx; i++)  {    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
     for(m=firstpass; (m<= lastpass); m++){      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       if(s[m][i] >0 || s[m][i]==-2){      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
         if (s[m][i] >= nlstate+1) {      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
           if(agedc[i]>0)      fclose (ficparo);
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)      fclose (ficlog);
               agev[m][i]=agedc[i];      goto end;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      exit(0);
             else {    }
               if ((int)andc[i]!=9999){    else if(mle==-3) {
                 nbwarn++;      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);      fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                 agev[m][i]=-1;      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
               }      matcov=matrix(1,npar,1,npar);
             }    }
         }    else{
         else if(s[m][i] !=9){ /* Standard case, age in fractional      /* Read guess parameters */
                                  years but with the precision of a      /* Reads comments: lines beginning with '#' */
                                  month */      while((c=getc(ficpar))=='#' && c!= EOF){
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        ungetc(c,ficpar);
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)        fgets(line, MAXLINE, ficpar);
             agev[m][i]=1;        numlinepar++;
           else if(agev[m][i] <agemin){         puts(line);
             agemin=agev[m][i];        fputs(line,ficparo);
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fputs(line,ficlog);
           }      }
           else if(agev[m][i] >agemax){      ungetc(c,ficpar);
             agemax=agev[m][i];     
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           }      for(i=1; i <=nlstate; i++){
           /*agev[m][i]=anint[m][i]-annais[i];*/        j=0;
           /*     agev[m][i] = age[i]+2*m;*/        for(jj=1; jj <=nlstate+ndeath; jj++){
         }          if(jj==i) continue;
         else { /* =9 */          j++;
           agev[m][i]=1;          fscanf(ficpar,"%1d%1d",&i1,&j1);
           s[m][i]=-1;          if ((i1 != i) && (j1 != j)){
         }            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
       }  It might be a problem of design; if ncovcol and the model are correct\n \
       else /*= 0 Unknown */  run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
         agev[m][i]=1;            exit(1);
     }          }
               fprintf(ficparo,"%1d%1d",i1,j1);
   }          if(mle==1)
   for (i=1; i<=imx; i++)  {            printf("%1d%1d",i,j);
     for(m=firstpass; (m<=lastpass); m++){          fprintf(ficlog,"%1d%1d",i,j);
       if (s[m][i] > (nlstate+ndeath)) {          for(k=1; k<=ncovmodel;k++){
         nberr++;            fscanf(ficpar," %lf",&param[i][j][k]);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                 if(mle==1){
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                   printf(" %lf",param[i][j][k]);
         goto end;              fprintf(ficlog," %lf",param[i][j][k]);
       }            }
     }            else
   }              fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
   /*for (i=1; i<=imx; i++){          }
   for (m=firstpass; (m<lastpass); m++){          fscanf(ficpar,"\n");
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);          numlinepar++;
 }          if(mle==1)
             printf("\n");
 }*/          fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      }  
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       fflush(ficlog);
   
