Diff for /imach/src/imach.c between versions 1.125 and 1.202

version 1.125, 2006/04/04 15:20:31 version 1.202, 2015/09/22 19:45:16
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
   
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month, quarter,    states. This elementary transition (by month, quarter,
   semester or year) is modelled as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the period (stable) prevalence.    of the life expectancies. It also computes the period (stable) prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   **********************************************************************/    **********************************************************************/
 /*  /*
   main    main
   read parameterfile    read parameterfile
   read datafile    read datafile
   concatwav    concatwav
   freqsummary    freqsummary
   if (mle >= 1)    if (mle >= 1)
     mlikeli      mlikeli
   print results files    print results files
   if mle==1    if mle==1 
      computes hessian       computes hessian
   read end of parameter file: agemin, agemax, bage, fage, estepm    read end of parameter file: agemin, agemax, bage, fage, estepm
       begin-prev-date,...        begin-prev-date,...
   open gnuplot file    open gnuplot file
   open html file    open html file
   period (stable) prevalence    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
    for age prevalim()     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   h Pij x                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   variance of p varprob      freexexit2 possible for memory heap.
   forecasting if prevfcast==1 prevforecast call prevalence()  
   health expectancies    h Pij x                         | pij_nom  ficrestpij
   Variance-covariance of DFLE     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   prevalence()         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
    movingaverage()         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   varevsij()  
   if popbased==1 varevsij(,popbased)         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   total life expectancies         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   Variance of period (stable) prevalence    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
  end     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 */     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   
     forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
      Variance-covariance of DFLE
 #include <math.h>    prevalence()
 #include <stdio.h>     movingaverage()
 #include <stdlib.h>    varevsij() 
 #include <string.h>    if popbased==1 varevsij(,popbased)
 #include <unistd.h>    total life expectancies
     Variance of period (stable) prevalence
 #include <limits.h>   end
 #include <sys/types.h>  */
 #include <sys/stat.h>  
 #include <errno.h>  /* #define DEBUG */
 extern int errno;  /* #define DEBUGBRENT */
   #define DEBUGLINMIN
 /* #include <sys/time.h> */  #define POWELL /* Instead of NLOPT */
 #include <time.h>  #define POWELLF1F3 /* Skip test */
 #include "timeval.h"  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
   /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 /* #include <libintl.h> */  
 /* #define _(String) gettext (String) */  #include <math.h>
   #include <stdio.h>
 #define MAXLINE 256  #include <stdlib.h>
   #include <string.h>
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  #ifdef _WIN32
 #define FILENAMELENGTH 132  #include <io.h>
   #include <windows.h>
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <tchar.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #else
   #include <unistd.h>
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #endif
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
   #include <limits.h>
 #define NINTERVMAX 8  #include <sys/types.h>
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #if defined(__GNUC__)
 #define NCOVMAX 8 /* Maximum number of covariates */  #include <sys/utsname.h> /* Doesn't work on Windows */
 #define MAXN 20000  #endif
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130  #include <sys/stat.h>
 #define AGEBASE 40  #include <errno.h>
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */  /* extern int errno; */
 #ifdef UNIX  
 #define DIRSEPARATOR '/'  /* #ifdef LINUX */
 #define CHARSEPARATOR "/"  /* #include <time.h> */
 #define ODIRSEPARATOR '\\'  /* #include "timeval.h" */
 #else  /* #else */
 #define DIRSEPARATOR '\\'  /* #include <sys/time.h> */
 #define CHARSEPARATOR "\\"  /* #endif */
 #define ODIRSEPARATOR '/'  
 #endif  #include <time.h>
   
 /* $Id$ */  #ifdef GSL
 /* $State$ */  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";  #endif
 char fullversion[]="$Revision$ $Date$";  
 char strstart[80];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];  #ifdef NLOPT
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */  #include <nlopt.h>
 int nvar;  typedef struct {
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    double (* function)(double [] );
 int npar=NPARMAX;  } myfunc_data ;
 int nlstate=2; /* Number of live states */  #endif
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  /* #include <libintl.h> */
 int popbased=0;  /* #define _(String) gettext (String) */
   
 int *wav; /* Number of waves for this individuual 0 is possible */  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */  #define GNUPLOTPROGRAM "gnuplot"
 int ijmin, ijmax; /* Individuals having jmin and jmax */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int gipmx, gsw; /* Global variables on the number of contributions  #define FILENAMELENGTH 132
                    to the likelihood and the sum of weights (done by funcone)*/  
 int mle, weightopt;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define NINTERVMAX 8
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 FILE *ficlog, *ficrespow;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 int globpr; /* Global variable for printing or not */  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
 double fretone; /* Only one call to likelihood */  #define MAXN 20000
 long ipmx; /* Number of contributions */  #define YEARM 12. /**< Number of months per year */
 double sw; /* Sum of weights */  #define AGESUP 130
 char filerespow[FILENAMELENGTH];  #define AGEBASE 40
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  #define AGEOVERFLOW 1.e20
 FILE *ficresilk;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #ifdef _WIN32
 FILE *ficresprobmorprev;  #define DIRSEPARATOR '\\'
 FILE *fichtm, *fichtmcov; /* Html File */  #define CHARSEPARATOR "\\"
 FILE *ficreseij;  #define ODIRSEPARATOR '/'
 char filerese[FILENAMELENGTH];  #else
 FILE *ficresstdeij;  #define DIRSEPARATOR '/'
 char fileresstde[FILENAMELENGTH];  #define CHARSEPARATOR "/"
 FILE *ficrescveij;  #define ODIRSEPARATOR '\\'
 char filerescve[FILENAMELENGTH];  #endif
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];  /* $Id$ */
 FILE  *ficresvpl;  /* $State$ */
 char fileresvpl[FILENAMELENGTH];  #include "version.h"
 char title[MAXLINE];  char version[]=__IMACH_VERSION__;
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  char copyright[]="September 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  char fullversion[]="$Revision$ $Date$"; 
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  char strstart[80];
 char command[FILENAMELENGTH];  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int  outcmd=0;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 char filelog[FILENAMELENGTH]; /* Log file */  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 char filerest[FILENAMELENGTH];  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 char fileregp[FILENAMELENGTH];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 char popfile[FILENAMELENGTH];  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   int cptcoveff=0; /* Total number of covariates to vary for printing results */
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  int cptcov=0; /* Working variable */
   int npar=NPARMAX;
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  int nlstate=2; /* Number of live states */
 struct timezone tzp;  int ndeath=1; /* Number of dead states */
 extern int gettimeofday();  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  int popbased=0;
 long time_value;  
 extern long time();  int *wav; /* Number of waves for this individuual 0 is possible */
 char strcurr[80], strfor[80];  int maxwav=0; /* Maxim number of waves */
   int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 char *endptr;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 long lval;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 double dval;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 #define NR_END 1  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define FREE_ARG char*  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define FTOL 1.0e-10  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define NRANSI  int countcallfunc=0;  /* Count the number of calls to func */
 #define ITMAX 200  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 #define TOL 2.0e-4  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define CGOLD 0.3819660  /*FILE *fic ; */ /* Used in readdata only */
 #define ZEPS 1.0e-10  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 #define GOLD 1.618034  double fretone; /* Only one call to likelihood */
 #define GLIMIT 100.0  long ipmx=0; /* Number of contributions */
 #define TINY 1.0e-20  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 static double maxarg1,maxarg2;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  FILE *ficresilk;
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE *fichtm, *fichtmcov; /* Html File */
 #define rint(a) floor(a+0.5)  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 static double sqrarg;  FILE *ficresstdeij;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char fileresstde[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  FILE *ficrescveij;
 int agegomp= AGEGOMP;  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 int imx;  char fileresv[FILENAMELENGTH];
 int stepm=1;  FILE  *ficresvpl;
 /* Stepm, step in month: minimum step interpolation*/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 int estepm;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 int m,nb;  char command[FILENAMELENGTH];
 long *num;  int  outcmd=0;
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 double **pmmij, ***probs;  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
 double *ageexmed,*agecens;  char filelog[FILENAMELENGTH]; /* Log file */
 double dateintmean=0;  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 double *weight;  char popfile[FILENAMELENGTH];
 int **s; /* Status */  
 double *agedc, **covar, idx;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
 double *lsurv, *lpop, *tpop;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  /* extern int gettimeofday(); */
 double ftolhess; /* Tolerance for computing hessian */  struct tm tml, *gmtime(), *localtime();
   
 /**************** split *************************/  extern time_t time();
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  struct tm tm;
   */  
   char  *ss;                            /* pointer */  char strcurr[80], strfor[80];
   int   l1, l2;                         /* length counters */  
   char *endptr;
   l1 = strlen(path );                   /* length of path */  long lval;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double dval;
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  #define NR_END 1
     strcpy( name, path );               /* we got the fullname name because no directory */  #define FREE_ARG char*
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  #define FTOL 1.0e-10
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
     /* get current working directory */  #define NRANSI 
     /*    extern  char* getcwd ( char *buf , int len);*/  #define ITMAX 200 
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
       return( GLOCK_ERROR_GETCWD );  #define TOL 2.0e-4 
     }  
     /* got dirc from getcwd*/  #define CGOLD 0.3819660 
     printf(" DIRC = %s \n",dirc);  #define ZEPS 1.0e-10 
   } else {                              /* strip direcotry from path */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  #define GOLD 1.618034 
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define GLIMIT 100.0 
     strcpy( name, ss );         /* save file name */  #define TINY 1.0e-20 
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  
     dirc[l1-l2] = 0;                    /* add zero */  static double maxarg1,maxarg2;
     printf(" DIRC2 = %s \n",dirc);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   /* We add a separator at the end of dirc if not exists */    
   l1 = strlen( dirc );                  /* length of directory */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   if( dirc[l1-1] != DIRSEPARATOR ){  #define rint(a) floor(a+0.5)
     dirc[l1] =  DIRSEPARATOR;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
     dirc[l1+1] = 0;  #define mytinydouble 1.0e-16
     printf(" DIRC3 = %s \n",dirc);  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   }  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   ss = strrchr( name, '.' );            /* find last / */  /* static double dsqrarg; */
   if (ss >0){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
     ss++;  static double sqrarg;
     strcpy(ext,ss);                     /* save extension */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     l1= strlen( name);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     l2= strlen(ss)+1;  int agegomp= AGEGOMP;
     strncpy( finame, name, l1-l2);  
     finame[l1-l2]= 0;  int imx; 
   }  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
   return( 0 );                          /* we're done */  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /******************************************/  int m,nb;
   long *num;
 void replace_back_to_slash(char *s, char*t)  int firstpass=0, lastpass=4,*cod, *cens;
 {  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   int i;                     covariate for which somebody answered excluding 
   int lg=0;                     undefined. Usually 2: 0 and 1. */
   i=0;  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   lg=strlen(t);                               covariate for which somebody answered including 
   for(i=0; i<= lg; i++) {                               undefined. Usually 3: -1, 0 and 1. */
     (s[i] = t[i]);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     if (t[i]== '\\') s[i]='/';  double **pmmij, ***probs;
   }  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 int nbocc(char *s, char occ)  double *weight;
 {  int **s; /* Status */
   int i,j=0;  double *agedc;
   int lg=20;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   i=0;                    * covar=matrix(0,NCOVMAX,1,n); 
   lg=strlen(s);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   for(i=0; i<= lg; i++) {  double  idx; 
   if  (s[i] == occ ) j++;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   }  int *Tage;
   return j;  int *Ndum; /** Freq of modality (tricode */
 }  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 void cutv(char *u,char *v, char*t, char occ)  double *lsurv, *lpop, *tpop;
 {  
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  double ftolhess; /**< Tolerance for computing hessian */
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  /**************** split *************************/
   i=0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   for(j=0; j<=strlen(t)-1; j++) {  {
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
   lg=strlen(t);    char  *ss;                            /* pointer */
   for(j=0; j<p; j++) {    int   l1=0, l2=0;                             /* length counters */
     (u[j] = t[j]);  
   }    l1 = strlen(path );                   /* length of path */
      u[p]='\0';    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
    for(j=0; j<= lg; j++) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     if (j>=(p+1))(v[j-p-1] = t[j]);      strcpy( name, path );               /* we got the fullname name because no directory */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /********************** nrerror ********************/      /*    extern  char* getcwd ( char *buf , int len);*/
   #ifdef WIN32
 void nrerror(char error_text[])      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {  #else
   fprintf(stderr,"ERREUR ...\n");          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   fprintf(stderr,"%s\n",error_text);  #endif
   exit(EXIT_FAILURE);        return( GLOCK_ERROR_GETCWD );
 }      }
 /*********************** vector *******************/      /* got dirc from getcwd*/
 double *vector(int nl, int nh)      printf(" DIRC = %s \n",dirc);
 {    } else {                              /* strip direcotry from path */
   double *v;      ss++;                               /* after this, the filename */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      l2 = strlen( ss );                  /* length of filename */
   if (!v) nrerror("allocation failure in vector");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   return v-nl+NR_END;      strcpy( name, ss );         /* save file name */
 }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = '\0';                 /* add zero */
 /************************ free vector ******************/      printf(" DIRC2 = %s \n",dirc);
 void free_vector(double*v, int nl, int nh)    }
 {    /* We add a separator at the end of dirc if not exists */
   free((FREE_ARG)(v+nl-NR_END));    l1 = strlen( dirc );                  /* length of directory */
 }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
 /************************ivector *******************************/      dirc[l1+1] = 0; 
 int *ivector(long nl,long nh)      printf(" DIRC3 = %s \n",dirc);
 {    }
   int *v;    ss = strrchr( name, '.' );            /* find last / */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    if (ss >0){
   if (!v) nrerror("allocation failure in ivector");      ss++;
   return v-nl+NR_END;      strcpy(ext,ss);                     /* save extension */
 }      l1= strlen( name);
       l2= strlen(ss)+1;
 /******************free ivector **************************/      strncpy( finame, name, l1-l2);
 void free_ivector(int *v, long nl, long nh)      finame[l1-l2]= 0;
 {    }
   free((FREE_ARG)(v+nl-NR_END));  
 }    return( 0 );                          /* we're done */
   }
 /************************lvector *******************************/  
 long *lvector(long nl,long nh)  
 {  /******************************************/
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  void replace_back_to_slash(char *s, char*t)
   if (!v) nrerror("allocation failure in ivector");  {
   return v-nl+NR_END;    int i;
 }    int lg=0;
     i=0;
 /******************free lvector **************************/    lg=strlen(t);
 void free_lvector(long *v, long nl, long nh)    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   free((FREE_ARG)(v+nl-NR_END));      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  char *trimbb(char *out, char *in)
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 {    char *s;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    s=out;
   int **m;    while (*in != '\0'){
        while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   /* allocate pointers to rows */        in++;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      }
   if (!m) nrerror("allocation failure 1 in matrix()");      *out++ = *in++;
   m += NR_END;    }
   m -= nrl;    *out='\0';
      return s;
    }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* char *substrchaine(char *out, char *in, char *chain) */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* { */
   m[nrl] += NR_END;  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   m[nrl] -= ncl;  /*   char *s, *t; */
    /*   t=in;s=out; */
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /*   while ((*in != *chain) && (*in != '\0')){ */
    /*     *out++ = *in++; */
   /* return pointer to array of pointers to rows */  /*   } */
   return m;  
 }  /*   /\* *in matches *chain *\/ */
   /*   while ((*in++ == *chain++) && (*in != '\0')){ */
 /****************** free_imatrix *************************/  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 void free_imatrix(m,nrl,nrh,ncl,nch)  /*   } */
       int **m;  /*   in--; chain--; */
       long nch,ncl,nrh,nrl;  /*   while ( (*in != '\0')){ */
      /* free an int matrix allocated by imatrix() */  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
 {  /*     *out++ = *in++; */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   free((FREE_ARG) (m+nrl-NR_END));  /*   } */
 }  /*   *out='\0'; */
   /*   out=s; */
 /******************* matrix *******************************/  /*   return out; */
 double **matrix(long nrl, long nrh, long ncl, long nch)  /* } */
 {  char *substrchaine(char *out, char *in, char *chain)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    /* Substract chain 'chain' from 'in', return and output 'out' */
     /* in="V1+V1*age+age*age+V2", chain="age*age" */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    char *strloc;
   m += NR_END;  
   m -= nrl;    strcpy (out, in); 
     strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if(strloc != NULL){ 
   m[nrl] += NR_END;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   m[nrl] -= ncl;      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
       /* strcpy (strloc, strloc +strlen(chain));*/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   return m;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])    return out;
    */  }
 }  
   
 /*************************free matrix ************************/  char *cutl(char *blocc, char *alocc, char *in, char occ)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  {
 {    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   free((FREE_ARG)(m+nrl-NR_END));       gives blocc="abcdef" and alocc="ghi2j".
 }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
 /******************* ma3x *******************************/    char *s, *t;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    t=in;s=in;
 {    while ((*in != occ) && (*in != '\0')){
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      *alocc++ = *in++;
   double ***m;    }
     if( *in == occ){
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      *(alocc)='\0';
   if (!m) nrerror("allocation failure 1 in matrix()");      s=++in;
   m += NR_END;    }
   m -= nrl;   
     if (s == t) {/* occ not found */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      *(alocc-(in-s))='\0';
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      in=s;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;    while ( *in != '\0'){
       *blocc++ = *in++;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    }
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    *blocc='\0';
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    return t;
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
         and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for (i=nrl+1; i<=nrh; i++) {       gives blocc="abcdef2ghi" and alocc="j".
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for (j=ncl+1; j<=nch; j++)    */
       m[i][j]=m[i][j-1]+nlay;    char *s, *t;
   }    t=in;s=in;
   return m;    while (*in != '\0'){
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])      while( *in == occ){
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)        *blocc++ = *in++;
   */        s=in;
 }      }
       *blocc++ = *in++;
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    if (s == t) /* occ not found */
 {      *(blocc-(in-s))='\0';
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    else
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      *(blocc-(in-s)-1)='\0';
   free((FREE_ARG)(m+nrl-NR_END));    in=s;
 }    while ( *in != '\0'){
       *alocc++ = *in++;
 /*************** function subdirf ***********/    }
 char *subdirf(char fileres[])  
 {    *alocc='\0';
   /* Caution optionfilefiname is hidden */    return s;
   strcpy(tmpout,optionfilefiname);  }
   strcat(tmpout,"/"); /* Add to the right */  
   strcat(tmpout,fileres);  int nbocc(char *s, char occ)
   return tmpout;  {
 }    int i,j=0;
     int lg=20;
 /*************** function subdirf2 ***********/    i=0;
 char *subdirf2(char fileres[], char *preop)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
      if  (s[i] == occ ) j++;
   /* Caution optionfilefiname is hidden */    }
   strcpy(tmpout,optionfilefiname);    return j;
   strcat(tmpout,"/");  }
   strcat(tmpout,preop);  
   strcat(tmpout,fileres);  /* void cutv(char *u,char *v, char*t, char occ) */
   return tmpout;  /* { */
 }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 /*************** function subdirf3 ***********/  /*      gives u="abcdef2ghi" and v="j" *\/ */
 char *subdirf3(char fileres[], char *preop, char *preop2)  /*   int i,lg,j,p=0; */
 {  /*   i=0; */
    /*   lg=strlen(t); */
   /* Caution optionfilefiname is hidden */  /*   for(j=0; j<=lg-1; j++) { */
   strcpy(tmpout,optionfilefiname);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   strcat(tmpout,"/");  /*   } */
   strcat(tmpout,preop);  
   strcat(tmpout,preop2);  /*   for(j=0; j<p; j++) { */
   strcat(tmpout,fileres);  /*     (u[j] = t[j]); */
   return tmpout;  /*   } */
 }  /*      u[p]='\0'; */
   
 /***************** f1dim *************************/  /*    for(j=0; j<= lg; j++) { */
 extern int ncom;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 extern double *pcom,*xicom;  /*   } */
 extern double (*nrfunc)(double []);  /* } */
    
 double f1dim(double x)  #ifdef _WIN32
 {  char * strsep(char **pp, const char *delim)
   int j;  {
   double f;    char *p, *q;
   double *xt;           
      if ((p = *pp) == NULL)
   xt=vector(1,ncom);      return 0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    if ((q = strpbrk (p, delim)) != NULL)
   f=(*nrfunc)(xt);    {
   free_vector(xt,1,ncom);      *pp = q + 1;
   return f;      *q = '\0';
 }    }
     else
 /*****************brent *************************/      *pp = 0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    return p;
 {  }
   int iter;  #endif
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /********************** nrerror ********************/
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void nrerror(char error_text[])
   double e=0.0;  {
      fprintf(stderr,"ERREUR ...\n");
   a=(ax < cx ? ax : cx);    fprintf(stderr,"%s\n",error_text);
   b=(ax > cx ? ax : cx);    exit(EXIT_FAILURE);
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  /*********************** vector *******************/
   for (iter=1;iter<=ITMAX;iter++) {  double *vector(int nl, int nh)
     xm=0.5*(a+b);  {
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    double *v;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     printf(".");fflush(stdout);    if (!v) nrerror("allocation failure in vector");
     fprintf(ficlog,".");fflush(ficlog);    return v-nl+NR_END;
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /************************ free vector ******************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  void free_vector(double*v, int nl, int nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(v+nl-NR_END));
       *xmin=x;  }
       return fx;  
     }  /************************ivector *******************************/
     ftemp=fu;  int *ivector(long nl,long nh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    int *v;
       q=(x-v)*(fx-fw);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       p=(x-v)*q-(x-w)*r;    if (!v) nrerror("allocation failure in ivector");
       q=2.0*(q-r);    return v-nl+NR_END;
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /******************free ivector **************************/
       e=d;  void free_ivector(int *v, long nl, long nh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(v+nl-NR_END));
       else {  }
         d=p/q;  
         u=x+d;  /************************lvector *******************************/
         if (u-a < tol2 || b-u < tol2)  long *lvector(long nl,long nh)
           d=SIGN(tol1,xm-x);  {
       }    long *v;
     } else {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!v) nrerror("allocation failure in ivector");
     }    return v-nl+NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /******************free lvector **************************/
       if (u >= x) a=x; else b=x;  void free_lvector(long *v, long nl, long nh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    free((FREE_ARG)(v+nl-NR_END));
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /******************* imatrix *******************************/
             v=w;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
             w=u;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
             fv=fw;  { 
             fw=fu;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
           } else if (fu <= fv || v == x || v == w) {    int **m; 
             v=u;    
             fv=fu;    /* allocate pointers to rows */ 
           }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   }    m += NR_END; 
   nrerror("Too many iterations in brent");    m -= nrl; 
   *xmin=x;    
   return fx;    
 }    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 /****************** mnbrak ***********************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m[nrl] -= ncl; 
             double (*func)(double))    
 {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double ulim,u,r,q, dum;    
   double fu;    /* return pointer to array of pointers to rows */ 
      return m; 
   *fa=(*func)(*ax);  } 
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /****************** free_imatrix *************************/
     SHFT(dum,*ax,*bx,dum)  void free_imatrix(m,nrl,nrh,ncl,nch)
       SHFT(dum,*fb,*fa,dum)        int **m;
       }        long nch,ncl,nrh,nrl; 
   *cx=(*bx)+GOLD*(*bx-*ax);       /* free an int matrix allocated by imatrix() */ 
   *fc=(*func)(*cx);  { 
   while (*fb > *fc) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     r=(*bx-*ax)*(*fb-*fc);    free((FREE_ARG) (m+nrl-NR_END)); 
     q=(*bx-*cx)*(*fb-*fa);  } 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  /******************* matrix *******************************/
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double **matrix(long nrl, long nrh, long ncl, long nch)
     if ((*bx-u)*(u-*cx) > 0.0) {  {
       fu=(*func)(u);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double **m;
       fu=(*func)(u);  
       if (fu < *fc) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!m) nrerror("allocation failure 1 in matrix()");
           SHFT(*fb,*fc,fu,(*func)(u))    m += NR_END;
           }    m -= nrl;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       fu=(*func)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     } else {    m[nrl] += NR_END;
       u=(*cx)+GOLD*(*cx-*bx);    m[nrl] -= ncl;
       fu=(*func)(u);  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     SHFT(*ax,*bx,*cx,u)    return m;
       SHFT(*fa,*fb,*fc,fu)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 }  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
 /*************** linmin ************************/  }
   
