Diff for /imach/src/imach.c between versions 1.125 and 1.235

version 1.125, 2006/04/04 15:20:31 version 1.235, 2016/08/25 06:59:23
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
     Revision 1.235  2016/08/25 06:59:23  brouard
     *** empty log message ***
   
     Revision 1.234  2016/08/23 16:51:20  brouard
     *** empty log message ***
   
     Revision 1.233  2016/08/23 07:40:50  brouard
     Summary: not working
   
     Revision 1.232  2016/08/22 14:20:21  brouard
     Summary: not working
   
     Revision 1.231  2016/08/22 07:17:15  brouard
     Summary: not working
   
     Revision 1.230  2016/08/22 06:55:53  brouard
     Summary: Not working
   
     Revision 1.229  2016/07/23 09:45:53  brouard
     Summary: Completing for func too
   
     Revision 1.228  2016/07/22 17:45:30  brouard
     Summary: Fixing some arrays, still debugging
   
     Revision 1.226  2016/07/12 18:42:34  brouard
     Summary: temp
   
     Revision 1.225  2016/07/12 08:40:03  brouard
     Summary: saving but not running
   
     Revision 1.224  2016/07/01 13:16:01  brouard
     Summary: Fixes
   
     Revision 1.223  2016/02/19 09:23:35  brouard
     Summary: temporary
   
     Revision 1.222  2016/02/17 08:14:50  brouard
     Summary: Probably last 0.98 stable version 0.98r6
   
     Revision 1.221  2016/02/15 23:35:36  brouard
     Summary: minor bug
   
     Revision 1.219  2016/02/15 00:48:12  brouard
     *** empty log message ***
   
     Revision 1.218  2016/02/12 11:29:23  brouard
     Summary: 0.99 Back projections
   
     Revision 1.217  2015/12/23 17:18:31  brouard
     Summary: Experimental backcast
   
     Revision 1.216  2015/12/18 17:32:11  brouard
     Summary: 0.98r4 Warning and status=-2
   
     Version 0.98r4 is now:
      - displaying an error when status is -1, date of interview unknown and date of death known;
      - permitting a status -2 when the vital status is unknown at a known date of right truncation.
     Older changes concerning s=-2, dating from 2005 have been supersed.
   
     Revision 1.215  2015/12/16 08:52:24  brouard
     Summary: 0.98r4 working
   
     Revision 1.214  2015/12/16 06:57:54  brouard
     Summary: temporary not working
   
     Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   
     Revision 1.212  2015/11/21 12:47:24  brouard
     Summary: minor typo
   
     Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   
     Author: Nicolas Brouard
   
     Revision 1.210  2015/11/18 17:41:20  brouard
     Summary: Start working on projected prevalences
   
     Revision 1.209  2015/11/17 22:12:03  brouard
     Summary: Adding ftolpl parameter
     Author: N Brouard
   
     We had difficulties to get smoothed confidence intervals. It was due
     to the period prevalence which wasn't computed accurately. The inner
     parameter ftolpl is now an outer parameter of the .imach parameter
     file after estepm. If ftolpl is small 1.e-4 and estepm too,
     computation are long.
   
     Revision 1.208  2015/11/17 14:31:57  brouard
     Summary: temporary
   
     Revision 1.207  2015/10/27 17:36:57  brouard
     *** empty log message ***
   
     Revision 1.206  2015/10/24 07:14:11  brouard
     *** empty log message ***
   
     Revision 1.205  2015/10/23 15:50:53  brouard
     Summary: 0.98r3 some clarification for graphs on likelihood contributions
   
     Revision 1.204  2015/10/01 16:20:26  brouard
     Summary: Some new graphs of contribution to likelihood
   
     Revision 1.203  2015/09/30 17:45:14  brouard
     Summary: looking at better estimation of the hessian
   
     Also a better criteria for convergence to the period prevalence And
     therefore adding the number of years needed to converge. (The
     prevalence in any alive state shold sum to one
   
     Revision 1.202  2015/09/22 19:45:16  brouard
     Summary: Adding some overall graph on contribution to likelihood. Might change
   
     Revision 1.201  2015/09/15 17:34:58  brouard
     Summary: 0.98r0
   
     - Some new graphs like suvival functions
     - Some bugs fixed like model=1+age+V2.
   
     Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
   
     Even model=1+age+V2. did not work anymore
   
     Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
   
     Revision 1.198  2015/09/03 07:14:39  brouard
     Summary: 0.98q5 Flavia
   
     Revision 1.197  2015/09/01 18:24:39  brouard
     *** empty log message ***
   
     Revision 1.196  2015/08/18 23:17:52  brouard
     Summary: 0.98q5
   
     Revision 1.195  2015/08/18 16:28:39  brouard
     Summary: Adding a hack for testing purpose
   
     After reading the title, ftol and model lines, if the comment line has
     a q, starting with #q, the answer at the end of the run is quit. It
     permits to run test files in batch with ctest. The former workaround was
     $ echo q | imach foo.imach
   
     Revision 1.194  2015/08/18 13:32:00  brouard
     Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
   
     Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
   
     Revision 1.192  2015/07/16 16:49:02  brouard
     Summary: Fixing some outputs
   
     Revision 1.191  2015/07/14 10:00:33  brouard
     Summary: Some fixes
   
     Revision 1.190  2015/05/05 08:51:13  brouard
     Summary: Adding digits in output parameters (7 digits instead of 6)
   
     Fix 1+age+.
   
     Revision 1.189  2015/04/30 14:45:16  brouard
     Summary: 0.98q2
   
     Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
   
     Revision 1.187  2015/04/29 09:11:15  brouard
     *** empty log message ***
   
     Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
   
     Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
     but, as usual, outputs were not correct and program core dumped.
   
     Revision 1.185  2015/03/11 13:26:42  brouard
     Summary: Inclusion of compile and links command line for Intel Compiler
   
     Revision 1.184  2015/03/11 11:52:39  brouard
     Summary: Back from Windows 8. Intel Compiler
   
     Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
   
     We use directest instead of original Powell test; probably no
     incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
     wrong results.
   
     Revision 1.182  2015/02/12 08:19:57  brouard
     Summary: Trying to keep directest which seems simpler and more general
     Author: Nicolas Brouard
   
     Revision 1.181  2015/02/11 23:22:24  brouard
     Summary: Comments on Powell added
   
     Author:
   
     Revision 1.180  2015/02/11 17:33:45  brouard
     Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
     Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   
     Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
   
     Revision 1.177  2015/01/03 18:40:56  brouard
     Summary: Still testing ilc32 on OSX
   
     Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   
     Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
   
     Revision 1.174  2015/01/03 16:15:49  brouard
     Summary: Still in cross-compilation
   
     Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
   
     Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   
     Revision 1.171  2014/12/23 13:26:59  brouard
     Summary: Back from Visual C
   
     Still problem with utsname.h on Windows
   
     Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
     Revision 1.169  2014/12/22 23:08:31  brouard
     Summary: 0.98p
   
     Outputs some informations on compiler used, OS etc. Testing on different platforms.
   
     Revision 1.168  2014/12/22 15:17:42  brouard
     Summary: update
   
     Revision 1.167  2014/12/22 13:50:56  brouard
     Summary: Testing uname and compiler version and if compiled 32 or 64
   
     Testing on Linux 64
   
     Revision 1.166  2014/12/22 11:40:47  brouard
     *** empty log message ***
   
     Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
     Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
   
     Revision 1.1  2014/09/16 11:06:58  brouard
     Summary: With some code (wrong) for nlopt
   
     Author:
   
     Revision 1.161  2014/09/15 20:41:41  brouard
     Summary: Problem with macro SQR on Intel compiler
   
     Revision 1.160  2014/09/02 09:24:05  brouard
     *** empty log message ***
   
     Revision 1.159  2014/09/01 10:34:10  brouard
     Summary: WIN32
     Author: Brouard
   
     Revision 1.158  2014/08/27 17:11:51  brouard
     *** empty log message ***
   
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
     Author: Brouard
   
     In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
     just make the differences in raw time format (time(&now).
     Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   
     Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
   
     Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
     Author: Brouard
   
     Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   
     Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
   
     Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
     Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
   
     Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
   
     Revision 1.149  2014/06/18 15:51:14  brouard
     Summary: Some fixes in parameter files errors
     Author: Nicolas Brouard
   
     Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
     Just a new packaging for OS/X version 0.98nS
   
     Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
   
     Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
     Author: Brouard
   
     Merge, before building revised version.
   
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
     Author: Nicolas Brouard
   
     Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
     No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
     the source code.
   
     Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
     Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
   
     Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
     Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
   
     Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
   
     Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
     of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
     Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
     Revision 1.133  2009/07/06 10:21:25  brouard
     just nforces
   
     Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
     Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   
     Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
     Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
     Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
   
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
     computation.
     In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
   
     Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
     Version 0.98h
   
   Revision 1.125  2006/04/04 15:20:31  lievre    Revision 1.125  2006/04/04 15:20:31  lievre
   Errors in calculation of health expectancies. Age was not initialized.    Errors in calculation of health expectancies. Age was not initialized.
   Forecasting file added.    Forecasting file added.
   
   Revision 1.124  2006/03/22 17:13:53  lievre    Revision 1.124  2006/03/22 17:13:53  lievre
   Parameters are printed with %lf instead of %f (more numbers after the comma).    Parameters are printed with %lf instead of %f (more numbers after the comma).
   The log-likelihood is printed in the log file    The log-likelihood is printed in the log file
   
   Revision 1.123  2006/03/20 10:52:43  brouard    Revision 1.123  2006/03/20 10:52:43  brouard
   * imach.c (Module): <title> changed, corresponds to .htm file    * imach.c (Module): <title> changed, corresponds to .htm file
   name. <head> headers where missing.    name. <head> headers where missing.
   
   * imach.c (Module): Weights can have a decimal point as for    * imach.c (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.122  2006/03/20 09:45:41  brouard    Revision 1.122  2006/03/20 09:45:41  brouard
   (Module): Weights can have a decimal point as for    (Module): Weights can have a decimal point as for
   English (a comma might work with a correct LC_NUMERIC environment,    English (a comma might work with a correct LC_NUMERIC environment,
   otherwise the weight is truncated).    otherwise the weight is truncated).
   Modification of warning when the covariates values are not 0 or    Modification of warning when the covariates values are not 0 or
   1.    1.
   Version 0.98g    Version 0.98g
   
   Revision 1.121  2006/03/16 17:45:01  lievre    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Module): Comments concerning covariates added    * imach.c (Module): Comments concerning covariates added
   
   * imach.c (Module): refinements in the computation of lli if    * imach.c (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.120  2006/03/16 15:10:38  lievre    Revision 1.120  2006/03/16 15:10:38  lievre
   (Module): refinements in the computation of lli if    (Module): refinements in the computation of lli if
   status=-2 in order to have more reliable computation if stepm is    status=-2 in order to have more reliable computation if stepm is
   not 1 month. Version 0.98f    not 1 month. Version 0.98f
   
   Revision 1.119  2006/03/15 17:42:26  brouard    Revision 1.119  2006/03/15 17:42:26  brouard
   (Module): Bug if status = -2, the loglikelihood was    (Module): Bug if status = -2, the loglikelihood was
   computed as likelihood omitting the logarithm. Version O.98e    computed as likelihood omitting the logarithm. Version O.98e
   
   Revision 1.118  2006/03/14 18:20:07  brouard    Revision 1.118  2006/03/14 18:20:07  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.117  2006/03/14 17:16:22  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   (Module): varevsij Comments added explaining the second    (Module): varevsij Comments added explaining the second
   table of variances if popbased=1 .    table of variances if popbased=1 .
   (Module): Covariances of eij, ekl added, graphs fixed, new html link.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   (Module): Function pstamp added    (Module): Function pstamp added
   (Module): Version 0.98d    (Module): Version 0.98d
   
   Revision 1.116  2006/03/06 10:29:27  brouard    Revision 1.116  2006/03/06 10:29:27  brouard
   (Module): Variance-covariance wrong links and    (Module): Variance-covariance wrong links and
   varian-covariance of ej. is needed (Saito).    varian-covariance of ej. is needed (Saito).
   