   agegomp=(int)agemin;      p=param[1][1];
   free_vector(severity,1,maxwav);     
   free_imatrix(outcome,1,maxwav+1,1,n);      /* Reads comments: lines beginning with '#' */
   free_vector(moisnais,1,n);      while((c=getc(ficpar))=='#' && c!= EOF){
   free_vector(annais,1,n);        ungetc(c,ficpar);
   /* free_matrix(mint,1,maxwav,1,n);        fgets(line, MAXLINE, ficpar);
      free_matrix(anint,1,maxwav,1,n);*/        numlinepar++;
   free_vector(moisdc,1,n);        puts(line);
   free_vector(andc,1,n);        fputs(line,ficparo);
         fputs(line,ficlog);
          }
   wav=ivector(1,imx);      ungetc(c,ficpar);
   dh=imatrix(1,lastpass-firstpass+1,1,imx);  
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1; i <=nlstate; i++){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);        for(j=1; j <=nlstate+ndeath-1; j++){
              fscanf(ficpar,"%1d%1d",&i1,&j1);
   /* Concatenates waves */          if ((i1-i)*(j1-j)!=0){
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          }
           printf("%1d%1d",i,j);
   Tcode=ivector(1,100);          fprintf(ficparo,"%1d%1d",i1,j1);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           fprintf(ficlog,"%1d%1d",i1,j1);
   ncodemax[1]=1;          for(k=1; k<=ncovmodel;k++){
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);            fscanf(ficpar,"%le",&delti3[i][j][k]);
                   printf(" %le",delti3[i][j][k]);
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of             fprintf(ficparo," %le",delti3[i][j][k]);
                                  the estimations*/            fprintf(ficlog," %le",delti3[i][j][k]);
   h=0;          }
   m=pow(2,cptcoveff);          fscanf(ficpar,"\n");
            numlinepar++;
   for(k=1;k<=cptcoveff; k++){          printf("\n");
     for(i=1; i <=(m/pow(2,k));i++){          fprintf(ficparo,"\n");
       for(j=1; j <= ncodemax[k]; j++){          fprintf(ficlog,"\n");
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        }
           h++;      }
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      fflush(ficlog);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
         }       delti=delti3[1][1];
       }  
     }  
   }       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    
      codtab[1][2]=1;codtab[2][2]=2; */      /* Reads comments: lines beginning with '#' */
   /* for(i=1; i <=m ;i++){       while((c=getc(ficpar))=='#' && c!= EOF){
      for(k=1; k <=cptcovn; k++){        ungetc(c,ficpar);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        fgets(line, MAXLINE, ficpar);
      }        numlinepar++;
      printf("\n");        puts(line);
      }        fputs(line,ficparo);
      scanf("%d",i);*/        fputs(line,ficlog);
           }
   /*------------ gnuplot -------------*/      ungetc(c,ficpar);
   strcpy(optionfilegnuplot,optionfilefiname);   
   if(mle==-3)      matcov=matrix(1,npar,1,npar);
     strcat(optionfilegnuplot,"-mort");      for(i=1; i <=npar; i++){
   strcat(optionfilegnuplot,".gp");        fscanf(ficpar,"%s",&str);
         if(mle==1)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          printf("%s",str);
     printf("Problem with file %s",optionfilegnuplot);        fprintf(ficlog,"%s",str);
   }        fprintf(ficparo,"%s",str);
   else{        for(j=1; j <=i; j++){
     fprintf(ficgp,"\n# %s\n", version);           fscanf(ficpar," %le",&matcov[i][j]);
     fprintf(ficgp,"# %s\n", optionfilegnuplot);           if(mle==1){
     fprintf(ficgp,"set missing 'NaNq'\n");            printf(" %.5le",matcov[i][j]);
   }          }
   /*  fclose(ficgp);*/          fprintf(ficlog," %.5le",matcov[i][j]);
   /*--------- index.htm --------*/          fprintf(ficparo," %.5le",matcov[i][j]);
         }
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */        fscanf(ficpar,"\n");
   if(mle==-3)        numlinepar++;
     strcat(optionfilehtm,"-mort");        if(mle==1)
   strcat(optionfilehtm,".htm");          printf("\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        fprintf(ficlog,"\n");
     printf("Problem with %s \n",optionfilehtm), exit(0);        fprintf(ficparo,"\n");
   }      }
       for(i=1; i <=npar; i++)
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */        for(j=i+1;j<=npar;j++)
   strcat(optionfilehtmcov,"-cov.htm");          matcov[i][j]=matcov[j][i];
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {     
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      if(mle==1)
   }        printf("\n");
   else{      fprintf(ficlog,"\n");
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \     
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      fflush(ficlog);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\     
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      /*-------- Rewriting parameter file ----------*/
   }      strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \      strcat(rfileres,".");    /* */
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      strcat(rfileres,optionfilext);    /* Other files have txt extension */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      if((ficres =fopen(rfileres,"w"))==NULL) {
 \n\        printf("Problem writing new parameter file: %s\n", fileres);goto end;
 <hr  size=\"2\" color=\"#EC5E5E\">\        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
  <ul><li><h4>Parameter files</h4>\n\      }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\      fprintf(ficres,"#%s\n",version);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\    }    /* End of mle != -3 */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  
  - Date and time at start: %s</ul>\n",\    /*-------- data file ----------*/
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\    if((fic=fopen(datafile,"r"))==NULL)    {
           fileres,fileres,\      printf("Problem while opening datafile: %s\n", datafile);goto end;
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);      fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   fflush(fichtm);    }
   
   strcpy(pathr,path);    n= lastobs;
   strcat(pathr,optionfilefiname);    severity = vector(1,maxwav);
   chdir(optionfilefiname); /* Move to directory named optionfile */    outcome=imatrix(1,maxwav+1,1,n);
       num=lvector(1,n);
   /* Calculates basic frequencies. Computes observed prevalence at single age    moisnais=vector(1,n);
      and prints on file fileres'p'. */    annais=vector(1,n);
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);    moisdc=vector(1,n);
     andc=vector(1,n);
   fprintf(fichtm,"\n");    agedc=vector(1,n);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    cod=ivector(1,n);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    weight=vector(1,n);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
           imx,agemin,agemax,jmin,jmax,jmean);    mint=matrix(1,maxwav,1,n);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    anint=matrix(1,maxwav,1,n);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    s=imatrix(1,maxwav+1,1,n);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    tab=ivector(1,NCOVMAX);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    ncodemax=ivector(1,8);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
         i=1;
        linei=0;
   /* For Powell, parameters are in a vector p[] starting at p[1]    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      linei=linei+1;
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */      for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/          line[j] = ' ';
   if (mle==-3){      }
     ximort=matrix(1,NDIM,1,NDIM);      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
     cens=ivector(1,n);        ;
     ageexmed=vector(1,n);      };
     agecens=vector(1,n);      line[j+1]=0;  /* Trims blanks at end of line */
     dcwave=ivector(1,n);      if(line[0]=='#'){
          fprintf(ficlog,"Comment line\n%s\n",line);
     for (i=1; i<=imx; i++){        printf("Comment line\n%s\n",line);
       dcwave[i]=-1;        continue;
       for (j=1; j<=lastpass; j++)      }
         if (s[j][i]>nlstate) {  
           dcwave[i]=j;      for (j=maxwav;j>=1;j--){
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/        cutv(stra, strb,line,' ');
           break;        errno=0;
         }        lval=strtol(strb,&endptr,10);
     }        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
     for (i=1; i<=imx; i++) {          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
       if (wav[i]>0){          exit(1);
         ageexmed[i]=agev[mw[1][i]][i];        }
         j=wav[i];agecens[i]=1.;         s[j][i]=lval;
         if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];       
         cens[i]=1;        strcpy(line,stra);
                 cutv(stra, strb,line,' ');
         if (ageexmed[i]<1) cens[i]=-1;        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;        }
       }        else  if(iout=sscanf(strb,"%s.") != 0){
       else cens[i]=-1;          month=99;
     }          year=9999;
             }else{
     for (i=1;i<=NDIM;i++) {          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
       for (j=1;j<=NDIM;j++)          exit(1);
         ximort[i][j]=(i == j ? 1.0 : 0.0);        }
     }        anint[j][i]= (double) year;
         mint[j][i]= (double)month;
     p[1]=0.1; p[2]=0.1;        strcpy(line,stra);
     /*printf("%lf %lf", p[1], p[2]);*/      } /* ENd Waves */
          