 int ncom;  /*************************free matrix ************************/
 double *pcom,*xicom;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 double (*nrfunc)(double []);  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /******************* ma3x *******************************/
   double f1dim(double x);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int j;    double ***m;
   double xx,xmin,bx,ax;  
   double fx,fb,fa;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      if (!m) nrerror("allocation failure 1 in matrix()");
   ncom=n;    m += NR_END;
   pcom=vector(1,n);    m -= nrl;
   xicom=vector(1,n);  
   nrfunc=func;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     pcom[j]=p[j];    m[nrl] += NR_END;
     xicom[j]=xi[j];    m[nrl] -= ncl;
   }  
   ax=0.0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl][ncl] -= nll;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    for (j=ncl+1; j<=nch; j++) 
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
   for (j=1;j<=n;j++) {    
     xi[j] *= xmin;    for (i=nrl+1; i<=nrh; i++) {
     p[j] += xi[j];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   }      for (j=ncl+1; j<=nch; j++) 
   free_vector(xicom,1,n);        m[i][j]=m[i][j-1]+nlay;
   free_vector(pcom,1,n);    }
 }    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 char *asc_diff_time(long time_sec, char ascdiff[])             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 {    */
   long sec_left, days, hours, minutes;  }
   days = (time_sec) / (60*60*24);  
   sec_left = (time_sec) % (60*60*24);  /*************************free ma3x ************************/
   hours = (sec_left) / (60*60) ;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   sec_left = (sec_left) %(60*60);  {
   minutes = (sec_left) /60;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   sec_left = (sec_left) % (60);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      free((FREE_ARG)(m+nrl-NR_END));
   return ascdiff;  }
 }  
   /*************** function subdirf ***********/
 /*************** powell ************************/  char *subdirf(char fileres[])
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  {
             double (*func)(double []))    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   void linmin(double p[], double xi[], int n, double *fret,    strcat(tmpout,"/"); /* Add to the right */
               double (*func)(double []));    strcat(tmpout,fileres);
   int i,ibig,j;    return tmpout;
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /*************** function subdirf2 ***********/
   int niterf, itmp;  char *subdirf2(char fileres[], char *preop)
   {
   pt=vector(1,n);    
   ptt=vector(1,n);    /* Caution optionfilefiname is hidden */
   xit=vector(1,n);    strcpy(tmpout,optionfilefiname);
   xits=vector(1,n);    strcat(tmpout,"/");
   *fret=(*func)(p);    strcat(tmpout,preop);
   for (j=1;j<=n;j++) pt[j]=p[j];    strcat(tmpout,fileres);
   for (*iter=1;;++(*iter)) {    return tmpout;
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /*************** function subdirf3 ***********/
     last_time=curr_time;  char *subdirf3(char fileres[], char *preop, char *preop2)
     (void) gettimeofday(&curr_time,&tzp);  {
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);    /* Caution optionfilefiname is hidden */
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */    strcpy(tmpout,optionfilefiname);
    for (i=1;i<=n;i++) {    strcat(tmpout,"/");
       printf(" %d %.12f",i, p[i]);    strcat(tmpout,preop);
       fprintf(ficlog," %d %.12lf",i, p[i]);    strcat(tmpout,preop2);
       fprintf(ficrespow," %.12lf", p[i]);    strcat(tmpout,fileres);
     }    return tmpout;
     printf("\n");  }
     fprintf(ficlog,"\n");  
     fprintf(ficrespow,"\n");fflush(ficrespow);  char *asc_diff_time(long time_sec, char ascdiff[])
     if(*iter <=3){  {
       tm = *localtime(&curr_time.tv_sec);    long sec_left, days, hours, minutes;
       strcpy(strcurr,asctime(&tm));    days = (time_sec) / (60*60*24);
 /*       asctime_r(&tm,strcurr); */    sec_left = (time_sec) % (60*60*24);
       forecast_time=curr_time;    hours = (sec_left) / (60*60) ;
       itmp = strlen(strcurr);    sec_left = (sec_left) %(60*60);
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */    minutes = (sec_left) /60;
         strcurr[itmp-1]='\0';    sec_left = (sec_left) % (60);
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);    return ascdiff;
       for(niterf=10;niterf<=30;niterf+=10){  }
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);  
         tmf = *localtime(&forecast_time.tv_sec);  /***************** f1dim *************************/
 /*      asctime_r(&tmf,strfor); */  extern int ncom; 
         strcpy(strfor,asctime(&tmf));  extern double *pcom,*xicom;
         itmp = strlen(strfor);  extern double (*nrfunc)(double []); 
         if(strfor[itmp-1]=='\n')   
         strfor[itmp-1]='\0';  double f1dim(double x) 
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  { 
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    int j; 
       }    double f;
     }    double *xt; 
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    xt=vector(1,ncom); 
       fptt=(*fret);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #ifdef DEBUG    f=(*nrfunc)(xt); 
       printf("fret=%lf \n",*fret);    free_vector(xt,1,ncom); 
       fprintf(ficlog,"fret=%lf \n",*fret);    return f; 
 #endif  } 
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);  /*****************brent *************************/
       linmin(p,xit,n,fret,func);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
         ibig=i;     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
       }     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
 #ifdef DEBUG     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
       printf("%d %.12e",i,(*fret));     * returned function value. 
       fprintf(ficlog,"%d %.12e",i,(*fret));    */
       for (j=1;j<=n;j++) {    int iter; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double a,b,d,etemp;
         printf(" x(%d)=%.12e",j,xit[j]);    double fu=0,fv,fw,fx;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    double ftemp=0.;
       }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for(j=1;j<=n;j++) {    double e=0.0; 
         printf(" p=%.12e",p[j]);   
         fprintf(ficlog," p=%.12e",p[j]);    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       printf("\n");    x=w=v=bx; 
       fprintf(ficlog,"\n");    fw=fv=fx=(*f)(x); 
 #endif    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #ifdef DEBUG      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       int k[2],l;      printf(".");fflush(stdout);
       k[0]=1;      fprintf(ficlog,".");fflush(ficlog);
       k[1]=-1;  #ifdef DEBUGBRENT
       printf("Max: %.12e",(*func)(p));      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"Max: %.12e",(*func)(p));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (j=1;j<=n;j++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         printf(" %.12e",p[j]);  #endif
         fprintf(ficlog," %.12e",p[j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
       printf("\n");        return fx; 
       fprintf(ficlog,"\n");      } 
       for(l=0;l<=1;l++) {      ftemp=fu;
         for (j=1;j<=n;j++) {      if (fabs(e) > tol1) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        r=(x-w)*(fx-fv); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        q=(x-v)*(fx-fw); 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        p=(x-v)*q-(x-w)*r; 
         }        q=2.0*(q-r); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        if (q > 0.0) p = -p; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        q=fabs(q); 
       }        etemp=e; 
 #endif        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       free_vector(xit,1,n);        else { 
       free_vector(xits,1,n);          d=p/q; 
       free_vector(ptt,1,n);          u=x+d; 
       free_vector(pt,1,n);          if (u-a < tol2 || b-u < tol2) 
       return;            d=SIGN(tol1,xm-x); 
     }        } 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      } else { 
     for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       ptt[j]=2.0*p[j]-pt[j];      } 
       xit[j]=p[j]-pt[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       pt[j]=p[j];      fu=(*f)(u); 
     }      if (fu <= fx) { 
     fptt=(*func)(ptt);        if (u >= x) a=x; else b=x; 
     if (fptt < fp) {        SHFT(v,w,x,u) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        SHFT(fv,fw,fx,fu) 
       if (t < 0.0) {      } else { 
         linmin(p,xit,n,fret,func);        if (u < x) a=u; else b=u; 
         for (j=1;j<=n;j++) {        if (fu <= fw || w == x) { 
           xi[j][ibig]=xi[j][n];          v=w; 
           xi[j][n]=xit[j];          w=u; 
         }          fv=fw; 
 #ifdef DEBUG          fw=fu; 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        } else if (fu <= fv || v == x || v == w) { 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          v=u; 
         for(j=1;j<=n;j++){          fv=fu; 
           printf(" %.12e",xit[j]);        } 
           fprintf(ficlog," %.12e",xit[j]);      } 
         }    } 
         printf("\n");    nrerror("Too many iterations in brent"); 
         fprintf(ficlog,"\n");    *xmin=x; 
 #endif    return fx; 
       }  } 
     }  
   }  /****************** mnbrak ***********************/
 }  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 /**** Prevalence limit (stable or period prevalence)  ****************/              double (*func)(double)) 
   { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  the downhill direction (defined by the function as evaluated at the initial points) and returns
 {  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
      matrix by transitions matrix until convergence is reached */     */
     double ulim,u,r,q, dum;
   int i, ii,j,k;    double fu; 
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    double scale=10.;
   double **out, cov[NCOVMAX], **pmij();    int iterscale=0;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
     *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
     }    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
     /*   *bx = *ax - (*ax - *bx)/scale; */
    cov[1]=1.;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
      /* } */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if (*fb > *fa) { 
     newm=savm;      SHFT(dum,*ax,*bx,dum) 
     /* Covariates have to be included here again */      SHFT(dum,*fb,*fa,dum) 
      cov[2]=agefin;    } 
      *cx=(*bx)+GOLD*(*bx-*ax); 
       for (k=1; k<=cptcovn;k++) {    *fc=(*func)(*cx); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef DEBUG
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       }    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #endif
       for (k=1; k<=cptcovprod;k++)    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         fu=(*func)(u); 
     savm=oldm;  #ifdef DEBUG
     oldm=newm;        /* f(x)=A(x-u)**2+f(u) */
     maxmax=0.;        double A, fparabu; 
     for(j=1;j<=nlstate;j++){        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       min=1.;        fparabu= *fa - A*(*ax-u)*(*ax-u);
       max=0.;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
       for(i=1; i<=nlstate; i++) {        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         sumnew=0;        /* And thus,it can be that fu > *fc even if fparabu < *fc */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         prlim[i][j]= newm[i][j]/(1-sumnew);          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
         max=FMAX(max,prlim[i][j]);        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
         min=FMIN(min,prlim[i][j]);  #endif 
       }  #ifdef MNBRAKORIGINAL
       maxmin=max-min;  #else
       maxmax=FMAX(maxmax,maxmin);  /*       if (fu > *fc) { */
     }  /* #ifdef DEBUG */
     if(maxmax < ftolpl){  /*       printf("mnbrak4  fu > fc \n"); */
       return prlim;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
     }  /* #endif */
   }  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
 }  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
   /*      dum=u; /\* Shifting c and u *\/ */
 /*************** transition probabilities ***************/  /*      u = *cx; */
   /*      *cx = dum; */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*      dum = fu; */
 {  /*      fu = *fc; */
   double s1, s2;  /*      *fc =dum; */
   /*double t34;*/  /*       } else { /\* end *\/ */
   int i,j,j1, nc, ii, jj;  /* #ifdef DEBUG */
   /*       printf("mnbrak3  fu < fc \n"); */
     for(i=1; i<= nlstate; i++){  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
       for(j=1; j<i;j++){  /* #endif */
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*      dum=u; /\* Shifting c and u *\/ */
           /*s2 += param[i][j][nc]*cov[nc];*/  /*      u = *cx; */
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*      *cx = dum; */
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */  /*      dum = fu; */
         }  /*      fu = *fc; */
         ps[i][j]=s2;  /*      *fc =dum; */
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */  /*       } */
       }  #ifdef DEBUG
       for(j=i+1; j<=nlstate+ndeath;j++){        printf("mnbrak34  fu < or >= fc \n");
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog, "mnbrak34 fu < fc\n");
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #endif
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */        dum=u; /* Shifting c and u */
         }        u = *cx;
         ps[i][j]=s2;        *cx = dum;
       }        dum = fu;
     }        fu = *fc;
     /*ps[3][2]=1;*/        *fc =dum;
      #endif
     for(i=1; i<= nlstate; i++){      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       s1=0;  #ifdef DEBUG
       for(j=1; j<i; j++)        printf("mnbrak2  u after c but before ulim\n");
         s1+=exp(ps[i][j]);        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
       for(j=i+1; j<=nlstate+ndeath; j++)  #endif
         s1+=exp(ps[i][j]);        fu=(*func)(u); 
       ps[i][i]=1./(s1+1.);        if (fu < *fc) { 
       for(j=1; j<i; j++)  #ifdef DEBUG
         ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
       for(j=i+1; j<=nlstate+ndeath; j++)        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
         ps[i][j]= exp(ps[i][j])*ps[i][i];  #endif
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     } /* end i */          SHFT(*fb,*fc,fu,(*func)(u)) 
            } 
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
       for(jj=1; jj<= nlstate+ndeath; jj++){  #ifdef DEBUG
         ps[ii][jj]=0;        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         ps[ii][ii]=1;        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
       }  #endif
     }        u=ulim; 
            fu=(*func)(u); 
       } else { /* u could be left to b (if r > q parabola has a maximum) */
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  #ifdef DEBUG
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 /*         printf("ddd %lf ",ps[ii][jj]); */        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
 /*       } */  #endif
 /*       printf("\n "); */        u=(*cx)+GOLD*(*cx-*bx); 
 /*        } */        fu=(*func)(u); 
 /*        printf("\n ");printf("%lf ",cov[2]); */      } /* end tests */
        /*      SHFT(*ax,*bx,*cx,u) 
       for(i=1; i<= npar; i++) printf("%f ",x[i]);      SHFT(*fa,*fb,*fc,fu) 
       goto end;*/  #ifdef DEBUG
     return ps;        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 }        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   #endif
 /**************** Product of 2 matrices ******************/    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
   } 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {  /*************** linmin ************************/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   /* in, b, out are matrice of pointers which should have been initialized  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
      before: only the contents of out is modified. The function returns  the value of func at the returned location p . This is actually all accomplished by calling the
      a pointer to pointers identical to out */  routines mnbrak and brent .*/
   long i, j, k;  int ncom; 
   for(i=nrl; i<= nrh; i++)  double *pcom,*xicom;
     for(k=ncolol; k<=ncoloh; k++)  double (*nrfunc)(double []); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)   
         out[i][k] +=in[i][j]*b[j][k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
   return out;    double brent(double ax, double bx, double cx, 
 }                 double (*f)(double), double tol, double *xmin); 
     double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /************* Higher Matrix Product ***************/                double *fc, double (*func)(double)); 
     int j; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Computes the transition matrix starting at age 'age' over  
      'nhstepm*hstepm*stepm' months (i.e. until    double scale=10., axs, xxs, xxss; /* Scale added for infinity */
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying   
      nhstepm*hstepm matrices.    ncom=n; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    pcom=vector(1,n); 
      (typically every 2 years instead of every month which is too big    xicom=vector(1,n); 
      for the memory).    nrfunc=func; 
      Model is determined by parameters x and covariates have to be    for (j=1;j<=n;j++) { 
      included manually here.      pcom[j]=p[j]; 
       xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
      */    } 
   
   int i, j, d, h, k;    /* axs=0.0; */
   double **out, cov[NCOVMAX];    /* xxss=1; /\* 1 and using scale *\/ */
   double **newm;    xxs=1;
     /* do{ */
   /* Hstepm could be zero and should return the unit matrix */      ax=0.;
   for (i=1;i<=nlstate+ndeath;i++)      xx= xxs;
     for (j=1;j<=nlstate+ndeath;j++){      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
       po[i][j][0]=(i==j ? 1.0 : 0.0);      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
     }      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
   for(h=1; h <=nhstepm; h++){      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
     for(d=1; d <=hstepm; d++){      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
       newm=savm;    /*   if (fx != fx){ */
       /* Covariates have to be included here again */    /*    xxs=xxs/scale; /\* Trying a smaller xx, closer to initial ax=0 *\/ */
       cov[1]=1.;    /*    printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx); */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /*   } */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* }while(fx != fx); */
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef DEBUGLINMIN
       for (k=1; k<=cptcovprod;k++)    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
   #endif
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    /* fmin = f(p[j] + xmin * xi[j]) */
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
       savm=oldm;  #ifdef DEBUG
       oldm=newm;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(i=1; i<=nlstate+ndeath; i++)  #endif
       for(j=1;j<=nlstate+ndeath;j++) {  #ifdef DEBUGLINMIN
         po[i][j][h]=newm[i][j];    printf("linmin end ");
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    fprintf(ficlog,"linmin end ");
          */  #endif
       }    for (j=1;j<=n;j++) { 
   } /* end h */      /* printf(" before xi[%d]=%12.8f", j,xi[j]); */
   return po;      xi[j] *= xmin; /* xi rescaled by xmin: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
 }      /* if(xxs <1.0) */
       /*   printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); */
       p[j] += xi[j]; /* Parameters values are updated accordingly */
 /*************** log-likelihood *************/    } 
 double func( double *x)    /* printf("\n"); */
 {  #ifdef DEBUGLINMIN
   int i, ii, j, k, mi, d, kk;    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   double **out;    for (j=1;j<=n;j++) { 
   double sw; /* Sum of weights */      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   double lli; /* Individual log likelihood */      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   int s1, s2;      if(j % ncovmodel == 0){
   double bbh, survp;        printf("\n");
   long ipmx;        fprintf(ficlog,"\n");
   /*extern weight */      }
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  #endif
   /*for(i=1;i<imx;i++)    free_vector(xicom,1,n); 
     printf(" %d\n",s[4][i]);    free_vector(pcom,1,n); 
   */  } 
   cov[1]=1.;  
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*************** powell ************************/
   /*
   if(mle==1){  Minimization of a function func of n variables. Input consists of an initial starting point
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
       for(mi=1; mi<= wav[i]-1; mi++){  such that failure to decrease by more than this amount on one iteration signals doneness. On
         for (ii=1;ii<=nlstate+ndeath;ii++)  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
           for (j=1;j<=nlstate+ndeath;j++){  function value at p , and iter is the number of iterations taken. The routine linmin is used.
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);   */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           }              double (*func)(double [])) 
         for(d=0; d<dh[mi][i]; d++){  { 
           newm=savm;    void linmin(double p[], double xi[], int n, double *fret, 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                double (*func)(double [])); 
           for (kk=1; kk<=cptcovage;kk++) {    int i,ibig,j; 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    double del,t,*pt,*ptt,*xit;
           }    double directest;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double fp,fptt;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double *xits;
           savm=oldm;    int niterf, itmp;
           oldm=newm;  
         } /* end mult */    pt=vector(1,n); 
          ptt=vector(1,n); 
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */    xit=vector(1,n); 
         /* But now since version 0.9 we anticipate for bias at large stepm.    xits=vector(1,n); 
          * If stepm is larger than one month (smallest stepm) and if the exact delay    *fret=(*func)(p); 
          * (in months) between two waves is not a multiple of stepm, we rounded to    for (j=1;j<=n;j++) pt[j]=p[j]; 
          * the nearest (and in case of equal distance, to the lowest) interval but now    rcurr_time = time(NULL);  
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    for (*iter=1;;++(*iter)) { 
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the      fp=(*fret); /* From former iteration or initial value */
          * probability in order to take into account the bias as a fraction of the way      ibig=0; 
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies      del=0.0; 
          * -stepm/2 to stepm/2 .      rlast_time=rcurr_time;
          * For stepm=1 the results are the same as for previous versions of Imach.      /* (void) gettimeofday(&curr_time,&tzp); */
          * For stepm > 1 the results are less biased than in previous versions.      rcurr_time = time(NULL);  
          */      curr_time = *localtime(&rcurr_time);
         s1=s[mw[mi][i]][i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
         s2=s[mw[mi+1][i]][i];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         bbh=(double)bh[mi][i]/(double)stepm;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         /* bias bh is positive if real duration      for (i=1;i<=n;i++) {
          * is higher than the multiple of stepm and negative otherwise.        printf(" %d %.12f",i, p[i]);
          */        fprintf(ficlog," %d %.12lf",i, p[i]);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        fprintf(ficrespow," %.12lf", p[i]);
         if( s2 > nlstate){      }
           /* i.e. if s2 is a death state and if the date of death is known      printf("\n");
              then the contribution to the likelihood is the probability to      fprintf(ficlog,"\n");
              die between last step unit time and current  step unit time,      fprintf(ficrespow,"\n");fflush(ficrespow);
              which is also equal to probability to die before dh      if(*iter <=3){
              minus probability to die before dh-stepm .        tml = *localtime(&rcurr_time);
              In version up to 0.92 likelihood was computed        strcpy(strcurr,asctime(&tml));
         as if date of death was unknown. Death was treated as any other        rforecast_time=rcurr_time; 
         health state: the date of the interview describes the actual state        itmp = strlen(strcurr);
         and not the date of a change in health state. The former idea was        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         to consider that at each interview the state was recorded          strcurr[itmp-1]='\0';
         (healthy, disable or death) and IMaCh was corrected; but when we        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         introduced the exact date of death then we should have modified        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         the contribution of an exact death to the likelihood. This new        for(niterf=10;niterf<=30;niterf+=10){
         contribution is smaller and very dependent of the step unit          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         stepm. It is no more the probability to die between last interview          forecast_time = *localtime(&rforecast_time);
         and month of death but the probability to survive from last          strcpy(strfor,asctime(&forecast_time));
         interview up to one month before death multiplied by the          itmp = strlen(strfor);
         probability to die within a month. Thanks to Chris          if(strfor[itmp-1]=='\n')
         Jackson for correcting this bug.  Former versions increased          strfor[itmp-1]='\0';
         mortality artificially. The bad side is that we add another loop          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         which slows down the processing. The difference can be up to 10%          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         lower mortality.        }
           */      }
           lli=log(out[s1][s2] - savm[s1][s2]);      for (i=1;i<=n;i++) { /* For each direction i */
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
         fptt=(*fret); 
         } else if  (s2==-2) {  #ifdef DEBUG
           for (j=1,survp=0. ; j<=nlstate; j++)            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           /*survp += out[s1][j]; */  #endif
           lli= log(survp);            printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         }        fprintf(ficlog,"%d",i);fflush(ficlog);
                linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
         else if  (s2==-4) {                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
           for (j=3,survp=0. ; j<=nlstate; j++)          if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];          /* because that direction will be replaced unless the gain del is small */
           lli= log(survp);          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
         }          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
           /* with the new direction. */
         else if  (s2==-5) {          del=fabs(fptt-(*fret)); 
           for (j=1,survp=0. ; j<=2; j++)            ibig=i; 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        } 
           lli= log(survp);  #ifdef DEBUG
         }        printf("%d %.12e",i,(*fret));
                fprintf(ficlog,"%d %.12e",i,(*fret));
         else{        for (j=1;j<=n;j++) {
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          printf(" x(%d)=%.12e",j,xit[j]);
         }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        }
         /*if(lli ==000.0)*/        for(j=1;j<=n;j++) {
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          printf(" p(%d)=%.12e",j,p[j]);
         ipmx +=1;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
         sw += weight[i];        }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf("\n");
       } /* end of wave */        fprintf(ficlog,"\n");
     } /* end of individual */  #endif
   }  else if(mle==2){      } /* end loop on each direction i */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
       for(mi=1; mi<= wav[i]-1; mi++){      /* New value of last point Pn is not computed, P(n-1) */
         for (ii=1;ii<=nlstate+ndeath;ii++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
           for (j=1;j<=nlstate+ndeath;j++){        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
           }        /* decreased of more than 3.84  */
         for(d=0; d<=dh[mi][i]; d++){        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
           newm=savm;        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /* By adding 10 parameters more the gain should be 18.31 */
           for (kk=1; kk<=cptcovage;kk++) {  
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /* Starting the program with initial values given by a former maximization will simply change */
           }        /* the scales of the directions and the directions, because the are reset to canonical directions */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
           savm=oldm;  #ifdef DEBUG
           oldm=newm;        int k[2],l;
         } /* end mult */        k[0]=1;
              k[1]=-1;
         s1=s[mw[mi][i]][i];        printf("Max: %.12e",(*func)(p));
         s2=s[mw[mi+1][i]][i];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         bbh=(double)bh[mi][i]/(double)stepm;        for (j=1;j<=n;j++) {
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          printf(" %.12e",p[j]);
         ipmx +=1;          fprintf(ficlog," %.12e",p[j]);
         sw += weight[i];        }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        printf("\n");
       } /* end of wave */        fprintf(ficlog,"\n");
     } /* end of individual */        for(l=0;l<=1;l++) {
   }  else if(mle==3){  /* exponential inter-extrapolation */          for (j=1;j<=n;j++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(mi=1; mi<= wav[i]-1; mi++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         for (ii=1;ii<=nlstate+ndeath;ii++)          }
           for (j=1;j<=nlstate+ndeath;j++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        }
           }  #endif
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        free_vector(xit,1,n); 
           for (kk=1; kk<=cptcovage;kk++) {        free_vector(xits,1,n); 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        free_vector(ptt,1,n); 
           }        free_vector(pt,1,n); 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        return; 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      } /* enough precision */ 
           savm=oldm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           oldm=newm;      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
         } /* end mult */        ptt[j]=2.0*p[j]-pt[j]; 
              xit[j]=p[j]-pt[j]; 
         s1=s[mw[mi][i]][i];        pt[j]=p[j]; 
         s2=s[mw[mi+1][i]][i];      } 
         bbh=(double)bh[mi][i]/(double)stepm;      fptt=(*func)(ptt); /* f_3 */
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  #ifdef POWELLF1F3
         ipmx +=1;  #else
         sw += weight[i];      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #endif
       } /* end of wave */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     } /* end of individual */        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       for(mi=1; mi<= wav[i]-1; mi++){        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         for (ii=1;ii<=nlstate+ndeath;ii++)        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
           for (j=1;j<=nlstate+ndeath;j++){  #ifdef NRCORIGINAL
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #else
           }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         for(d=0; d<dh[mi][i]; d++){        t= t- del*SQR(fp-fptt);
           newm=savm;  #endif
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
           for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
           }        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
                printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           savm=oldm;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           oldm=newm;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         } /* end mult */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
        #endif
         s1=s[mw[mi][i]][i];  #ifdef POWELLORIGINAL
         s2=s[mw[mi+1][i]][i];        if (t < 0.0) { /* Then we use it for new direction */
         if( s2 > nlstate){  #else
           lli=log(out[s1][s2] - savm[s1][s2]);        if (directest*t < 0.0) { /* Contradiction between both tests */
         }else{          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         }          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
         ipmx +=1;          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
         sw += weight[i];        } 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        if (directest < 0.0) { /* Then we use it for new direction */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */  #endif
       } /* end of wave */  #ifdef DEBUGLINMIN
     } /* end of individual */          printf("Before linmin in direction P%d-P0\n",n);
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */          for (j=1;j<=n;j++) { 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       for(mi=1; mi<= wav[i]-1; mi++){            if(j % ncovmodel == 0){
         for (ii=1;ii<=nlstate+ndeath;ii++)              printf("\n");
           for (j=1;j<=nlstate+ndeath;j++){              fprintf(ficlog,"\n");
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);            }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          }
           }  #endif
         for(d=0; d<dh[mi][i]; d++){          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
           newm=savm;  #ifdef DEBUGLINMIN
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          for (j=1;j<=n;j++) { 
           for (kk=1; kk<=cptcovage;kk++) {            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           }            if(j % ncovmodel == 0){
                      printf("\n");
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,              fprintf(ficlog,"\n");
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));            }
           savm=oldm;          }
           oldm=newm;  #endif
         } /* end mult */          for (j=1;j<=n;j++) { 
                  xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
         s1=s[mw[mi][i]][i];            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         s2=s[mw[mi+1][i]][i];          }
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         ipmx +=1;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         sw += weight[i];  
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #ifdef DEBUG
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       } /* end of wave */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     } /* end of individual */          for(j=1;j<=n;j++){
   } /* End of if */            printf(" %.12e",xit[j]);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            fprintf(ficlog," %.12e",xit[j]);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */          printf("\n");
   return -l;          fprintf(ficlog,"\n");
 }  #endif
         } /* end of t or directest negative */
 /*************** log-likelihood *************/  #ifdef POWELLF1F3
 double funcone( double *x)  #else
 {      } /* end if (fptt < fp)  */
   /* Same as likeli but slower because of a lot of printf and if */  #endif
   int i, ii, j, k, mi, d, kk;    } /* loop iteration */ 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double lli; /* Individual log likelihood */  /**** Prevalence limit (stable or period prevalence)  ****************/
   double llt;  
   int s1, s2;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double bbh, survp;  {
   /*extern weight */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /* We are differentiating ll according to initial status */       matrix by transitions matrix until convergence is reached */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    
   /*for(i=1;i<imx;i++)    int i, ii,j,k;
     printf(" %d\n",s[4][i]);    double min, max, maxmin, maxmax,sumnew=0.;
   */    /* double **matprod2(); */ /* test */
   cov[1]=1.;    double **out, cov[NCOVMAX+1], **pmij();
     double **newm;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double agefin, delaymax=100 ; /* Max number of years to converge */
     long int ncvyear=0, ncvloop=0;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(mi=1; mi<= wav[i]-1; mi++){      for (j=1;j<=nlstate+ndeath;j++){
       for (ii=1;ii<=nlstate+ndeath;ii++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (j=1;j<=nlstate+ndeath;j++){      }
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);    
           savm[ii][j]=(ii==j ? 1.0 : 0.0);    cov[1]=1.;
         }    
       for(d=0; d<dh[mi][i]; d++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         newm=savm;    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         for (kk=1; kk<=cptcovage;kk++) {      ncvloop++;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      newm=savm;
         }      /* Covariates have to be included here again */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      cov[2]=agefin;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      if(nagesqr==1)
         savm=oldm;        cov[3]= agefin*agefin;;
         oldm=newm;      for (k=1; k<=cptcovn;k++) {
       } /* end mult */        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
              cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
       s1=s[mw[mi][i]][i];        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       s2=s[mw[mi+1][i]][i];      }
       bbh=(double)bh[mi][i]/(double)stepm;      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* bias is positive if real duration      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
        * is higher than the multiple of stepm and negative otherwise.      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
        */      for (k=1; k<=cptcovprod;k++) /* Useless */
       if( s2 > nlstate && (mle <5) ){  /* Jackson */        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         lli=log(out[s1][s2] - savm[s1][s2]);        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
       } else if  (s2==-2) {      
         for (j=1,survp=0. ; j<=nlstate; j++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         lli= log(survp);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }else if (mle==1){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       } else if(mle==2){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      
       } else if(mle==3){  /* exponential inter-extrapolation */      savm=oldm;
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      oldm=newm;
       } else if (mle==4){  /* mle=4 no inter-extrapolation */      maxmax=0.;
         lli=log(out[s1][s2]); /* Original formula */      for(j=1;j<=nlstate;j++){
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */        min=1.;
         lli=log(out[s1][s2]); /* Original formula */        max=0.;
       } /* End of if */        for(i=1; i<=nlstate; i++) {
       ipmx +=1;          sumnew=0;
       sw += weight[i];          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          prlim[i][j]= newm[i][j]/(1-sumnew);
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */          max=FMAX(max,prlim[i][j]);
       if(globpr){          min=FMIN(min,prlim[i][j]);
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\          /* printf(" age= %d prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d max=%f min=%f\n", (int)age, i, j, i, j, prlim[i][j],(int)agefin, max, min); */
  %11.6f %11.6f %11.6f ", \        }
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],        maxmin=max-min;
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);        maxmax=FMAX(maxmax,maxmin);
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){      } /* j loop */
           llt +=ll[k]*gipmx/gsw;      if(maxmax < ftolpl){
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);        /* printf("maxmax=%lf maxmin=%lf ncvloop=%ld, ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age-(int)agefin); */
         }        return prlim;
         fprintf(ficresilk," %10.6f\n", -llt);      }
       }    } /* age loop */
     } /* end of wave */    printf("Warning: the stable prevalence did not converge with the required precision ftolpl=6*10^5*ftol=%g. \n\
   } /* end of individual */  Earliest age to start was %d-%d=%d, ncvloop=%ld, ncvyear=%d\n\
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    return prlim; /* should not reach here */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  }
   if(globpr==0){ /* First time we count the contributions and weights */  
     gipmx=ipmx;  /*************** transition probabilities ***************/ 
     gsw=sw;  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   return -l;  {
 }    /* According to parameters values stored in x and the covariate's values stored in cov,
        computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
 /*************** function likelione ***********/       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
 {       ncth covariate in the global vector x is given by the formula:
   /* This routine should help understanding what is done with       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
      the selection of individuals/waves and       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      to check the exact contribution to the likelihood.       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      Plotting could be done.       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
    */       Outputs ps[i][j] the probability to be observed in j being in j according to
   int k;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
   if(*globpri !=0){ /* Just counts and sums, no printings */    double s1, lnpijopii;
     strcpy(fileresilk,"ilk");    /*double t34;*/
     strcat(fileresilk,fileres);    int i,j, nc, ii, jj;
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileresilk);      for(i=1; i<= nlstate; i++){
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);        for(j=1; j<i;j++){
     }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     for(k=1; k<=nlstate; k++)          }
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   }        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   *fretone=(*funcone)(p);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   if(*globpri !=0){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     fclose(ficresilk);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     fflush(fichtm);          }
   }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   return;        }
 }      }
       
       for(i=1; i<= nlstate; i++){
 /*********** Maximum Likelihood Estimation ***************/        s1=0;
         for(j=1; j<i; j++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
 {          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   int i,j, iter;        }
   double **xi;        for(j=i+1; j<=nlstate+ndeath; j++){
   double fret;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   double fretone; /* Only one call to likelihood */          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   /*  char filerespow[FILENAMELENGTH];*/        }
   xi=matrix(1,npar,1,npar);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   for (i=1;i<=npar;i++)        ps[i][i]=1./(s1+1.);
     for (j=1;j<=npar;j++)        /* Computing other pijs */
       xi[i][j]=(i==j ? 1.0 : 0.0);        for(j=1; j<i; j++)
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   strcpy(filerespow,"pow");        for(j=i+1; j<=nlstate+ndeath; j++)
   strcat(filerespow,fileres);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     printf("Problem with resultfile: %s\n", filerespow);      } /* end i */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);      
   }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=nlstate;i++)          ps[ii][jj]=0;
     for(j=1;j<=nlstate+ndeath;j++)          ps[ii][ii]=1;
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        }
   fprintf(ficrespow,"\n");      }
       
   powell(p,xi,npar,ftol,&iter,&fret,func);      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   free_matrix(xi,1,npar,1,npar);      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   fclose(ficrespow);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      /*   } */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      /*   printf("\n "); */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
 }      /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /**** Computes Hessian and covariance matrix ***/        goto end;*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      return ps;
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  /**************** Product of 2 matrices ******************/
   int i, j,jk;  
   int *indx;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    /* in, b, out are matrice of pointers which should have been initialized 
   void ludcmp(double **a, int npar, int *indx, double *d) ;       before: only the contents of out is modified. The function returns
   double gompertz(double p[]);       a pointer to pointers identical to out */
   hess=matrix(1,npar,1,npar);    int i, j, k;
     for(i=nrl; i<= nrh; i++)
   printf("\nCalculation of the hessian matrix. Wait...\n");      for(k=ncolol; k<=ncoloh; k++){
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        out[i][k]=0.;
   for (i=1;i<=npar;i++){        for(j=ncl; j<=nch; j++)
     printf("%d",i);fflush(stdout);          out[i][k] +=in[i][j]*b[j][k];
     fprintf(ficlog,"%d",i);fflush(ficlog);      }
        return out;
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);  }
      