   Revision 1.115  2006/02/27 12:17:45  brouard    Revision 1.115  2006/02/27 12:17:45  brouard
   (Module): One freematrix added in mlikeli! 0.98c    (Module): One freematrix added in mlikeli! 0.98c
   
   Revision 1.114  2006/02/26 12:57:58  brouard    Revision 1.114  2006/02/26 12:57:58  brouard
   (Module): Some improvements in processing parameter    (Module): Some improvements in processing parameter
   filename with strsep.    filename with strsep.
   
   Revision 1.113  2006/02/24 14:20:24  brouard    Revision 1.113  2006/02/24 14:20:24  brouard
   (Module): Memory leaks checks with valgrind and:    (Module): Memory leaks checks with valgrind and:
   datafile was not closed, some imatrix were not freed and on matrix    datafile was not closed, some imatrix were not freed and on matrix
   allocation too.    allocation too.
   
   Revision 1.112  2006/01/30 09:55:26  brouard    Revision 1.112  2006/01/30 09:55:26  brouard
   (Module): Back to gnuplot.exe instead of wgnuplot.exe    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
   Revision 1.111  2006/01/25 20:38:18  brouard    Revision 1.111  2006/01/25 20:38:18  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   (Module): Comments can be added in data file. Missing date values    (Module): Comments can be added in data file. Missing date values
   can be a simple dot '.'.    can be a simple dot '.'.
   
   Revision 1.110  2006/01/25 00:51:50  brouard    Revision 1.110  2006/01/25 00:51:50  brouard
   (Module): Lots of cleaning and bugs added (Gompertz)    (Module): Lots of cleaning and bugs added (Gompertz)
   
   Revision 1.109  2006/01/24 19:37:15  brouard    Revision 1.109  2006/01/24 19:37:15  brouard
   (Module): Comments (lines starting with a #) are allowed in data.    (Module): Comments (lines starting with a #) are allowed in data.
   
   Revision 1.108  2006/01/19 18:05:42  lievre    Revision 1.108  2006/01/19 18:05:42  lievre
   Gnuplot problem appeared...    Gnuplot problem appeared...
   To be fixed    To be fixed
   
   Revision 1.107  2006/01/19 16:20:37  brouard    Revision 1.107  2006/01/19 16:20:37  brouard
   Test existence of gnuplot in imach path    Test existence of gnuplot in imach path
   
   Revision 1.106  2006/01/19 13:24:36  brouard    Revision 1.106  2006/01/19 13:24:36  brouard
   Some cleaning and links added in html output    Some cleaning and links added in html output
   
   Revision 1.105  2006/01/05 20:23:19  lievre    Revision 1.105  2006/01/05 20:23:19  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.104  2005/09/30 16:11:43  lievre    Revision 1.104  2005/09/30 16:11:43  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   (Module): If the status is missing at the last wave but we know    (Module): If the status is missing at the last wave but we know
   that the person is alive, then we can code his/her status as -2    that the person is alive, then we can code his/her status as -2
   (instead of missing=-1 in earlier versions) and his/her    (instead of missing=-1 in earlier versions) and his/her
   contributions to the likelihood is 1 - Prob of dying from last    contributions to the likelihood is 1 - Prob of dying from last
   health status (= 1-p13= p11+p12 in the easiest case of somebody in    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   the healthy state at last known wave). Version is 0.98    the healthy state at last known wave). Version is 0.98
   
   Revision 1.103  2005/09/30 15:54:49  lievre    Revision 1.103  2005/09/30 15:54:49  lievre
   (Module): sump fixed, loop imx fixed, and simplifications.    (Module): sump fixed, loop imx fixed, and simplifications.
   
   Revision 1.102  2004/09/15 17:31:30  brouard    Revision 1.102  2004/09/15 17:31:30  brouard
   Add the possibility to read data file including tab characters.    Add the possibility to read data file including tab characters.
   
   Revision 1.101  2004/09/15 10:38:38  brouard    Revision 1.101  2004/09/15 10:38:38  brouard
   Fix on curr_time    Fix on curr_time
   
   Revision 1.100  2004/07/12 18:29:06  brouard    Revision 1.100  2004/07/12 18:29:06  brouard
   Add version for Mac OS X. Just define UNIX in Makefile    Add version for Mac OS X. Just define UNIX in Makefile
   
   Revision 1.99  2004/06/05 08:57:40  brouard    Revision 1.99  2004/06/05 08:57:40  brouard
   *** empty log message ***    *** empty log message ***
   
   Revision 1.98  2004/05/16 15:05:56  brouard    Revision 1.98  2004/05/16 15:05:56  brouard
   New version 0.97 . First attempt to estimate force of mortality    New version 0.97 . First attempt to estimate force of mortality
   directly from the data i.e. without the need of knowing the health    directly from the data i.e. without the need of knowing the health
   state at each age, but using a Gompertz model: log u =a + b*age .    state at each age, but using a Gompertz model: log u =a + b*age .
   This is the basic analysis of mortality and should be done before any    This is the basic analysis of mortality and should be done before any
   other analysis, in order to test if the mortality estimated from the    other analysis, in order to test if the mortality estimated from the
   cross-longitudinal survey is different from the mortality estimated    cross-longitudinal survey is different from the mortality estimated
   from other sources like vital statistic data.    from other sources like vital statistic data.
   
   The same imach parameter file can be used but the option for mle should be -3.    The same imach parameter file can be used but the option for mle should be -3.
   
   Agnès, who wrote this part of the code, tried to keep most of the    Agnès, who wrote this part of the code, tried to keep most of the
   former routines in order to include the new code within the former code.    former routines in order to include the new code within the former code.
   
   The output is very simple: only an estimate of the intercept and of    The output is very simple: only an estimate of the intercept and of
   the slope with 95% confident intervals.    the slope with 95% confident intervals.
   
   Current limitations:    Current limitations:
   A) Even if you enter covariates, i.e. with the    A) Even if you enter covariates, i.e. with the
   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   B) There is no computation of Life Expectancy nor Life Table.    B) There is no computation of Life Expectancy nor Life Table.
   
   Revision 1.97  2004/02/20 13:25:42  lievre    Revision 1.97  2004/02/20 13:25:42  lievre
   Version 0.96d. Population forecasting command line is (temporarily)    Version 0.96d. Population forecasting command line is (temporarily)
   suppressed.    suppressed.
   
   Revision 1.96  2003/07/15 15:38:55  brouard    Revision 1.96  2003/07/15 15:38:55  brouard
   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   rewritten within the same printf. Workaround: many printfs.    rewritten within the same printf. Workaround: many printfs.
   
   Revision 1.95  2003/07/08 07:54:34  brouard    Revision 1.95  2003/07/08 07:54:34  brouard
   * imach.c (Repository):    * imach.c (Repository):
   (Repository): Using imachwizard code to output a more meaningful covariance    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix (cov(a12,c31) instead of numbers.    matrix (cov(a12,c31) instead of numbers.
   
   Revision 1.94  2003/06/27 13:00:02  brouard    Revision 1.94  2003/06/27 13:00:02  brouard
   Just cleaning    Just cleaning
   
   Revision 1.93  2003/06/25 16:33:55  brouard    Revision 1.93  2003/06/25 16:33:55  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   (Module): Version 0.96b    (Module): Version 0.96b
   
   Revision 1.92  2003/06/25 16:30:45  brouard    Revision 1.92  2003/06/25 16:30:45  brouard
   (Module): On windows (cygwin) function asctime_r doesn't    (Module): On windows (cygwin) function asctime_r doesn't
   exist so I changed back to asctime which exists.    exist so I changed back to asctime which exists.
   
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.91  2003/06/25 15:30:29  brouard
   * imach.c (Repository): Duplicated warning errors corrected.    * imach.c (Repository): Duplicated warning errors corrected.
   (Repository): Elapsed time after each iteration is now output. It    (Repository): Elapsed time after each iteration is now output. It
   helps to forecast when convergence will be reached. Elapsed time    helps to forecast when convergence will be reached. Elapsed time
   is stamped in powell.  We created a new html file for the graphs    is stamped in powell.  We created a new html file for the graphs
   concerning matrix of covariance. It has extension -cov.htm.    concerning matrix of covariance. It has extension -cov.htm.
   
   Revision 1.90  2003/06/24 12:34:15  brouard    Revision 1.90  2003/06/24 12:34:15  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    Revision 1.89  2003/06/24 12:30:52  brouard
   (Module): Some bugs corrected for windows. Also, when    (Module): Some bugs corrected for windows. Also, when
   mle=-1 a template is output in file "or"mypar.txt with the design    mle=-1 a template is output in file "or"mypar.txt with the design
   of the covariance matrix to be input.    of the covariance matrix to be input.
   
   Revision 1.88  2003/06/23 17:54:56  brouard    Revision 1.88  2003/06/23 17:54:56  brouard
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Revision 1.87  2003/06/18 12:26:01  brouard    Revision 1.87  2003/06/18 12:26:01  brouard
   Version 0.96    Version 0.96
   
   Revision 1.86  2003/06/17 20:04:08  brouard    Revision 1.86  2003/06/17 20:04:08  brouard
   (Module): Change position of html and gnuplot routines and added    (Module): Change position of html and gnuplot routines and added
   routine fileappend.    routine fileappend.
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.85  2003/06/17 13:12:43  brouard
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Repository): Check when date of death was earlier that
   current date of interview. It may happen when the death was just    current date of interview. It may happen when the death was just
   prior to the death. In this case, dh was negative and likelihood    prior to the death. In this case, dh was negative and likelihood
   was wrong (infinity). We still send an "Error" but patch by    was wrong (infinity). We still send an "Error" but patch by
   assuming that the date of death was just one stepm after the    assuming that the date of death was just one stepm after the
   interview.    interview.
   (Repository): Because some people have very long ID (first column)    (Repository): Because some people have very long ID (first column)
   we changed int to long in num[] and we added a new lvector for    we changed int to long in num[] and we added a new lvector for
   memory allocation. But we also truncated to 8 characters (left    memory allocation. But we also truncated to 8 characters (left
   truncation)    truncation)
   (Repository): No more line truncation errors.    (Repository): No more line truncation errors.
   