           cutv(stra, strb,line,' ');
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   strcpy(filerespow,"pow-mort");       }
   strcat(filerespow,fileres);      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        month=99;
     printf("Problem with resultfile: %s\n", filerespow);        year=9999;
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);      }else{
   }        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        exit(1);
   /*  for (i=1;i<=nlstate;i++)      }
     for(j=1;j<=nlstate+ndeath;j++)      andc[i]=(double) year;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      moisdc[i]=(double) month;
   */      strcpy(line,stra);
   fprintf(ficrespow,"\n");     
       cutv(stra, strb,line,' ');
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
     fclose(ficrespow);      }
           else  if(iout=sscanf(strb,"%s.") != 0){
     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz);         month=99;
         year=9999;
     for(i=1; i <=NDIM; i++)      }else{
       for(j=i+1;j<=NDIM;j++)        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         matcov[i][j]=matcov[j][i];        exit(1);
           }
     printf("\nCovariance matrix\n ");      annais[i]=(double)(year);
     for(i=1; i <=NDIM; i++) {      moisnais[i]=(double)(month);
       for(j=1;j<=NDIM;j++){       strcpy(line,stra);
         printf("%f ",matcov[i][j]);     
       }      cutv(stra, strb,line,' ');
       printf("\n ");      errno=0;
     }      dval=strtod(strb,&endptr);
           if( strb[0]=='\0' || (*endptr != '\0')){
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);        printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     for (i=1;i<=NDIM;i++)         exit(1);
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));      }
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */      weight[i]=dval;
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      strcpy(line,stra);
          
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \      for (j=ncovcol;j>=1;j--){
                      stepm, weightopt,\        cutv(stra, strb,line,' ');
                      model,imx,p,matcov);        errno=0;
   } /* Endof if mle==-3 */        lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
   else{ /* For mle >=1 */          printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
             exit(1);
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        }
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        if(lval <-1 || lval >1){
     for (k=1; k<=npar;k++)          printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
       printf(" %d %8.5f",k,p[k]);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
     printf("\n");   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
     globpr=1; /* to print the contributions */   For example, for multinomial values like 1, 2 and 3,\n \
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */   build V1=0 V2=0 for the reference value (1),\n \
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);          V1=1 V2=0 for (2) \n \
     for (k=1; k<=npar;k++)   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       printf(" %d %8.5f",k,p[k]);   output of IMaCh is often meaningless.\n \
     printf("\n");   Exiting.\n",lval,linei, i,line,j);
     if(mle>=1){ /* Could be 1 or 2 */          exit(1);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
     }        covar[j][i]=(double)(lval);
             strcpy(line,stra);
     /*--------- results files --------------*/      }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      lstra=strlen(stra);
          