     /*  printf(" %f ",p[i]);  
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/  /************* Higher Matrix Product ***************/
   }  
    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++)  {    /* Computes the transition matrix starting at age 'age' over 
       if (j>i) {       'nhstepm*hstepm*stepm' months (i.e. until
         printf(".%d%d",i,j);fflush(stdout);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);       nhstepm*hstepm matrices. 
         hess[i][j]=hessij(p,delti,i,j,func,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               (typically every 2 years instead of every month which is too big 
         hess[j][i]=hess[i][j];           for the memory).
         /*printf(" %lf ",hess[i][j]);*/       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
     }  
   }       */
   printf("\n");  
   fprintf(ficlog,"\n");    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double **newm;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    double agexact;
    
   a=matrix(1,npar,1,npar);    /* Hstepm could be zero and should return the unit matrix */
   y=matrix(1,npar,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   x=vector(1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   indx=ivector(1,npar);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      }
   ludcmp(a,npar,indx,&pd);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for (j=1;j<=npar;j++) {      for(d=1; d <=hstepm; d++){
     for (i=1;i<=npar;i++) x[i]=0;        newm=savm;
     x[j]=1;        /* Covariates have to be included here again */
     lubksb(a,npar,indx,x);        cov[1]=1.;
     for (i=1;i<=npar;i++){        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       matcov[i][j]=x[i];        cov[2]=agexact;
     }        if(nagesqr==1)
   }          cov[3]= agexact*agexact;
         for (k=1; k<=cptcovn;k++) 
   printf("\n#Hessian matrix#\n");          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   fprintf(ficlog,"\n#Hessian matrix#\n");          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
     for (j=1;j<=npar;j++) {          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       printf("%.3e ",hess[i][j]);          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
       fprintf(ficlog,"%.3e ",hess[i][j]);          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
     }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     printf("\n");          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     fprintf(ficlog,"\n");          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   }  
   
   /* Recompute Inverse */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for (i=1;i<=npar;i++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   ludcmp(a,npar,indx,&pd);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         savm=oldm;
   /*  printf("\n#Hessian matrix recomputed#\n");        oldm=newm;
       }
   for (j=1;j<=npar;j++) {      for(i=1; i<=nlstate+ndeath; i++)
     for (i=1;i<=npar;i++) x[i]=0;        for(j=1;j<=nlstate+ndeath;j++) {
     x[j]=1;          po[i][j][h]=newm[i][j];
     lubksb(a,npar,indx,x);          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     for (i=1;i<=npar;i++){        }
       y[i][j]=x[i];      /*printf("h=%d ",h);*/
       printf("%.3e ",y[i][j]);    } /* end h */
       fprintf(ficlog,"%.3e ",y[i][j]);  /*     printf("\n H=%d \n",h); */
     }    return po;
     printf("\n");  }
     fprintf(ficlog,"\n");  
   }  #ifdef NLOPT
   */    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     double fret;
   free_matrix(a,1,npar,1,npar);    double *xt;
   free_matrix(y,1,npar,1,npar);    int j;
   free_vector(x,1,npar);    myfunc_data *d2 = (myfunc_data *) pd;
   free_ivector(indx,1,npar);  /* xt = (p1-1); */
   free_matrix(hess,1,npar,1,npar);    xt=vector(1,n); 
     for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
   
 }    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 /*************** hessian matrix ****************/    printf("Function = %.12lf ",fret);
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
 {    printf("\n");
   int i;   free_vector(xt,1,n);
   int l=1, lmax=20;    return fret;
   double k1,k2;  }
   double p2[NPARMAX+1];  #endif
   double res;  
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*************** log-likelihood *************/
   double fx;  double func( double *x)
   int k=0,kmax=10;  {
   double l1;    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   fx=func(x);    double **out;
   for (i=1;i<=npar;i++) p2[i]=x[i];    double sw; /* Sum of weights */
   for(l=0 ; l <=lmax; l++){    double lli; /* Individual log likelihood */
     l1=pow(10,l);    int s1, s2;
     delts=delt;    double bbh, survp;
     for(k=1 ; k <kmax; k=k+1){    long ipmx;
       delt = delta*(l1*k);    double agexact;
       p2[theta]=x[theta] +delt;    /*extern weight */
       k1=func(p2)-fx;    /* We are differentiating ll according to initial status */
       p2[theta]=x[theta]-delt;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       k2=func(p2)-fx;    /*for(i=1;i<imx;i++) 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      printf(" %d\n",s[4][i]);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    */
        
 #ifdef DEBUG    ++countcallfunc;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    cov[1]=1.;
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    for(k=1; k<=nlstate; k++) ll[k]=0.;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    if(mle==1){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        /* Computes the values of the ncovmodel covariates of the model
         k=kmax; l=lmax*10.;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           to be observed in j being in i according to the model.
         delts=delt;         */
       }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     }            cov[2+nagesqr+k]=covar[Tvar[k]][i];
   }        }
   delti[theta]=delts;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   return res;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
             has been calculated etc */
 }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int l=1, l1, lmax=20;            }
   double k1,k2,k3,k4,res,fx;          for(d=0; d<dh[mi][i]; d++){
   double p2[NPARMAX+1];            newm=savm;
   int k;            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
   fx=func(x);            if(nagesqr==1)
   for (k=1; k<=2; k++) {              cov[3]= agexact*agexact;
     for (i=1;i<=npar;i++) p2[i]=x[i];            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k1=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]+delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            oldm=newm;
     k2=func(p2)-fx;          } /* end mult */
          
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* But now since version 0.9 we anticipate for bias at large stepm.
     k3=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]-delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k4=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */           * probability in order to take into account the bias as a fraction of the way
 #ifdef DEBUG           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * -stepm/2 to stepm/2 .
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * For stepm=1 the results are the same as for previous versions of Imach.
 #endif           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
   return res;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /************** Inverse of matrix **************/          /* bias bh is positive if real duration
 void ludcmp(double **a, int n, int *indx, double *d)           * is higher than the multiple of stepm and negative otherwise.
 {           */
   int i,imax,j,k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double big,dum,sum,temp;          if( s2 > nlstate){ 
   double *vv;            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
   vv=vector(1,n);               die between last step unit time and current  step unit time, 
   *d=1.0;               which is also equal to probability to die before dh 
   for (i=1;i<=n;i++) {               minus probability to die before dh-stepm . 
     big=0.0;               In version up to 0.92 likelihood was computed
     for (j=1;j<=n;j++)          as if date of death was unknown. Death was treated as any other
       if ((temp=fabs(a[i][j])) > big) big=temp;          health state: the date of the interview describes the actual state
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          and not the date of a change in health state. The former idea was
     vv[i]=1.0/big;          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
   for (j=1;j<=n;j++) {          introduced the exact date of death then we should have modified
     for (i=1;i<j;i++) {          the contribution of an exact death to the likelihood. This new
       sum=a[i][j];          contribution is smaller and very dependent of the step unit
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          stepm. It is no more the probability to die between last interview
       a[i][j]=sum;          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
     big=0.0;          probability to die within a month. Thanks to Chris
     for (i=j;i<=n;i++) {          Jackson for correcting this bug.  Former versions increased
       sum=a[i][j];          mortality artificially. The bad side is that we add another loop
       for (k=1;k<j;k++)          which slows down the processing. The difference can be up to 10%
         sum -= a[i][k]*a[k][j];          lower mortality.
       a[i][j]=sum;            */
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /* If, at the beginning of the maximization mostly, the
         big=dum;             cumulative probability or probability to be dead is
         imax=i;             constant (ie = 1) over time d, the difference is equal to
       }             0.  out[s1][3] = savm[s1][3]: probability, being at state
     }             s1 at precedent wave, to be dead a month before current
     if (j != imax) {             wave is equal to probability, being at state s1 at
       for (k=1;k<=n;k++) {             precedent wave, to be dead at mont of the current
         dum=a[imax][k];             wave. Then the observed probability (that this person died)
         a[imax][k]=a[j][k];             is null according to current estimated parameter. In fact,
         a[j][k]=dum;             it should be very low but not zero otherwise the log go to
       }             infinity.
       *d = -(*d);          */
       vv[imax]=vv[j];  /* #ifdef INFINITYORIGINAL */
     }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     indx[j]=imax;  /* #else */
     if (a[j][j] == 0.0) a[j][j]=TINY;  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
     if (j != n) {  /*          lli=log(mytinydouble); */
       dum=1.0/(a[j][j]);  /*        else */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     }  /* #endif */
   }              lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(vv,1,n);  /* Doesn't work */  
 ;          } else if  (s2==-2) {
 }            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 void lubksb(double **a, int n, int *indx, double b[])            /*survp += out[s1][j]; */
 {            lli= log(survp);
   int i,ii=0,ip,j;          }
   double sum;          
            else if  (s2==-4) { 
   for (i=1;i<=n;i++) {            for (j=3,survp=0. ; j<=nlstate; j++)  
     ip=indx[i];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     sum=b[ip];            lli= log(survp); 
     b[ip]=b[i];          } 
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          else if  (s2==-5) { 
     else if (sum) ii=i;            for (j=1,survp=0. ; j<=2; j++)  
     b[i]=sum;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }            lli= log(survp); 
   for (i=n;i>=1;i--) {          } 
     sum=b[i];          
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          else{
     b[i]=sum/a[i][i];            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 }          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 void pstamp(FILE *fichier)          /*if(lli ==000.0)*/
 {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************ Frequencies ********************/          /* if (lli < log(mytinydouble)){ */
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
 {  /* Some frequencies */          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
            /* } */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        } /* end of wave */
   int first;      } /* end of individual */
   double ***freq; /* Frequencies */    }  else if(mle==2){
   double *pp, **prop;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   char fileresp[FILENAMELENGTH];        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   pp=vector(1,nlstate);            for (j=1;j<=nlstate+ndeath;j++){
   prop=matrix(1,nlstate,iagemin,iagemax+3);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresp,"p");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);            }
   if((ficresp=fopen(fileresp,"w"))==NULL) {          for(d=0; d<=dh[mi][i]; d++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);            newm=savm;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     exit(0);            cov[2]=agexact;
   }            if(nagesqr==1)
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);              cov[3]= agexact*agexact;
   j1=0;            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   j=cptcoveff;            }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   first=1;            savm=oldm;
             oldm=newm;
   for(k1=1; k1<=j;k1++){          } /* end mult */
     for(i1=1; i1<=ncodemax[k1];i1++){        
       j1++;          s1=s[mw[mi][i]][i];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          s2=s[mw[mi+1][i]][i];
         scanf("%d", i);*/          bbh=(double)bh[mi][i]/(double)stepm; 
       for (i=-5; i<=nlstate+ndeath; i++)            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for (jk=-5; jk<=nlstate+ndeath; jk++)            ipmx +=1;
           for(m=iagemin; m <= iagemax+3; m++)          sw += weight[i];
             freq[i][jk][m]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for (i=1; i<=nlstate; i++)        } /* end of individual */
       for(m=iagemin; m <= iagemax+3; m++)    }  else if(mle==3){  /* exponential inter-extrapolation */
         prop[i][m]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
       dateintsum=0;        for(mi=1; mi<= wav[i]-1; mi++){
       k2cpt=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {            for (j=1;j<=nlstate+ndeath;j++){
         bool=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (z1=1; z1<=cptcoveff; z1++)            }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          for(d=0; d<dh[mi][i]; d++){
               bool=0;            newm=savm;
         }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (bool==1){            cov[2]=agexact;
           for(m=firstpass; m<=lastpass; m++){            if(nagesqr==1)
             k2=anint[m][i]+(mint[m][i]/12.);              cov[3]= agexact*agexact;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/            for (kk=1; kk<=cptcovage;kk++) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            }
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if (m<lastpass) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            savm=oldm;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];            oldm=newm;
               }          } /* end mult */
                      
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {          s1=s[mw[mi][i]][i];
                 dateintsum=dateintsum+k2;          s2=s[mw[mi+1][i]][i];
                 k2cpt++;          bbh=(double)bh[mi][i]/(double)stepm; 
               }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               /*}*/          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
              } /* end of individual */
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       pstamp(ficresp);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         fprintf(ficresp, "\n#********** Variable ");        for(mi=1; mi<= wav[i]-1; mi++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresp, "**********\n#");            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
       fprintf(ficresp, "\n");          for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       for(i=iagemin; i <= iagemax+3; i++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(i==iagemax+3){            cov[2]=agexact;
           fprintf(ficlog,"Total");            if(nagesqr==1)
         }else{              cov[3]= agexact*agexact;
           if(first==1){            for (kk=1; kk<=cptcovage;kk++) {
             first=0;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             printf("See log file for details...\n");            }
           }          
           fprintf(ficlog,"Age %d", i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            oldm=newm;
             pp[jk] += freq[jk][m][i];          } /* end mult */
         }        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           for(m=-1, pos=0; m <=0 ; m++)          s2=s[mw[mi+1][i]][i];
             pos += freq[jk][m][i];          if( s2 > nlstate){ 
           if(pp[jk]>=1.e-10){            lli=log(out[s1][s2] - savm[s1][s2]);
             if(first==1){          }else{
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             }          }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ipmx +=1;
           }else{          sw += weight[i];
             if(first==1)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        } /* end of wave */
           }      } /* end of individual */
         }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pp[jk] += freq[jk][m][i];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }                  for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           pos += pp[jk];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           posprop += prop[jk][i];            }
         }          for(d=0; d<dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           if(pos>=1.e-5){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             if(first==1)            cov[2]=agexact;
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            if(nagesqr==1)
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              cov[3]= agexact*agexact;
           }else{            for (kk=1; kk<=cptcovage;kk++) {
             if(first==1)              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            }
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           if( i <= iagemax){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(pos>=1.e-5){            savm=oldm;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);            oldm=newm;
               /*probs[i][jk][j1]= pp[jk]/pos;*/          } /* end mult */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        
             }          s1=s[mw[mi][i]][i];
             else          s2=s[mw[mi+1][i]][i];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }          ipmx +=1;
         }          sw += weight[i];
                  ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           for(m=-1; m <=nlstate+ndeath; m++)        } /* end of wave */
             if(freq[jk][m][i] !=0 ) {      } /* end of individual */
             if(first==1)    } /* End of if */
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if(i <= iagemax)    return -l;
           fprintf(ficresp,"\n");  }
         if(first==1)  
           printf("Others in log...\n");  /*************** log-likelihood *************/
         fprintf(ficlog,"\n");  double funcone( double *x)
       }  {
     }    /* Same as likeli but slower because of a lot of printf and if */
   }    int i, ii, j, k, mi, d, kk;
   dateintmean=dateintsum/k2cpt;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      double **out;
   fclose(ficresp);    double lli; /* Individual log likelihood */
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);    double llt;
   free_vector(pp,1,nlstate);    int s1, s2;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);    double bbh, survp;
   /* End of Freq */    double agexact;
 }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /************ Prevalence ********************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)    /*for(i=1;i<imx;i++) 
 {        printf(" %d\n",s[4][i]);
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people    */
      in each health status at the date of interview (if between dateprev1 and dateprev2).    cov[1]=1.;
      We still use firstpass and lastpass as another selection.  
   */    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***freq; /* Frequencies */      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   double *pp, **prop;      for(mi=1; mi<= wav[i]-1; mi++){
   double pos,posprop;        for (ii=1;ii<=nlstate+ndeath;ii++)
   double  y2; /* in fractional years */          for (j=1;j<=nlstate+ndeath;j++){
   int iagemin, iagemax;            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   iagemin= (int) agemin;          }
   iagemax= (int) agemax;        for(d=0; d<dh[mi][i]; d++){
   /*pp=vector(1,nlstate);*/          newm=savm;
   prop=matrix(1,nlstate,iagemin,iagemax+3);          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/          cov[2]=agexact;
   j1=0;          if(nagesqr==1)
              cov[3]= agexact*agexact;
   j=cptcoveff;          for (kk=1; kk<=cptcovage;kk++) {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
            }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       j1++;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                             1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (i=1; i<=nlstate; i++)            /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         for(m=iagemin; m <= iagemax+3; m++)          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           prop[i][m]=0.0;          savm=oldm;
                oldm=newm;
       for (i=1; i<=imx; i++) { /* Each individual */        } /* end mult */
         bool=1;        
         if  (cptcovn>0) {        s1=s[mw[mi][i]][i];
           for (z1=1; z1<=cptcoveff; z1++)        s2=s[mw[mi+1][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        bbh=(double)bh[mi][i]/(double)stepm; 
               bool=0;        /* bias is positive if real duration
         }         * is higher than the multiple of stepm and negative otherwise.
         if (bool==1) {         */
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */          lli=log(out[s1][s2] - savm[s1][s2]);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        } else if  (s2==-2) {
               if(agev[m][i]==0) agev[m][i]=iagemax+1;          for (j=1,survp=0. ; j<=nlstate; j++) 
               if(agev[m][i]==1) agev[m][i]=iagemax+2;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);          lli= log(survp);
               if (s[m][i]>0 && s[m][i]<=nlstate) {        }else if (mle==1){
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];        } else if(mle==2){
                 prop[s[m][i]][iagemax+3] += weight[i];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
               }        } else if(mle==3){  /* exponential inter-extrapolation */
             }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           } /* end selection of waves */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
       }        } else{  /* mle=0 back to 1 */
       for(i=iagemin; i <= iagemax+3; i++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                  /*lli=log(out[s1][s2]); */ /* Original formula */
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {        } /* End of if */
           posprop += prop[jk][i];        ipmx +=1;
         }        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(jk=1; jk <=nlstate ; jk++){            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if( i <=  iagemax){        if(globpr){
             if(posprop>=1.e-5){          fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f\
               probs[i][jk][j1]= prop[jk][i]/posprop;   %11.6f %11.6f %11.6f ", \
             }                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         }/* end jk */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }/* end i */            llt +=ll[k]*gipmx/gsw;
     } /* end i1 */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   } /* end k1 */          }
            fprintf(ficresilk," %10.6f\n", -llt);
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/        }
   /*free_vector(pp,1,nlstate);*/      } /* end of wave */
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);    } /* end of individual */
 }  /* End of prevalence */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 /************* Waves Concatenation ***************/    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      gipmx=ipmx;
 {      gsw=sw;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    }
      Death is a valid wave (if date is known).    return -l;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  }
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]  
      and mw[mi+1][i]. dh depends on stepm.  
      */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int i, mi, m;  {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* This routine should help understanding what is done with 
      double sum=0., jmean=0.;*/       the selection of individuals/waves and
   int first;       to check the exact contribution to the likelihood.
   int j, k=0,jk, ju, jl;       Plotting could be done.
   double sum=0.;     */
   first=0;    int k;
   jmin=1e+5;  
   jmax=-1;    if(*globpri !=0){ /* Just counts and sums, no printings */
   jmean=0.;      strcpy(fileresilk,"ILK_"); 
   for(i=1; i<=imx; i++){      strcat(fileresilk,fileresu);
     mi=0;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     m=firstpass;        printf("Problem with resultfile: %s\n", fileresilk);
     while(s[m][i] <= nlstate){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)      }
         mw[++mi][i]=m;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       if(m >=lastpass)      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         break;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       else      for(k=1; k<=nlstate; k++) 
         m++;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }/* end while */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     if (s[m][i] > nlstate){    }
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    *fretone=(*funcone)(p);
          /* Only death is a correct wave */    if(*globpri !=0){
       mw[mi][i]=m;      fclose(ficresilk);
     }      fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle >= 1. You should at least run with mle >= 1 and starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(fichtm,"<br>- The first 3 individuals are drawn with lines. The function drawn is -2Log(L) in log scale: <a href=\"%s.png\">%s.png</a><br> \
     wav[i]=mi;  <img src=\"%s.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
     if(mi==0){      fflush(fichtm);
       nbwarn++;    } 
       if(first==0){    return;
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);  }
         first=1;  
       }  
       if(first==1){  /*********** Maximum Likelihood Estimation ***************/
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     } /* end mi==0 */  {
   } /* End individuals */    int i,j, iter=0;
     double **xi;
   for(i=1; i<=imx; i++){    double fret;
     for(mi=1; mi<wav[i];mi++){    double fretone; /* Only one call to likelihood */
       if (stepm <=0)    /*  char filerespow[FILENAMELENGTH];*/
         dh[mi][i]=1;  
       else{  #ifdef NLOPT
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    int creturn;
           if (agedc[i] < 2*AGESUP) {    nlopt_opt opt;
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
             if(j==0) j=1;  /* Survives at least one month after exam */    double *lb;
             else if(j<0){    double minf; /* the minimum objective value, upon return */
               nberr++;    double * p1; /* Shifted parameters from 0 instead of 1 */
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    myfunc_data dinst, *d = &dinst;
               j=1; /* Temporary Dangerous patch */  #endif
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);  
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);  
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);    xi=matrix(1,npar,1,npar);
             }    for (i=1;i<=npar;i++)
             k=k+1;      for (j=1;j<=npar;j++)
             if (j >= jmax){        xi[i][j]=(i==j ? 1.0 : 0.0);
               jmax=j;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
               ijmax=i;    strcpy(filerespow,"POW_"); 
             }    strcat(filerespow,fileres);
             if (j <= jmin){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
               jmin=j;      printf("Problem with resultfile: %s\n", filerespow);
               ijmin=i;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             }    }
             sum=sum+j;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/    for (i=1;i<=nlstate;i++)
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/      for(j=1;j<=nlstate+ndeath;j++)
           }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
         else{  #ifdef POWELL
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    powell(p,xi,npar,ftol,&iter,&fret,func);
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */  #endif
   
           k=k+1;  #ifdef NLOPT
           if (j >= jmax) {  #ifdef NEWUOA
             jmax=j;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
             ijmax=i;  #else
           }    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
           else if (j <= jmin){  #endif
             jmin=j;    lb=vector(0,npar-1);
             ijmin=i;    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
           }    nlopt_set_lower_bounds(opt, lb);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    nlopt_set_initial_step1(opt, 0.1);
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    
           if(j<0){    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
             nberr++;    d->function = func;
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);    nlopt_set_min_objective(opt, myfunc, d);
           }    nlopt_set_xtol_rel(opt, ftol);
           sum=sum+j;    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         }      printf("nlopt failed! %d\n",creturn); 
         jk= j/stepm;    }
         jl= j -jk*stepm;    else {
         ju= j -(jk+1)*stepm;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
           if(jl==0){      iter=1; /* not equal */
             dh[mi][i]=jk;    }
             bh[mi][i]=0;    nlopt_destroy(opt);
           }else{ /* We want a negative bias in order to only have interpolation ie  #endif
                   * at the price of an extra matrix product in likelihood */    free_matrix(xi,1,npar,1,npar);
             dh[mi][i]=jk+1;    fclose(ficrespow);
             bh[mi][i]=ju;    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           }    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         }else{    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           if(jl <= -ju){  
             dh[mi][i]=jk;  }
             bh[mi][i]=jl;       /* bias is positive if real duration  
                                  * is higher than the multiple of stepm and negative otherwise.  /**** Computes Hessian and covariance matrix ***/
                                  */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           }  {
           else{    double  **a,**y,*x,pd;
             dh[mi][i]=jk+1;    double **hess;
             bh[mi][i]=ju;    int i, j;
           }    int *indx;
           if(dh[mi][i]==0){  
             dh[mi][i]=1; /* At least one step */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
             bh[mi][i]=ju; /* At least one step */    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    void lubksb(double **a, int npar, int *indx, double b[]) ;
           }    void ludcmp(double **a, int npar, int *indx, double *d) ;
         } /* end if mle */    double gompertz(double p[]);
       }    hess=matrix(1,npar,1,npar);
     } /* end wave */  
   }    printf("\nCalculation of the hessian matrix. Wait...\n");
   jmean=sum/k;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    for (i=1;i<=npar;i++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);      printf("%d",i);fflush(stdout);
  }      fprintf(ficlog,"%d",i);fflush(ficlog);
      
 /*********** Tricode ****************************/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 void tricode(int *Tvar, int **nbcode, int imx)      
 {      /*  printf(" %f ",p[i]);
            printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   int Ndum[20],ij=1, k, j, i, maxncov=19;    }
   int cptcode=0;    
   cptcoveff=0;    for (i=1;i<=npar;i++) {
        for (j=1;j<=npar;j++)  {
   for (k=0; k<maxncov; k++) Ndum[k]=0;        if (j>i) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          hess[i][j]=hessij(p,delti,i,j,func,npar);
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum          
                                modality*/          hess[j][i]=hess[i][j];    
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/          /*printf(" %lf ",hess[i][j]);*/
       Ndum[ij]++; /*store the modality */        }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      }
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable    }
                                        Tvar[j]. If V=sex and male is 0 and    printf("\n");
                                        female is 1, then  cptcode=1.*/    fprintf(ficlog,"\n");
     }  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for (i=0; i<=cptcode; i++) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */    
     }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     ij=1;    x=vector(1,npar);
     for (i=1; i<=ncodemax[j]; i++) {    indx=ivector(1,npar);
       for (k=0; k<= maxncov; k++) {    for (i=1;i<=npar;i++)
         if (Ndum[k] != 0) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           nbcode[Tvar[j]][ij]=k;    ludcmp(a,npar,indx,&pd);
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */  
              for (j=1;j<=npar;j++) {
           ij++;      for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
         if (ij > ncodemax[j]) break;      lubksb(a,npar,indx,x);
       }        for (i=1;i<=npar;i++){ 
     }        matcov[i][j]=x[i];
   }        }
     }
  for (k=0; k< maxncov; k++) Ndum[k]=0;  
     printf("\n#Hessian matrix#\n");
  for (i=1; i<=ncovmodel-2; i++) {    fprintf(ficlog,"\n#Hessian matrix#\n");
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    for (i=1;i<=npar;i++) { 
    ij=Tvar[i];      for (j=1;j<=npar;j++) { 
    Ndum[ij]++;        printf("%.3e ",hess[i][j]);
  }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
  ij=1;      printf("\n");
  for (i=1; i<= maxncov; i++) {      fprintf(ficlog,"\n");
    if((Ndum[i]!=0) && (i<=ncovcol)){    }
      Tvaraff[ij]=i; /*For printing */  
      ij++;    /* Recompute Inverse */
    }    for (i=1;i<=npar;i++)
  }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      ludcmp(a,npar,indx,&pd);
  cptcoveff=ij-1; /*Number of simple covariates*/  
 }    /*  printf("\n#Hessian matrix recomputed#\n");
   