   Revision 1.84  2003/06/13 21:44:43  brouard    Revision 1.84  2003/06/13 21:44:43  brouard
   * imach.c (Repository): Replace "freqsummary" at a correct    * imach.c (Repository): Replace "freqsummary" at a correct
   place. It differs from routine "prevalence" which may be called    place. It differs from routine "prevalence" which may be called
   many times. Probs is memory consuming and must be used with    many times. Probs is memory consuming and must be used with
   parcimony.    parcimony.
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
   Revision 1.83  2003/06/10 13:39:11  lievre    Revision 1.83  2003/06/10 13:39:11  lievre
   *** empty log message ***    *** empty log message ***
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.82  2003/06/05 15:57:20  brouard
   Add log in  imach.c and  fullversion number is now printed.    Add log in  imach.c and  fullversion number is now printed.
   
 */  */
 /*  /*
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies or State-specific
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    (if states aren't health statuses) Expectancies from
   first survey ("cross") where individuals from different ages are    cross-longitudinal data. Cross-longitudinal data consist in: 
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    -1- a first survey ("cross") where individuals from different ages
   second wave of interviews ("longitudinal") which measure each change    are interviewed on their health status or degree of disability (in
   (if any) in individual health status.  Health expectancies are    the case of a health survey which is our main interest)
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    -2- at least a second wave of interviews ("longitudinal") which
   Maximum Likelihood of the parameters involved in the model.  The    measure each change (if any) in individual health status.  Health
   simplest model is the multinomial logistic model where pij is the    expectancies are computed from the time spent in each health state
   probability to be observed in state j at the second wave    according to a model. More health states you consider, more time is
   conditional to be observed in state i at the first wave. Therefore    necessary to reach the Maximum Likelihood of the parameters involved
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    in the model.  The simplest model is the multinomial logistic model
   'age' is age and 'sex' is a covariate. If you want to have a more    where pij is the probability to be observed in state j at the second
   complex model than "constant and age", you should modify the program    wave conditional to be observed in state i at the first
   where the markup *Covariates have to be included here again* invites    wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
   you to do it.  More covariates you add, slower the    etc , where 'age' is age and 'sex' is a covariate. If you want to
   convergence.    have a more complex model than "constant and age", you should modify
     the program where the markup *Covariates have to be included here
   The advantage of this computer programme, compared to a simple    again* invites you to do it.  More covariates you add, slower the
   multinomial logistic model, is clear when the delay between waves is not    convergence.
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    The advantage of this computer programme, compared to a simple
   account using an interpolation or extrapolation.      multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   hPijx is the probability to be observed in state i at age x+h    intermediate interview, the information is lost, but taken into
   conditional to the observed state i at age x. The delay 'h' can be    account using an interpolation or extrapolation.  
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month, quarter,    hPijx is the probability to be observed in state i at age x+h
   semester or year) is modelled as a multinomial logistic.  The hPx    conditional to the observed state i at age x. The delay 'h' can be
   matrix is simply the matrix product of nh*stepm elementary matrices    split into an exact number (nh*stepm) of unobserved intermediate
   and the contribution of each individual to the likelihood is simply    states. This elementary transition (by month, quarter,
   hPijx.    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   Also this programme outputs the covariance matrix of the parameters but also    and the contribution of each individual to the likelihood is simply
   of the life expectancies. It also computes the period (stable) prevalence.    hPijx.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Also this programme outputs the covariance matrix of the parameters but also
            Institut national d'études démographiques, Paris.    of the life expectancies. It also computes the period (stable) prevalence.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.  Back prevalence and projections:
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version   - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
   can be accessed at http://euroreves.ined.fr/imach .     double agemaxpar, double ftolpl, int *ncvyearp, double
      dateprev1,double dateprev2, int firstpass, int lastpass, int
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach     mobilavproj)
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
        Computes the back prevalence limit for any combination of
   **********************************************************************/      covariate values k at any age between ageminpar and agemaxpar and
 /*      returns it in **bprlim. In the loops,
   main  
   read parameterfile     - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
   read datafile         **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
   concatwav  
   freqsummary     - hBijx Back Probability to be in state i at age x-h being in j at x
   if (mle >= 1)     Computes for any combination of covariates k and any age between bage and fage 
     mlikeli     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   print results files                          oldm=oldms;savm=savms;
   if mle==1  
      computes hessian     - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
   read end of parameter file: agemin, agemax, bage, fage, estepm       Computes the transition matrix starting at age 'age' over
       begin-prev-date,...       'nhstepm*hstepm*stepm' months (i.e. until
   open gnuplot file       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
   open html file       nhstepm*hstepm matrices. 
   period (stable) prevalence  
    for age prevalim()       Returns p3mat[i][j][h] after calling
   h Pij x       p3mat[i][j][h]=matprod2(newm,
   variance of p varprob       bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
   forecasting if prevfcast==1 prevforecast call prevalence()       dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
   health expectancies       oldm);
   Variance-covariance of DFLE  
   prevalence()  Important routines
    movingaverage()  
   varevsij()  - func (or funcone), computes logit (pij) distinguishing
   if popbased==1 varevsij(,popbased)    o fixed variables (single or product dummies or quantitative);
   total life expectancies    o varying variables by:
   Variance of period (stable) prevalence     (1) wave (single, product dummies, quantitative), 
  end     (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
 */         % fixed dummy (treated) or quantitative (not done because time-consuming);
          % varying dummy (not done) or quantitative (not done);
   - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
     and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
    - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
 #include <math.h>    o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
 #include <stdio.h>      race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
 #include <stdlib.h>  
 #include <string.h>  
 #include <unistd.h>    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <limits.h>             Institut national d'études démographiques, Paris.
 #include <sys/types.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <sys/stat.h>    from the European Union.
 #include <errno.h>    It is copyrighted identically to a GNU software product, ie programme and
 extern int errno;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /* #include <sys/time.h> */  
 #include <time.h>    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include "timeval.h"    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /* #include <libintl.h> */    **********************************************************************/
 /* #define _(String) gettext (String) */  /*
     main
 #define MAXLINE 256    read parameterfile
     read datafile
 #define GNUPLOTPROGRAM "gnuplot"    concatwav
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    freqsummary
 #define FILENAMELENGTH 132    if (mle >= 1)
       mlikeli
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    print results files
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    if mle==1 
        computes hessian
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */        begin-prev-date,...
     open gnuplot file
 #define NINTERVMAX 8    open html file
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 #define NCOVMAX 8 /* Maximum number of covariates */                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 #define MAXN 20000      freexexit2 possible for memory heap.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    h Pij x                         | pij_nom  ficrestpij
 #define AGEBASE 40     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef UNIX         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 #define DIRSEPARATOR '/'  
 #define CHARSEPARATOR "/"         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 #define ODIRSEPARATOR '\\'         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 #else    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 #define DIRSEPARATOR '\\'     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 #define CHARSEPARATOR "\\"     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 #define ODIRSEPARATOR '/'  
 #endif    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /* $Id$ */    Variance-covariance of DFLE
 /* $State$ */    prevalence()
      movingaverage()
 char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";    varevsij() 
 char fullversion[]="$Revision$ $Date$";    if popbased==1 varevsij(,popbased)
 char strstart[80];    total life expectancies
 char optionfilext[10], optionfilefiname[FILENAMELENGTH];    Variance of period (stable) prevalence
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */   end
 int nvar;  */
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;  /* #define DEBUG */
 int nlstate=2; /* Number of live states */  /* #define DEBUGBRENT */
 int ndeath=1; /* Number of dead states */  /* #define DEBUGLINMIN */
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  /* #define DEBUGHESS */
 int popbased=0;  #define DEBUGHESSIJ
   /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
 int *wav; /* Number of waves for this individuual 0 is possible */  #define POWELL /* Instead of NLOPT */
 int maxwav; /* Maxim number of waves */  #define POWELLNOF3INFF1TEST /* Skip test */
 int jmin, jmax; /* min, max spacing between 2 waves */  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
 int ijmin, ijmax; /* Individuals having jmin and jmax */  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
 int gipmx, gsw; /* Global variables on the number of contributions  
                    to the likelihood and the sum of weights (done by funcone)*/  #include <math.h>
 int mle, weightopt;  #include <stdio.h>
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #include <stdlib.h>
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #include <string.h>
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  #include <ctype.h>
            * wave mi and wave mi+1 is not an exact multiple of stepm. */  
 double jmean; /* Mean space between 2 waves */  #ifdef _WIN32
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #include <io.h>
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #include <windows.h>
 FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #include <tchar.h>
 FILE *ficlog, *ficrespow;  #else
 int globpr; /* Global variable for printing or not */  #include <unistd.h>
 double fretone; /* Only one call to likelihood */  #endif
 long ipmx; /* Number of contributions */  
 double sw; /* Sum of weights */  #include <limits.h>
 char filerespow[FILENAMELENGTH];  #include <sys/types.h>
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */  
 FILE *ficresilk;  #if defined(__GNUC__)
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #include <sys/utsname.h> /* Doesn't work on Windows */
 FILE *ficresprobmorprev;  #endif
 FILE *fichtm, *fichtmcov; /* Html File */  
 FILE *ficreseij;  #include <sys/stat.h>
 char filerese[FILENAMELENGTH];  #include <errno.h>
 FILE *ficresstdeij;  /* extern int errno; */
 char fileresstde[FILENAMELENGTH];  
 FILE *ficrescveij;  /* #ifdef LINUX */
 char filerescve[FILENAMELENGTH];  /* #include <time.h> */
 FILE  *ficresvij;  /* #include "timeval.h" */
 char fileresv[FILENAMELENGTH];  /* #else */
 FILE  *ficresvpl;  /* #include <sys/time.h> */
 char fileresvpl[FILENAMELENGTH];  /* #endif */
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #include <time.h>
 char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];  
 char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];  #ifdef GSL
 char command[FILENAMELENGTH];  #include <gsl/gsl_errno.h>
 int  outcmd=0;  #include <gsl/gsl_multimin.h>
   #endif
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
   
 char filelog[FILENAMELENGTH]; /* Log file */  #ifdef NLOPT
 char filerest[FILENAMELENGTH];  #include <nlopt.h>
 char fileregp[FILENAMELENGTH];  typedef struct {
 char popfile[FILENAMELENGTH];    double (* function)(double [] );
   } myfunc_data ;
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;  #endif
   