           if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        stratrunc = &(stra[lstra-9]);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        num[i]=atol(stratrunc);
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
     for(i=1,jk=1; i <=nlstate; i++){      else
       for(k=1; k <=(nlstate+ndeath); k++){        num[i]=atol(stra);
         if (k != i) {      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d%d ",i,k);        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
           fprintf(ficlog,"%d%d ",i,k);     
           fprintf(ficres,"%1d%1d ",i,k);      i=i+1;
           for(j=1; j <=ncovmodel; j++){    } /* End loop reading  data */
             printf("%f ",p[jk]);    fclose(fic);
             fprintf(ficlog,"%f ",p[jk]);    /* printf("ii=%d", ij);
             fprintf(ficres,"%f ",p[jk]);       scanf("%d",i);*/
             jk++;     imx=i-1; /* Number of individuals */
           }  
           printf("\n");    /* for (i=1; i<=imx; i++){
           fprintf(ficlog,"\n");      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
           fprintf(ficres,"\n");      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
         }      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }      }*/
     }     /*  for (i=1; i<=imx; i++){
     if(mle!=0){       if (s[4][i]==9)  s[4][i]=-1;
       /* Computing hessian and covariance matrix */       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
       ftolhess=ftol; /* Usually correct */   
       hesscov(matcov, p, npar, delti, ftolhess, func);    /* for (i=1; i<=imx; i++) */
     }   
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
     printf("# Scales (for hessian or gradient estimation)\n");       else weight[i]=1;*/
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
     for(i=1,jk=1; i <=nlstate; i++){    /* Calculation of the number of parameters from char model */
       for(j=1; j <=nlstate+ndeath; j++){    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
         if (j!=i) {    Tprod=ivector(1,15);
           fprintf(ficres,"%1d%1d",i,j);    Tvaraff=ivector(1,15);
           printf("%1d%1d",i,j);    Tvard=imatrix(1,15,1,2);
           fprintf(ficlog,"%1d%1d",i,j);    Tage=ivector(1,15);      
           for(k=1; k<=ncovmodel;k++){     
             printf(" %.5e",delti[jk]);    if (strlen(model) >1){ /* If there is at least 1 covariate */
             fprintf(ficlog," %.5e",delti[jk]);      j=0, j1=0, k1=1, k2=1;
             fprintf(ficres," %.5e",delti[jk]);      j=nbocc(model,'+'); /* j=Number of '+' */
             jk++;      j1=nbocc(model,'*'); /* j1=Number of '*' */
           }      cptcovn=j+1;
           printf("\n");      cptcovprod=j1; /*Number of products */
           fprintf(ficlog,"\n");     
           fprintf(ficres,"\n");      strcpy(modelsav,model);
         }      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
       }        printf("Error. Non available option model=%s ",model);
     }        fprintf(ficlog,"Error. Non available option model=%s ",model);
             goto end;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
     if(mle>=1)     
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /* This loop fills the array Tvar from the string 'model'.*/
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     /* # 121 Var(a12)\n\ */      for(i=(j+1); i>=1;i--){
     /* # 122 Cov(b12,a12) Var(b12)\n\ */        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */        /*scanf("%d",i);*/
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */        if (strchr(strb,'*')) {  /* Model includes a product */
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */          if (strcmp(strc,"age")==0) { /* Vn*age */
                 cptcovprod--;
                 cutv(strb,stre,strd,'V');
     /* Just to have a covariance matrix which will be more understandable            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
        even is we still don't want to manage dictionary of variables            cptcovage++;
     */              Tage[cptcovage]=i;
     for(itimes=1;itimes<=2;itimes++){              /*printf("stre=%s ", stre);*/
       jj=0;          }
       for(i=1; i <=nlstate; i++){          else if (strcmp(strd,"age")==0) { /* or age*Vn */
         for(j=1; j <=nlstate+ndeath; j++){            cptcovprod--;
           if(j==i) continue;            cutv(strb,stre,strc,'V');
           for(k=1; k<=ncovmodel;k++){            Tvar[i]=atoi(stre);
             jj++;            cptcovage++;
             ca[0]= k+'a'-1;ca[1]='\0';            Tage[cptcovage]=i;
             if(itimes==1){          }
               if(mle>=1)          else {  /* Age is not in the model */
                 printf("#%1d%1d%d",i,j,k);            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
               fprintf(ficlog,"#%1d%1d%d",i,j,k);            Tvar[i]=ncovcol+k1;
               fprintf(ficres,"#%1d%1d%d",i,j,k);            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             }else{            Tprod[k1]=i;
               if(mle>=1)            Tvard[k1][1]=atoi(strc); /* m*/
                 printf("%1d%1d%d",i,j,k);            Tvard[k1][2]=atoi(stre); /* n */
               fprintf(ficlog,"%1d%1d%d",i,j,k);            Tvar[cptcovn+k2]=Tvard[k1][1];
               fprintf(ficres,"%1d%1d%d",i,j,k);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
             }            for (k=1; k<=lastobs;k++)
             ll=0;              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             for(li=1;li <=nlstate; li++){            k1++;
               for(lj=1;lj <=nlstate+ndeath; lj++){            k2=k2+2;
                 if(lj==li) continue;          }
                 for(lk=1;lk<=ncovmodel;lk++){        }
                   ll++;        else { /* no more sum */
                   if(ll<=jj){          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                     cb[0]= lk +'a'-1;cb[1]='\0';         /*  scanf("%d",i);*/
                     if(ll<jj){        cutv(strd,strc,strb,'V');