 /*********** Health Expectancies ****************/    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )      x[j]=1;
       lubksb(a,npar,indx,x);
 {      for (i=1;i<=npar;i++){ 
   /* Health expectancies, no variances */        y[i][j]=x[i];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;        printf("%.3e ",y[i][j]);
   double age, agelim, hf;        fprintf(ficlog,"%.3e ",y[i][j]);
   double ***p3mat;      }
   double eip;      printf("\n");
       fprintf(ficlog,"\n");
   pstamp(ficreseij);    }
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");    */
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++){    free_matrix(a,1,npar,1,npar);
     for(j=1; j<=nlstate;j++){    free_matrix(y,1,npar,1,npar);
       fprintf(ficreseij," e%1d%1d ",i,j);    free_vector(x,1,npar);
     }    free_ivector(indx,1,npar);
     fprintf(ficreseij," e%1d. ",i);    free_matrix(hess,1,npar,1,npar);
   }  
   fprintf(ficreseij,"\n");  
   }
    
   if(estepm < stepm){  /*************** hessian matrix ****************/
     printf ("Problem %d lower than %d\n",estepm, stepm);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   }  {
   else  hstepm=estepm;      int i;
   /* We compute the life expectancy from trapezoids spaced every estepm months    int l=1, lmax=20;
    * This is mainly to measure the difference between two models: for example    double k1,k2;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double p2[MAXPARM+1]; /* identical to x */
    * we are calculating an estimate of the Life Expectancy assuming a linear    double res;
    * progression in between and thus overestimating or underestimating according    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
    * to the curvature of the survival function. If, for the same date, we    double fx;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int k=0,kmax=10;
    * to compare the new estimate of Life expectancy with the same linear    double l1;
    * hypothesis. A more precise result, taking into account a more precise  
    * curvature will be obtained if estepm is as small as stepm. */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   /* For example we decided to compute the life expectancy with the smallest unit */    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      l1=pow(10,l);
      nhstepm is the number of hstepm from age to agelim      delts=delt;
      nstepm is the number of stepm from age to agelin.      for(k=1 ; k <kmax; k=k+1){
      Look at hpijx to understand the reason of that which relies in memory size        delt = delta*(l1*k);
      and note for a fixed period like estepm months */        p2[theta]=x[theta] +delt;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
      survival function given by stepm (the optimization length). Unfortunately it        p2[theta]=x[theta]-delt;
      means that if the survival funtion is printed only each two years of age and if        k2=func(p2)-fx;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /*res= (k1-2.0*fx+k2)/delt/delt; */
      results. So we changed our mind and took the option of the best precision.        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   */        
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   agelim=AGESUP;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* If stepm=6 months */  #endif
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              k=kmax;
 /* nhstepm age range expressed in number of stepm */        }
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */          k=kmax; l=lmax*10;
   /* if (stepm >= YEARM) hstepm=1;*/        }
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          delts=delt;
         }
   for (age=bage; age<=fage; age ++){      }
     }
     delti[theta]=delts;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      return res; 
        
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  }
      
     printf("%d|",(int)age);fflush(stdout);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  {
        int i;
     int l=1, lmax=20;
     /* Computing expectancies */    double k1,k2,k3,k4,res,fx;
     for(i=1; i<=nlstate;i++)    double p2[MAXPARM+1];
       for(j=1; j<=nlstate;j++)    int k;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    fx=func(x);
              for (k=1; k<=2; k++) {
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (i=1;i<=npar;i++) p2[i]=x[i];
       p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
     fprintf(ficreseij,"%3.0f",age );    
     for(i=1; i<=nlstate;i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
       eip=0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       for(j=1; j<=nlstate;j++){      k2=func(p2)-fx;
         eip +=eij[i][j][(int)age];    
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficreseij,"%9.4f", eip );      k3=func(p2)-fx;
     }    
     fprintf(ficreseij,"\n");      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   printf("\n");  #ifdef DEBUG
   fprintf(ficlog,"\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 }  #endif
     }
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )    return res;
   }
 {  
   /* Covariances of health expectancies eij and of total life expectancies according  /************** Inverse of matrix **************/
    to initial status i, ei. .  void ludcmp(double **a, int n, int *indx, double *d) 
   */  { 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;    int i,imax,j,k; 
   double age, agelim, hf;    double big,dum,sum,temp; 
   double ***p3matp, ***p3matm, ***varhe;    double *vv; 
   double **dnewm,**doldm;   
   double *xp, *xm;    vv=vector(1,n); 
   double **gp, **gm;    *d=1.0; 
   double ***gradg, ***trgradg;    for (i=1;i<=n;i++) { 
   int theta;      big=0.0; 
       for (j=1;j<=n;j++) 
   double eip, vip;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);      vv[i]=1.0/big; 
   xp=vector(1,npar);    } 
   xm=vector(1,npar);    for (j=1;j<=n;j++) { 
   dnewm=matrix(1,nlstate*nlstate,1,npar);      for (i=1;i<j;i++) { 
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   pstamp(ficresstdeij);        a[i][j]=sum; 
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");      } 
   fprintf(ficresstdeij,"# Age");      big=0.0; 
   for(i=1; i<=nlstate;i++){      for (i=j;i<=n;i++) { 
     for(j=1; j<=nlstate;j++)        sum=a[i][j]; 
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);        for (k=1;k<j;k++) 
     fprintf(ficresstdeij," e%1d. ",i);          sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   fprintf(ficresstdeij,"\n");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   pstamp(ficrescveij);          imax=i; 
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");        } 
   fprintf(ficrescveij,"# Age");      } 
   for(i=1; i<=nlstate;i++)      if (j != imax) { 
     for(j=1; j<=nlstate;j++){        for (k=1;k<=n;k++) { 
       cptj= (j-1)*nlstate+i;          dum=a[imax][k]; 
       for(i2=1; i2<=nlstate;i2++)          a[imax][k]=a[j][k]; 
         for(j2=1; j2<=nlstate;j2++){          a[j][k]=dum; 
           cptj2= (j2-1)*nlstate+i2;        } 
           if(cptj2 <= cptj)        *d = -(*d); 
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);        vv[imax]=vv[j]; 
         }      } 
     }      indx[j]=imax; 
   fprintf(ficrescveij,"\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
        if (j != n) { 
   if(estepm < stepm){        dum=1.0/(a[j][j]); 
     printf ("Problem %d lower than %d\n",estepm, stepm);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
   else  hstepm=estepm;      } 
   /* We compute the life expectancy from trapezoids spaced every estepm months    free_vector(vv,1,n);  /* Doesn't work */
    * This is mainly to measure the difference between two models: for example  ;
    * if stepm=24 months pijx are given only every 2 years and by summing them  } 
    * we are calculating an estimate of the Life Expectancy assuming a linear  
    * progression in between and thus overestimating or underestimating according  void lubksb(double **a, int n, int *indx, double b[]) 
    * to the curvature of the survival function. If, for the same date, we  { 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int i,ii=0,ip,j; 
    * to compare the new estimate of Life expectancy with the same linear    double sum; 
    * hypothesis. A more precise result, taking into account a more precise   
    * curvature will be obtained if estepm is as small as stepm. */    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   /* For example we decided to compute the life expectancy with the smallest unit */      sum=b[ip]; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      b[ip]=b[i]; 
      nhstepm is the number of hstepm from age to agelim      if (ii) 
      nstepm is the number of stepm from age to agelin.        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      Look at hpijx to understand the reason of that which relies in memory size      else if (sum) ii=i; 
      and note for a fixed period like estepm months */      b[i]=sum; 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    } 
      survival function given by stepm (the optimization length). Unfortunately it    for (i=n;i>=1;i--) { 
      means that if the survival funtion is printed only each two years of age and if      sum=b[i]; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      results. So we changed our mind and took the option of the best precision.      b[i]=sum/a[i][i]; 
   */    } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  } 
   
   /* If stepm=6 months */  void pstamp(FILE *fichier)
   /* nhstepm age range expressed in number of stepm */  {
   agelim=AGESUP;    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);  }
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
   /* if (stepm >= YEARM) hstepm=1;*/  /************ Frequencies ********************/
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    {  /* Some frequencies */
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, m, jk, j1, bool, z1,j;
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    int first;
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    double ***freq; /* Frequencies */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    double *pp, **prop;
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
   for (age=bage; age<=fage; age ++){    
     pp=vector(1,nlstate);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    prop=matrix(1,nlstate,iagemin,iagemax+3);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    strcpy(fileresp,"P_");
      strcat(fileresp,fileresu);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
     /* Computing  Variances of health expectancies */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to      exit(0);
        decrease memory allocation */    }
     for(theta=1; theta <=npar; theta++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
       for(i=1; i<=npar; i++){    j1=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    
         xm[i] = x[i] - (i==theta ?delti[theta]:0);    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);    
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);      first=1;
    
       for(j=1; j<= nlstate; j++){    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
         for(i=1; i<=nlstate; i++){    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
           for(h=0; h<=nhstepm-1; h++){    /*    j1++; */
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           }          scanf("%d", i);*/
         }        for (i=-5; i<=nlstate+ndeath; i++)  
       }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                  for(m=iagemin; m <= iagemax+3; m++)
       for(ij=1; ij<= nlstate*nlstate; ij++)              freq[i][jk][m]=0;
         for(h=0; h<=nhstepm-1; h++){        
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];        for (i=1; i<=nlstate; i++)  
         }          for(m=iagemin; m <= iagemax+3; m++)
     }/* End theta */            prop[i][m]=0;
            
            dateintsum=0;
     for(h=0; h<=nhstepm-1; h++)        k2cpt=0;
       for(j=1; j<=nlstate*nlstate;j++)        for (i=1; i<=imx; i++) {
         for(theta=1; theta <=npar; theta++)          bool=1;
           trgradg[h][j][theta]=gradg[h][theta][j];          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
      for(ij=1;ij<=nlstate*nlstate;ij++)                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       for(ji=1;ji<=nlstate*nlstate;ji++)                bool=0;
         varhe[ij][ji][(int)age] =0.;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
      printf("%d|",(int)age);fflush(stdout);                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
      for(h=0;h<=nhstepm-1;h++){              } 
       for(k=0;k<=nhstepm-1;k++){          }
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);          if (bool==1){
         for(ij=1;ij<=nlstate*nlstate;ij++)            for(m=firstpass; m<=lastpass; m++){
           for(ji=1;ji<=nlstate*nlstate;ji++)              k2=anint[m][i]+(mint[m][i]/12.);
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     /* Computing expectancies */                if (m<lastpass) {
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     for(i=1; i<=nlstate;i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for(j=1; j<=nlstate;j++)                }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){                
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                            dateintsum=dateintsum+k2;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/                  k2cpt++;
                 }
         }                /*}*/
             }
     fprintf(ficresstdeij,"%3.0f",age );          }
     for(i=1; i<=nlstate;i++){        } /* end i */
       eip=0.;         
       vip=0.;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       for(j=1; j<=nlstate;j++){        pstamp(ficresp);
         eip += eij[i][j][(int)age];        if  (cptcovn>0) {
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */          fprintf(ficresp, "\n#********** Variable "); 
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );          fprintf(ficresp, "**********\n#");
       }          fprintf(ficlog, "\n#********** Variable "); 
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     }          fprintf(ficlog, "**********\n#");
     fprintf(ficresstdeij,"\n");        }
         for(i=1; i<=nlstate;i++) 
     fprintf(ficrescveij,"%3.0f",age );          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     for(i=1; i<=nlstate;i++)        fprintf(ficresp, "\n");
       for(j=1; j<=nlstate;j++){        
         cptj= (j-1)*nlstate+i;        for(i=iagemin; i <= iagemax+3; i++){
         for(i2=1; i2<=nlstate;i2++)          if(i==iagemax+3){
           for(j2=1; j2<=nlstate;j2++){            fprintf(ficlog,"Total");
             cptj2= (j2-1)*nlstate+i2;          }else{
             if(cptj2 <= cptj)            if(first==1){
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);              first=0;
           }              printf("See log file for details...\n");
       }            }
     fprintf(ficrescveij,"\n");            fprintf(ficlog,"Age %d", i);
              }
   }          for(jk=1; jk <=nlstate ; jk++){
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);              pp[jk] += freq[jk][m][i]; 
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);          }
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=-1, pos=0; m <=0 ; m++)
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              pos += freq[jk][m][i];
   printf("\n");            if(pp[jk]>=1.e-10){
   fprintf(ficlog,"\n");              if(first==1){
                 printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_vector(xm,1,npar);              }
   free_vector(xp,1,npar);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);            }else{
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);              if(first==1)
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /************ Variance ******************/          }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])  
 {          for(jk=1; jk <=nlstate ; jk++){
   /* Variance of health expectancies */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              pp[jk] += freq[jk][m][i];
   /* double **newm;*/          }       
   double **dnewm,**doldm;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double **dnewmp,**doldmp;            pos += pp[jk];
   int i, j, nhstepm, hstepm, h, nstepm ;            posprop += prop[jk][i];
   int k, cptcode;          }
   double *xp;          for(jk=1; jk <=nlstate ; jk++){
   double **gp, **gm;  /* for var eij */            if(pos>=1.e-5){
   double ***gradg, ***trgradg; /*for var eij */              if(first==1)
   double **gradgp, **trgradgp; /* for var p point j */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double *gpp, *gmp; /* for var p point j */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            }else{
   double ***p3mat;              if(first==1)
   double age,agelim, hf;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   double ***mobaverage;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int theta;            }
   char digit[4];            if( i <= iagemax){
   char digitp[25];              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   char fileresprobmorprev[FILENAMELENGTH];                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if(popbased==1){              }
     if(mobilav!=0)              else
       strcpy(digitp,"-populbased-mobilav-");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     else strcpy(digitp,"-populbased-nomobil-");            }
   }          }
   else          
     strcpy(digitp,"-stablbased-");          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   if (mobilav!=0) {              if(freq[jk][m][i] !=0 ) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              if(first==1)
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);              }
     }          if(i <= iagemax)
   }            fprintf(ficresp,"\n");
           if(first==1)
   strcpy(fileresprobmorprev,"prmorprev");            printf("Others in log...\n");
   sprintf(digit,"%-d",ij);          fprintf(ficlog,"\n");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        /*}*/
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */    }
   strcat(fileresprobmorprev,fileres);    dateintmean=dateintsum/k2cpt; 
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {   
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    fclose(ficresp);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   }    free_vector(pp,1,nlstate);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      /* End of Freq */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  }
   pstamp(ficresprobmorprev);  
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  /************ Prevalence ********************/
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  {  
     fprintf(ficresprobmorprev," p.%-d SE",j);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for(i=1; i<=nlstate;i++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);       We still use firstpass and lastpass as another selection.
   }      */
   fprintf(ficresprobmorprev,"\n");   
   fprintf(ficgp,"\n# Routine varevsij");    int i, m, jk, j1, bool, z1,j;
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/  
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    double **prop;
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    double posprop; 
 /*   } */    double  y2; /* in fractional years */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    int iagemin, iagemax;
   pstamp(ficresvij);    int first; /** to stop verbosity which is redirected to log file */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");  
   if(popbased==1)    iagemin= (int) agemin;
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");    iagemax= (int) agemax;
   else    /*pp=vector(1,nlstate);*/
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fprintf(ficresvij,"# Age");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   for(i=1; i<=nlstate;i++)    j1=0;
     for(j=1; j<=nlstate;j++)    
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);    /*j=cptcoveff;*/
   fprintf(ficresvij,"\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   xp=vector(1,npar);    first=1;
   dnewm=matrix(1,nlstate,1,npar);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   doldm=matrix(1,nlstate,1,nlstate);      /*for(i1=1; i1<=ncodemax[k1];i1++){
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        j1++;*/
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        
         for (i=1; i<=nlstate; i++)  
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          for(m=iagemin; m <= iagemax+3; m++)
   gpp=vector(nlstate+1,nlstate+ndeath);            prop[i][m]=0.0;
   gmp=vector(nlstate+1,nlstate+ndeath);       
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
   if(estepm < stepm){          if  (cptcovn>0) {
     printf ("Problem %d lower than %d\n",estepm, stepm);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
   else  hstepm=estepm;                  bool=0;
   /* For example we decided to compute the life expectancy with the smallest unit */          } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          if (bool==1) { 
      nhstepm is the number of hstepm from age to agelim            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      nstepm is the number of stepm from age to agelin.              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      Look at hpijx to understand the reason of that which relies in memory size              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      and note for a fixed period like k years */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      survival function given by stepm (the optimization length). Unfortunately it                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      means that if the survival funtion is printed every two years of age and if                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      results. So we changed our mind and took the option of the best precision.                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   */                  prop[s[m][i]][iagemax+3] += weight[i]; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */                } 
   agelim = AGESUP;              }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            } /* end selection of waves */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=iagemin; i <= iagemax+3; i++){  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     gp=matrix(0,nhstepm,1,nlstate);            posprop += prop[jk][i]; 
     gm=matrix(0,nhstepm,1,nlstate);          } 
           
           for(jk=1; jk <=nlstate ; jk++){     
     for(theta=1; theta <=npar; theta++){            if( i <=  iagemax){ 
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/              if(posprop>=1.e-5){ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                probs[i][jk][j1]= prop[jk][i]/posprop;
       }              } else{
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  if(first==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  first=0;
                   printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       if (popbased==1) {                }
         if(mobilav ==0){              }
           for(i=1; i<=nlstate;i++)            } 
             prlim[i][i]=probs[(int)age][i][ij];          }/* end jk */ 
         }else{ /* mobilav */        }/* end i */ 
           for(i=1; i<=nlstate;i++)      /*} *//* end i1 */
             prlim[i][i]=mobaverage[(int)age][i][ij];    } /* end j1 */
         }    
       }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
       for(j=1; j<= nlstate; j++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
         for(h=0; h<=nhstepm; h++){  }  /* End of prevalence */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  /************* Waves Concatenation ***************/
         }  
       }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       /* This for computing probability of death (h=1 means  {
          computed over hstepm matrices product = hstepm*stepm months)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
          as a weighted average of prlim.       Death is a valid wave (if date is known).
       */       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for(j=nlstate+1;j<=nlstate+ndeath;j++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         for(i=1,gpp[j]=0.; i<= nlstate; i++)       and mw[mi+1][i]. dh depends on stepm.
           gpp[j] += prlim[i][i]*p3mat[i][j][1];       */
       }      
       /* end probability of death */    int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */       double sum=0., jmean=0.;*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    int first;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int j, k=0,jk, ju, jl;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double sum=0.;
      first=0;
       if (popbased==1) {    jmin=100000;
         if(mobilav ==0){    jmax=-1;
           for(i=1; i<=nlstate;i++)    jmean=0.;
             prlim[i][i]=probs[(int)age][i][ij];    for(i=1; i<=imx; i++){
         }else{ /* mobilav */      mi=0;
           for(i=1; i<=nlstate;i++)      m=firstpass;
             prlim[i][i]=mobaverage[(int)age][i][ij];      while(s[m][i] <= nlstate){
         }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       }          mw[++mi][i]=m;
         if(m >=lastpass)
       for(j=1; j<= nlstate; j++){          break;
         for(h=0; h<=nhstepm; h++){        else
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          m++;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      }/* end while */
         }      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
       /* This for computing probability of death (h=1 means        /* if(mi==0)  never been interviewed correctly before death */
          computed over hstepm matrices product = hstepm*stepm months)           /* Only death is a correct wave */
          as a weighted average of prlim.        mw[mi][i]=m;
       */      }
       for(j=nlstate+1;j<=nlstate+ndeath;j++){  
         for(i=1,gmp[j]=0.; i<= nlstate; i++)      wav[i]=mi;
          gmp[j] += prlim[i][i]*p3mat[i][j][1];      if(mi==0){
       }            nbwarn++;
       /* end probability of death */        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for(j=1; j<= nlstate; j++) /* vareij */          first=1;
         for(h=0; h<=nhstepm; h++){        }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if(first==1){
         }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      } /* end mi==0 */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    } /* End individuals */
       }  
     for(i=1; i<=imx; i++){
     } /* End theta */      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          dh[mi][i]=1;
         else{
     for(h=0; h<=nhstepm; h++) /* veij */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(j=1; j<=nlstate;j++)            if (agedc[i] < 2*AGESUP) {
         for(theta=1; theta <=npar; theta++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           trgradg[h][j][theta]=gradg[h][theta][j];              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                nberr++;
       for(theta=1; theta <=npar; theta++)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         trgradgp[j][theta]=gradgp[theta][j];                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     for(i=1;i<=nlstate;i++)              }
       for(j=1;j<=nlstate;j++)              k=k+1;
         vareij[i][j][(int)age] =0.;              if (j >= jmax){
                 jmax=j;
     for(h=0;h<=nhstepm;h++){                ijmax=i;
       for(k=0;k<=nhstepm;k++){              }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              if (j <= jmin){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                jmin=j;
         for(i=1;i<=nlstate;i++)                ijmin=i;
           for(j=1;j<=nlstate;j++)              }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;              sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
     /* pptj */          }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          else{
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  
         varppt[j][i]=doldmp[j][i];            k=k+1;
     /* end ppptj */            if (j >= jmax) {
     /*  x centered again */              jmax=j;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                ijmax=i;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            }
              else if (j <= jmin){
     if (popbased==1) {              jmin=j;
       if(mobilav ==0){              ijmin=i;
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=probs[(int)age][i][ij];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       }else{ /* mobilav */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(i=1; i<=nlstate;i++)            if(j<0){
           prlim[i][i]=mobaverage[(int)age][i][ij];              nberr++;
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                          }
     /* This for computing probability of death (h=1 means            sum=sum+j;
        computed over hstepm (estepm) matrices product = hstepm*stepm months)          }
        as a weighted average of prlim.          jk= j/stepm;
     */          jl= j -jk*stepm;
     for(j=nlstate+1;j<=nlstate+ndeath;j++){          ju= j -(jk+1)*stepm;
       for(i=1,gmp[j]=0.;i<= nlstate; i++)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            if(jl==0){
     }                  dh[mi][i]=jk;
     /* end probability of death */              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                    * to avoid the price of an extra matrix product in likelihood */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              dh[mi][i]=jk+1;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));              bh[mi][i]=ju;
       for(i=1; i<=nlstate;i++){            }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          }else{
       }            if(jl <= -ju){
     }              dh[mi][i]=jk;
     fprintf(ficresprobmorprev,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficresvij,"%.0f ",age );                                   */
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){            else{
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     fprintf(ficresvij,"\n");            }
     free_matrix(gp,0,nhstepm,1,nlstate);            if(dh[mi][i]==0){
     free_matrix(gm,0,nhstepm,1,nlstate);              dh[mi][i]=1; /* At least one step */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);              bh[mi][i]=ju; /* At least one step */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   } /* End age */          } /* end if mle */
   free_vector(gpp,nlstate+1,nlstate+ndeath);        }
   free_vector(gmp,nlstate+1,nlstate+ndeath);      } /* end wave */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    jmean=sum/k;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");   }
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */  
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */  /*********** Tricode ****************************/
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));  {
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));     * Boring subroutine which should only output nbcode[Tvar[j]][k]
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);     * nbcode[Tvar[j]][1]= 
 */    */
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */  
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
   free_vector(xp,1,npar);    int cptcode=0; /* Modality max of covariates j */
   free_matrix(doldm,1,nlstate,1,nlstate);    int modmincovj=0; /* Modality min of covariates j */
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    cptcoveff=0; 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);   
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   fclose(ficresprobmorprev);  
   fflush(ficgp);    /* Loop on covariates without age and products */
   fflush(fichtm);    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
 }  /* end varevsij */      for (k=-1; k < maxncov; k++) Ndum[k]=0;
       for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
 /************ Variance of prevlim ******************/                                 modality of this covariate Vj*/ 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
 {                                      * If product of Vn*Vm, still boolean *:
   /* Variance of prevalence limit */                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   double **newm;        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
   double **dnewm,**doldm;                                        modality of the nth covariate of individual i. */
   int i, j, nhstepm, hstepm;        if (ij > modmaxcovj)
   int k, cptcode;          modmaxcovj=ij; 
   double *xp;        else if (ij < modmincovj) 
   double *gp, *gm;          modmincovj=ij; 
   double **gradg, **trgradg;        if ((ij < -1) && (ij > NCOVMAX)){
   double age,agelim;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   int theta;          exit(1);
          }else
   pstamp(ficresvpl);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   fprintf(ficresvpl,"# Age");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   for(i=1; i<=nlstate;i++)        /* getting the maximum value of the modality of the covariate
       fprintf(ficresvpl," %1d-%1d",i,i);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   fprintf(ficresvpl,"\n");           female is 1, then modmaxcovj=1.*/
       } /* end for loop on individuals i */
   xp=vector(1,npar);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   doldm=matrix(1,nlstate,1,nlstate);      cptcode=modmaxcovj;
        /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   hstepm=1*YEARM; /* Every year of age */     /*for (i=0; i<=cptcode; i++) {*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
   agelim = AGESUP;        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
     if (stepm >= YEARM) hstepm=1;          if( k != -1){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
     gradg=matrix(1,npar,1,nlstate);                               covariate for which somebody answered excluding 
     gp=vector(1,nlstate);                               undefined. Usually 2: 0 and 1. */
     gm=vector(1,nlstate);          }
           ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
     for(theta=1; theta <=npar; theta++){                               covariate for which somebody answered including 
       for(i=1; i<=npar; i++){ /* Computes gradient */                               undefined. Usually 3: -1, 0 and 1. */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       for(i=1;i<=nlstate;i++)      } /* Ndum[-1] number of undefined modalities */
         gp[i] = prlim[i][i];  
          /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       for(i=1; i<=npar; i++) /* Computes gradient */      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);         If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);         modmincovj=3; modmaxcovj = 7;
       for(i=1;i<=nlstate;i++)         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
         gm[i] = prlim[i][i];         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
          defining two dummy variables: variables V1_1 and V1_2.
       for(i=1;i<=nlstate;i++)         nbcode[Tvar[j]][ij]=k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];         nbcode[Tvar[j]][1]=0;
     } /* End theta */         nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
     trgradg =matrix(1,nlstate,1,npar);         To be continued (not working yet).
       */
     for(j=1; j<=nlstate;j++)      ij=0; /* ij is similar to i but can jump over null modalities */
       for(theta=1; theta <=npar; theta++)      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
         trgradg[j][theta]=gradg[theta][j];          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
             break;
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] =0.;          ij++;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          cptcode = ij; /* New max modality for covar j */
     for(i=1;i<=nlstate;i++)      } /* end of loop on modality i=-1 to 1 or more */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
     fprintf(ficresvpl,"%.0f ",age );      /*  /\*recode from 0 *\/ */
     for(i=1; i<=nlstate;i++)      /*                               k is a modality. If we have model=V1+V1*sex  */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(ficresvpl,"\n");      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
     free_vector(gp,1,nlstate);      /*  } */
     free_vector(gm,1,nlstate);      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
     free_matrix(gradg,1,npar,1,nlstate);      /*  if (ij > ncodemax[j]) { */
     free_matrix(trgradg,1,nlstate,1,npar);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
   } /* End age */      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
   free_vector(xp,1,npar);      /*  } */
   free_matrix(doldm,1,nlstate,1,npar);      /*   }  /\* end of loop on modality k *\/ */
   free_matrix(dnewm,1,nlstate,1,nlstate);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
 }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
 /************ Variance of one-step probabilities  ******************/    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 {     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   int i, j=0,  i1, k1, l1, t, tj;     Ndum[ij]++; /* Might be supersed V1 + V1*age */
   int k2, l2, j1,  z1;   } 
   int k=0,l, cptcode;  
   int first=1, first1;   ij=0;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   double **dnewm,**doldm;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   double *xp;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double *gp, *gm;       ij++;
   double **gradg, **trgradg;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   double **mu;       Tvaraff[ij]=i; /*For printing (unclear) */
   double age,agelim, cov[NCOVMAX];     }else{
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */         /* Tvaraff[ij]=0; */
   int theta;     }
   char fileresprob[FILENAMELENGTH];   }
   char fileresprobcov[FILENAMELENGTH];   /* ij--; */
   char fileresprobcor[FILENAMELENGTH];   cptcoveff=ij; /*Number of total covariates*/
   