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;  /* #include <libintl.h> */
 struct timezone tzp;  /* #define _(String) gettext (String) */
 extern int gettimeofday();  
 struct tm tmg, tm, tmf, *gmtime(), *localtime();  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 long time_value;  
 extern long time();  #define GNUPLOTPROGRAM "gnuplot"
 char strcurr[80], strfor[80];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 char *endptr;  
 long lval;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double dval;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define NR_END 1  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 #define FREE_ARG char*  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define FTOL 1.0e-10  
   #define NINTERVMAX 8
 #define NRANSI  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 #define ITMAX 200  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #define TOL 2.0e-4  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 #define CGOLD 0.3819660  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
 #define ZEPS 1.0e-10  #define MAXN 20000
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define YEARM 12. /**< Number of months per year */
   /* #define AGESUP 130 */
 #define GOLD 1.618034  #define AGESUP 150
 #define GLIMIT 100.0  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
 #define TINY 1.0e-20  #define AGEBASE 40
   #define AGEOVERFLOW 1.e20
 static double maxarg1,maxarg2;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #ifdef _WIN32
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
    #define CHARSEPARATOR "\\"
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define ODIRSEPARATOR '/'
 #define rint(a) floor(a+0.5)  #else
   #define DIRSEPARATOR '/'
 static double sqrarg;  #define CHARSEPARATOR "/"
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define ODIRSEPARATOR '\\'
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #endif
 int agegomp= AGEGOMP;  
   /* $Id$ */
 int imx;  /* $State$ */
 int stepm=1;  #include "version.h"
 /* Stepm, step in month: minimum step interpolation*/  char version[]=__IMACH_VERSION__;
   char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
 int estepm;  char fullversion[]="$Revision$ $Date$"; 
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 int m,nb;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 long *num;  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 double **pmmij, ***probs;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 double *ageexmed,*agecens;  int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
 double dateintmean=0;  int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
   int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 double *weight;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 int **s; /* Status */  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 double *agedc, **covar, idx;  int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
 double *lsurv, *lpop, *tpop;  int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
   int nsd=0; /**< Total number of single dummy variables (output) */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int nsq=0; /**< Total number of single quantitative variables (output) */
 double ftolhess; /* Tolerance for computing hessian */  int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
   int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
 /**************** split *************************/  int ntveff=0; /**< ntveff number of effective time varying variables */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
 {  int cptcov=0; /* Working variable */
   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
      the name of the file (name), its extension only (ext) and its first part of the name (finame)  int npar=NPARMAX;
   */  int nlstate=2; /* Number of live states */
   char  *ss;                            /* pointer */  int ndeath=1; /* Number of dead states */
   int   l1, l2;                         /* length counters */  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
   l1 = strlen(path );                   /* length of path */  int popbased=0;
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */  int *wav; /* Number of waves for this individuual 0 is possible */
   if ( ss == NULL ) {                   /* no directory, so determine current directory */  int maxwav=0; /* Maxim number of waves */
     strcpy( name, path );               /* we got the fullname name because no directory */  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
     /* get current working directory */                     to the likelihood and the sum of weights (done by funcone)*/
     /*    extern  char* getcwd ( char *buf , int len);*/  int mle=1, weightopt=0;
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       return( GLOCK_ERROR_GETCWD );  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     /* got dirc from getcwd*/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     printf(" DIRC = %s \n",dirc);  int countcallfunc=0;  /* Count the number of calls to func */
   } else {                              /* strip direcotry from path */  int selected(int kvar); /* Is covariate kvar selected for printing results */
     ss++;                               /* after this, the filename */  
     l2 = strlen( ss );                  /* length of filename */  double jmean=1; /* Mean space between 2 waves */
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double **matprod2(); /* test */
     strcpy( name, ss );         /* save file name */  double **oldm, **newm, **savm; /* Working pointers to matrices */
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     dirc[l1-l2] = 0;                    /* add zero */  double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
     printf(" DIRC2 = %s \n",dirc);  
   }  /*FILE *fic ; */ /* Used in readdata only */
   /* We add a separator at the end of dirc if not exists */  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
   l1 = strlen( dirc );                  /* length of directory */  FILE *ficlog, *ficrespow;
   if( dirc[l1-1] != DIRSEPARATOR ){  int globpr=0; /* Global variable for printing or not */
     dirc[l1] =  DIRSEPARATOR;  double fretone; /* Only one call to likelihood */
     dirc[l1+1] = 0;  long ipmx=0; /* Number of contributions */
     printf(" DIRC3 = %s \n",dirc);  double sw; /* Sum of weights */
   }  char filerespow[FILENAMELENGTH];
   ss = strrchr( name, '.' );            /* find last / */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   if (ss >0){  FILE *ficresilk;
     ss++;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     strcpy(ext,ss);                     /* save extension */  FILE *ficresprobmorprev;
     l1= strlen( name);  FILE *fichtm, *fichtmcov; /* Html File */
     l2= strlen(ss)+1;  FILE *ficreseij;
     strncpy( finame, name, l1-l2);  char filerese[FILENAMELENGTH];
     finame[l1-l2]= 0;  FILE *ficresstdeij;
   }  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   return( 0 );                          /* we're done */  char filerescve[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************************************/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 void replace_back_to_slash(char *s, char*t)  char model[MAXLINE]; /**< The model line */
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
   int i;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   int lg=0;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   i=0;  char command[FILENAMELENGTH];
   lg=strlen(t);  int  outcmd=0;
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
   }  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char popfile[FILENAMELENGTH];
 {  
   int i,j=0;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   int lg=20;  
   i=0;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   lg=strlen(s);  /* struct timezone tzp; */
   for(i=0; i<= lg; i++) {  /* extern int gettimeofday(); */
   if  (s[i] == occ ) j++;  struct tm tml, *gmtime(), *localtime();
   }  
   return j;  extern time_t time();
 }  
   struct tm start_time, end_time, curr_time, last_time, forecast_time;
 void cutv(char *u,char *v, char*t, char occ)  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 {  struct tm tm;
   /* cuts string t into u and v where u ends before first occurence of char 'occ'  
      and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')  char strcurr[80], strfor[80];
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  char *endptr;
   i=0;  long lval;
   for(j=0; j<=strlen(t)-1; j++) {  double dval;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }  #define NR_END 1
   #define FREE_ARG char*
   lg=strlen(t);  #define FTOL 1.0e-10
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NRANSI 
   }  #define ITMAX 200 
      u[p]='\0';  
   #define TOL 2.0e-4 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 /********************** nrerror ********************/  #define GOLD 1.618034 
   #define GLIMIT 100.0 
 void nrerror(char error_text[])  #define TINY 1.0e-20 
 {  
   fprintf(stderr,"ERREUR ...\n");  static double maxarg1,maxarg2;
   fprintf(stderr,"%s\n",error_text);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   exit(EXIT_FAILURE);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
 /*********************** vector *******************/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double *vector(int nl, int nh)  #define rint(a) floor(a+0.5)
 {  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   double *v;  #define mytinydouble 1.0e-16
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   if (!v) nrerror("allocation failure in vector");  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   return v-nl+NR_END;  /* static double dsqrarg; */
 }  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   static double sqrarg;
 /************************ free vector ******************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void free_vector(double*v, int nl, int nh)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  int agegomp= AGEGOMP;
   free((FREE_ARG)(v+nl-NR_END));  
 }  int imx; 
   int stepm=1;
 /************************ivector *******************************/  /* Stepm, step in month: minimum step interpolation*/
 int *ivector(long nl,long nh)  
 {  int estepm;
   int *v;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  int m,nb;
   return v-nl+NR_END;  long *num;
 }  int firstpass=0, lastpass=4,*cod, *cens;
   int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
 /******************free ivector **************************/                     covariate for which somebody answered excluding 
 void free_ivector(int *v, long nl, long nh)                     undefined. Usually 2: 0 and 1. */
 {  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
   free((FREE_ARG)(v+nl-NR_END));                               covariate for which somebody answered including 
 }                               undefined. Usually 3: -1, 0 and 1. */
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 /************************lvector *******************************/  double **pmmij, ***probs; /* Global pointer */
 long *lvector(long nl,long nh)  double ***mobaverage, ***mobaverages; /* New global variable */
 {  double *ageexmed,*agecens;
   long *v;  double dateintmean=0;
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  
   if (!v) nrerror("allocation failure in ivector");  double *weight;
   return v-nl+NR_END;  int **s; /* Status */
 }  double *agedc;
   double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 /******************free lvector **************************/                    * covar=matrix(0,NCOVMAX,1,n); 
 void free_lvector(long *v, long nl, long nh)                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
 {  double **coqvar; /* Fixed quantitative covariate iqv */
   free((FREE_ARG)(v+nl-NR_END));  double ***cotvar; /* Time varying covariate itv */
 }  double ***cotqvar; /* Time varying quantitative covariate itqv */
   double  idx; 
 /******************* imatrix *******************************/  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /*k          1  2   3   4     5    6    7     8    9 */
 {  /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  /* Tndvar[k]    1   2   3               4          5 */
   int **m;  /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */
    /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */
   /* allocate pointers to rows */  /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */
   if (!m) nrerror("allocation failure 1 in matrix()");  /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */
   m += NR_END;  /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */
   m -= nrl;  /* Tprod[i]=k           4               7            */
    /* Tage[i]=k                  5               8      */
    /* */
   /* allocate rows and set pointers to them */  /* Type                    */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* V         1  2  3  4  5 */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /*           F  F  V  V  V */
   m[nrl] += NR_END;  /*           D  Q  D  D  Q */
   m[nrl] -= ncl;  /*                         */
    int *TvarsD;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  int *TvarsDind;
    int *TvarsQ;
   /* return pointer to array of pointers to rows */  int *TvarsQind;
   return m;  
 }  #define MAXRESULTLINES 10
   int nresult=0;
 /****************** free_imatrix *************************/  int TKresult[MAXRESULTLINES];
 void free_imatrix(m,nrl,nrh,ncl,nch)  double Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
       int **m;  int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
       long nch,ncl,nrh,nrl;  double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
      /* free an int matrix allocated by imatrix() */  int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
   free((FREE_ARG) (m+nrl-NR_END));  int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 }  int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 /******************* matrix *******************************/  int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
 {  int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   double **m;  int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
   int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   if (!m) nrerror("allocation failure 1 in matrix()");  int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   m += NR_END;  int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
   m -= nrl;  int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int *Tvarsel; /**< Selected covariates for output */
   m[nrl] += NR_END;  double *Tvalsel; /**< Selected modality value of covariate for output */
   m[nrl] -= ncl;  int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
   int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
   return m;  int *Tage;
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])  int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
    */  int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
 }  int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
   int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
 /*************************free matrix ************************/  int *Ndum; /** Freq of modality (tricode */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
 {  int **Tvard;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int *Tprod;/**< Gives the k position of the k1 product */
   free((FREE_ARG)(m+nrl-NR_END));  int *Tposprod; /**< Gives the k1 product from the k position */
 }  /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
 /******************* ma3x *******************************/     Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  */
 {  int cptcovprod, *Tvaraff, *invalidvarcomb;
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  double *lsurv, *lpop, *tpop;
   double ***m;  
   #define FD 1; /* Fixed dummy covariate */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define FQ 2; /* Fixed quantitative covariate */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define FP 3; /* Fixed product covariate */
   m += NR_END;  #define FPDD 7; /* Fixed product dummy*dummy covariate */
   m -= nrl;  #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
   #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define VD 10; /* Varying dummy covariate */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define VQ 11; /* Varying quantitative covariate */
   m[nrl] += NR_END;  #define VP 12; /* Varying product covariate */
   m[nrl] -= ncl;  #define VPDD 13; /* Varying product dummy*dummy covariate */
   #define VPDQ 14; /* Varying product dummy*quantitative covariate */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
   #define APFD 16; /* Age product * fixed dummy covariate */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #define APFQ 17; /* Age product * fixed quantitative covariate */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #define APVD 18; /* Age product * varying dummy covariate */
   m[nrl][ncl] += NR_END;  #define APVQ 19; /* Age product * varying quantitative covariate */
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  #define FTYPE 1; /* Fixed covariate */
     m[nrl][j]=m[nrl][j-1]+nlay;  #define VTYPE 2; /* Varying covariate (loop in wave) */
    #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  struct kmodel{
     for (j=ncl+1; j<=nch; j++)          int maintype; /* main type */
       m[i][j]=m[i][j-1]+nlay;          int subtype; /* subtype */
   }  };
   return m;  struct kmodel modell[NCOVMAX];
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   */  double ftolhess; /**< Tolerance for computing hessian */
 }  
   /**************** split *************************/
 /*************************free ma3x ************************/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  {
 {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    */ 
   free((FREE_ARG)(m+nrl-NR_END));    char  *ss;                            /* pointer */
 }    int   l1=0, l2=0;                             /* length counters */
   