                       if(itimes==1){        Tvar[i]=atoi(strc);
                         if(mle>=1)        }
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        strcpy(modelsav,stra);  
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);          scanf("%d",i);*/
                       }else{      } /* end of loop + */
                         if(mle>=1)    } /* end model */
                           printf(" %.5e",matcov[jj][ll]);    
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                         fprintf(ficres," %.5e",matcov[jj][ll]);       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                       }  
                     }else{    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                       if(itimes==1){    printf("cptcovprod=%d ", cptcovprod);
                         if(mle>=1)    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                           printf(" Var(%s%1d%1d)",ca,i,j);  
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);    scanf("%d ",i);*/
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);  
                       }else{      /*  if(mle==1){*/
                         if(mle>=1)    if (weightopt != 1) { /* Maximisation without weights*/
                           printf(" %.5e",matcov[jj][ll]);       for(i=1;i<=n;i++) weight[i]=1.0;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);     }
                         fprintf(ficres," %.5e",matcov[jj][ll]);       /*-calculation of age at interview from date of interview and age at death -*/
                       }    agev=matrix(1,maxwav,1,imx);
                     }  
                   }    for (i=1; i<=imx; i++) {
                 } /* end lk */      for(m=2; (m<= maxwav); m++) {
               } /* end lj */        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
             } /* end li */          anint[m][i]=9999;
             if(mle>=1)          s[m][i]=-1;
               printf("\n");        }
             fprintf(ficlog,"\n");        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
             fprintf(ficres,"\n");          nberr++;
             numlinepar++;          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           } /* end k*/          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
         } /*end j */          s[m][i]=-1;
       } /* end i */        }
     } /* end itimes */        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
               nberr++;
     fflush(ficlog);          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
     fflush(ficres);          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
               s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);    }
       puts(line);  
       fputs(line,ficparo);    for (i=1; i<=imx; i++)  {
     }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     ungetc(c,ficpar);      for(m=firstpass; (m<= lastpass); m++){
             if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
     estepm=0;          if (s[m][i] >= nlstate+1) {
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            if(agedc[i]>0)
     if (estepm==0 || estepm < stepm) estepm=stepm;              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
     if (fage <= 2) {                agev[m][i]=agedc[i];
       bage = ageminpar;            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
       fage = agemaxpar;              else {
     }                if ((int)andc[i]!=9999){
                       nbwarn++;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  agev[m][i]=-1;
                     }
     while((c=getc(ficpar))=='#' && c!= EOF){              }
       ungetc(c,ficpar);          }
       fgets(line, MAXLINE, ficpar);          else if(s[m][i] !=9){ /* Standard case, age in fractional
       puts(line);                                   years but with the precision of a month */
       fputs(line,ficparo);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     }            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
     ungetc(c,ficpar);              agev[m][i]=1;
                 else if(agev[m][i] <agemin){
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);              agemin=agev[m][i];
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            }
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            else if(agev[m][i] >agemax){
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);              agemax=agev[m][i];
                   /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);            /*agev[m][i]=anint[m][i]-annais[i];*/
       fgets(line, MAXLINE, ficpar);            /*     agev[m][i] = age[i]+2*m;*/
       puts(line);          }
       fputs(line,ficparo);          else { /* =9 */
     }            agev[m][i]=1;
     ungetc(c,ficpar);            s[m][i]=-1;
               }
             }
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;        else /*= 0 Unknown */
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;          agev[m][i]=1;
           }
     fscanf(ficpar,"pop_based=%d\n",&popbased);     
     fprintf(ficparo,"pop_based=%d\n",popbased);       }
     fprintf(ficres,"pop_based=%d\n",popbased);       for (i=1; i<=imx; i++)  {
           for(m=firstpass; (m<=lastpass); m++){
     while((c=getc(ficpar))=='#' && c!= EOF){        if (s[m][i] > (nlstate+ndeath)) {
       ungetc(c,ficpar);          nberr++;
       fgets(line, MAXLINE, ficpar);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       puts(line);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       fputs(line,ficparo);          goto end;
     }        }
     ungetc(c,ficpar);      }
         }
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);  
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    /*for (i=1; i<=imx; i++){
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    for (m=firstpass; (m<lastpass); m++){
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  }
     /* day and month of proj2 are not used but only year anproj2.*/  
       }*/
       