   double ***varpij;  }
   
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);  /*********** Health Expectancies ****************/
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }  {
   strcpy(fileresprobcov,"probcov");    /* Health expectancies, no variances */
   strcat(fileresprobcov,fileres);    int i, j, nhstepm, hstepm, h, nstepm;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    int nhstepma, nstepma; /* Decreasing with age */
     printf("Problem with resultfile: %s\n", fileresprobcov);    double age, agelim, hf;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    double ***p3mat;
   }    double eip;
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);    pstamp(ficreseij);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     printf("Problem with resultfile: %s\n", fileresprobcor);    fprintf(ficreseij,"# Age");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        fprintf(ficreseij," e%1d%1d ",i,j);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficreseij," e%1d. ",i);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(ficreseij,"\n");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   pstamp(ficresprob);    
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    if(estepm < stepm){
   fprintf(ficresprob,"# Age");      printf ("Problem %d lower than %d\n",estepm, stepm);
   pstamp(ficresprobcov);    }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    else  hstepm=estepm;   
   fprintf(ficresprobcov,"# Age");    /* We compute the life expectancy from trapezoids spaced every estepm months
   pstamp(ficresprobcor);     * This is mainly to measure the difference between two models: for example
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficresprobcor,"# Age");     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   for(i=1; i<=nlstate;i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     for(j=1; j<=(nlstate+ndeath);j++){     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficresprobcov," p%1d-%1d ",i,j);     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }      /* For example we decided to compute the life expectancy with the smallest unit */
  /* fprintf(ficresprob,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fprintf(ficresprobcov,"\n");       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficresprobcor,"\n");       nstepm is the number of stepm from age to agelin. 
  */       Look at hpijx to understand the reason of that which relies in memory size
  xp=vector(1,npar);       and note for a fixed period like estepm months */
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));       survival function given by stepm (the optimization length). Unfortunately it
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       means that if the survival funtion is printed only each two years of age and if
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   first=1;       results. So we changed our mind and took the option of the best precision.
   fprintf(ficgp,"\n# Routine varprob");    */
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(fichtm,"\n");  
     agelim=AGESUP;
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    /* If stepm=6 months */
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   file %s<br>\n",optionfilehtmcov);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\      
 and drawn. It helps understanding how is the covariance between two incidences.\  /* nhstepm age range expressed in number of stepm */
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    /* if (stepm >= YEARM) hstepm=1;*/
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 standard deviations wide on each axis. <br>\    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\  
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    for (age=bage; age<=fage; age ++){ 
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   cov[1]=1;      /* if (stepm >= YEARM) hstepm=1;*/
   tj=cptcoveff;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;      /* If stepm=6 months */
   for(t=1; t<=tj;t++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     for(i1=1; i1<=ncodemax[t];i1++){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       j1++;      
       if  (cptcovn>0) {      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         fprintf(ficresprob, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fprintf(ficresprob, "**********\n#\n");      
         fprintf(ficresprobcov, "\n#********** Variable ");      printf("%d|",(int)age);fflush(stdout);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         fprintf(ficresprobcov, "**********\n#\n");      
              /* Computing expectancies */
         fprintf(ficgp, "\n#********** Variable ");      for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<=nlstate;j++)
         fprintf(ficgp, "**********\n#\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                    eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                    
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");          }
          
         fprintf(ficresprobcor, "\n#********** Variable ");          fprintf(ficreseij,"%3.0f",age );
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(i=1; i<=nlstate;i++){
         fprintf(ficresprobcor, "**********\n#");            eip=0;
       }        for(j=1; j<=nlstate;j++){
                eip +=eij[i][j][(int)age];
       for (age=bage; age<=fage; age ++){          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {        fprintf(ficreseij,"%9.4f", eip );
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      }
         }      fprintf(ficreseij,"\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      
         for (k=1; k<=cptcovprod;k++)    }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("\n");
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    fprintf(ficlog,"\n");
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    
         gp=vector(1,(nlstate)*(nlstate+ndeath));  }
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
      void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)  {
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    /* Covariances of health expectancies eij and of total life expectancies according
               to initial status i, ei. .
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    */
              int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
           k=0;    int nhstepma, nstepma; /* Decreasing with age */
           for(i=1; i<= (nlstate); i++){    double age, agelim, hf;
             for(j=1; j<=(nlstate+ndeath);j++){    double ***p3matp, ***p3matm, ***varhe;
               k=k+1;    double **dnewm,**doldm;
               gp[k]=pmmij[i][j];    double *xp, *xm;
             }    double **gp, **gm;
           }    double ***gradg, ***trgradg;
              int theta;
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    double eip, vip;
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           k=0;    xp=vector(1,npar);
           for(i=1; i<=(nlstate); i++){    xm=vector(1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){    dnewm=matrix(1,nlstate*nlstate,1,npar);
               k=k+1;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
               gm[k]=pmmij[i][j];    
             }    pstamp(ficresstdeij);
           }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
          fprintf(ficresstdeij,"# Age");
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    for(i=1; i<=nlstate;i++){
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];        for(j=1; j<=nlstate;j++)
         }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    }
           for(theta=1; theta <=npar; theta++)    fprintf(ficresstdeij,"\n");
             trgradg[j][theta]=gradg[theta][j];  
            pstamp(ficrescveij);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    fprintf(ficrescveij,"# Age");
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    for(i=1; i<=nlstate;i++)
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for(j=1; j<=nlstate;j++){
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        cptj= (j-1)*nlstate+i;
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
         pmij(pmmij,cov,ncovmodel,x,nlstate);            cptj2= (j2-1)*nlstate+i2;
                    if(cptj2 <= cptj)
         k=0;              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         for(i=1; i<=(nlstate); i++){          }
           for(j=1; j<=(nlstate+ndeath);j++){      }
             k=k+1;    fprintf(ficrescveij,"\n");
             mu[k][(int) age]=pmmij[i][j];    
           }    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    else  hstepm=estepm;   
             varpij[i][j][(int)age] = doldm[i][j];    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
         /*printf("\n%d ",(int)age);     * if stepm=24 months pijx are given only every 2 years and by summing them
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));     * progression in between and thus overestimating or underestimating according
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));     * to the curvature of the survival function. If, for the same date, we 
           }*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
         fprintf(ficresprob,"\n%d ",(int)age);     * hypothesis. A more precise result, taking into account a more precise
         fprintf(ficresprobcov,"\n%d ",(int)age);     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficresprobcor,"\n%d ",(int)age);  
     /* For example we decided to compute the life expectancy with the smallest unit */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));       nhstepm is the number of hstepm from age to agelim 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){       nstepm is the number of stepm from age to agelin. 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         i=0;       survival function given by stepm (the optimization length). Unfortunately it
         for (k=1; k<=(nlstate);k++){       means that if the survival funtion is printed only each two years of age and if
           for (l=1; l<=(nlstate+ndeath);l++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             i=i++;       results. So we changed our mind and took the option of the best precision.
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    /* If stepm=6 months */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    /* nhstepm age range expressed in number of stepm */
             }    agelim=AGESUP;
           }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         }/* end of loop for state */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       } /* end of loop for age */    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       /* Confidence intervalle of pij  */    
       /*    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp,"\nset noparametric;unset label");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    for (age=bage; age<=fage; age ++){ 
       */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      /* if (stepm >= YEARM) hstepm=1;*/
       first1=1;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){      /* If stepm=6 months */
           if(l2==k2) continue;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           j=(k2-1)*(nlstate+ndeath)+l2;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           for (k1=1; k1<=(nlstate);k1++){      
             for (l1=1; l1<=(nlstate+ndeath);l1++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;      /* Computing  Variances of health expectancies */
               if(i<=j) continue;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
               for (age=bage; age<=fage; age ++){         decrease memory allocation */
                 if ((int)age %5==0){      for(theta=1; theta <=npar; theta++){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        for(i=1; i<=npar; i++){ 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
                   mu1=mu[i][(int) age]/stepm*YEARM ;        }
                   mu2=mu[j][(int) age]/stepm*YEARM;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
                   c12=cv12/sqrt(v1*v2);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                   /* Computing eigen value of matrix of covariance */    
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        for(j=1; j<= nlstate; j++){
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          for(i=1; i<=nlstate; i++){
                   /* Eigen vectors */            for(h=0; h<=nhstepm-1; h++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   /*v21=sqrt(1.-v11*v11); *//* error */              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   v21=(lc1-v1)/cv12*v11;            }
                   v12=-v21;          }
                   v22=v11;        }
                   tnalp=v21/v11;       
                   if(first1==1){        for(ij=1; ij<= nlstate*nlstate; ij++)
                     first1=0;          for(h=0; h<=nhstepm-1; h++){
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   }          }
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);      }/* End theta */
                   /*printf(fignu*/      
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */      for(h=0; h<=nhstepm-1; h++)
                   if(first==1){        for(j=1; j<=nlstate*nlstate;j++)
                     first=0;          for(theta=1; theta <=npar; theta++)
                     fprintf(ficgp,"\nset parametric;unset label");            trgradg[h][j][theta]=gradg[h][theta][j];
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);      
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\       for(ij=1;ij<=nlstate*nlstate;ij++)
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\        for(ji=1;ji<=nlstate*nlstate;ji++)
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\          varhe[ij][ji][(int)age] =0.;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\  
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);       printf("%d|",(int)age);fflush(stdout);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);       for(h=0;h<=nhstepm-1;h++){
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        for(k=0;k<=nhstepm-1;k++){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(ij=1;ij<=nlstate*nlstate;ij++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(ji=1;ji<=nlstate*nlstate;ji++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                   }else{        }
                     first=0;      }
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      /* Computing expectancies */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(i=1; i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        for(j=1; j<=nlstate;j++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   }/* if first */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                 } /* age mod 5 */            
               } /* end loop age */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);  
               first=1;          }
             } /*l12 */  
           } /* k12 */      fprintf(ficresstdeij,"%3.0f",age );
         } /*l1 */      for(i=1; i<=nlstate;i++){
       }/* k1 */        eip=0.;
     } /* loop covariates */        vip=0.;
   }        for(j=1; j<=nlstate;j++){
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          eip += eij[i][j][(int)age];
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   free_vector(xp,1,npar);        }
   fclose(ficresprob);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   fclose(ficresprobcov);      }
   fclose(ficresprobcor);      fprintf(ficresstdeij,"\n");
   fflush(ficgp);  
   fflush(fichtmcov);      fprintf(ficrescveij,"%3.0f",age );
 }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
 /******************* Printing html file ***********/          for(i2=1; i2<=nlstate;i2++)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \            for(j2=1; j2<=nlstate;j2++){
                   int lastpass, int stepm, int weightopt, char model[],\              cptj2= (j2-1)*nlstate+i2;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\              if(cptj2 <= cptj)
                   int popforecast, int estepm ,\                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   double jprev1, double mprev1,double anprev1, \            }
                   double jprev2, double mprev2,double anprev2){        }
   int jj1, k1, i1, cpt;      fprintf(ficrescveij,"\n");
      
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \    }
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
 </ul>");    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    fprintf(fichtm,"\    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",    printf("\n");
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));    fprintf(ficlog,"\n");
    fprintf(fichtm,"\  
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",    free_vector(xm,1,npar);
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));    free_vector(xp,1,npar);
    fprintf(fichtm,"\    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    <a href=\"%s\">%s</a> <br>\n",    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));  }
    fprintf(fichtm,"\  
  - Population projections by age and states: \  /************ Variance ******************/
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
  m=cptcoveff;    /* double **newm;*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
  jj1=0;    int movingaverage();
  for(k1=1; k1<=m;k1++){    double **dnewm,**doldm;
    for(i1=1; i1<=ncodemax[k1];i1++){    double **dnewmp,**doldmp;
      jj1++;    int i, j, nhstepm, hstepm, h, nstepm ;
      if (cptcovn > 0) {    int k;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    double *xp;
        for (cpt=1; cpt<=cptcoveff;cpt++)    double **gp, **gm;  /* for var eij */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    double ***gradg, ***trgradg; /*for var eij */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double **gradgp, **trgradgp; /* for var p point j */
      }    double *gpp, *gmp; /* for var p point j */
      /* Pij */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \    double ***p3mat;
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);        double age,agelim, hf;
      /* Quasi-incidences */    double ***mobaverage;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    int theta;
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \    char digit[4];
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    char digitp[25];
        /* Period (stable) prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    char fileresprobmorprev[FILENAMELENGTH];
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \  
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);    if(popbased==1){
        }      if(mobilav!=0)
      for(cpt=1; cpt<=nlstate;cpt++) {        strcpy(digitp,"-POPULBASED-MOBILAV_");
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);    }
      }    else 
    } /* end i1 */      strcpy(digitp,"-STABLBASED_");
  }/* End k1 */  
  fprintf(fichtm,"</ul>");    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  fprintf(fichtm,"\        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);      }
     }
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",  
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));    strcpy(fileresprobmorprev,"PRMORPREV-"); 
  fprintf(fichtm,"\    sprintf(digit,"%-d",ij);
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  fprintf(fichtm,"\    strcat(fileresprobmorprev,fileresu);
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
  fprintf(fichtm,"\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \    }
    <a href=\"%s\">%s</a> <br>\n</li>",    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));   
  fprintf(fichtm,"\    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \    pstamp(ficresprobmorprev);
    <a href=\"%s\">%s</a> <br>\n</li>",    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
  fprintf(fichtm,"\    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",      fprintf(ficresprobmorprev," p.%-d SE",j);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));      for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"\        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",    }  
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));    fprintf(ficresprobmorprev,"\n");
  fprintf(fichtm,"\    fprintf(ficgp,"\n# Routine varevsij");
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\    fprintf(ficgp,"\nunset title \n");
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));  /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
 /*  if(popforecast==1) fprintf(fichtm,"\n */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */  /*   } */
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /*      <br>",fileres,fileres,fileres,fileres); */    pstamp(ficresvij);
 /*  else  */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    if(popbased==1)
  fflush(fichtm);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
  m=cptcoveff;    fprintf(ficresvij,"# Age");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
  jj1=0;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
  for(k1=1; k1<=m;k1++){    fprintf(ficresvij,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    xp=vector(1,npar);
      if (cptcovn > 0) {    dnewm=matrix(1,nlstate,1,npar);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    doldm=matrix(1,nlstate,1,nlstate);
        for (cpt=1; cpt<=cptcoveff;cpt++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      for(cpt=1; cpt<=nlstate;cpt++) {    gpp=vector(nlstate+1,nlstate+ndeath);
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \    gmp=vector(nlstate+1,nlstate+ndeath);
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      
      }    if(estepm < stepm){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \      printf ("Problem %d lower than %d\n",estepm, stepm);
 health expectancies in states (1) and (2): %s%d.png<br>\    }
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    else  hstepm=estepm;   
    } /* end i1 */    /* For example we decided to compute the life expectancy with the smallest unit */
  }/* End k1 */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  fprintf(fichtm,"</ul>");       nhstepm is the number of hstepm from age to agelim 
  fflush(fichtm);       nstepm is the number of stepm from age to agelin. 
 }       Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 /******************* Gnuplot file **************/       survival function given by stepm (the optimization length). Unfortunately it
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char dirfileres[132],optfileres[132];       results. So we changed our mind and took the option of the best precision.
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    */
   int ng;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */    agelim = AGESUP;
 /*     printf("Problem with file %s",optionfilegnuplot); */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 /*   } */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*#ifdef windows */      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   fprintf(ficgp,"cd \"%s\" \n",pathc);      gp=matrix(0,nhstepm,1,nlstate);
     /*#endif */      gm=matrix(0,nhstepm,1,nlstate);
   m=pow(2,cptcoveff);  
   
   strcpy(dirfileres,optionfilefiname);      for(theta=1; theta <=npar; theta++){
   strcpy(optfileres,"vpl");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
  /* 1eme*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \n\        if (popbased==1) {
 set ylabel \"Probability\" \n\          if(mobilav ==0){
 set ter png small\n\            for(i=1; i<=nlstate;i++)
 set size 0.65,0.65\n\              prlim[i][i]=probs[(int)age][i][ij];
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
      for (i=1; i<= nlstate ; i ++) {              prlim[i][i]=mobaverage[(int)age][i][ij];
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
        else fprintf(ficgp," \%%*lf (\%%*lf)");        }
      }    
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        for(j=1; j<= nlstate; j++){
      for (i=1; i<= nlstate ; i ++) {          for(h=0; h<=nhstepm; h++){
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
        else fprintf(ficgp," \%%*lf (\%%*lf)");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      }          }
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);        }
      for (i=1; i<= nlstate ; i ++) {        /* This for computing probability of death (h=1 means
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           computed over hstepm matrices product = hstepm*stepm months) 
        else fprintf(ficgp," \%%*lf (\%%*lf)");           as a weighted average of prlim.
      }          */
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /*2 eme*/        }    
          /* end probability of death */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for (i=1; i<= nlstate+1 ; i ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       k=2*i;   
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);        if (popbased==1) {
       for (j=1; j<= nlstate+1 ; j ++) {          if(mobilav ==0){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1; i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              prlim[i][i]=probs[(int)age][i][ij];
       }            }else{ /* mobilav */ 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            for(i=1; i<=nlstate;i++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {        }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       }            for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"\" t\"\" w l 0,");            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        /* This for computing probability of death (h=1 means
       }             computed over hstepm matrices product = hstepm*stepm months) 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");           as a weighted average of prlim.
       else fprintf(ficgp,"\" t\"\" w l 0,");        */
     }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
   /*3eme*/        }    
          /* end probability of death */
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(j=1; j<= nlstate; j++) /* vareij */
       /*       k=2+nlstate*(2*cpt-2); */          for(h=0; h<=nhstepm; h++){
       k=2+(nlstate+1)*(cpt-1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);          }
       fprintf(ficgp,"set ter png small\n\  
 set size 0.65,0.65\n\        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } /* End theta */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);  
              for(h=0; h<=nhstepm; h++) /* veij */
       */        for(j=1; j<=nlstate;j++)
       for (i=1; i< nlstate ; i ++) {          for(theta=1; theta <=npar; theta++)
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);            trgradg[h][j][theta]=gradg[h][theta][j];
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/  
              for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       }        for(theta=1; theta <=npar; theta++)
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);          trgradgp[j][theta]=gradgp[theta][j];
     }    
   }  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* CV preval stable (period) */      for(i=1;i<=nlstate;i++)
   for (k1=1; k1<= m ; k1 ++) {        for(j=1;j<=nlstate;j++)
     for (cpt=1; cpt<=nlstate ; cpt ++) {          vareij[i][j][(int)age] =0.;
       k=3;  
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);      for(h=0;h<=nhstepm;h++){
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        for(k=0;k<=nhstepm;k++){
 set ter png small\nset size 0.65,0.65\n\          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 unset log y\n\          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          for(i=1;i<=nlstate;i++)
                  for(j=1;j<=nlstate;j++)
       for (i=1; i< nlstate ; i ++)              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      }
          
       l=3+(nlstate+ndeath)*cpt;      /* pptj */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for (i=1; i< nlstate ; i ++) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         l=3+(nlstate+ndeath)*cpt;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         fprintf(ficgp,"+$%d",l+i+1);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       }          varppt[j][i]=doldmp[j][i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        /* end ppptj */
     }      /*  x centered again */
   }        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   /* proba elementaires */   
   for(i=1,jk=1; i <=nlstate; i++){      if (popbased==1) {
     for(k=1; k <=(nlstate+ndeath); k++){        if(mobilav ==0){
       if (k != i) {          for(i=1; i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){            prlim[i][i]=probs[(int)age][i][ij];
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }else{ /* mobilav */ 
           jk++;          for(i=1; i<=nlstate;i++)
           fprintf(ficgp,"\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
         }        }
       }      }
     }               
    }      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/         as a weighted average of prlim.
      for(jk=1; jk <=m; jk++) {      */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
        if (ng==2)        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        else      }    
          fprintf(ficgp,"\nset title \"Probability\"\n");      /* end probability of death */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  
        i=1;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(k2=1; k2<=nlstate; k2++) {      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          k3=i;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(k=1; k<=(nlstate+ndeath); k++) {        for(i=1; i<=nlstate;i++){
            if (k != k2){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
              if(ng==2)        }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      } 
              else      fprintf(ficresprobmorprev,"\n");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;      fprintf(ficresvij,"%.0f ",age );
              for(j=3; j <=ncovmodel; j++) {      for(i=1; i<=nlstate;i++)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(j=1; j<=nlstate;j++){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                  ij++;        }
                }      fprintf(ficresvij,"\n");
                else      free_matrix(gp,0,nhstepm,1,nlstate);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_matrix(gm,0,nhstepm,1,nlstate);
              }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
              fprintf(ficgp,")/(1");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              for(k1=1; k1 <=nlstate; k1++){      } /* End age */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    free_vector(gpp,nlstate+1,nlstate+ndeath);
                ij=1;    free_vector(gmp,nlstate+1,nlstate+ndeath);
                for(j=3; j <=ncovmodel; j++){    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
                    ij++;    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
                  }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                  else    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                fprintf(ficgp,")");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
              }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
              i=i+ncovmodel;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
            }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
          } /* end k */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
        } /* end k2 */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
      } /* end jk */  */
    } /* end ng */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
    fflush(ficgp);    fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
 }  /* end gnuplot */  
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
 /*************** Moving average **************/    free_matrix(dnewm,1,nlstate,1,npar);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   int i, cpt, cptcod;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int modcovmax =1;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int mobilavrange, mob;    fclose(ficresprobmorprev);
   double age;    fflush(ficgp);
     fflush(fichtm); 
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose  }  /* end varevsij */
                            a covariate has 2 modalities */  
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  {
     if(mobilav==1) mobilavrange=5; /* default */    /* Variance of prevalence limit */
     else mobilavrange=mobilav;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     for (age=bage; age<=fage; age++)  
       for (i=1; i<=nlstate;i++)    double **dnewm,**doldm;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    int i, j, nhstepm, hstepm;
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    double *xp;
     /* We keep the original values on the extreme ages bage, fage and for    double *gp, *gm;
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    double **gradg, **trgradg;
        we use a 5 terms etc. until the borders are no more concerned.    double age,agelim;
     */    int theta;
     for (mob=3;mob <=mobilavrange;mob=mob+2){    
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){    pstamp(ficresvpl);
         for (i=1; i<=nlstate;i++){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           for (cptcod=1;cptcod<=modcovmax;cptcod++){    fprintf(ficresvpl,"# Age");
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    for(i=1; i<=nlstate;i++)
               for (cpt=1;cpt<=(mob-1)/2;cpt++){        fprintf(ficresvpl," %1d-%1d",i,i);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    fprintf(ficresvpl,"\n");
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];  
               }    xp=vector(1,npar);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    dnewm=matrix(1,nlstate,1,npar);
           }    doldm=matrix(1,nlstate,1,nlstate);
         }    
       }/* end age */    hstepm=1*YEARM; /* Every year of age */
     }/* end mob */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }else return -1;    agelim = AGESUP;
   return 0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 }/* End movingaverage */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 /************** Forecasting ******************/      gradg=matrix(1,npar,1,nlstate);
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){      gp=vector(1,nlstate);
   /* proj1, year, month, day of starting projection      gm=vector(1,nlstate);
      agemin, agemax range of age  
      dateprev1 dateprev2 range of dates during which prevalence is computed      for(theta=1; theta <=npar; theta++){
      anproj2 year of en of projection (same day and month as proj1).        for(i=1; i<=npar; i++){ /* Computes gradient */
   */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;        }
   int *popage;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   double agec; /* generic age */        for(i=1;i<=nlstate;i++)
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          gp[i] = prlim[i][i];
   double *popeffectif,*popcount;      
   double ***p3mat;        for(i=1; i<=npar; i++) /* Computes gradient */
   double ***mobaverage;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   char fileresf[FILENAMELENGTH];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   agelim=AGESUP;          gm[i] = prlim[i][i];
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);  
          for(i=1;i<=nlstate;i++)
   strcpy(fileresf,"f");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   strcat(fileresf,fileres);      } /* End theta */
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);      trgradg =matrix(1,nlstate,1,npar);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }      for(j=1; j<=nlstate;j++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for(theta=1; theta <=npar; theta++)
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);          trgradg[j][theta]=gradg[theta][j];
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   if (mobilav!=0) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      for(i=1;i<=nlstate;i++)
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }      fprintf(ficresvpl,"%.0f ",age );
   }      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficresvpl,"\n");
   if (stepm<=12) stepsize=1;      free_vector(gp,1,nlstate);
   if(estepm < stepm){      free_vector(gm,1,nlstate);
     printf ("Problem %d lower than %d\n",estepm, stepm);      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
   else  hstepm=estepm;      } /* End age */
   
   hstepm=hstepm/stepm;    free_vector(xp,1,npar);
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and    free_matrix(doldm,1,nlstate,1,npar);
                                fractional in yp1 */    free_matrix(dnewm,1,nlstate,1,nlstate);
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  }
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);  /************ Variance of one-step probabilities  ******************/
   jprojmean=yp;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   if(jprojmean==0) jprojmean=1;  {
   if(mprojmean==0) jprojmean=1;    int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
   i1=cptcoveff;    int k=0, l;
   if (cptcovn < 1){i1=1;}    int first=1, first1, first2;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);    double **dnewm,**doldm;
      double *xp;
   fprintf(ficresf,"#****** Routine prevforecast **\n");    double *gp, *gm;
     double **gradg, **trgradg;
 /*            if (h==(int)(YEARM*yearp)){ */    double **mu;
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){    double age, cov[NCOVMAX+1];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       k=k+1;    int theta;
       fprintf(ficresf,"\n#******");    char fileresprob[FILENAMELENGTH];
       for(j=1;j<=cptcoveff;j++) {    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprobcor[FILENAMELENGTH];
       }    double ***varpij;
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");    strcpy(fileresprob,"PROB_"); 
       for(j=1; j<=nlstate+ndeath;j++){    strcat(fileresprob,fileres);
         for(i=1; i<=nlstate;i++)                  if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           fprintf(ficresf," p%d%d",i,j);      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficresf," p.%d",j);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       }    }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {    strcpy(fileresprobcov,"PROBCOV_"); 
         fprintf(ficresf,"\n");    strcat(fileresprobcov,fileresu);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
         for (agec=fage; agec>=(ageminpar-1); agec--){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;    strcpy(fileresprobcor,"PROBCOR_"); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobcor,fileresu);
           oldm=oldms;savm=savms;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with resultfile: %s\n", fileresprobcor);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           for (h=0; h<=nhstepm; h++){    }
             if (h*hstepm/YEARM*stepm ==yearp) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               fprintf(ficresf,"\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(j=1;j<=cptcoveff;j++)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
             for(j=1; j<=nlstate+ndeath;j++) {    pstamp(ficresprob);
               ppij=0.;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
               for(i=1; i<=nlstate;i++) {    fprintf(ficresprob,"# Age");
                 if (mobilav==1)    pstamp(ficresprobcov);
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                 else {    fprintf(ficresprobcov,"# Age");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    pstamp(ficresprobcor);
                 }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                 if (h*hstepm/YEARM*stepm== yearp) {    fprintf(ficresprobcor,"# Age");
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);  
                 }  
               } /* end i */    for(i=1; i<=nlstate;i++)
               if (h*hstepm/YEARM*stepm==yearp) {      for(j=1; j<=(nlstate+ndeath);j++){
                 fprintf(ficresf," %.3f", ppij);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
               }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
             }/* end j */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           } /* end h */      }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   /* fprintf(ficresprob,"\n");
         } /* end agec */    fprintf(ficresprobcov,"\n");
       } /* end yearp */    fprintf(ficresprobcor,"\n");
     } /* end cptcod */   */
   } /* end  cptcov */    xp=vector(1,npar);
            dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   fclose(ficresf);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
 }    first=1;
     fprintf(ficgp,"\n# Routine varprob");
 /************** Forecasting *****not tested NB*************/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(fichtm,"\n");
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
   int *popage;    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
   double calagedatem, agelim, kk1, kk2;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   double *popeffectif,*popcount;  and drawn. It helps understanding how is the covariance between two incidences.\
   double ***p3mat,***tabpop,***tabpopprev;   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   double ***mobaverage;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   char filerespop[FILENAMELENGTH];  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  standard deviations wide on each axis. <br>\
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   agelim=AGESUP;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    cov[1]=1;
      /* tj=cptcoveff; */
      tj = (int) pow(2,cptcoveff);
   strcpy(filerespop,"pop");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   strcat(filerespop,fileres);    j1=0;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for(j1=1; j1<=tj;j1++){
     printf("Problem with forecast resultfile: %s\n", filerespop);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      /*j1++;*/
   }        if  (cptcovn>0) {
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficresprob, "\n#********** Variable "); 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   if (mobilav!=0) {          fprintf(ficresprobcov, "**********\n#\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){          fprintf(ficgp, "\n#********** Variable "); 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          fprintf(ficgp, "**********\n#\n");
     }          
   }          
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   if (stepm<=12) stepsize=1;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            
   agelim=AGESUP;          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   hstepm=1;          fprintf(ficresprobcor, "**********\n#");    
   hstepm=hstepm/stepm;        }
          
   if (popforecast==1) {        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     if((ficpop=fopen(popfile,"r"))==NULL) {        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       printf("Problem with population file : %s\n",popfile);exit(0);        gp=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        gm=vector(1,(nlstate)*(nlstate+ndeath));
     }        for (age=bage; age<=fage; age ++){ 
     popage=ivector(0,AGESUP);          cov[2]=age;
     popeffectif=vector(0,AGESUP);          if(nagesqr==1)
     popcount=vector(0,AGESUP);            cov[3]= age*age;
              for (k=1; k<=cptcovn;k++) {
     i=1;              cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                               * 1  1 1 1 1
     imx=i;                                                           * 2  2 1 1 1
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                                                           * 3  1 2 1 1
   }                                                           */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){          }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       k=k+1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
       fprintf(ficrespop,"\n#******");          for (k=1; k<=cptcovprod;k++)
       for(j=1;j<=cptcoveff;j++) {            cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
       }      
       fprintf(ficrespop,"******\n");          for(theta=1; theta <=npar; theta++){
       fprintf(ficrespop,"# Age");            for(i=1; i<=npar; i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       if (popforecast==1)  fprintf(ficrespop," [Population]");            
                  pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for (cpt=0; cpt<=0;cpt++) {            
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              k=0;
                    for(i=1; i<= (nlstate); i++){
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){              for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                k=k+1;
           nhstepm = nhstepm/hstepm;                gp[k]=pmmij[i][j];
                        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              for(i=1; i<=npar; i++)
                      xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           for (h=0; h<=nhstepm; h++){      
             if (h==(int) (calagedatem+YEARM*cpt)) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            k=0;
             }            for(i=1; i<=(nlstate); i++){
             for(j=1; j<=nlstate+ndeath;j++) {              for(j=1; j<=(nlstate+ndeath);j++){
               kk1=0.;kk2=0;                k=k+1;
               for(i=1; i<=nlstate;i++) {                              gm[k]=pmmij[i][j];
                 if (mobilav==1)              }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {       
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                 }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
               }          }
               if (h==(int)(calagedatem+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   /*fprintf(ficrespop," %.3f", kk1);            for(theta=1; theta <=npar; theta++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/              trgradg[j][theta]=gradg[theta][j];
               }          
             }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
             for(i=1; i<=nlstate;i++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          
                 }          k=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];          for(i=1; i<=(nlstate); i++){
             }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)              mu[k][(int) age]=pmmij[i][j];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            }
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       }              varpij[i][j][(int)age] = doldm[i][j];
    