 /*************** function subdirf ***********/    l1 = strlen(path );                   /* length of path */
 char *subdirf(char fileres[])    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* Caution optionfilefiname is hidden */    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   strcpy(tmpout,optionfilefiname);      strcpy( name, path );               /* we got the fullname name because no directory */
   strcat(tmpout,"/"); /* Add to the right */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   strcat(tmpout,fileres);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return tmpout;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
   #ifdef WIN32
 /*************** function subdirf2 ***********/      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
 char *subdirf2(char fileres[], char *preop)  #else
 {          if (getcwd(dirc, FILENAME_MAX) == NULL) {
    #endif
   /* Caution optionfilefiname is hidden */        return( GLOCK_ERROR_GETCWD );
   strcpy(tmpout,optionfilefiname);      }
   strcat(tmpout,"/");      /* got dirc from getcwd*/
   strcat(tmpout,preop);      printf(" DIRC = %s \n",dirc);
   strcat(tmpout,fileres);    } else {                              /* strip directory from path */
   return tmpout;      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 /*************** function subdirf3 ***********/      strcpy( name, ss );         /* save file name */
 char *subdirf3(char fileres[], char *preop, char *preop2)      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = '\0';                 /* add zero */
        printf(" DIRC2 = %s \n",dirc);
   /* Caution optionfilefiname is hidden */    }
   strcpy(tmpout,optionfilefiname);    /* We add a separator at the end of dirc if not exists */
   strcat(tmpout,"/");    l1 = strlen( dirc );                  /* length of directory */
   strcat(tmpout,preop);    if( dirc[l1-1] != DIRSEPARATOR ){
   strcat(tmpout,preop2);      dirc[l1] =  DIRSEPARATOR;
   strcat(tmpout,fileres);      dirc[l1+1] = 0; 
   return tmpout;      printf(" DIRC3 = %s \n",dirc);
 }    }
     ss = strrchr( name, '.' );            /* find last / */
 /***************** f1dim *************************/    if (ss >0){
 extern int ncom;      ss++;
 extern double *pcom,*xicom;      strcpy(ext,ss);                     /* save extension */
 extern double (*nrfunc)(double []);      l1= strlen( name);
        l2= strlen(ss)+1;
 double f1dim(double x)      strncpy( finame, name, l1-l2);
 {      finame[l1-l2]= 0;
   int j;    }
   double f;  
   double *xt;    return( 0 );                          /* we're done */
    }
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /******************************************/
   free_vector(xt,1,ncom);  
   return f;  void replace_back_to_slash(char *s, char*t)
 }  {
     int i;
 /*****************brent *************************/    int lg=0;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    i=0;
 {    lg=strlen(t);
   int iter;    for(i=0; i<= lg; i++) {
   double a,b,d,etemp;      (s[i] = t[i]);
   double fu,fv,fw,fx;      if (t[i]== '\\') s[i]='/';
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    char *trimbb(char *out, char *in)
   a=(ax < cx ? ax : cx);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   b=(ax > cx ? ax : cx);    char *s;
   x=w=v=bx;    s=out;
   fw=fv=fx=(*f)(x);    while (*in != '\0'){
   for (iter=1;iter<=ITMAX;iter++) {      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     xm=0.5*(a+b);        in++;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);      }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      *out++ = *in++;
     printf(".");fflush(stdout);    }
     fprintf(ficlog,".");fflush(ficlog);    *out='\0';
 #ifdef DEBUG    return s;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /* char *substrchaine(char *out, char *in, char *chain) */
 #endif  /* { */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
       *xmin=x;  /*   char *s, *t; */
       return fx;  /*   t=in;s=out; */
     }  /*   while ((*in != *chain) && (*in != '\0')){ */
     ftemp=fu;  /*     *out++ = *in++; */
     if (fabs(e) > tol1) {  /*   } */
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /*   /\* *in matches *chain *\/ */
       p=(x-v)*q-(x-w)*r;  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
       q=2.0*(q-r);  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       if (q > 0.0) p = -p;  /*   } */
       q=fabs(q);  /*   in--; chain--; */
       etemp=e;  /*   while ( (*in != '\0')){ */
       e=d;  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /*     *out++ = *in++; */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       else {  /*   } */
         d=p/q;  /*   *out='\0'; */
         u=x+d;  /*   out=s; */
         if (u-a < tol2 || b-u < tol2)  /*   return out; */
           d=SIGN(tol1,xm-x);  /* } */
       }  char *substrchaine(char *out, char *in, char *chain)
     } else {  {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    /* Substract chain 'chain' from 'in', return and output 'out' */
     }    /* in="V1+V1*age+age*age+V2", chain="age*age" */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    char *strloc;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    strcpy (out, in); 
       SHFT(v,w,x,u)    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
         SHFT(fv,fw,fx,fu)    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
         } else {    if(strloc != NULL){ 
           if (u < x) a=u; else b=u;      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
           if (fu <= fw || w == x) {      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
             v=w;      /* strcpy (strloc, strloc +strlen(chain));*/
             w=u;    }
             fv=fw;    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
             fw=fu;    return out;
           } else if (fu <= fv || v == x || v == w) {  }
             v=u;  
             fv=fu;  
           }  char *cutl(char *blocc, char *alocc, char *in, char occ)
         }  {
   }    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   nrerror("Too many iterations in brent");       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   *xmin=x;       gives blocc="abcdef" and alocc="ghi2j".
   return fx;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
 }    */
     char *s, *t;
 /****************** mnbrak ***********************/    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      *alocc++ = *in++;
             double (*func)(double))    }
 {    if( *in == occ){
   double ulim,u,r,q, dum;      *(alocc)='\0';
   double fu;      s=++in;
      }
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);    if (s == t) {/* occ not found */
   if (*fb > *fa) {      *(alocc-(in-s))='\0';
     SHFT(dum,*ax,*bx,dum)      in=s;
       SHFT(dum,*fb,*fa,dum)    }
       }    while ( *in != '\0'){
   *cx=(*bx)+GOLD*(*bx-*ax);      *blocc++ = *in++;
   *fc=(*func)(*cx);    }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    *blocc='\0';
     q=(*bx-*cx)*(*fb-*fa);    return t;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char *cutv(char *blocc, char *alocc, char *in, char occ)
     ulim=(*bx)+GLIMIT*(*cx-*bx);  {
     if ((*bx-u)*(u-*cx) > 0.0) {    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
       fu=(*func)(u);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     } else if ((*cx-u)*(u-ulim) > 0.0) {       gives blocc="abcdef2ghi" and alocc="j".
       fu=(*func)(u);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       if (fu < *fc) {    */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    char *s, *t;
           SHFT(*fb,*fc,fu,(*func)(u))    t=in;s=in;
           }    while (*in != '\0'){
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      while( *in == occ){
       u=ulim;        *blocc++ = *in++;
       fu=(*func)(u);        s=in;
     } else {      }
       u=(*cx)+GOLD*(*cx-*bx);      *blocc++ = *in++;
       fu=(*func)(u);    }
     }    if (s == t) /* occ not found */
     SHFT(*ax,*bx,*cx,u)      *(blocc-(in-s))='\0';
       SHFT(*fa,*fb,*fc,fu)    else
       }      *(blocc-(in-s)-1)='\0';
 }    in=s;
     while ( *in != '\0'){
 /*************** linmin ************************/      *alocc++ = *in++;
     }
 int ncom;  
 double *pcom,*xicom;    *alocc='\0';
 double (*nrfunc)(double []);    return s;
    }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  int nbocc(char *s, char occ)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    int i,j=0;
   double f1dim(double x);    int lg=20;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    i=0;
               double *fc, double (*func)(double));    lg=strlen(s);
   int j;    for(i=0; i<= lg; i++) {
   double xx,xmin,bx,ax;      if  (s[i] == occ ) j++;
   double fx,fb,fa;    }
      return j;
   ncom=n;  }
   pcom=vector(1,n);  
   xicom=vector(1,n);  /* void cutv(char *u,char *v, char*t, char occ) */
   nrfunc=func;  /* { */
   for (j=1;j<=n;j++) {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     pcom[j]=p[j];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     xicom[j]=xi[j];  /*      gives u="abcdef2ghi" and v="j" *\/ */
   }  /*   int i,lg,j,p=0; */
   ax=0.0;  /*   i=0; */
   xx=1.0;  /*   lg=strlen(t); */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /*   for(j=0; j<=lg-1; j++) { */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 #ifdef DEBUG  /*   } */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /*   for(j=0; j<p; j++) { */
 #endif  /*     (u[j] = t[j]); */
   for (j=1;j<=n;j++) {  /*   } */
     xi[j] *= xmin;  /*      u[p]='\0'; */
     p[j] += xi[j];  
   }  /*    for(j=0; j<= lg; j++) { */
   free_vector(xicom,1,n);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   free_vector(pcom,1,n);  /*   } */
 }  /* } */
   