       
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
       
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */    agegomp=(int)agemin;
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);    free_vector(severity,1,maxwav);
         free_imatrix(outcome,1,maxwav+1,1,n);
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\    free_vector(moisnais,1,n);
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\    free_vector(annais,1,n);
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    /* free_matrix(mint,1,maxwav,1,n);
              free_matrix(anint,1,maxwav,1,n);*/
    /*------------ free_vector  -------------*/    free_vector(moisdc,1,n);
    /*  chdir(path); */    free_vector(andc,1,n);
    
     free_ivector(wav,1,imx);     
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    wav=ivector(1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       bh=imatrix(1,lastpass-firstpass+1,1,imx);
     free_lvector(num,1,n);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
     free_vector(agedc,1,n);     
     /*free_matrix(covar,0,NCOVMAX,1,n);*/    /* Concatenates waves */
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     fclose(ficparo);  
     fclose(ficres);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     /*--------------- Prevalence limit  (stable prevalence) --------------*/    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
       ncodemax[1]=1;
     strcpy(filerespl,"pl");    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
     strcat(filerespl,fileres);       
     if((ficrespl=fopen(filerespl,"w"))==NULL) {    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;                                   the estimations*/
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    h=0;
     }    m=pow(2,cptcoveff);
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);   
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);    for(k=1;k<=cptcoveff; k++){
     fprintf(ficrespl,"#Stable prevalence \n");      for(i=1; i <=(m/pow(2,k));i++){
     fprintf(ficrespl,"#Age ");        for(j=1; j <= ncodemax[k]; j++){
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
     fprintf(ficrespl,"\n");            h++;
               if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
     prlim=matrix(1,nlstate,1,nlstate);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
     agebase=ageminpar;        }
     agelim=agemaxpar;      }
     ftolpl=1.e-10;    }
     i1=cptcoveff;    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
     if (cptcovn < 1){i1=1;}       codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){       for(k=1; k <=cptcovn; k++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
         k=k+1;       }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       printf("\n");
         fprintf(ficrespl,"\n#******");       }
         printf("\n#******");       scanf("%d",i);*/
         fprintf(ficlog,"\n#******");     
         for(j=1;j<=cptcoveff;j++) {    /*------------ gnuplot -------------*/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(optionfilegnuplot,optionfilefiname);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if(mle==-3)
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcat(optionfilegnuplot,"-mort");
         }    strcat(optionfilegnuplot,".gp");
         fprintf(ficrespl,"******\n");  
         printf("******\n");    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
         fprintf(ficlog,"******\n");      printf("Problem with file %s",optionfilegnuplot);
             }
         for (age=agebase; age<=agelim; age++){    else{
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fprintf(ficgp,"\n# %s\n", version);
           fprintf(ficrespl,"%.0f ",age );      fprintf(ficgp,"# %s\n", optionfilegnuplot);
           for(j=1;j<=cptcoveff;j++)      fprintf(ficgp,"set missing 'NaNq'\n");
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
           for(i=1; i<=nlstate;i++)    /*  fclose(ficgp);*/
             fprintf(ficrespl," %.5f", prlim[i][i]);    /*--------- index.htm --------*/
           fprintf(ficrespl,"\n");  
         }    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
       }    if(mle==-3)
     }      strcat(optionfilehtm,"-mort");
     fclose(ficrespl);    strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
     /*------------- h Pij x at various ages ------------*/      printf("Problem with %s \n",optionfilehtm), exit(0);
       }
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
     if((ficrespij=fopen(filerespij,"w"))==NULL) {    strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    strcat(optionfilehtmcov,"-cov.htm");
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
     }      printf("Problem with %s \n",optionfilehtmcov), exit(0);
     printf("Computing pij: result on file '%s' \n", filerespij);    }
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    else{
       fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
     stepsize=(int) (stepm+YEARM-1)/YEARM;  <hr size=\"2\" color=\"#EC5E5E\"> \n\
     /*if (stepm<=24) stepsize=2;*/  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     agelim=AGESUP;    }
     hstepm=stepsize*YEARM; /* Every year of age */  
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
     /* hstepm=1;   aff par mois*/  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");  <hr  size=\"2\" color=\"#EC5E5E\">\
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){   <ul><li><h4>Parameter files</h4>\n\
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
         k=k+1;   - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
         fprintf(ficrespij,"\n#****** ");   - Log file of the run: <a href=\"%s\">%s</a><br>\n\
         for(j=1;j<=cptcoveff;j++)    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Date and time at start: %s</ul>\n",\
         fprintf(ficrespij,"******\n");            optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                     optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            fileres,fileres,\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fflush(fichtm);
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    chdir(optionfilefiname); /* Move to directory named optionfile */
           oldm=oldms;savm=savms;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Calculates basic frequencies. Computes observed prevalence at single age
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");       and prints on file fileres'p'. */
           for(i=1; i<=nlstate;i++)    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(fichtm,"\n");
           fprintf(ficrespij,"\n");    fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
           for (h=0; h<=nhstepm; h++){  Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             for(i=1; i<=nlstate;i++)            imx,agemin,agemax,jmin,jmax,jmean);
               for(j=1; j<=nlstate+ndeath;j++)    pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
             fprintf(ficrespij,"\n");      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           }      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
           fprintf(ficrespij,"\n");     
         }     
       }    /* For Powell, parameters are in a vector p[] starting at p[1]
     }       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);  
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     fclose(ficrespij);  
     if (mle==-3){
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      ximort=matrix(1,NDIM,1,NDIM);
     for(i=1;i<=AGESUP;i++)      cens=ivector(1,n);
       for(j=1;j<=NCOVMAX;j++)      ageexmed=vector(1,n);
         for(k=1;k<=NCOVMAX;k++)      agecens=vector(1,n);
           probs[i][j][k]=0.;      dcwave=ivector(1,n);
    
     /*---------- Forecasting ------------------*/      for (i=1; i<=imx; i++){
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/        dcwave[i]=-1;
     if(prevfcast==1){        for (m=firstpass; m<=lastpass; m++)
       /*    if(stepm ==1){*/          if (s[m][i]>nlstate) {
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);            dcwave[i]=m;
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/            /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
       /*      }  */            break;
       /*      else{ */          }
       /*        erreur=108; */      }
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */  
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      for (i=1; i<=imx; i++) {
       /*      } */        if (wav[i]>0){
     }          ageexmed[i]=agev[mw[1][i]][i];
             j=wav[i];
           agecens[i]=1.;
     /*---------- Health expectancies and variances ------------*/  
           if (ageexmed[i]> 1 && wav[i] > 0){
     strcpy(filerest,"t");            agecens[i]=agev[mw[j][i]][i];
     strcat(filerest,fileres);            cens[i]= 1;
     if((ficrest=fopen(filerest,"w"))==NULL) {          }else if (ageexmed[i]< 1)
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;            cens[i]= -1;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
     }            cens[i]=0 ;
     printf("Computing Total LEs with variances: file '%s' \n", filerest);         }
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);         else cens[i]=-1;
       }
      
     strcpy(filerese,"e");      for (i=1;i<=NDIM;i++) {
     strcat(filerese,fileres);        for (j=1;j<=NDIM;j++)
     if((ficreseij=fopen(filerese,"w"))==NULL) {          ximort[i][j]=(i == j ? 1.0 : 0.0);
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);      }
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     
     }      p[1]=0.0268; p[NDIM]=0.083;
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);      /*printf("%lf %lf", p[1], p[2]);*/
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);     
      
     strcpy(fileresv,"v");      printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcat(fileresv,fileres);      strcpy(filerespow,"pow-mort");
     if((ficresvij=fopen(fileresv,"w"))==NULL) {      strcat(filerespow,fileres);
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("Problem with resultfile: %s\n", filerespow);
     }        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */          for(j=1;j<=nlstate+ndeath;j++)
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\      */
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);      fprintf(ficrespow,"\n");
     */     
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
     if (mobilav!=0) {      fclose(ficrespow);
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){      hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
         printf(" Error in movingaverage mobilav=%d\n",mobilav);      for(i=1; i <=NDIM; i++)
       }        for(j=i+1;j<=NDIM;j++)
     }          matcov[i][j]=matcov[j][i];
      