   /******/          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){            }*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          fprintf(ficresprob,"\n%d ",(int)age);
                    fprintf(ficresprobcov,"\n%d ",(int)age);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresprobcor,"\n%d ",(int)age);
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
           for (h=0; h<=nhstepm; h++){            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
             if (h==(int) (calagedatem+YEARM*cpt)) {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             for(j=1; j<=nlstate+ndeath;j++) {          }
               kk1=0.;kk2=0;          i=0;
               for(i=1; i<=nlstate;i++) {                        for (k=1; k<=(nlstate);k++){
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                for (l=1; l<=(nlstate+ndeath);l++){ 
               }              i++;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                      fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           }              for (j=1; j<=i;j++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
         }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
    }              }
   }            }
            }/* end of loop for state */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   if (popforecast==1) {        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     free_ivector(popage,0,AGESUP);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     free_vector(popeffectif,0,AGESUP);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     free_vector(popcount,0,AGESUP);        
   }        /* Confidence intervalle of pij  */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"\nunset parametric;unset label");
   fclose(ficrespop);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 } /* End of popforecast */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 int fileappend(FILE *fichier, char *optionfich)          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   if((fichier=fopen(optionfich,"a"))==NULL) {          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     printf("Problem with file: %s\n", optionfich);        */
     fprintf(ficlog,"Problem with file: %s\n", optionfich);  
     return (0);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   }        first1=1;first2=2;
   fflush(fichier);        for (k2=1; k2<=(nlstate);k2++){
   return (1);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 }            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
 /**************** function prwizard **********************/              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)                if(l1==k1) continue;
 {                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   /* Wizard to print covariance matrix template */                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   char ca[32], cb[32], cc[32];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int numlinepar;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                    c12=cv12/sqrt(v1*v2);
   for(i=1; i <=nlstate; i++){                    /* Computing eigen value of matrix of covariance */
     jj=0;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     for(j=1; j <=nlstate+ndeath; j++){                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if(j==i) continue;                    if ((lc2 <0) || (lc1 <0) ){
       jj++;                      if(first2==1){
       /*ca[0]= k+'a'-1;ca[1]='\0';*/                        first1=0;
       printf("%1d%1d",i,j);                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
       fprintf(ficparo,"%1d%1d",i,j);                      }
       for(k=1; k<=ncovmodel;k++){                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
         /*        printf(" %lf",param[i][j][k]); */                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
         /*        fprintf(ficparo," %lf",param[i][j][k]); */                      /* lc2=fabs(lc2); */
         printf(" 0.");                    }
         fprintf(ficparo," 0.");  
       }                    /* Eigen vectors */
       printf("\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       fprintf(ficparo,"\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
     }                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   printf("# Scales (for hessian or gradient estimation)\n");                    v22=v11;
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");                    tnalp=v21/v11;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                    if(first1==1){
   for(i=1; i <=nlstate; i++){                      first1=0;
     jj=0;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     for(j=1; j <=nlstate+ndeath; j++){                    }
       if(j==i) continue;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       jj++;                    /*printf(fignu*/
       fprintf(ficparo,"%1d%1d",i,j);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       printf("%1d%1d",i,j);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       fflush(stdout);                    if(first==1){
       for(k=1; k<=ncovmodel;k++){                      first=0;
         /*      printf(" %le",delti3[i][j][k]); */                      fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                      fprintf(ficgp,"\nset parametric;unset label");
         printf(" 0.");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         fprintf(ficparo," 0.");                      fprintf(ficgp,"\nset ter svg size 640, 480");
       }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
       numlinepar++;   :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
       printf("\n");  %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
       fprintf(ficparo,"\n");                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
     }                              subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
   }                      fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
   printf("# Covariance matrix\n");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 /* # 121 Var(a12)\n\ */                      fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
 /* # 122 Cov(b12,a12) Var(b12)\n\ */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */                    }else{
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */                      first=0;
   fflush(stdout);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   fprintf(ficparo,"# Covariance matrix\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /* # 121 Var(a12)\n\ */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /* # 122 Cov(b12,a12) Var(b12)\n\ */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* #   ...\n\ */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
   for(itimes=1;itimes<=2;itimes++){                  } /* age mod 5 */
     jj=0;                } /* end loop age */
     for(i=1; i <=nlstate; i++){                fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
       for(j=1; j <=nlstate+ndeath; j++){                first=1;
         if(j==i) continue;              } /*l12 */
         for(k=1; k<=ncovmodel;k++){            } /* k12 */
           jj++;          } /*l1 */
           ca[0]= k+'a'-1;ca[1]='\0';        }/* k1 */
           if(itimes==1){        /* } */ /* loop covariates */
             printf("#%1d%1d%d",i,j,k);    }
             fprintf(ficparo,"#%1d%1d%d",i,j,k);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           }else{    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
             printf("%1d%1d%d",i,j,k);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             fprintf(ficparo,"%1d%1d%d",i,j,k);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
             /*  printf(" %.5le",matcov[i][j]); */    free_vector(xp,1,npar);
           }    fclose(ficresprob);
           ll=0;    fclose(ficresprobcov);
           for(li=1;li <=nlstate; li++){    fclose(ficresprobcor);
             for(lj=1;lj <=nlstate+ndeath; lj++){    fflush(ficgp);
               if(lj==li) continue;    fflush(fichtmcov);
               for(lk=1;lk<=ncovmodel;lk++){  }
                 ll++;  
                 if(ll<=jj){  
                   cb[0]= lk +'a'-1;cb[1]='\0';  /******************* Printing html file ***********/
                   if(ll<jj){  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     if(itimes==1){                    int lastpass, int stepm, int weightopt, char model[],\
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);                    int popforecast, int estepm ,\
                     }else{                    double jprev1, double mprev1,double anprev1, \
                       printf(" 0.");                    double jprev2, double mprev2,double anprev2){
                       fprintf(ficparo," 0.");    int jj1, k1, i1, cpt;
                     }  
                   }else{     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                     if(itimes==1){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                       printf(" Var(%s%1d%1d)",ca,i,j);  </ul>");
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                     }else{   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                       printf(" 0.");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
                       fprintf(ficparo," 0.");     fprintf(fichtm,"\
                     }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   }             stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
                 }     fprintf(fichtm,"\
               } /* end lk */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             } /* end lj */             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
           } /* end li */     fprintf(fichtm,"\
           printf("\n");   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           fprintf(ficparo,"\n");     <a href=\"%s\">%s</a> <br>\n",
           numlinepar++;             estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
         } /* end k*/     fprintf(fichtm,"\
       } /*end j */   - Population projections by age and states: \
     } /* end i */     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
   } /* end itimes */  
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 } /* end of prwizard */  
 /******************* Gompertz Likelihood ******************************/   m=pow(2,cptcoveff);
 double gompertz(double x[])   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 {  
   double A,B,L=0.0,sump=0.,num=0.;   jj1=0;
   int i,n=0; /* n is the size of the sample */   for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
   for (i=0;i<=imx-1 ; i++) {       jj1++;
     sump=sump+weight[i];       if (cptcovn > 0) {
     /*    sump=sump+1;*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     num=num+1;         for (cpt=1; cpt<=cptcoveff;cpt++){ 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
             printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
           }
   /* for (i=0; i<=imx; i++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/       }
        /* aij, bij */
   for (i=1;i<=imx ; i++)       fprintf(fichtm,"<br>- Logit model, for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
     {  <img src=\"%s_%d-1.svg\">",subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
       if (cens[i] == 1 && wav[i]>1)       /* Pij */
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));       fprintf(fichtm,"<br>\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
        <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
       if (cens[i] == 0 && wav[i]>1)       /* Quasi-incidences */
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))       fprintf(fichtm,"<br>\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);     before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
         incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */  divided by h: hPij/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
       if (wav[i] > 1 ) { /* ??? */  <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
         L=L+A*weight[i];       /* Survival functions (period) in state j */
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/       for(cpt=1; cpt<=nlstate;cpt++){
       }         fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
     }  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/       /* State specific survival functions (period) */
         for(cpt=1; cpt<=nlstate;cpt++){
   return -2*L*num/sump;         fprintf(fichtm,"<br>\n- Survival functions from state %d in any different live states and total.\
 }   Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
 /******************* Printing html file ***********/       }
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \       /* Period (stable) prevalence in each health state */
                   int lastpass, int stepm, int weightopt, char model[],\       for(cpt=1; cpt<=nlstate;cpt++){
                   int imx,  double p[],double **matcov,double agemortsup){         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   int i,k;  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");       for(cpt=1; cpt<=nlstate;cpt++) {
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s%d%d.svg\">%s%d%d.svg</a> <br> \
   for (i=1;i<=2;i++)  <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));       }
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");     /* } /\* end i1 *\/ */
   fprintf(fichtm,"</ul>");   }/* End k1 */
    fprintf(fichtm,"</ul>");
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");  
    fprintf(fichtm,"\
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
  for (k=agegomp;k<(agemortsup-2);k++)   - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file.<br> \
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);  But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
    be very useful to look not only at linear confidence intervals estimated from the \
   fflush(fichtm);  variances but at the covariance matrix. And instead of looking at the estimated coefficients \
 }  (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
 /******************* Gnuplot file **************/  See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   char dirfileres[132],optfileres[132];           subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   fprintf(fichtm,"\
   int ng;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
   /*#ifdef windows */   fprintf(fichtm,"\
   fprintf(ficgp,"cd \"%s\" \n",pathc);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     /*#endif */           subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   strcpy(dirfileres,optionfilefiname);     <a href=\"%s\">%s</a> <br>\n</li>",
   strcpy(optfileres,"vpl");             estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
   fprintf(ficgp,"set out \"graphmort.png\"\n ");   fprintf(fichtm,"\
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   fprintf(ficgp, "set ter png small\n set log y\n");     <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficgp, "set size 0.65,0.65\n");             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
 }           estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
 /***********************************************/           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
 /**************** Main Program *****************/  
 /***********************************************/  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
 int main(int argc, char *argv[])  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 {  /*      <br>",fileres,fileres,fileres,fileres); */
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);  /*  else  */
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   int linei, month, year,iout;   fflush(fichtm);
   int jj, ll, li, lj, lk, imk;   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   int numlinepar=0; /* Current linenumber of parameter file */  
   int itimes;   m=pow(2,cptcoveff);
   int NDIM=2;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   char ca[32], cb[32], cc[32];   jj1=0;
   char dummy[]="                         ";   for(k1=1; k1<=m;k1++){
   /*  FILE *fichtm; *//* Html File */     /* for(i1=1; i1<=ncodemax[k1];i1++){ */
   /* FILE *ficgp;*/ /*Gnuplot File */       jj1++;
   struct stat info;       if (cptcovn > 0) {
   double agedeb, agefin,hf;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
   double fret;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   double **xi,tmp,delta;       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   double dum; /* Dummy variable */         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   double ***p3mat;  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.svg <br>\
   double ***mobaverage;  <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
   int *indx;       }
   char line[MAXLINE], linepar[MAXLINE];       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   char pathr[MAXLINE], pathimach[MAXLINE];  true period expectancies (those weighted with period prevalences are also\
   char **bp, *tok, *val; /* pathtot */   drawn in addition to the population based expectancies computed using\
   int firstobs=1, lastobs=10;   observed and cahotic prevalences: %s_%d.svg<br>\
   int sdeb, sfin; /* Status at beginning and end */  <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
   int c,  h , cpt,l;     /* } /\* end i1 *\/ */
   int ju,jl, mi;   }/* End k1 */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;   fprintf(fichtm,"</ul>");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;   fflush(fichtm);
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */  }
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  /******************* Gnuplot file **************/
   int agemortsup;  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   float  sumlpop=0.;  
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;    char dirfileres[132],optfileres[132];
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   double bage, fage, age, agelim, agebase;    int vpopbased;
   double ftolpl=FTOL;  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   double **prlim;  /*     printf("Problem with file %s",optionfilegnuplot); */
   double *severity;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   double ***param; /* Matrix of parameters */  /*   } */
   double  *p;  
   double **matcov; /* Matrix of covariance */    /*#ifdef windows */
   double ***delti3; /* Scale */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   double *delti; /* Scale */      /*#endif */
   double ***eij, ***vareij;    m=pow(2,cptcoveff);
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    /* Contribution to likelihood */
   double kk1, kk2;    /* Plot the probability implied in the likelihood */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;      fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
   double **ximort;      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
   char *alph[]={"a","a","b","c","d","e"}, str[4];      /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
   int *dcwave;      fprintf(ficgp,"\nset ter png size 640, 480");
   /* good for mle=4 plot by number of matrix products.
   char z[1]="c", occ;     replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
   char  *strt, strtend[80];      fprintf(ficgp,"\nset out \"%s.png\";",subdirf2(optionfilefiname,"ILK_"));
   char *stratrunc;      fprintf(ficgp,"\nplot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk));
   int lstra;      fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk));
       fprintf(ficgp,"\nset out\n");
   long total_usecs;      /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
    
 /*   setlocale (LC_ALL, ""); */    strcpy(dirfileres,optionfilefiname);
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */    strcpy(optfileres,"vpl");
 /*   textdomain (PACKAGE); */   /* 1eme*/
 /*   setlocale (LC_CTYPE, ""); */    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files\n");
 /*   setlocale (LC_MESSAGES, ""); */    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
   (void) gettimeofday(&start_time,&tzp);       fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
   curr_time=start_time;       fprintf(ficgp,"set xlabel \"Age\" \n\
   tm = *localtime(&start_time.tv_sec);  set ylabel \"Probability\" \n\
   tmg = *gmtime(&start_time.tv_sec);  set ter svg size 640, 480\n\
   strcpy(strstart,asctime(&tm));  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
 /*  printf("Localtime (at start)=%s",strstart); */       for (i=1; i<= nlstate ; i ++) {
 /*  tp.tv_sec = tp.tv_sec +86400; */         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 /*  tm = *localtime(&start_time.tv_sec); */         else        fprintf(ficgp," %%*lf (%%*lf)");
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */       }
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
 /*   tmg.tm_hour=tmg.tm_hour + 1; */       for (i=1; i<= nlstate ; i ++) {
 /*   tp.tv_sec = mktime(&tmg); */         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 /*   strt=asctime(&tmg); */         else fprintf(ficgp," %%*lf (%%*lf)");
 /*   printf("Time(after) =%s",strstart);  */       } 
 /*  (void) time (&time_value);       fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);       for (i=1; i<= nlstate ; i ++) {
 *  tm = *localtime(&time_value);         if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
 *  strstart=asctime(&tm);         else fprintf(ficgp," %%*lf (%%*lf)");
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);       }  
 */       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
   nberr=0; /* Number of errors and warnings */      } /* k1 */
   nbwarn=0;    } /* cpt */
   getcwd(pathcd, size);    /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
   printf("\n%s\n%s",version,fullversion);    for (k1=1; k1<= m ; k1 ++) { 
   if(argc <=1){      fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
     printf("\nEnter the parameter file name: ");      for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
     fgets(pathr,FILENAMELENGTH,stdin);        if(vpopbased==0)
     i=strlen(pathr);          fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
     if(pathr[i-1]=='\n')        else
       pathr[i-1]='\0';          fprintf(ficgp,"\nreplot ");
    for (tok = pathr; tok != NULL; ){        for (i=1; i<= nlstate+1 ; i ++) {
       printf("Pathr |%s|\n",pathr);          k=2*i;
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
       printf("val= |%s| pathr=%s\n",val,pathr);          for (j=1; j<= nlstate+1 ; j ++) {
       strcpy (pathtot, val);            if (j==i) fprintf(ficgp," %%lf (%%lf)");
       if(pathr[0] == '\0') break; /* Dirty */            else fprintf(ficgp," %%*lf (%%*lf)");
     }          }   
   }          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
   else{          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
     strcpy(pathtot,argv[1]);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
   }          for (j=1; j<= nlstate+1 ; j ++) {
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/            if (j==i) fprintf(ficgp," %%lf (%%lf)");
   /*cygwin_split_path(pathtot,path,optionfile);            else fprintf(ficgp," %%*lf (%%*lf)");
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          }   
   /* cutv(path,optionfile,pathtot,'\\');*/          fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
   /* Split argv[0], imach program to get pathimach */          for (j=1; j<= nlstate+1 ; j ++) {
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);            if (j==i) fprintf(ficgp," %%lf (%%lf)");
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);            else fprintf(ficgp," %%*lf (%%*lf)");
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);          }   
  /*   strcpy(pathimach,argv[0]); */          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        } /* state */
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      } /* vpopbased */
   chdir(path); /* Can be a relative path */      fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */    } /* k1 */
     printf("Current directory %s!\n",pathcd);    /*3eme*/
   strcpy(command,"mkdir ");    
   strcat(command,optionfilefiname);    for (k1=1; k1<= m ; k1 ++) { 
   if((outcmd=system(command)) != 0){      for (cpt=1; cpt<= nlstate ; cpt ++) {
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);        /*       k=2+nlstate*(2*cpt-2); */
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */        k=2+(nlstate+1)*(cpt-1);
     /* fclose(ficlog); */        fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
 /*     exit(1); */        fprintf(ficgp,"set ter svg size 640, 480\n\
   }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
 /*   if((imk=mkdir(optionfilefiname))<0){ */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 /*     perror("mkdir"); */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 /*   } */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*-------- arguments in the command line --------*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /* Log file */          
   strcat(filelog, optionfilefiname);        */
   strcat(filelog,".log");    /* */        for (i=1; i< nlstate ; i ++) {
   if((ficlog=fopen(filelog,"w"))==NULL)    {          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
     printf("Problem with logfile %s\n",filelog);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     goto end;          
   }        } 
   fprintf(ficlog,"Log filename:%s\n",filelog);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
   fprintf(ficlog,"\n%s\n%s",version,fullversion);      }
   fprintf(ficlog,"\nEnter the parameter file name: \n");    }
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\    
  path=%s \n\    /* Survival functions (period) from state i in state j by initial state i */
  optionfile=%s\n\    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
  optionfilext=%s\n\      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);        k=3;
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'lij' files, cov=%d state=%d",k1, cpt);
   printf("Local time (at start):%s",strstart);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
   fprintf(ficlog,"Local time (at start): %s",strstart);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   fflush(ficlog);  set ter svg size 640, 480\n\
 /*   (void) gettimeofday(&curr_time,&tzp); */  unset log y\n\
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */  plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
   /* */          if(i==1)
   strcpy(fileres,"r");            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
   strcat(fileres, optionfilefiname);          else
   strcat(fileres,".txt");    /* Other files have txt extension */            fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
   /*---------arguments file --------*/          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            fprintf(ficgp,"+$%d",k+l+j-1);
     printf("Problem with optionfile %s\n",optionfile);          fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        } /* nlstate */
     fflush(ficlog);        fprintf(ficgp,"\nset out\n");
     goto end;      } /* end cpt state*/ 
   }    } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
   strcpy(filereso,"o");      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
   strcat(filereso,fileres);        k=3;
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
     printf("Problem with Output resultfile: %s\n", filereso);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
     fflush(ficlog);  set ter svg size 640, 480\n\
     goto end;  unset log y\n\
   }  plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
   /* Reads comments: lines beginning with '#' */          if(j==1)
   numlinepar=0;            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
   while((c=getc(ficpar))=='#' && c!= EOF){          else
     ungetc(c,ficpar);            fprintf(ficgp,", '' ");
     fgets(line, MAXLINE, ficpar);          l=(nlstate+ndeath)*(cpt-1) +j;
     numlinepar++;          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
     puts(line);          /* for (i=2; i<= nlstate+ndeath ; i ++) */
     fputs(line,ficparo);          /*   fprintf(ficgp,"+$%d",k+l+i-1); */
     fputs(line,ficlog);          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
   }        } /* nlstate */
   ungetc(c,ficpar);        fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
   numlinepar++;          l=(nlstate+ndeath)*(cpt-1) +j;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          if(j < nlstate)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            fprintf(ficgp,"$%d +",k+l);
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          else
   fflush(ficlog);            fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out\n");
     fgets(line, MAXLINE, ficpar);      } /* end cpt state*/ 
     numlinepar++;    } /* end covariate */  
     puts(line);  
     fputs(line,ficparo);    /* CV preval stable (period) for each covariate */
     fputs(line,ficlog);    for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
   }      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
   ungetc(c,ficpar);        k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
            fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/  set ter svg size 640, 480\n\
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */        for (i=1; i<= nlstate ; i ++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          if(i==1)
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            fprintf(ficgp,", '' ");
   delti=delti3[1][1];          l=(nlstate+ndeath)*(i-1)+1;
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */          for (j=2; j<= nlstate ; j ++)
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);            fprintf(ficgp,"+$%d",k+l+j-1);
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);          fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);        } /* nlstate */
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        fprintf(ficgp,"\nset out\n");
     fclose (ficparo);      } /* end cpt state*/ 
     fclose (ficlog);    } /* end covariate */  
     goto end;  
     exit(0);    /* proba elementaires */
   }    fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
   else if(mle==-3) {    for(i=1,jk=1; i <=nlstate; i++){
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);      fprintf(ficgp,"# initial state %d\n",i);
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);      for(k=1; k <=(nlstate+ndeath); k++){
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);        if (k != i) {
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"#   current state %d\n",k);
     matcov=matrix(1,npar,1,npar);          for(j=1; j <=ncovmodel; j++){
   }            fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
   else{            jk++; 
     /* Read guess parameters */          }
     /* Reads comments: lines beginning with '#' */          fprintf(ficgp,"\n");
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);      }
       fgets(line, MAXLINE, ficpar);     }
       numlinepar++;    fprintf(ficgp,"##############\n#\n");
       puts(line);  
       fputs(line,ficparo);    /*goto avoid;*/
       fputs(line,ficlog);    fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     }    fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     ungetc(c,ficpar);    fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
        fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     for(i=1; i <=nlstate; i++){    fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
       j=0;    fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
       for(jj=1; jj <=nlstate+ndeath; jj++){    fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
         if(jj==i) continue;    fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
         j++;    fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
         fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
         if ((i1 != i) && (j1 != j)){    fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \    fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
 It might be a problem of design; if ncovcol and the model are correct\n \    fprintf(ficgp,"#\n");
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
           exit(1);       fprintf(ficgp,"# ng=%d\n",ng);
         }       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
         fprintf(ficparo,"%1d%1d",i1,j1);       for(jk=1; jk <=m; jk++) {
         if(mle==1)         fprintf(ficgp,"#    jk=%d\n",jk);
           printf("%1d%1d",i,j);         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
         fprintf(ficlog,"%1d%1d",i,j);         fprintf(ficgp,"\nset ter svg size 640, 480 ");
         for(k=1; k<=ncovmodel;k++){         if (ng==1){
           fscanf(ficpar," %lf",&param[i][j][k]);           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           if(mle==1){           fprintf(ficgp,"\nunset log y");
             printf(" %lf",param[i][j][k]);         }else if (ng==2){
             fprintf(ficlog," %lf",param[i][j][k]);           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
           }           fprintf(ficgp,"\nset log y");
           else         }else if (ng==3){
             fprintf(ficlog," %lf",param[i][j][k]);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficparo," %lf",param[i][j][k]);           fprintf(ficgp,"\nset log y");
         }         }else
         fscanf(ficpar,"\n");           fprintf(ficgp,"\nunset title ");
         numlinepar++;         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         if(mle==1)         i=1;
           printf("\n");         for(k2=1; k2<=nlstate; k2++) {
         fprintf(ficlog,"\n");           k3=i;
         fprintf(ficparo,"\n");           for(k=1; k<=(nlstate+ndeath); k++) {
       }             if (k != k2){
     }                 switch( ng) {
     fflush(ficlog);               case 1:
                  if(nagesqr==0)
     p=param[1][1];                   fprintf(ficgp," p%d+p%d*x",i,i+1);
                     else /* nagesqr =1 */
     /* Reads comments: lines beginning with '#' */                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
     while((c=getc(ficpar))=='#' && c!= EOF){                 break;
       ungetc(c,ficpar);               case 2: /* ng=2 */
       fgets(line, MAXLINE, ficpar);                 if(nagesqr==0)
       numlinepar++;                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       puts(line);                 else /* nagesqr =1 */
       fputs(line,ficparo);                     fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
       fputs(line,ficlog);                 break;
     }               case 3:
     ungetc(c,ficpar);                 if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     for(i=1; i <=nlstate; i++){                 else /* nagesqr =1 */
       for(j=1; j <=nlstate+ndeath-1; j++){                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
         fscanf(ficpar,"%1d%1d",&i1,&j1);                 break;
         if ((i1-i)*(j1-j)!=0){               }
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);               ij=1;/* To be checked else nbcode[0][0] wrong */
           exit(1);               for(j=3; j <=ncovmodel-nagesqr; j++) {
         }                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
         printf("%1d%1d",i,j);                 if(ij <=cptcovage) { /* Bug valgrind */
         fprintf(ficparo,"%1d%1d",i1,j1);                   if((j-2)==Tage[ij]) { /* Bug valgrind */
         fprintf(ficlog,"%1d%1d",i1,j1);                     fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
         for(k=1; k<=ncovmodel;k++){                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
           fscanf(ficpar,"%le",&delti3[i][j][k]);                     ij++;
           printf(" %le",delti3[i][j][k]);                   }
           fprintf(ficparo," %le",delti3[i][j][k]);                 }
           fprintf(ficlog," %le",delti3[i][j][k]);                 else
         }                   fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
         fscanf(ficpar,"\n");               }
         numlinepar++;               if(ng != 1){
         printf("\n");                 fprintf(ficgp,")/(1");
         fprintf(ficparo,"\n");               
         fprintf(ficlog,"\n");                 for(k1=1; k1 <=nlstate; k1++){ 
       }                   if(nagesqr==0)
     }                     fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     fflush(ficlog);                   else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
     delti=delti3[1][1];                   
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */                     if(ij <=cptcovage) { /* Bug valgrind */
                         if((j-2)==Tage[ij]) { /* Bug valgrind */
     /* Reads comments: lines beginning with '#' */                         fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
     while((c=getc(ficpar))=='#' && c!= EOF){                         /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
       ungetc(c,ficpar);                         ij++;
       fgets(line, MAXLINE, ficpar);                       }
       numlinepar++;                     }
       puts(line);                     else
       fputs(line,ficparo);                       fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
       fputs(line,ficlog);                   }
     }                   fprintf(ficgp,")");
     ungetc(c,ficpar);                 }
                   fprintf(ficgp,")");
     matcov=matrix(1,npar,1,npar);                 if(ng ==2)
     for(i=1; i <=npar; i++){                   fprintf(ficgp," t \"p%d%d\" ", k2,k);
       fscanf(ficpar,"%s",&str);                 else /* ng= 3 */
       if(mle==1)                   fprintf(ficgp," t \"i%d%d\" ", k2,k);
         printf("%s",str);               }else{ /* end ng <> 1 */
       fprintf(ficlog,"%s",str);                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
       fprintf(ficparo,"%s",str);               }
       for(j=1; j <=i; j++){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         fscanf(ficpar," %le",&matcov[i][j]);               i=i+ncovmodel;
         if(mle==1){             }
           printf(" %.5le",matcov[i][j]);           } /* end k */
         }         } /* end k2 */
         fprintf(ficlog," %.5le",matcov[i][j]);         fprintf(ficgp,"\n set out\n");
         fprintf(ficparo," %.5le",matcov[i][j]);       } /* end jk */
       }     } /* end ng */
       fscanf(ficpar,"\n");   /* avoid: */
       numlinepar++;     fflush(ficgp); 
       if(mle==1)  }  /* end gnuplot */
         printf("\n");  
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  /*************** Moving average **************/
     }  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     for(i=1; i <=npar; i++)  
       for(j=i+1;j<=npar;j++)    int i, cpt, cptcod;
         matcov[i][j]=matcov[j][i];    int modcovmax =1;
        int mobilavrange, mob;
     if(mle==1)    double age;
       printf("\n");  
     fprintf(ficlog,"\n");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                                 a covariate has 2 modalities */
     fflush(ficlog);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
      