 char *asc_diff_time(long time_sec, char ascdiff[])  #ifdef _WIN32
 {  char * strsep(char **pp, const char *delim)
   long sec_left, days, hours, minutes;  {
   days = (time_sec) / (60*60*24);    char *p, *q;
   sec_left = (time_sec) % (60*60*24);           
   hours = (sec_left) / (60*60) ;    if ((p = *pp) == NULL)
   sec_left = (sec_left) %(60*60);      return 0;
   minutes = (sec_left) /60;    if ((q = strpbrk (p, delim)) != NULL)
   sec_left = (sec_left) % (60);    {
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);        *pp = q + 1;
   return ascdiff;      *q = '\0';
 }    }
     else
 /*************** powell ************************/      *pp = 0;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    return p;
             double (*func)(double []))  }
 {  #endif
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  /********************** nrerror ********************/
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  void nrerror(char error_text[])
   double fp,fptt;  {
   double *xits;    fprintf(stderr,"ERREUR ...\n");
   int niterf, itmp;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   pt=vector(1,n);  }
   ptt=vector(1,n);  /*********************** vector *******************/
   xit=vector(1,n);  double *vector(int nl, int nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    double *v;
   for (j=1;j<=n;j++) pt[j]=p[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {    if (!v) nrerror("allocation failure in vector");
     fp=(*fret);    return v-nl+NR_END;
     ibig=0;  }
     del=0.0;  
     last_time=curr_time;  /************************ free vector ******************/
     (void) gettimeofday(&curr_time,&tzp);  void free_vector(double*v, int nl, int nh)
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);  {
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);    free((FREE_ARG)(v+nl-NR_END));
 /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */  }
    for (i=1;i<=n;i++) {  
       printf(" %d %.12f",i, p[i]);  /************************ivector *******************************/
       fprintf(ficlog," %d %.12lf",i, p[i]);  int *ivector(long nl,long nh)
       fprintf(ficrespow," %.12lf", p[i]);  {
     }    int *v;
     printf("\n");    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     fprintf(ficlog,"\n");    if (!v) nrerror("allocation failure in ivector");
     fprintf(ficrespow,"\n");fflush(ficrespow);    return v-nl+NR_END;
     if(*iter <=3){  }
       tm = *localtime(&curr_time.tv_sec);  
       strcpy(strcurr,asctime(&tm));  /******************free ivector **************************/
 /*       asctime_r(&tm,strcurr); */  void free_ivector(int *v, long nl, long nh)
       forecast_time=curr_time;  {
       itmp = strlen(strcurr);    free((FREE_ARG)(v+nl-NR_END));
       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */  }
         strcurr[itmp-1]='\0';  
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  /************************lvector *******************************/
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  long *lvector(long nl,long nh)
       for(niterf=10;niterf<=30;niterf+=10){  {
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);    long *v;
         tmf = *localtime(&forecast_time.tv_sec);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /*      asctime_r(&tmf,strfor); */    if (!v) nrerror("allocation failure in ivector");
         strcpy(strfor,asctime(&tmf));    return v-nl+NR_END;
         itmp = strlen(strfor);  }
         if(strfor[itmp-1]=='\n')  
         strfor[itmp-1]='\0';  /******************free lvector **************************/
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  void free_lvector(long *v, long nl, long nh)
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  {
       }    free((FREE_ARG)(v+nl-NR_END));
     }  }
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /******************* imatrix *******************************/
       fptt=(*fret);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #ifdef DEBUG       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       printf("fret=%lf \n",*fret);  { 
       fprintf(ficlog,"fret=%lf \n",*fret);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 #endif    int **m; 
       printf("%d",i);fflush(stdout);    
       fprintf(ficlog,"%d",i);fflush(ficlog);    /* allocate pointers to rows */ 
       linmin(p,xit,n,fret,func);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (fabs(fptt-(*fret)) > del) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
         del=fabs(fptt-(*fret));    m += NR_END; 
         ibig=i;    m -= nrl; 
       }    
 #ifdef DEBUG    
       printf("%d %.12e",i,(*fret));    /* allocate rows and set pointers to them */ 
       fprintf(ficlog,"%d %.12e",i,(*fret));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (j=1;j<=n;j++) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] += NR_END; 
         printf(" x(%d)=%.12e",j,xit[j]);    m[nrl] -= ncl; 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       for(j=1;j<=n;j++) {    
         printf(" p=%.12e",p[j]);    /* return pointer to array of pointers to rows */ 
         fprintf(ficlog," p=%.12e",p[j]);    return m; 
       }  } 
       printf("\n");  
       fprintf(ficlog,"\n");  /****************** free_imatrix *************************/
 #endif  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        long nch,ncl,nrh,nrl; 
 #ifdef DEBUG       /* free an int matrix allocated by imatrix() */ 
       int k[2],l;  { 
       k[0]=1;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       k[1]=-1;    free((FREE_ARG) (m+nrl-NR_END)); 
       printf("Max: %.12e",(*func)(p));  } 
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  /******************* matrix *******************************/
         printf(" %.12e",p[j]);  double **matrix(long nrl, long nrh, long ncl, long nch)
         fprintf(ficlog," %.12e",p[j]);  {
       }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       printf("\n");    double **m;
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m += NR_END;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m -= nrl;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
 #endif  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
       free_vector(xit,1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       free_vector(xits,1,n);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       free_vector(ptt,1,n);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
       free_vector(pt,1,n);     */
       return;  }
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  /*************************free matrix ************************/
     for (j=1;j<=n;j++) {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       ptt[j]=2.0*p[j]-pt[j];  {
       xit[j]=p[j]-pt[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       pt[j]=p[j];    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************* ma3x *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         for (j=1;j<=n;j++) {    double ***m;
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         }    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m -= nrl;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
           printf(" %.12e",xit[j]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           fprintf(ficlog," %.12e",xit[j]);    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
         printf("\n");  
         fprintf(ficlog,"\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #endif  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
 }    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
 /**** Prevalence limit (stable or period prevalence)  ****************/      m[nrl][j]=m[nrl][j-1]+nlay;
     
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      for (j=ncl+1; j<=nch; j++) 
      matrix by transitions matrix until convergence is reached */        m[i][j]=m[i][j-1]+nlay;
     }
   int i, ii,j,k;    return m; 
   double min, max, maxmin, maxmax,sumnew=0.;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double **matprod2();             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double **out, cov[NCOVMAX], **pmij();    */
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   /*************************free ma3x ************************/
   for (ii=1;ii<=nlstate+ndeath;ii++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*************** function subdirf ***********/
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char *subdirf(char fileres[])
     newm=savm;  {
     /* Covariates have to be included here again */    /* Caution optionfilefiname is hidden */
      cov[2]=agefin;    strcpy(tmpout,optionfilefiname);
      strcat(tmpout,"/"); /* Add to the right */
       for (k=1; k<=cptcovn;k++) {    strcat(tmpout,fileres);
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    return tmpout;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  }
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** function subdirf2 ***********/
       for (k=1; k<=cptcovprod;k++)  char *subdirf2(char fileres[], char *preop)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
     
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    /* Caution optionfilefiname is hidden */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcpy(tmpout,optionfilefiname);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    strcat(tmpout,"/");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     savm=oldm;    return tmpout;
     oldm=newm;  }
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /*************** function subdirf3 ***********/
       min=1.;  char *subdirf3(char fileres[], char *preop, char *preop2)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    
         sumnew=0;    /* Caution optionfilefiname is hidden */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcpy(tmpout,optionfilefiname);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,"/");
         max=FMAX(max,prlim[i][j]);    strcat(tmpout,preop);
         min=FMIN(min,prlim[i][j]);    strcat(tmpout,preop2);
       }    strcat(tmpout,fileres);
       maxmin=max-min;    return tmpout;
       maxmax=FMAX(maxmax,maxmin);  }
     }   
     if(maxmax < ftolpl){  /*************** function subdirfext ***********/
       return prlim;  char *subdirfext(char fileres[], char *preop, char *postop)
     }  {
   }    
 }    strcpy(tmpout,preop);
     strcat(tmpout,fileres);
 /*************** transition probabilities ***************/    strcat(tmpout,postop);
     return tmpout;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /*************** function subdirfext3 ***********/
   /*double t34;*/  char *subdirfext3(char fileres[], char *preop, char *postop)
   int i,j,j1, nc, ii, jj;  {
     
     for(i=1; i<= nlstate; i++){    /* Caution optionfilefiname is hidden */
       for(j=1; j<i;j++){    strcpy(tmpout,optionfilefiname);
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    strcat(tmpout,"/");
           /*s2 += param[i][j][nc]*cov[nc];*/    strcat(tmpout,preop);
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcat(tmpout,fileres);
 /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */    strcat(tmpout,postop);
         }    return tmpout;
         ps[i][j]=s2;  }
 /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */   
       }  char *asc_diff_time(long time_sec, char ascdiff[])
       for(j=i+1; j<=nlstate+ndeath;j++){  {
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){    long sec_left, days, hours, minutes;
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    days = (time_sec) / (60*60*24);
 /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */    sec_left = (time_sec) % (60*60*24);
         }    hours = (sec_left) / (60*60) ;
         ps[i][j]=s2;    sec_left = (sec_left) %(60*60);
       }    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
     /*ps[3][2]=1;*/    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
        return ascdiff;
     for(i=1; i<= nlstate; i++){  }
       s1=0;  
       for(j=1; j<i; j++)  /***************** f1dim *************************/
         s1+=exp(ps[i][j]);  extern int ncom; 
       for(j=i+1; j<=nlstate+ndeath; j++)  extern double *pcom,*xicom;
         s1+=exp(ps[i][j]);  extern double (*nrfunc)(double []); 
       ps[i][i]=1./(s1+1.);   
       for(j=1; j<i; j++)  double f1dim(double x) 
         ps[i][j]= exp(ps[i][j])*ps[i][i];  { 
       for(j=i+1; j<=nlstate+ndeath; j++)    int j; 
         ps[i][j]= exp(ps[i][j])*ps[i][i];    double f;
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    double *xt; 
     } /* end i */   
        xt=vector(1,ncom); 
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       for(jj=1; jj<= nlstate+ndeath; jj++){    f=(*nrfunc)(xt); 
         ps[ii][jj]=0;    free_vector(xt,1,ncom); 
         ps[ii][ii]=1;    return f; 
       }  } 
     }  
      /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */  {
 /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
 /*         printf("ddd %lf ",ps[ii][jj]); */     * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
 /*       } */     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
 /*       printf("\n "); */     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
 /*        } */     * returned function value. 
 /*        printf("\n ");printf("%lf ",cov[2]); */    */
        /*    int iter; 
       for(i=1; i<= npar; i++) printf("%f ",x[i]);    double a,b,d,etemp;
       goto end;*/    double fu=0,fv,fw,fx;
     return ps;    double ftemp=0.;
 }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 /**************** Product of 2 matrices ******************/   
     a=(ax < cx ? ax : cx); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    b=(ax > cx ? ax : cx); 
 {    x=w=v=bx; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    fw=fv=fx=(*f)(x); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    for (iter=1;iter<=ITMAX;iter++) { 
   /* in, b, out are matrice of pointers which should have been initialized      xm=0.5*(a+b); 
      before: only the contents of out is modified. The function returns      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
      a pointer to pointers identical to out */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   long i, j, k;      printf(".");fflush(stdout);
   for(i=nrl; i<= nrh; i++)      fprintf(ficlog,".");fflush(ficlog);
     for(k=ncolol; k<=ncoloh; k++)  #ifdef DEBUGBRENT
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         out[i][k] +=in[i][j]*b[j][k];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   return out;  #endif
 }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
         return fx; 
 /************* Higher Matrix Product ***************/      } 
       ftemp=fu;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      if (fabs(e) > tol1) { 
 {        r=(x-w)*(fx-fv); 
   /* Computes the transition matrix starting at age 'age' over        q=(x-v)*(fx-fw); 
      'nhstepm*hstepm*stepm' months (i.e. until        p=(x-v)*q-(x-w)*r; 
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying        q=2.0*(q-r); 
      nhstepm*hstepm matrices.        if (q > 0.0) p = -p; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        q=fabs(q); 
      (typically every 2 years instead of every month which is too big        etemp=e; 
      for the memory).        e=d; 
      Model is determined by parameters x and covariates have to be        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
      included manually here.                                  d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
      */                                  d=p/q; 
                                   u=x+d; 
   int i, j, d, h, k;                                  if (u-a < tol2 || b-u < tol2) 
   double **out, cov[NCOVMAX];                                          d=SIGN(tol1,xm-x); 
   double **newm;        } 
       } else { 
   /* Hstepm could be zero and should return the unit matrix */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=nlstate+ndeath;i++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);      fu=(*f)(u); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        SHFT(v,w,x,u) 
   for(h=1; h <=nhstepm; h++){        SHFT(fv,fw,fx,fu) 
     for(d=1; d <=hstepm; d++){      } else { 
       newm=savm;        if (u < x) a=u; else b=u; 
       /* Covariates have to be included here again */        if (fu <= fw || w == x) { 
       cov[1]=1.;                                  v=w; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                                  w=u; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];                                  fv=fw; 
       for (k=1; k<=cptcovage;k++)                                  fw=fu; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } else if (fu <= fv || v == x || v == w) { 
       for (k=1; k<=cptcovprod;k++)                                  v=u; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];                                  fv=fu; 
         } 
       } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    } 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    nrerror("Too many iterations in brent"); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    *xmin=x; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    return fx; 
       savm=oldm;  } 
       oldm=newm;  
     }  /****************** mnbrak ***********************/
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         po[i][j][h]=newm[i][j];              double (*func)(double)) 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
          */  the downhill direction (defined by the function as evaluated at the initial points) and returns
       }  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
   } /* end h */  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
   return po;     */
 }    double ulim,u,r,q, dum;
     double fu; 
   