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      printf("\nCovariance matrix\n ");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i <=NDIM; i++) {
         k=k+1;         for(j=1;j<=NDIM;j++){
         fprintf(ficrest,"\n#****** ");          printf("%f ",matcov[i][j]);
         for(j=1;j<=cptcoveff;j++)         }
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("\n ");
         fprintf(ficrest,"******\n");      }
      
         fprintf(ficreseij,"\n#****** ");      printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
         for(j=1;j<=cptcoveff;j++)       for (i=1;i<=NDIM;i++)
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficreseij,"******\n");  
       lsurv=vector(1,AGESUP);
         fprintf(ficresvij,"\n#****** ");      lpop=vector(1,AGESUP);
         for(j=1;j<=cptcoveff;j++)       tpop=vector(1,AGESUP);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      lsurv[agegomp]=100000;
         fprintf(ficresvij,"******\n");     
       for (k=agegomp;k<=AGESUP;k++) {
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        agemortsup=k;
         oldm=oldms;savm=savms;        if (p[1]*exp(p[2]*(k-agegomp))>1) break;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        }
       
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for (k=agegomp;k<agemortsup;k++)
         oldm=oldms;savm=savms;        lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);     
         if(popbased==1){      for (k=agegomp;k<agemortsup;k++){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);        lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         }        sumlpop=sumlpop+lpop[k];
       }
       
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      tpop[agegomp]=sumlpop;
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for (k=agegomp;k<(agemortsup-3);k++){
         fprintf(ficrest,"\n");        /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
         epj=vector(1,nlstate+1);      }
         for(age=bage; age <=fage ;age++){     
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     
           if (popbased==1) {      printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
             if(mobilav ==0){      for (k=agegomp;k<(agemortsup-2);k++)
               for(i=1; i<=nlstate;i++)        printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                 prlim[i][i]=probs[(int)age][i][k];     
             }else{ /* mobilav */      
               for(i=1; i<=nlstate;i++)      replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                 prlim[i][i]=mobaverage[(int)age][i][k];      printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
             }     
           }      printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                                stepm, weightopt,\
           fprintf(ficrest," %4.0f",age);                       model,imx,p,matcov,agemortsup);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     
             for(i=1, epj[j]=0.;i <=nlstate;i++) {      free_vector(lsurv,1,AGESUP);
               epj[j] += prlim[i][i]*eij[i][j][(int)age];      free_vector(lpop,1,AGESUP);
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      free_vector(tpop,1,AGESUP);
             }    } /* Endof if mle==-3 */
             epj[nlstate+1] +=epj[j];   
           }    else{ /* For mle >=1 */
    
           for(i=1, vepp=0.;i <=nlstate;i++)      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
             for(j=1;j <=nlstate;j++)      printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
               vepp += vareij[i][j][(int)age];      for (k=1; k<=npar;k++)
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        printf(" %d %8.5f",k,p[k]);
           for(j=1;j <=nlstate;j++){      printf("\n");
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      globpr=1; /* to print the contributions */
           }      likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
           fprintf(ficrest,"\n");      printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
         }      for (k=1; k<=npar;k++)
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        printf(" %d %8.5f",k,p[k]);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      printf("\n");
         free_vector(epj,1,nlstate+1);      if(mle>=1){ /* Could be 1 or 2 */
       }        mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }      }
     free_vector(weight,1,n);     
     free_imatrix(Tvard,1,15,1,2);      /*--------- results files --------------*/
     free_imatrix(s,1,maxwav+1,1,n);      fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     free_matrix(anint,1,maxwav,1,n);      
     free_matrix(mint,1,maxwav,1,n);     
     free_ivector(cod,1,n);      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     free_ivector(tab,1,NCOVMAX);      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fclose(ficreseij);      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fclose(ficresvij);      for(i=1,jk=1; i <=nlstate; i++){
     fclose(ficrest);        for(k=1; k <=(nlstate+ndeath); k++){
     fclose(ficpar);          if (k != i) {
               printf("%d%d ",i,k);
     /*------- Variance of stable prevalence------*/               fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
     strcpy(fileresvpl,"vpl");            for(j=1; j <=ncovmodel; j++){
     strcat(fileresvpl,fileres);              printf("%lf ",p[jk]);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              fprintf(ficlog,"%lf ",p[jk]);
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);              fprintf(ficres,"%lf ",p[jk]);
       exit(0);              jk++;
     }            }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);            printf("\n");
             fprintf(ficlog,"\n");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){            fprintf(ficres,"\n");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
         k=k+1;        }
         fprintf(ficresvpl,"\n#****** ");      }
         for(j=1;j<=cptcoveff;j++)       if(mle!=0){
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* Computing hessian and covariance matrix */
         fprintf(ficresvpl,"******\n");        ftolhess=ftol; /* Usually correct */
               hesscov(matcov, p, npar, delti, ftolhess, func);
         varpl=matrix(1,nlstate,(int) bage, (int) fage);      }
         oldm=oldms;savm=savms;      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      printf("# Scales (for hessian or gradient estimation)\n");
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       }      for(i=1,jk=1; i <=nlstate; i++){
     }        for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
     fclose(ficresvpl);            fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
     /*---------- End : free ----------------*/            fprintf(ficlog,"%1d%1d",i,j);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(k=1; k<=ncovmodel;k++){
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
   }  /* mle==-3 arrives here for freeing */              fprintf(ficres," %.5e",delti[jk]);
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              jk++;
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            }
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            printf("\n");
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
     free_matrix(covar,0,NCOVMAX,1,n);          }
     free_matrix(matcov,1,npar,1,npar);        }
     /*free_vector(delti,1,npar);*/      }
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      
     free_matrix(agev,1,maxwav,1,imx);      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     free_ivector(ncodemax,1,8);      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     free_ivector(Tvar,1,15);      /* # 121 Var(a12)\n\ */
     free_ivector(Tprod,1,15);      /* # 122 Cov(b12,a12) Var(b12)\n\ */
     free_ivector(Tvaraff,1,15);      /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     free_ivector(Tage,1,15);      /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     free_ivector(Tcode,1,100);      /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   fflush(fichtm);      /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   fflush(ficgp);     
        