     /*-------- Rewriting parameter file ----------*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     strcpy(rfileres,"r");    /* "Rparameterfile */      if(mobilav==1) mobilavrange=5; /* default */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      else mobilavrange=mobilav;
     strcat(rfileres,".");    /* */      for (age=bage; age<=fage; age++)
     strcat(rfileres,optionfilext);    /* Other files have txt extension */        for (i=1; i<=nlstate;i++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      /* We keep the original values on the extreme ages bage, fage and for 
     }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     fprintf(ficres,"#%s\n",version);         we use a 5 terms etc. until the borders are no more concerned. 
   }    /* End of mle != -3 */      */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
   /*-------- data file ----------*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   if((fic=fopen(datafile,"r"))==NULL)    {          for (i=1; i<=nlstate;i++){
     printf("Problem while opening datafile: %s\n", datafile);goto end;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   n= lastobs;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   severity = vector(1,maxwav);                }
   outcome=imatrix(1,maxwav+1,1,n);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   num=lvector(1,n);            }
   moisnais=vector(1,n);          }
   annais=vector(1,n);        }/* end age */
   moisdc=vector(1,n);      }/* end mob */
   andc=vector(1,n);    }else return -1;
   agedc=vector(1,n);    return 0;
   cod=ivector(1,n);  }/* End movingaverage */
   weight=vector(1,n);  
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
   mint=matrix(1,maxwav,1,n);  /************** Forecasting ******************/
   anint=matrix(1,maxwav,1,n);  void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   s=imatrix(1,maxwav+1,1,n);    /* proj1, year, month, day of starting projection 
   tab=ivector(1,NCOVMAX);       agemin, agemax range of age
   ncodemax=ivector(1,8);       dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
   i=1;    */
   linei=0;    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {    double agec; /* generic age */
     linei=linei+1;    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */    double *popeffectif,*popcount;
       if(line[j] == '\t')    double ***p3mat;
         line[j] = ' ';    double ***mobaverage;
     }    char fileresf[FILENAMELENGTH];
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){  
       ;    agelim=AGESUP;
     };    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     line[j+1]=0;  /* Trims blanks at end of line */   
     if(line[0]=='#'){    strcpy(fileresf,"F_"); 
       fprintf(ficlog,"Comment line\n%s\n",line);    strcat(fileresf,fileresu);
       printf("Comment line\n%s\n",line);    if((ficresf=fopen(fileresf,"w"))==NULL) {
       continue;      printf("Problem with forecast resultfile: %s\n", fileresf);
     }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     for (j=maxwav;j>=1;j--){    printf("Computing forecasting: result on file '%s' \n", fileresf);
       cutv(stra, strb,line,' ');    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
       errno=0;  
       lval=strtol(strb,&endptr,10);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/  
       if( strb[0]=='\0' || (*endptr != '\0')){    if (mobilav!=0) {
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         exit(1);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       s[j][i]=lval;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            }
       strcpy(line,stra);    }
       cutv(stra, strb,line,' ');  
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    stepsize=(int) (stepm+YEARM-1)/YEARM;
       }    if (stepm<=12) stepsize=1;
       else  if(iout=sscanf(strb,"%s.") != 0){    if(estepm < stepm){
         month=99;      printf ("Problem %d lower than %d\n",estepm, stepm);
         year=9999;    }
       }else{    else  hstepm=estepm;   
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);  
         exit(1);    hstepm=hstepm/stepm; 
       }    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       anint[j][i]= (double) year;                                 fractional in yp1 */
       mint[j][i]= (double)month;    anprojmean=yp;
       strcpy(line,stra);    yp2=modf((yp1*12),&yp);
     } /* ENd Waves */    mprojmean=yp;
        yp1=modf((yp2*30.5),&yp);
     cutv(stra, strb,line,' ');    jprojmean=yp;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){    if(jprojmean==0) jprojmean=1;
     }    if(mprojmean==0) jprojmean=1;
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){  
       month=99;    i1=cptcoveff;
       year=9999;    if (cptcovn < 1){i1=1;}
     }else{    
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       exit(1);    
     }    fprintf(ficresf,"#****** Routine prevforecast **\n");
     andc[i]=(double) year;  
     moisdc[i]=(double) month;  /*            if (h==(int)(YEARM*yearp)){ */
     strcpy(line,stra);    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
          for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     cutv(stra, strb,line,' ');        k=k+1;
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){        fprintf(ficresf,"\n#******");
     }        for(j=1;j<=cptcoveff;j++) {
     else  if(iout=sscanf(strb,"%s.") != 0){          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       month=99;        }
       year=9999;        fprintf(ficresf,"******\n");
     }else{        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);        for(j=1; j<=nlstate+ndeath;j++){ 
       exit(1);          for(i=1; i<=nlstate;i++)              
     }            fprintf(ficresf," p%d%d",i,j);
     annais[i]=(double)(year);          fprintf(ficresf," p.%d",j);
     moisnais[i]=(double)(month);        }
     strcpy(line,stra);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
              fprintf(ficresf,"\n");
     cutv(stra, strb,line,' ');          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     errno=0;  
     dval=strtod(strb,&endptr);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     if( strb[0]=='\0' || (*endptr != '\0')){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);            nhstepm = nhstepm/hstepm; 
       exit(1);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }            oldm=oldms;savm=savms;
     weight[i]=dval;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     strcpy(line,stra);          
                for (h=0; h<=nhstepm; h++){
     for (j=ncovcol;j>=1;j--){              if (h*hstepm/YEARM*stepm ==yearp) {
       cutv(stra, strb,line,' ');                fprintf(ficresf,"\n");
       errno=0;                for(j=1;j<=cptcoveff;j++) 
       lval=strtol(strb,&endptr,10);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       if( strb[0]=='\0' || (*endptr != '\0')){                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);              } 
         exit(1);              for(j=1; j<=nlstate+ndeath;j++) {
       }                ppij=0.;
       if(lval <-1 || lval >1){                for(i=1; i<=nlstate;i++) {
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \                  if (mobilav==1) 
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \                  else {
  For example, for multinomial values like 1, 2 and 3,\n \                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
  build V1=0 V2=0 for the reference value (1),\n \                  }
         V1=1 V2=0 for (2) \n \                  if (h*hstepm/YEARM*stepm== yearp) {
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
  output of IMaCh is often meaningless.\n \                  }
  Exiting.\n",lval,linei, i,line,j);                } /* end i */
         exit(1);                if (h*hstepm/YEARM*stepm==yearp) {
       }                  fprintf(ficresf," %.3f", ppij);
       covar[j][i]=(double)(lval);                }
       strcpy(line,stra);              }/* end j */
     }            } /* end h */
     lstra=strlen(stra);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              } /* end agec */
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */        } /* end yearp */
       stratrunc = &(stra[lstra-9]);      } /* end cptcod */
       num[i]=atol(stratrunc);    } /* end  cptcov */
     }         
     else    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       num[i]=atol(stra);  
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    fclose(ficresf);
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  }
      
     i=i+1;  /************** Forecasting *****not tested NB*************/
   } /* End loop reading  data */  void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   fclose(fic);    
   /* printf("ii=%d", ij);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      scanf("%d",i);*/    int *popage;
   imx=i-1; /* Number of individuals */    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
   /* for (i=1; i<=imx; i++){    double ***p3mat,***tabpop,***tabpopprev;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double ***mobaverage;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    char filerespop[FILENAMELENGTH];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    /*  for (i=1; i<=imx; i++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      if (s[4][i]==9)  s[4][i]=-1;    agelim=AGESUP;
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
      
   /* for (i=1; i<=imx; i++) */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
      
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;    
      else weight[i]=1;*/    strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
   /* Calculation of the number of parameters from char model */    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      printf("Problem with forecast resultfile: %s\n", filerespop);
   Tprod=ivector(1,15);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   Tvaraff=ivector(1,15);    }
   Tvard=imatrix(1,15,1,2);    printf("Computing forecasting: result on file '%s' \n", filerespop);
   Tage=ivector(1,15);          fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
      
   if (strlen(model) >1){ /* If there is at least 1 covariate */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */    if (mobilav!=0) {
     j1=nbocc(model,'*'); /* j1=Number of '*' */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     cptcovn=j+1;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     cptcovprod=j1; /*Number of products */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
     strcpy(modelsav,model);      }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    }
       printf("Error. Non available option model=%s ",model);  
       fprintf(ficlog,"Error. Non available option model=%s ",model);    stepsize=(int) (stepm+YEARM-1)/YEARM;
       goto end;    if (stepm<=12) stepsize=1;
     }    
        agelim=AGESUP;
     /* This loop fills the array Tvar from the string 'model'.*/    
     hstepm=1;
     for(i=(j+1); i>=1;i--){    hstepm=hstepm/stepm; 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */    if (popforecast==1) {
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      if((ficpop=fopen(popfile,"r"))==NULL) {
       /*scanf("%d",i);*/        printf("Problem with population file : %s\n",popfile);exit(0);
       if (strchr(strb,'*')) {  /* Model includes a product */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      } 
         if (strcmp(strc,"age")==0) { /* Vn*age */      popage=ivector(0,AGESUP);
           cptcovprod--;      popeffectif=vector(0,AGESUP);
           cutv(strb,stre,strd,'V');      popcount=vector(0,AGESUP);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      
           cptcovage++;      i=1;   
             Tage[cptcovage]=i;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
             /*printf("stre=%s ", stre);*/     
         }      imx=i;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           cptcovage++;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           Tage[cptcovage]=i;        k=k+1;
         }        fprintf(ficrespop,"\n#******");
         else {  /* Age is not in the model */        for(j=1;j<=cptcoveff;j++) {
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           Tvar[i]=ncovcol+k1;        }
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        fprintf(ficrespop,"******\n");
           Tprod[k1]=i;        fprintf(ficrespop,"# Age");
           Tvard[k1][1]=atoi(strc); /* m*/        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           Tvard[k1][2]=atoi(stre); /* n */        if (popforecast==1)  fprintf(ficrespop," [Population]");
           Tvar[cptcovn+k2]=Tvard[k1][1];        
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        for (cpt=0; cpt<=0;cpt++) { 
           for (k=1; k<=lastobs;k++)          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          
           k1++;          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
           k2=k2+2;            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         }            nhstepm = nhstepm/hstepm; 
       }            
       else { /* no more sum */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            oldm=oldms;savm=savms;
        /*  scanf("%d",i);*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       cutv(strd,strc,strb,'V');          
       Tvar[i]=atoi(strc);            for (h=0; h<=nhstepm; h++){
       }              if (h==(int) (calagedatem+YEARM*cpt)) {
       strcpy(modelsav,stra);                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              } 
         scanf("%d",i);*/              for(j=1; j<=nlstate+ndeath;j++) {
     } /* end of loop + */                kk1=0.;kk2=0;
   } /* end model */                for(i=1; i<=nlstate;i++) {              
                    if (mobilav==1) 
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                  }
   printf("cptcovprod=%d ", cptcovprod);                }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
   scanf("%d ",i);*/                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     /*  if(mle==1){*/                }
   if (weightopt != 1) { /* Maximisation without weights*/              }
     for(i=1;i<=n;i++) weight[i]=1.0;              for(i=1; i<=nlstate;i++){
   }                kk1=0.;
     /*-calculation of age at interview from date of interview and age at death -*/                  for(j=1; j<=nlstate;j++){
   agev=matrix(1,maxwav,1,imx);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
   for (i=1; i<=imx; i++) {                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     for(m=2; (m<= maxwav); m++) {              }
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
         s[m][i]=-1;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       }            }
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         nberr++;          }
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);        }
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);   
         s[m][i]=-1;    /******/
       }  
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
         nberr++;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */            nhstepm = nhstepm/hstepm; 
       }            
     }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   for (i=1; i<=imx; i++)  {            for (h=0; h<=nhstepm; h++){
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);              if (h==(int) (calagedatem+YEARM*cpt)) {
     for(m=firstpass; (m<= lastpass); m++){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){              } 
         if (s[m][i] >= nlstate+1) {              for(j=1; j<=nlstate+ndeath;j++) {
           if(agedc[i]>0)                kk1=0.;kk2=0;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)                for(i=1; i<=nlstate;i++) {              
               agev[m][i]=agedc[i];                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                }
             else {                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               if ((int)andc[i]!=9999){              }
                 nbwarn++;            }
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);          }
                 agev[m][i]=-1;        }
               }     } 
             }    }
         }   
         else if(s[m][i] !=9){ /* Standard case, age in fractional    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                                  years but with the precision of a month */  
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if (popforecast==1) {
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)      free_ivector(popage,0,AGESUP);
             agev[m][i]=1;      free_vector(popeffectif,0,AGESUP);
           else if(agev[m][i] <agemin){      free_vector(popcount,0,AGESUP);
             agemin=agev[m][i];    }
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           else if(agev[m][i] >agemax){    fclose(ficrespop);
             agemax=agev[m][i];  } /* End of popforecast */
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
           }  int fileappend(FILE *fichier, char *optionfich)
           /*agev[m][i]=anint[m][i]-annais[i];*/  {
           /*     agev[m][i] = age[i]+2*m;*/    if((fichier=fopen(optionfich,"a"))==NULL) {
         }      printf("Problem with file: %s\n", optionfich);
         else { /* =9 */      fprintf(ficlog,"Problem with file: %s\n", optionfich);
           agev[m][i]=1;      return (0);
           s[m][i]=-1;    }
         }    fflush(fichier);
       }    return (1);
       else /*= 0 Unknown */  }
         agev[m][i]=1;  
     }  
      /**************** function prwizard **********************/
   }  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   for (i=1; i<=imx; i++)  {  {
     for(m=firstpass; (m<=lastpass); m++){  
       if (s[m][i] > (nlstate+ndeath)) {    /* Wizard to print covariance matrix template */
         nberr++;  
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        char ca[32], cb[32];
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        int i,j, k, li, lj, lk, ll, jj, npar, itimes;
         goto end;    int numlinepar;
       }  
     }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
   /*for (i=1; i<=imx; i++){      jj=0;
   for (m=firstpass; (m<lastpass); m++){      for(j=1; j <=nlstate+ndeath; j++){
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);        if(j==i) continue;
 }        jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
 }*/        printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          /*        printf(" %lf",param[i][j][k]); */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
   agegomp=(int)agemin;          fprintf(ficparo," 0.");
   free_vector(severity,1,maxwav);        }
   free_imatrix(outcome,1,maxwav+1,1,n);        printf("\n");
   free_vector(moisnais,1,n);        fprintf(ficparo,"\n");
   free_vector(annais,1,n);      }
   /* free_matrix(mint,1,maxwav,1,n);    }
      free_matrix(anint,1,maxwav,1,n);*/    printf("# Scales (for hessian or gradient estimation)\n");
   free_vector(moisdc,1,n);    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   free_vector(andc,1,n);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
          jj=0;
   wav=ivector(1,imx);      for(j=1; j <=nlstate+ndeath; j++){
   dh=imatrix(1,lastpass-firstpass+1,1,imx);        if(j==i) continue;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);        jj++;
   mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficparo,"%1d%1d",i,j);
            printf("%1d%1d",i,j);
   /* Concatenates waves */        fflush(stdout);
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
   Tcode=ivector(1,100);          fprintf(ficparo," 0.");
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        }
   ncodemax[1]=1;        numlinepar++;
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);        printf("\n");
              fprintf(ficparo,"\n");
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of      }
                                  the estimations*/    }
   h=0;    printf("# Covariance matrix\n");
   m=pow(2,cptcoveff);  /* # 121 Var(a12)\n\ */
    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   for(k=1;k<=cptcoveff; k++){  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
     for(i=1; i <=(m/pow(2,k));i++){  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       for(j=1; j <= ncodemax[k]; j++){  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
           h++;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fflush(stdout);
         }    fprintf(ficparo,"# Covariance matrix\n");
       }    /* # 121 Var(a12)\n\ */
     }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   }    /* #   ...\n\ */
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
      codtab[1][2]=1;codtab[2][2]=2; */    
   /* for(i=1; i <=m ;i++){    for(itimes=1;itimes<=2;itimes++){
      for(k=1; k <=cptcovn; k++){      jj=0;
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for(i=1; i <=nlstate; i++){
      }        for(j=1; j <=nlstate+ndeath; j++){
      printf("\n");          if(j==i) continue;
      }          for(k=1; k<=ncovmodel;k++){
      scanf("%d",i);*/            jj++;
                ca[0]= k+'a'-1;ca[1]='\0';
   /*------------ gnuplot -------------*/            if(itimes==1){
   strcpy(optionfilegnuplot,optionfilefiname);              printf("#%1d%1d%d",i,j,k);
   if(mle==-3)              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     strcat(optionfilegnuplot,"-mort");            }else{
   strcat(optionfilegnuplot,".gp");              printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              /*  printf(" %.5le",matcov[i][j]); */
     printf("Problem with file %s",optionfilegnuplot);            }
   }            ll=0;
   else{            for(li=1;li <=nlstate; li++){
     fprintf(ficgp,"\n# %s\n", version);              for(lj=1;lj <=nlstate+ndeath; lj++){
     fprintf(ficgp,"# %s\n", optionfilegnuplot);                if(lj==li) continue;
     fprintf(ficgp,"set missing 'NaNq'\n");                for(lk=1;lk<=ncovmodel;lk++){
   }                  ll++;
   /*  fclose(ficgp);*/                  if(ll<=jj){
   /*--------- index.htm --------*/                    cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */                      if(itimes==1){
   if(mle==-3)                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
     strcat(optionfilehtm,"-mort");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   strcat(optionfilehtm,".htm");                      }else{
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                        printf(" 0.");
     printf("Problem with %s \n",optionfilehtm), exit(0);                        fprintf(ficparo," 0.");
   }                      }
                     }else{
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */                      if(itimes==1){
   strcat(optionfilehtmcov,"-cov.htm");                        printf(" Var(%s%1d%1d)",ca,i,j);
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
     printf("Problem with %s \n",optionfilehtmcov), exit(0);                      }else{
   }                        printf(" 0.");
   else{                        fprintf(ficparo," 0.");
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \                      }
 <hr size=\"2\" color=\"#EC5E5E\"> \n\                    }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\                  }
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);                } /* end lk */
   }              } /* end lj */
             } /* end li */
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \            printf("\n");
 <hr size=\"2\" color=\"#EC5E5E\"> \n\            fprintf(ficparo,"\n");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\            numlinepar++;
 \n\          } /* end k*/
 <hr  size=\"2\" color=\"#EC5E5E\">\        } /*end j */
  <ul><li><h4>Parameter files</h4>\n\      } /* end i */
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\    } /* end itimes */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\  } /* end of prwizard */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\  /******************* Gompertz Likelihood ******************************/
  - Date and time at start: %s</ul>\n",\  double gompertz(double x[])
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  { 
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\    double A,B,L=0.0,sump=0.,num=0.;
           fileres,fileres,\    int i,n=0; /* n is the size of the sample */
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);  
   fflush(fichtm);    for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
   strcpy(pathr,path);      /*    sump=sump+1;*/
   strcat(pathr,optionfilefiname);      num=num+1;
   chdir(optionfilefiname); /* Move to directory named optionfile */    }
     
   /* Calculates basic frequencies. Computes observed prevalence at single age   
      and prints on file fileres'p'. */    /* for (i=0; i<=imx; i++) 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
   fprintf(fichtm,"\n");    for (i=1;i<=imx ; i++)
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\      {
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\        if (cens[i] == 1 && wav[i]>1)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
           imx,agemin,agemax,jmin,jmax,jmean);        
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (cens[i] == 0 && wav[i]>1)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
            if (wav[i] > 1 ) { /* ??? */
              L=L+A*weight[i];
   /* For Powell, parameters are in a vector p[] starting at p[1]          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        }
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */      }
   
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
   if (mle==-3){    return -2*L*num/sump;
     ximort=matrix(1,NDIM,1,NDIM);  }
     cens=ivector(1,n);  
     ageexmed=vector(1,n);  #ifdef GSL
     agecens=vector(1,n);  /******************* Gompertz_f Likelihood ******************************/
     dcwave=ivector(1,n);  double gompertz_f(const gsl_vector *v, void *params)
    { 
     for (i=1; i<=imx; i++){    double A,B,LL=0.0,sump=0.,num=0.;
       dcwave[i]=-1;    double *x= (double *) v->data;
       for (m=firstpass; m<=lastpass; m++)    int i,n=0; /* n is the size of the sample */
         if (s[m][i]>nlstate) {  
           dcwave[i]=m;    for (i=0;i<=imx-1 ; i++) {
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/      sump=sump+weight[i];
           break;      /*    sump=sump+1;*/
         }      num=num+1;
     }    }
    
     for (i=1; i<=imx; i++) {   
       if (wav[i]>0){    /* for (i=0; i<=imx; i++) 
         ageexmed[i]=agev[mw[1][i]][i];       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
         j=wav[i];    printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
         agecens[i]=1.;    for (i=1;i<=imx ; i++)
       {
         if (ageexmed[i]> 1 && wav[i] > 0){        if (cens[i] == 1 && wav[i]>1)
           agecens[i]=agev[mw[j][i]][i];          A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
           cens[i]= 1;        
         }else if (ageexmed[i]< 1)        if (cens[i] == 0 && wav[i]>1)
           cens[i]= -1;          A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)               +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
           cens[i]=0 ;        
       }        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
       else cens[i]=-1;        if (wav[i] > 1 ) { /* ??? */
     }          LL=LL+A*weight[i];
              /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
     for (i=1;i<=NDIM;i++) {        }
       for (j=1;j<=NDIM;j++)      }
         ximort[i][j]=(i == j ? 1.0 : 0.0);  
     }   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
        printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
     p[1]=0.0268; p[NDIM]=0.083;   
     /*printf("%lf %lf", p[1], p[2]);*/    return -2*LL*num/sump;
      }
      #endif
     printf("Powell\n");  fprintf(ficlog,"Powell\n");  
     strcpy(filerespow,"pow-mort");  /******************* Printing html file ***********/
     strcat(filerespow,fileres);  void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
     if((ficrespow=fopen(filerespow,"w"))==NULL) {                    int lastpass, int stepm, int weightopt, char model[],\
       printf("Problem with resultfile: %s\n", filerespow);                    int imx,  double p[],double **matcov,double agemortsup){
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);    int i,k;
     }  
     fprintf(ficrespow,"# Powell\n# iter -2*LL");    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     /*  for (i=1;i<=nlstate;i++)    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
         for(j=1;j<=nlstate+ndeath;j++)    for (i=1;i<=2;i++) 
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     */    fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(ficrespow,"\n");    fprintf(fichtm,"</ul>");
      