 /*************** log-likelihood *************/    double scale=10.;
 double func( double *x)    int iterscale=0;
 {  
   int i, ii, j, k, mi, d, kk;    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
   double **out;  
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
   int s1, s2;    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
   double bbh, survp;    /*   *bx = *ax - (*ax - *bx)/scale; */
   long ipmx;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
   /*extern weight */    /* } */
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    if (*fb > *fa) { 
   /*for(i=1;i<imx;i++)      SHFT(dum,*ax,*bx,dum) 
     printf(" %d\n",s[4][i]);      SHFT(dum,*fb,*fa,dum) 
   */    } 
   cov[1]=1.;    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #ifdef DEBUG
     printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
   if(mle==1){    fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #endif
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
       for(mi=1; mi<= wav[i]-1; mi++){      r=(*bx-*ax)*(*fb-*fc); 
         for (ii=1;ii<=nlstate+ndeath;ii++)      q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
           for (j=1;j<=nlstate+ndeath;j++){      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
           }      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
         for(d=0; d<dh[mi][i]; d++){        fu=(*func)(u); 
           newm=savm;  #ifdef DEBUG
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        /* f(x)=A(x-u)**2+f(u) */
           for (kk=1; kk<=cptcovage;kk++) {        double A, fparabu; 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           }        fparabu= *fa - A*(*ax-u)*(*ax-u);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
           savm=oldm;        /* And thus,it can be that fu > *fc even if fparabu < *fc */
           oldm=newm;        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
         } /* end mult */          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
              /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  #endif 
         /* But now since version 0.9 we anticipate for bias at large stepm.  #ifdef MNBRAKORIGINAL
          * If stepm is larger than one month (smallest stepm) and if the exact delay  #else
          * (in months) between two waves is not a multiple of stepm, we rounded to  /*       if (fu > *fc) { */
          * the nearest (and in case of equal distance, to the lowest) interval but now  /* #ifdef DEBUG */
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  /*       printf("mnbrak4  fu > fc \n"); */
          * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
          * probability in order to take into account the bias as a fraction of the way  /* #endif */
          * from savm to out if bh is negative or even beyond if bh is positive. bh varies  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
          * -stepm/2 to stepm/2 .  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
          * For stepm=1 the results are the same as for previous versions of Imach.  /*      dum=u; /\* Shifting c and u *\/ */
          * For stepm > 1 the results are less biased than in previous versions.  /*      u = *cx; */
          */  /*      *cx = dum; */
         s1=s[mw[mi][i]][i];  /*      dum = fu; */
         s2=s[mw[mi+1][i]][i];  /*      fu = *fc; */
         bbh=(double)bh[mi][i]/(double)stepm;  /*      *fc =dum; */
         /* bias bh is positive if real duration  /*       } else { /\* end *\/ */
          * is higher than the multiple of stepm and negative otherwise.  /* #ifdef DEBUG */
          */  /*       printf("mnbrak3  fu < fc \n"); */
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
         if( s2 > nlstate){  /* #endif */
           /* i.e. if s2 is a death state and if the date of death is known  /*      dum=u; /\* Shifting c and u *\/ */
              then the contribution to the likelihood is the probability to  /*      u = *cx; */
              die between last step unit time and current  step unit time,  /*      *cx = dum; */
              which is also equal to probability to die before dh  /*      dum = fu; */
              minus probability to die before dh-stepm .  /*      fu = *fc; */
              In version up to 0.92 likelihood was computed  /*      *fc =dum; */
         as if date of death was unknown. Death was treated as any other  /*       } */
         health state: the date of the interview describes the actual state  #ifdef DEBUGMNBRAK
         and not the date of a change in health state. The former idea was                   double A, fparabu; 
         to consider that at each interview the state was recorded       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
         (healthy, disable or death) and IMaCh was corrected; but when we       fparabu= *fa - A*(*ax-u)*(*ax-u);
         introduced the exact date of death then we should have modified       printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
         the contribution of an exact death to the likelihood. This new       fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
         contribution is smaller and very dependent of the step unit  #endif
         stepm. It is no more the probability to die between last interview        dum=u; /* Shifting c and u */
         and month of death but the probability to survive from last        u = *cx;
         interview up to one month before death multiplied by the        *cx = dum;
         probability to die within a month. Thanks to Chris        dum = fu;
         Jackson for correcting this bug.  Former versions increased        fu = *fc;
         mortality artificially. The bad side is that we add another loop        *fc =dum;
         which slows down the processing. The difference can be up to 10%  #endif
         lower mortality.      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           */  #ifdef DEBUG
           lli=log(out[s1][s2] - savm[s1][s2]);        printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
         fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
   #endif
         } else if  (s2==-2) {        fu=(*func)(u); 
           for (j=1,survp=0. ; j<=nlstate; j++)        if (fu < *fc) { 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];  #ifdef DEBUG
           /*survp += out[s1][j]; */                                  printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
           lli= log(survp);                            fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
         }  #endif
                                    SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         else if  (s2==-4) {                                  SHFT(*fb,*fc,fu,(*func)(u)) 
           for (j=3,survp=0. ; j<=nlstate; j++)    #ifdef DEBUG
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];                                          printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
           lli= log(survp);  #endif
         }        } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         else if  (s2==-5) {  #ifdef DEBUG
           for (j=1,survp=0. ; j<=2; j++)          printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];        fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
           lli= log(survp);  #endif
         }        u=ulim; 
                fu=(*func)(u); 
         else{      } else { /* u could be left to b (if r > q parabola has a maximum) */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  #ifdef DEBUG
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
         }        fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/  #endif
         /*if(lli ==000.0)*/        u=(*cx)+GOLD*(*cx-*bx); 
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        fu=(*func)(u); 
         ipmx +=1;  #ifdef DEBUG
         sw += weight[i];        printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
       } /* end of wave */  #endif
     } /* end of individual */      } /* end tests */
   }  else if(mle==2){      SHFT(*ax,*bx,*cx,u) 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      SHFT(*fa,*fb,*fc,fu) 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #ifdef DEBUG
       for(mi=1; mi<= wav[i]-1; mi++){        printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
         for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
           for (j=1;j<=nlstate+ndeath;j++){  #endif
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
           }  
         for(d=0; d<=dh[mi][i]; d++){  /*************** linmin ************************/
           newm=savm;  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
           for (kk=1; kk<=cptcovage;kk++) {  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  the value of func at the returned location p . This is actually all accomplished by calling the
           }  routines mnbrak and brent .*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  int ncom; 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double *pcom,*xicom;
           savm=oldm;  double (*nrfunc)(double []); 
           oldm=newm;   
         } /* end mult */  #ifdef LINMINORIGINAL
        void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         s1=s[mw[mi][i]][i];  #else
         s2=s[mw[mi+1][i]][i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
         bbh=(double)bh[mi][i]/(double)stepm;  #endif
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */  { 
         ipmx +=1;    double brent(double ax, double bx, double cx, 
         sw += weight[i];                 double (*f)(double), double tol, double *xmin); 
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double f1dim(double x); 
       } /* end of wave */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     } /* end of individual */                double *fc, double (*func)(double)); 
   }  else if(mle==3){  /* exponential inter-extrapolation */    int j; 
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double xx,xmin,bx,ax; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    double fx,fb,fa;
       for(mi=1; mi<= wav[i]-1; mi++){  
         for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef LINMINORIGINAL
           for (j=1;j<=nlstate+ndeath;j++){  #else
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double scale=10., axs, xxs; /* Scale added for infinity */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
           }    
         for(d=0; d<dh[mi][i]; d++){    ncom=n; 
           newm=savm;    pcom=vector(1,n); 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    xicom=vector(1,n); 
           for (kk=1; kk<=cptcovage;kk++) {    nrfunc=func; 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for (j=1;j<=n;j++) { 
           }      pcom[j]=p[j]; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    } 
           savm=oldm;  
           oldm=newm;  #ifdef LINMINORIGINAL
         } /* end mult */    xx=1.;
        #else
         s1=s[mw[mi][i]][i];    axs=0.0;
         s2=s[mw[mi+1][i]][i];    xxs=1.;
         bbh=(double)bh[mi][i]/(double)stepm;    do{
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      xx= xxs;
         ipmx +=1;  #endif
         sw += weight[i];      ax=0.;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       } /* end of wave */      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
     } /* end of individual */      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
   }else if (mle==4){  /* ml=4 no inter-extrapolation */      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
       for(mi=1; mi<= wav[i]-1; mi++){      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
         for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef LINMINORIGINAL
           for (j=1;j<=nlstate+ndeath;j++){  #else
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (fx != fx){
             savm[ii][j]=(ii==j ? 1.0 : 0.0);                          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
           }                          printf("|");
         for(d=0; d<dh[mi][i]; d++){                          fprintf(ficlog,"|");
           newm=savm;  #ifdef DEBUGLINMIN
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
           for (kk=1; kk<=cptcovage;kk++) {  #endif
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }    }while(fx != fx && xxs > 1.e-5);
          #endif
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUGLINMIN
           savm=oldm;    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
           oldm=newm;    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
         } /* end mult */  #endif
        #ifdef LINMINORIGINAL
         s1=s[mw[mi][i]][i];  #else
         s2=s[mw[mi+1][i]][i];          if(fb == fx){ /* Flat function in the direction */
         if( s2 > nlstate){                  xmin=xx;
           lli=log(out[s1][s2] - savm[s1][s2]);      *flat=1;
         }else{          }else{
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */      *flat=0;
         }  #endif
         ipmx +=1;                  /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
         sw += weight[i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */    /* fmin = f(p[j] + xmin * xi[j]) */