       /* Just to have a covariance matrix which will be more understandable
   if((nberr >0) || (nbwarn>0)){         even is we still don't want to manage dictionary of variables
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);      */
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);      for(itimes=1;itimes<=2;itimes++){
   }else{        jj=0;
     printf("End of Imach\n");        for(i=1; i <=nlstate; i++){
     fprintf(ficlog,"End of Imach\n");          for(j=1; j <=nlstate+ndeath; j++){
   }            if(j==i) continue;
   printf("See log file on %s\n",filelog);            for(k=1; k<=ncovmodel;k++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              jj++;
   (void) gettimeofday(&end_time,&tzp);              ca[0]= k+'a'-1;ca[1]='\0';
   tm = *localtime(&end_time.tv_sec);              if(itimes==1){
   tmg = *gmtime(&end_time.tv_sec);                if(mle>=1)
   strcpy(strtend,asctime(&tm));                  printf("#%1d%1d%d",i,j,k);
   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend);                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);                 fprintf(ficres,"#%1d%1d%d",i,j,k);
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));              }else{
                 if(mle>=1)
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);                  printf("%1d%1d%d",i,j,k);
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));                fprintf(ficlog,"%1d%1d%d",i,j,k);
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);                fprintf(ficres,"%1d%1d%d",i,j,k);
   /*  printf("Total time was %d uSec.\n", total_usecs);*/              }
 /*   if(fileappend(fichtm,optionfilehtm)){ */              ll=0;
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);              for(li=1;li <=nlstate; li++){
   fclose(fichtm);                for(lj=1;lj <=nlstate+ndeath; lj++){
   fclose(fichtmcov);                  if(lj==li) continue;
   fclose(ficgp);                  for(lk=1;lk<=ncovmodel;lk++){
   fclose(ficlog);                    ll++;
   /*------ End -----------*/                    if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
   chdir(path);                      if(ll<jj){
   strcpy(plotcmd,"\"");                        if(itimes==1){
   strcat(plotcmd,pathimach);                          if(mle>=1)
   strcat(plotcmd,GNUPLOTPROGRAM);                            printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(plotcmd,"\"");                          fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(plotcmd," ");                          fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(plotcmd,optionfilegnuplot);                        }else{
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);                          if(mle>=1)
   if((outcmd=system(plotcmd)) != 0){                            printf(" %.5e",matcov[jj][ll]);
     printf(" Problem with gnuplot\n");                          fprintf(ficlog," %.5e",matcov[jj][ll]);
   }                          fprintf(ficres," %.5e",matcov[jj][ll]);
   printf(" Wait...");                        }
   while (z[0] != 'q') {                      }else{
     /* chdir(path); */                        if(itimes==1){
     printf("\nType e to edit output files, g to graph again and q for exiting: ");                          if(mle>=1)
     scanf("%s",z);                            printf(" Var(%s%1d%1d)",ca,i,j);
 /*     if (z[0] == 'c') system("./imach"); */                          fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
     if (z[0] == 'e') {                          fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);                        }else{
       system(optionfilehtm);                          if(mle>=1)
     }                            printf(" %.5e",matcov[jj][ll]);
     else if (z[0] == 'g') system(plotcmd);                          fprintf(ficlog," %.5e",matcov[jj][ll]);
     else if (z[0] == 'q') exit(0);                          fprintf(ficres," %.5e",matcov[jj][ll]);
   }                        }
   end:                      }
   while (z[0] != 'q') {                    }
     printf("\nType  q for exiting: ");                  } /* end lk */
     scanf("%s",z);                } /* end lj */
   }              } /* end li */
 }              if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.104  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>