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     fclose(ficrespow);  
       fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);  
    for (k=agegomp;k<(agemortsup-2);k++) 
     for(i=1; i <=NDIM; i++)     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       for(j=i+1;j<=NDIM;j++)  
         matcov[i][j]=matcov[j][i];   
        fflush(fichtm);
     printf("\nCovariance matrix\n ");  }
     for(i=1; i <=NDIM; i++) {  
       for(j=1;j<=NDIM;j++){  /******************* Gnuplot file **************/
         printf("%f ",matcov[i][j]);  void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       }  
       printf("\n ");    char dirfileres[132],optfileres[132];
     }  
        int ng;
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);  
     for (i=1;i<=NDIM;i++)  
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
     lsurv=vector(1,AGESUP);      /*#endif */
     lpop=vector(1,AGESUP);  
     tpop=vector(1,AGESUP);  
     lsurv[agegomp]=100000;    strcpy(dirfileres,optionfilefiname);
        strcpy(optfileres,"vpl");
     for (k=agegomp;k<=AGESUP;k++) {    fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
       agemortsup=k;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;    fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     }    /* fprintf(ficgp, "set size 0.65,0.65\n"); */
        fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
     for (k=agegomp;k<agemortsup;k++)  
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));  } 
      
     for (k=agegomp;k<agemortsup;k++){  int readdata(char datafile[], int firstobs, int lastobs, int *imax)
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;  {
       sumlpop=sumlpop+lpop[k];  
     }    /*-------- data file ----------*/
        FILE *fic;
     tpop[agegomp]=sumlpop;    char dummy[]="                         ";
     for (k=agegomp;k<(agemortsup-3);k++){    int i=0, j=0, n=0;
       /*  tpop[k+1]=2;*/    int linei, month, year,iout;
       tpop[k+1]=tpop[k]-lpop[k];    char line[MAXLINE], linetmp[MAXLINE];
     }    char stra[MAXLINE], strb[MAXLINE];
        char *stratrunc;
        int lstra;
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");  
     for (k=agegomp;k<(agemortsup-2);k++)  
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);    if((fic=fopen(datafile,"r"))==NULL)    {
          printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
          fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */    }
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);  
        i=1;
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \    linei=0;
                      stepm, weightopt,\    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                      model,imx,p,matcov,agemortsup);      linei=linei+1;
          for(j=strlen(line); j>=0;j--){  /* Untabifies line */
     free_vector(lsurv,1,AGESUP);        if(line[j] == '\t')
     free_vector(lpop,1,AGESUP);          line[j] = ' ';
     free_vector(tpop,1,AGESUP);      }
   } /* Endof if mle==-3 */      for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
          ;
   else{ /* For mle >=1 */      };
        line[j+1]=0;  /* Trims blanks at end of line */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      if(line[0]=='#'){
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        fprintf(ficlog,"Comment line\n%s\n",line);
     for (k=1; k<=npar;k++)        printf("Comment line\n%s\n",line);
       printf(" %d %8.5f",k,p[k]);        continue;
     printf("\n");      }
     globpr=1; /* to print the contributions */      trimbb(linetmp,line); /* Trims multiple blanks in line */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      strcpy(line, linetmp);
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    
     for (k=1; k<=npar;k++)  
       printf(" %d %8.5f",k,p[k]);      for (j=maxwav;j>=1;j--){
     printf("\n");        cutv(stra, strb, line, ' '); 
     if(mle>=1){ /* Could be 1 or 2 */        if(strb[0]=='.') { /* Missing status */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          lval=-1;
     }        }else{
              errno=0;
     /*--------- results files --------------*/          lval=strtol(strb,&endptr,10); 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);        /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
              if( strb[0]=='\0' || (*endptr != '\0')){
                printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            return 1;
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          }
     for(i=1,jk=1; i <=nlstate; i++){        }
       for(k=1; k <=(nlstate+ndeath); k++){        s[j][i]=lval;
         if (k != i) {        
           printf("%d%d ",i,k);        strcpy(line,stra);
           fprintf(ficlog,"%d%d ",i,k);        cutv(stra, strb,line,' ');
           fprintf(ficres,"%1d%1d ",i,k);        if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
           for(j=1; j <=ncovmodel; j++){        }
             printf("%lf ",p[jk]);        else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
             fprintf(ficlog,"%lf ",p[jk]);          month=99;
             fprintf(ficres,"%lf ",p[jk]);          year=9999;
             jk++;        }else{
           }          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           printf("\n");          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           fprintf(ficlog,"\n");          return 1;
           fprintf(ficres,"\n");        }
         }        anint[j][i]= (double) year; 
       }        mint[j][i]= (double)month; 
     }        strcpy(line,stra);
     if(mle!=0){      } /* ENd Waves */
       /* Computing hessian and covariance matrix */      
       ftolhess=ftol; /* Usually correct */      cutv(stra, strb,line,' '); 
       hesscov(matcov, p, npar, delti, ftolhess, func);      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
     }      }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
     printf("# Scales (for hessian or gradient estimation)\n");        month=99;
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        year=9999;
     for(i=1,jk=1; i <=nlstate; i++){      }else{
       for(j=1; j <=nlstate+ndeath; j++){        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         if (j!=i) {          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           fprintf(ficres,"%1d%1d",i,j);          return 1;
           printf("%1d%1d",i,j);      }
           fprintf(ficlog,"%1d%1d",i,j);      andc[i]=(double) year; 
           for(k=1; k<=ncovmodel;k++){      moisdc[i]=(double) month; 
             printf(" %.5e",delti[jk]);      strcpy(line,stra);
             fprintf(ficlog," %.5e",delti[jk]);      
             fprintf(ficres," %.5e",delti[jk]);      cutv(stra, strb,line,' '); 
             jk++;      if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
           }      }
           printf("\n");      else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
           fprintf(ficlog,"\n");        month=99;
           fprintf(ficres,"\n");        year=9999;
         }      }else{
       }        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
     }        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
              return 1;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
     if(mle>=1)      if (year==9999) {
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
     /* # 121 Var(a12)\n\ */          return 1;
     /* # 122 Cov(b12,a12) Var(b12)\n\ */  
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */      }
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */      annais[i]=(double)(year);
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */      moisnais[i]=(double)(month); 
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */      strcpy(line,stra);
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */      
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      cutv(stra, strb,line,' '); 
          errno=0;
          dval=strtod(strb,&endptr); 
     /* Just to have a covariance matrix which will be more understandable      if( strb[0]=='\0' || (*endptr != '\0')){
        even is we still don't want to manage dictionary of variables        printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     */        fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
     for(itimes=1;itimes<=2;itimes++){        fflush(ficlog);
       jj=0;        return 1;
       for(i=1; i <=nlstate; i++){      }
         for(j=1; j <=nlstate+ndeath; j++){      weight[i]=dval; 
           if(j==i) continue;      strcpy(line,stra);
           for(k=1; k<=ncovmodel;k++){      
             jj++;      for (j=ncovcol;j>=1;j--){
             ca[0]= k+'a'-1;ca[1]='\0';        cutv(stra, strb,line,' '); 
             if(itimes==1){        if(strb[0]=='.') { /* Missing status */
               if(mle>=1)          lval=-1;
                 printf("#%1d%1d%d",i,j,k);        }else{
               fprintf(ficlog,"#%1d%1d%d",i,j,k);          errno=0;
               fprintf(ficres,"#%1d%1d%d",i,j,k);          lval=strtol(strb,&endptr,10); 
             }else{          if( strb[0]=='\0' || (*endptr != '\0')){
               if(mle>=1)            printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                 printf("%1d%1d%d",i,j,k);            fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
               fprintf(ficlog,"%1d%1d%d",i,j,k);            return 1;
               fprintf(ficres,"%1d%1d%d",i,j,k);          }
             }        }
             ll=0;        if(lval <-1 || lval >1){
             for(li=1;li <=nlstate; li++){          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
               for(lj=1;lj <=nlstate+ndeath; lj++){   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                 if(lj==li) continue;   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
                 for(lk=1;lk<=ncovmodel;lk++){   For example, for multinomial values like 1, 2 and 3,\n \
                   ll++;   build V1=0 V2=0 for the reference value (1),\n \
                   if(ll<=jj){          V1=1 V2=0 for (2) \n \
                     cb[0]= lk +'a'-1;cb[1]='\0';   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                     if(ll<jj){   output of IMaCh is often meaningless.\n \
                       if(itimes==1){   Exiting.\n",lval,linei, i,line,j);
                         if(mle>=1)          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);   For example, for multinomial values like 1, 2 and 3,\n \
                       }else{   build V1=0 V2=0 for the reference value (1),\n \
                         if(mle>=1)          V1=1 V2=0 for (2) \n \
                           printf(" %.5e",matcov[jj][ll]);   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                         fprintf(ficlog," %.5e",matcov[jj][ll]);   output of IMaCh is often meaningless.\n \
                         fprintf(ficres," %.5e",matcov[jj][ll]);   Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
                       }          return 1;
                     }else{        }
                       if(itimes==1){        covar[j][i]=(double)(lval);
                         if(mle>=1)        strcpy(line,stra);
                           printf(" Var(%s%1d%1d)",ca,i,j);      }  
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);      lstra=strlen(stra);
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);       
                       }else{      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                         if(mle>=1)        stratrunc = &(stra[lstra-9]);
                           printf(" %.5e",matcov[jj][ll]);        num[i]=atol(stratrunc);
                         fprintf(ficlog," %.5e",matcov[jj][ll]);      }
                         fprintf(ficres," %.5e",matcov[jj][ll]);      else
                       }        num[i]=atol(stra);
                     }      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   }        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                 } /* end lk */      
               } /* end lj */      i=i+1;
             } /* end li */    } /* End loop reading  data */
             if(mle>=1)  
               printf("\n");    *imax=i-1; /* Number of individuals */
             fprintf(ficlog,"\n");    fclose(fic);
             fprintf(ficres,"\n");   
             numlinepar++;    return (0);
           } /* end k*/    /* endread: */
         } /*end j */      printf("Exiting readdata: ");
       } /* end i */      fclose(fic);
     } /* end itimes */      return (1);
      
     fflush(ficlog);  
     fflush(ficres);  
      }
     while((c=getc(ficpar))=='#' && c!= EOF){  void removespace(char *str) {
       ungetc(c,ficpar);    char *p1 = str, *p2 = str;
       fgets(line, MAXLINE, ficpar);    do
       puts(line);      while (*p2 == ' ')
       fputs(line,ficparo);        p2++;
     }    while (*p1++ == *p2++);
     ungetc(c,ficpar);  }
      
     estepm=0;  int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);     * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
     if (estepm==0 || estepm < stepm) estepm=stepm;     * - nagesqr = 1 if age*age in the model, otherwise 0.
     if (fage <= 2) {     * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
       bage = ageminpar;     * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
       fage = agemaxpar;     * - cptcovage number of covariates with age*products =2
     }     * - cptcovs number of simple covariates
         * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");     *     which is a new column after the 9 (ncovcol) variables. 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
         *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
     while((c=getc(ficpar))=='#' && c!= EOF){     * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
       ungetc(c,ficpar);   */
       fgets(line, MAXLINE, ficpar);  {
       puts(line);    int i, j, k, ks;
       fputs(line,ficparo);    int  j1, k1, k2;
     }    char modelsav[80];
     ungetc(c,ficpar);    char stra[80], strb[80], strc[80], strd[80],stre[80];
        char *strpt;
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);  
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    /*removespace(model);*/
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);    if (strlen(model) >1){ /* If there is at least 1 covariate */
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      if (strstr(model,"AGE") !=0){
            printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
     while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
       ungetc(c,ficpar);        return 1;
       fgets(line, MAXLINE, ficpar);      }
       puts(line);      if (strstr(model,"v") !=0){
       fputs(line,ficparo);        printf("Error. 'v' must be in upper case 'V' model=%s ",model);
     }        fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
     ungetc(c,ficpar);        return 1;
          }
          strcpy(modelsav,model); 
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      if ((strpt=strstr(model,"age*age")) !=0){
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;        printf(" strpt=%s, model=%s\n",strpt, model);
            if(strpt != model){
     fscanf(ficpar,"pop_based=%d\n",&popbased);        printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
     fprintf(ficparo,"pop_based=%d\n",popbased);     'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
     fprintf(ficres,"pop_based=%d\n",popbased);     corresponding column of parameters.\n",model);
            fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
     while((c=getc(ficpar))=='#' && c!= EOF){   'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
       ungetc(c,ficpar);   corresponding column of parameters.\n",model); fflush(ficlog);
       fgets(line, MAXLINE, ficpar);        return 1;
       puts(line);      }
       fputs(line,ficparo);  
     }        nagesqr=1;
     ungetc(c,ficpar);        if (strstr(model,"+age*age") !=0)
              substrchaine(modelsav, model, "+age*age");
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);        else if (strstr(model,"age*age+") !=0)
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          substrchaine(modelsav, model, "age*age+");
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);        else 
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);          substrchaine(modelsav, model, "age*age");
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);      }else
     /* day and month of proj2 are not used but only year anproj2.*/        nagesqr=0;
          if (strlen(modelsav) >1){
            j=nbocc(modelsav,'+'); /**< j=Number of '+' */
            j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/        cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        cptcovt= j+1; /* Number of total covariates in the model, not including
                         * cst, age and age*age 
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */                     * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);                    /* including age products which are counted in cptcovage.
                        * but the covariates which are products must be treated 
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\                    * separately: ncovn=4- 2=2 (V1+V3). */
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\        cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
        
    /*------------ free_vector  -------------*/      
    /*  chdir(path); */        /*   Design
           *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
     free_ivector(wav,1,imx);         *  <          ncovcol=8                >
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);         * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);         *   k=  1    2      3       4     5       6      7        8
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
     free_lvector(num,1,n);         *  covar[k,i], value of kth covariate if not including age for individual i:
     free_vector(agedc,1,n);         *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
     /*free_matrix(covar,0,NCOVMAX,1,n);*/         *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
     /*free_matrix(covar,1,NCOVMAX,1,n);*/         *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
     fclose(ficparo);         *  Tage[++cptcovage]=k
     fclose(ficres);         *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/         *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
           *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
     strcpy(filerespl,"pl");         *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
     strcat(filerespl,fileres);         *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
     if((ficrespl=fopen(filerespl,"w"))==NULL) {         *  <          ncovcol=8                >
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;         *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;         *          k=  1    2      3       4     5       6      7        8    9   10   11  12
     }         *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);         * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);         * p Tprod[1]@2={                         6, 5}
     pstamp(ficrespl);         *p Tvard[1][1]@4= {7, 8, 5, 6}
     fprintf(ficrespl,"# Period (stable) prevalence \n");         * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
     fprintf(ficrespl,"#Age ");         *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         *How to reorganize?
     fprintf(ficrespl,"\n");         * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
           * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
     prlim=matrix(1,nlstate,1,nlstate);         *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
     agebase=ageminpar;         */
     agelim=agemaxpar;  
     ftolpl=1.e-10;        /* This loop fills the array Tvar from the string 'model'.*/
     i1=cptcoveff;        /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
     if (cptcovn < 1){i1=1;}        /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){        /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         k=k+1;        /*        k=1 Tvar[1]=2 (from V2) */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        /*        k=5 Tvar[5] */
         fprintf(ficrespl,"\n#******");        /* for (k=1; k<=cptcovn;k++) { */
         printf("\n#******");        /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         fprintf(ficlog,"\n#******");        /*        } */
         for(j=1;j<=cptcoveff;j++) {        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /*
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(k=cptcovt; k>=1;k--) /**< Number of covariates */
         }          Tvar[k]=0;
         fprintf(ficrespl,"******\n");        cptcovage=0;
         printf("******\n");        for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         fprintf(ficlog,"******\n");          cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                                   modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         for (age=agebase; age<=agelim; age++){          if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           fprintf(ficrespl,"%.0f ",age );          /*scanf("%d",i);*/
           for(j=1;j<=cptcoveff;j++)          if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           for(i=1; i<=nlstate;i++)            if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             fprintf(ficrespl," %.5f", prlim[i][i]);              /* covar is not filled and then is empty */
           fprintf(ficrespl,"\n");              cptcovprod--;
         }              cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
       }              Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
     }              cptcovage++; /* Sums the number of covariates which include age as a product */
     fclose(ficrespl);              Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
     /*------------- h Pij x at various ages ------------*/            } else if (strcmp(strd,"age")==0) { /* or age*Vn */
                cptcovprod--;
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);              cutl(stre,strb,strc,'V');
     if((ficrespij=fopen(filerespij,"w"))==NULL) {              Tvar[k]=atoi(stre);
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              cptcovage++;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;              Tage[cptcovage]=k;
     }            } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
     printf("Computing pij: result on file '%s' \n", filerespij);              /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);              cptcovn++;
                cptcovprodnoage++;k1++;
     stepsize=(int) (stepm+YEARM-1)/YEARM;              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
     /*if (stepm<=24) stepsize=2;*/              Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
     agelim=AGESUP;                                     ncovcol + k1
     hstepm=stepsize*YEARM; /* Every year of age */                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
     /* hstepm=1;   aff par mois*/              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
     pstamp(ficrespij);              Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");              Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){              k2=k2+2;
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
         k=k+1;              Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
         fprintf(ficrespij,"\n#****** ");              for (i=1; i<=lastobs;i++){
         for(j=1;j<=cptcoveff;j++)                /* Computes the new covariate which is a product of
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                   covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
         fprintf(ficrespij,"******\n");                covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                      }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            } /* End age is not in the model */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } /* End if model includes a product */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ks++; /**< Number of simple covariates */
           oldm=oldms;savm=savms;            cptcovn++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              Tvar[k]=atoi(strd);
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");          }
           for(i=1; i<=nlstate;i++)          strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
             for(j=1; j<=nlstate+ndeath;j++)          /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
               fprintf(ficrespij," %1d-%1d",i,j);            scanf("%d",i);*/
           fprintf(ficrespij,"\n");        } /* end of loop + on total covariates */
           for (h=0; h<=nhstepm; h++){      } /* end if strlen(modelsave == 0) age*age might exist */
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    } /* end if strlen(model == 0) */
             for(i=1; i<=nlstate;i++)    
               for(j=1; j<=nlstate+ndeath;j++)    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
             fprintf(ficrespij,"\n");  
           }    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    printf("cptcovprod=%d ", cptcovprod);
           fprintf(ficrespij,"\n");    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
         }  
       }    scanf("%d ",i);*/
     }  
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);    return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
     fclose(ficrespij);      printf("Exiting decodemodel: ");
       return (1);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
     for(i=1;i<=AGESUP;i++)  
       for(j=1;j<=NCOVMAX;j++)  int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
         for(k=1;k<=NCOVMAX;k++)  {
           probs[i][j][k]=0.;    int i, m;
   
     /*---------- Forecasting ------------------*/    for (i=1; i<=imx; i++) {
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/      for(m=2; (m<= maxwav); m++) {
     if(prevfcast==1){        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
       /*    if(stepm ==1){*/          anint[m][i]=9999;
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);          s[m][i]=-1;
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/        }
       /*      }  */        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
       /*      else{ */          *nberr = *nberr + 1;
       /*        erreur=108; */          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */          s[m][i]=-1;
       /*      } */        }
     }        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
            (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
     /*---------- Health expectancies and variances ------------*/          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
     strcpy(filerest,"t");        }
     strcat(filerest,fileres);      }
     if((ficrest=fopen(filerest,"w"))==NULL) {    }
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    for (i=1; i<=imx; i++)  {
     }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);      for(m=firstpass; (m<= lastpass); m++){
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
     strcpy(filerese,"e");              if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
     strcat(filerese,fileres);                agev[m][i]=agedc[i];
     if((ficreseij=fopen(filerese,"w"))==NULL) {            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              }else {
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                if ((int)andc[i]!=9999){
     }                  nbwarn++;
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
     strcpy(fileresstde,"stde");                }
     strcat(fileresstde,fileres);              }
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {            } /* agedc > 0 */
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);          }
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);          else if(s[m][i] !=9){ /* Standard case, age in fractional
     }                                   years but with the precision of a month */
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
     strcpy(filerescve,"cve");            else if(agev[m][i] < *agemin){ 
     strcat(filerescve,fileres);              *agemin=agev[m][i];
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {              printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            }
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);            else if(agev[m][i] >*agemax){
     }              *agemax=agev[m][i];
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);              /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);            }
             /*agev[m][i]=anint[m][i]-annais[i];*/
     strcpy(fileresv,"v");            /*     agev[m][i] = age[i]+2*m;*/
     strcat(fileresv,fileres);          }
     if((ficresvij=fopen(fileresv,"w"))==NULL) {          else { /* =9 */
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            agev[m][i]=1;
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            s[m][i]=-1;
     }          }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        }
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        else /*= 0 Unknown */
           agev[m][i]=1;
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */      }
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);      
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    }
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);    for (i=1; i<=imx; i++)  {
     */      for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
     if (mobilav!=0) {          (*nberr)++;
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          return 1;
         printf(" Error in movingaverage mobilav=%d\n",mobilav);        }
       }      }
     }    }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){    /*for (i=1; i<=imx; i++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for (m=firstpass; (m<lastpass); m++){
         k=k+1;       printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
         fprintf(ficrest,"\n#****** ");  }
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }*/
         fprintf(ficrest,"******\n");  
   
         fprintf(ficreseij,"\n#****** ");    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
         fprintf(ficresstdeij,"\n#****** ");    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
         fprintf(ficrescveij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++) {    return (0);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   /* endread:*/
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Exiting calandcheckages: ");
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      return (1);
         }  }
         fprintf(ficreseij,"******\n");  
         fprintf(ficresstdeij,"******\n");  #if defined(_MSC_VER)
         fprintf(ficrescveij,"******\n");  /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
         fprintf(ficresvij,"\n#****** ");  //#include "stdafx.h"
         for(j=1;j<=cptcoveff;j++)  //#include <stdio.h>
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  //#include <tchar.h>
         fprintf(ficresvij,"******\n");  //#include <windows.h>
   //#include <iostream>
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
         oldm=oldms;savm=savms;  
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);    LPFN_ISWOW64PROCESS fnIsWow64Process;
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);    
    BOOL IsWow64()
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  {
         oldm=oldms;savm=savms;          BOOL bIsWow64 = FALSE;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);  
         if(popbased==1){          //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);          //  (HANDLE, PBOOL);
         }  
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
         pstamp(ficrest);  
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");          HMODULE module = GetModuleHandle(_T("kernel32"));
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          const char funcName[] = "IsWow64Process";
         fprintf(ficrest,"\n");          fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
         epj=vector(1,nlstate+1);  
         for(age=bage; age <=fage ;age++){          if (NULL != fnIsWow64Process)
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          {
           if (popbased==1) {                  if (!fnIsWow64Process(GetCurrentProcess(),
             if(mobilav ==0){                          &bIsWow64))
               for(i=1; i<=nlstate;i++)                          //throw std::exception("Unknown error");
                 prlim[i][i]=probs[(int)age][i][k];                          printf("Unknown error\n");
             }else{ /* mobilav */          }
               for(i=1; i<=nlstate;i++)          return bIsWow64 != FALSE;
                 prlim[i][i]=mobaverage[(int)age][i][k];  }
             }  #endif
           }  
          void syscompilerinfo(int logged)
           fprintf(ficrest," %4.0f",age);   {
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){     /* #include "syscompilerinfo.h"*/
             for(i=1, epj[j]=0.;i <=nlstate;i++) {     /* command line Intel compiler 32bit windows, XP compatible:*/
               epj[j] += prlim[i][i]*eij[i][j][(int)age];     /* /GS /W3 /Gy
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
             }        "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
             epj[nlstate+1] +=epj[j];        "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
           }        /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
           for(i=1, vepp=0.;i <=nlstate;i++)     /* 64 bits */
             for(j=1;j <=nlstate;j++)     /*
               vepp += vareij[i][j][(int)age];       /GS /W3 /Gy
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
           for(j=1;j <=nlstate;j++){       /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
           }       "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
           fprintf(ficrest,"\n");     /* Optimization are useless and O3 is slower than O2 */
         }     /*
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
         free_vector(epj,1,nlstate+1);       /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
       }       /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
     }     */
     free_vector(weight,1,n);     /* Link is */ /* /OUT:"visual studio
     free_imatrix(Tvard,1,15,1,2);        2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
     free_imatrix(s,1,maxwav+1,1,n);        /PDB:"visual studio
     free_matrix(anint,1,maxwav,1,n);        2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
     free_matrix(mint,1,maxwav,1,n);        "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
     free_ivector(cod,1,n);        "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
     free_ivector(tab,1,NCOVMAX);        "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
     fclose(ficreseij);        /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
     fclose(ficresstdeij);        /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
     fclose(ficrescveij);        uiAccess='false'"
     fclose(ficresvij);        /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
     fclose(ficrest);        /NOLOGO /TLBID:1
     fclose(ficpar);     */
    #if defined __INTEL_COMPILER
     /*------- Variance of period (stable) prevalence------*/    #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
     strcpy(fileresvpl,"vpl");  #endif
     strcat(fileresvpl,fileres);  #elif defined(__GNUC__) 
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  #ifndef  __APPLE__
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);  #include <gnu/libc-version.h>  /* Only on gnu */
       exit(0);  #endif
     }     struct utsname sysInfo;
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);     int cross = CROSS;
      if (cross){
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){             printf("Cross-");
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){             if(logged) fprintf(ficlog, "Cross-");
         k=k+1;     }
         fprintf(ficresvpl,"\n#****** ");  #endif
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  #include <stdint.h>
         fprintf(ficresvpl,"******\n");  
           printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
         varpl=matrix(1,nlstate,(int) bage, (int) fage);  #if defined(__clang__)
         oldm=oldms;savm=savms;     printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);  #endif
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  #if defined(__ICC) || defined(__INTEL_COMPILER)
       }     printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
     }  #endif
   #if defined(__GNUC__) || defined(__GNUG__)
     fclose(ficresvpl);     printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
     /*---------- End : free ----------------*/  #if defined(__HP_cc) || defined(__HP_aCC)
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
   }  /* mle==-3 arrives here for freeing */     printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   free_matrix(prlim,1,nlstate,1,nlstate);  #endif
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  #if defined(_MSC_VER)
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  #endif
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  #if defined(__PGI)
     free_matrix(covar,0,NCOVMAX,1,n);     printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
     free_matrix(matcov,1,npar,1,npar);  #endif
     /*free_vector(delti,1,npar);*/  #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
     free_matrix(agev,1,maxwav,1,imx);  #endif
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     printf(" for "); if (logged) fprintf(ficlog, " for ");
      
     free_ivector(ncodemax,1,8);  // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
     free_ivector(Tvar,1,15);  #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
     free_ivector(Tprod,1,15);      // Windows (x64 and x86)
     free_ivector(Tvaraff,1,15);     printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
     free_ivector(Tage,1,15);  #elif __unix__ // all unices, not all compilers
     free_ivector(Tcode,1,100);      // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);  #elif __linux__
     free_imatrix(codtab,1,100,1,10);      // linux
   fflush(fichtm);     printf("linux ");if(logged) fprintf(ficlog,"linux ");
   fflush(ficgp);  #elif __APPLE__
        // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   if((nberr >0) || (nbwarn>0)){  #endif
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);  
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);  /*  __MINGW32__   */
   }else{  /*  __CYGWIN__   */
     printf("End of Imach\n");  /* __MINGW64__  */
     fprintf(ficlog,"End of Imach\n");  // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   }  /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   printf("See log file on %s\n",filelog);  /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /* _WIN64  // Defined for applications for Win64. */
   (void) gettimeofday(&end_time,&tzp);  /* _M_X64 // Defined for compilations that target x64 processors. */
   tm = *localtime(&end_time.tv_sec);  /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   tmg = *gmtime(&end_time.tv_sec);  
   strcpy(strtend,asctime(&tm));  #if UINTPTR_MAX == 0xffffffff
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);     printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);  #elif UINTPTR_MAX == 0xffffffffffffffff
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));     printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);     printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));  #endif
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);  
   /*  printf("Total time was %d uSec.\n", total_usecs);*/  #if defined(__GNUC__)
 /*   if(fileappend(fichtm,optionfilehtm)){ */  # if defined(__GNUC_PATCHLEVEL__)
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
   fclose(fichtm);                              + __GNUC_MINOR__ * 100 \
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);                              + __GNUC_PATCHLEVEL__)
   fclose(fichtmcov);  # else
   fclose(ficgp);  #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
   fclose(ficlog);                              + __GNUC_MINOR__ * 100)
   /*------ End -----------*/  # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
    printf("Before Current directory %s!\n",pathcd);  
    if(chdir(pathcd) != 0)     if (uname(&sysInfo) != -1) {
     printf("Can't move to directory %s!\n",path);       printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
   if(getcwd(pathcd,MAXLINE) > 0)           if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
     printf("Current directory %s!\n",pathcd);     }
   /*strcat(plotcmd,CHARSEPARATOR);*/     else
   sprintf(plotcmd,"gnuplot");        perror("uname() error");
 #ifndef UNIX     //#ifndef __INTEL_COMPILER 
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);  #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
 #endif     printf("GNU libc version: %s\n", gnu_get_libc_version()); 
   if(!stat(plotcmd,&info)){     if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);  #endif
     if(!stat(getenv("GNUPLOTBIN"),&info)){  #endif
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);  
     }else     //   void main()
       strcpy(pplotcmd,plotcmd);     //   {
 #ifdef UNIX  #if defined(_MSC_VER)
     strcpy(plotcmd,GNUPLOTPROGRAM);     if (IsWow64()){
     if(!stat(plotcmd,&info)){             printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);             if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
     }else     }
       strcpy(pplotcmd,plotcmd);     else{
 #endif             printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
   }else             if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
     strcpy(pplotcmd,plotcmd);     }
       //      printf("\nPress Enter to continue...");
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);     //      getchar();
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);     //   }
   
   if((outcmd=system(plotcmd)) != 0){  #endif
     printf("\n Problem with gnuplot\n");     
   }  
   printf(" Wait...");   }
   while (z[0] != 'q') {  
     /* chdir(path); */   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl){
     printf("\nType e to edit output files, g to graph again and q for exiting: ");    /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     scanf("%s",z);    int i, j, k, i1 ;
 /*     if (z[0] == 'c') system("./imach"); */    /* double ftolpl = 1.e-10; */
     if (z[0] == 'e') {    double age, agebase, agelim;
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);  
       system(optionfilehtm);    strcpy(filerespl,"PL_");
     }    strcat(filerespl,fileresu);
     else if (z[0] == 'g') system(plotcmd);    if((ficrespl=fopen(filerespl,"w"))==NULL) {
     else if (z[0] == 'q') exit(0);      printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
   }      fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
   end:    }
   while (z[0] != 'q') {    printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     printf("\nType  q for exiting: ");    fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     scanf("%s",z);    pstamp(ficrespl);
   }    fprintf(ficrespl,"# Period (stable) prevalence \n");
 }    fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8\n");
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     ftolpl=6*ftol*1.e5; /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     if(model[strlen(model)-1]=='.') /* Suppressing leading dot in the model */
       model[strlen(model)-1]='\0';
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to 2**k
              * codtabm(h,k)=  1 & (h-1) >> (k-1) ;
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard maximisation */
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       /* Computes likelihood for initial parameters */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* again, to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximisation */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
           }
         }
       }
   
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* ZZ Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
             /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); /*ZZ Is it the correct prevalim */
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
               /* printf(" age %4.0f ",age); */
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                 }
                 epj[nlstate+1] +=epj[j];
               }
               /* printf(" age %4.0f \n",age); */
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.202


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>