       } /* end of wave */    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     } /* end of individual */    /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */  #ifdef DEBUG
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
       for(mi=1; mi<= wav[i]-1; mi++){  #endif
         for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef LINMINORIGINAL
           for (j=1;j<=nlstate+ndeath;j++){  #else
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);                          }
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  #endif
           }  #ifdef DEBUGLINMIN
         for(d=0; d<dh[mi][i]; d++){    printf("linmin end ");
           newm=savm;    fprintf(ficlog,"linmin end ");
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #endif
           for (kk=1; kk<=cptcovage;kk++) {    for (j=1;j<=n;j++) { 
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #ifdef LINMINORIGINAL
           }      xi[j] *= xmin; 
          #else
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUGLINMIN
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      if(xxs <1.0)
           savm=oldm;        printf(" before xi[%d]=%12.8f", j,xi[j]);
           oldm=newm;  #endif
         } /* end mult */      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
        #ifdef DEBUGLINMIN
         s1=s[mw[mi][i]][i];      if(xxs <1.0)
         s2=s[mw[mi+1][i]][i];        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  #endif
         ipmx +=1;  #endif
         sw += weight[i];      p[j] += xi[j]; /* Parameters values are updated accordingly */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    } 
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  #ifdef DEBUGLINMIN
       } /* end of wave */    printf("\n");
     } /* end of individual */    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   } /* End of if */    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for (j=1;j<=n;j++) { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   return -l;      if(j % ncovmodel == 0){
 }        printf("\n");
         fprintf(ficlog,"\n");
 /*************** log-likelihood *************/      }
 double funcone( double *x)    }
 {  #else
   /* Same as likeli but slower because of a lot of printf and if */  #endif
   int i, ii, j, k, mi, d, kk;    free_vector(xicom,1,n); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free_vector(pcom,1,n); 
   double **out;  } 
   double lli; /* Individual log likelihood */  
   double llt;  
   int s1, s2;  /*************** powell ************************/
   double bbh, survp;  /*
   /*extern weight */  Minimization of a function func of n variables. Input consists of an initial starting point
   /* We are differentiating ll according to initial status */  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   /*for(i=1;i<imx;i++)  such that failure to decrease by more than this amount on one iteration signals doneness. On
     printf(" %d\n",s[4][i]);  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   */  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   cov[1]=1.;   */
   #ifdef LINMINORIGINAL
   for(k=1; k<=nlstate; k++) ll[k]=0.;  #else
           int *flatdir; /* Function is vanishing in that direction */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){          int flat=0, flatd=0; /* Function is vanishing in that direction */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #endif
     for(mi=1; mi<= wav[i]-1; mi++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (ii=1;ii<=nlstate+ndeath;ii++)              double (*func)(double [])) 
         for (j=1;j<=nlstate+ndeath;j++){  { 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef LINMINORIGINAL
           savm[ii][j]=(ii==j ? 1.0 : 0.0);   void linmin(double p[], double xi[], int n, double *fret, 
         }                double (*func)(double [])); 
       for(d=0; d<dh[mi][i]; d++){  #else 
         newm=savm;   void linmin(double p[], double xi[], int n, double *fret, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                                                   double (*func)(double []),int *flat); 
         for (kk=1; kk<=cptcovage;kk++) {  #endif
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int i,ibig,j; 
         }    double del,t,*pt,*ptt,*xit;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double directest;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double fp,fptt;
         savm=oldm;    double *xits;
         oldm=newm;    int niterf, itmp;
       } /* end mult */  #ifdef LINMINORIGINAL
        #else
       s1=s[mw[mi][i]][i];  
       s2=s[mw[mi+1][i]][i];    flatdir=ivector(1,n); 
       bbh=(double)bh[mi][i]/(double)stepm;    for (j=1;j<=n;j++) flatdir[j]=0; 
       /* bias is positive if real duration  #endif
        * is higher than the multiple of stepm and negative otherwise.  
        */    pt=vector(1,n); 
       if( s2 > nlstate && (mle <5) ){  /* Jackson */    ptt=vector(1,n); 
         lli=log(out[s1][s2] - savm[s1][s2]);    xit=vector(1,n); 
       } else if  (s2==-2) {    xits=vector(1,n); 
         for (j=1,survp=0. ; j<=nlstate; j++)    *fret=(*func)(p); 
           survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
         lli= log(survp);    rcurr_time = time(NULL);  
       }else if (mle==1){    for (*iter=1;;++(*iter)) { 
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */      fp=(*fret); /* From former iteration or initial value */
       } else if(mle==2){      ibig=0; 
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */      del=0.0; 
       } else if(mle==3){  /* exponential inter-extrapolation */      rlast_time=rcurr_time;
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */      /* (void) gettimeofday(&curr_time,&tzp); */
       } else if (mle==4){  /* mle=4 no inter-extrapolation */      rcurr_time = time(NULL);  
         lli=log(out[s1][s2]); /* Original formula */      curr_time = *localtime(&rcurr_time);
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
         lli=log(out[s1][s2]); /* Original formula */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       } /* End of if */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       ipmx +=1;      for (i=1;i<=n;i++) {
       sw += weight[i];        printf(" %d %.12f",i, p[i]);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        fprintf(ficlog," %d %.12lf",i, p[i]);
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        fprintf(ficrespow," %.12lf", p[i]);
       if(globpr){      }
         fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\      printf("\n");
  %11.6f %11.6f %11.6f ", \      fprintf(ficlog,"\n");
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],      fprintf(ficrespow,"\n");fflush(ficrespow);
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);      if(*iter <=3){
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){        tml = *localtime(&rcurr_time);
           llt +=ll[k]*gipmx/gsw;        strcpy(strcurr,asctime(&tml));
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);        rforecast_time=rcurr_time; 
         }        itmp = strlen(strcurr);
         fprintf(ficresilk," %10.6f\n", -llt);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }                                  strcurr[itmp-1]='\0';
     } /* end of wave */        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   } /* end of individual */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        for(niterf=10;niterf<=30;niterf+=10){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */                                  rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                                  forecast_time = *localtime(&rforecast_time);
   if(globpr==0){ /* First time we count the contributions and weights */                                  strcpy(strfor,asctime(&forecast_time));
     gipmx=ipmx;                                  itmp = strlen(strfor);
     gsw=sw;                                  if(strfor[itmp-1]=='\n')
   }                                          strfor[itmp-1]='\0';
   return -l;                                  printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
 }                                  fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }
       }
 /*************** function likelione ***********/      for (i=1;i<=n;i++) { /* For each direction i */
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
 {        fptt=(*fret); 
   /* This routine should help understanding what is done with  #ifdef DEBUG
      the selection of individuals/waves and        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
      to check the exact contribution to the likelihood.        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
      Plotting could be done.  #endif
    */        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   int k;        fprintf(ficlog,"%d",i);fflush(ficlog);
   #ifdef LINMINORIGINAL
   if(*globpri !=0){ /* Just counts and sums, no printings */        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     strcpy(fileresilk,"ilk");  #else
     strcat(fileresilk,fileres);        linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {                          flatdir[i]=flat; /* Function is vanishing in that direction i */
       printf("Problem with resultfile: %s\n", fileresilk);  #endif
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);                          /* Outputs are fret(new point p) p is updated and xit rescaled */
     }        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");                                  /* because that direction will be replaced unless the gain del is small */
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");                                  /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */                                  /* Unless the n directions are conjugate some gain in the determinant may be obtained */
     for(k=1; k<=nlstate; k++)                                  /* with the new direction. */
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);                                  del=fabs(fptt-(*fret)); 
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");                                  ibig=i; 
   }        } 
   #ifdef DEBUG
   *fretone=(*funcone)(p);        printf("%d %.12e",i,(*fret));
   if(*globpri !=0){        fprintf(ficlog,"%d %.12e",i,(*fret));
     fclose(ficresilk);        for (j=1;j<=n;j++) {
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));                                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     fflush(fichtm);                                  printf(" x(%d)=%.12e",j,xit[j]);
   }                                  fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   return;        }
 }        for(j=1;j<=n;j++) {
                                   printf(" p(%d)=%.12e",j,p[j]);
                                   fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 /*********** Maximum Likelihood Estimation ***************/        }
         printf("\n");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        fprintf(ficlog,"\n");
 {  #endif
   int i,j, iter;      } /* end loop on each direction i */
   double **xi;      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   double fret;      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
   double fretone; /* Only one call to likelihood */      /* New value of last point Pn is not computed, P(n-1) */
   /*  char filerespow[FILENAMELENGTH];*/        for(j=1;j<=n;j++) {
   xi=matrix(1,npar,1,npar);                                  if(flatdir[j] >0){
   for (i=1;i<=npar;i++)                                          printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
     for (j=1;j<=npar;j++)                                          fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
       xi[i][j]=(i==j ? 1.0 : 0.0);                                  }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");                                  /* printf("\n"); */
   strcpy(filerespow,"pow");                                  /* fprintf(ficlog,"\n"); */
   strcat(filerespow,fileres);                          }
   if((ficrespow=fopen(filerespow,"w"))==NULL) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     printf("Problem with resultfile: %s\n", filerespow);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
   }        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
   fprintf(ficrespow,"# Powell\n# iter -2*LL");        /* decreased of more than 3.84  */
   for (i=1;i<=nlstate;i++)        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
     for(j=1;j<=nlstate+ndeath;j++)        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);        /* By adding 10 parameters more the gain should be 18.31 */
   fprintf(ficrespow,"\n");                          
         /* Starting the program with initial values given by a former maximization will simply change */
   powell(p,xi,npar,ftol,&iter,&fret,func);        /* the scales of the directions and the directions, because the are reset to canonical directions */
         /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
   free_matrix(xi,1,npar,1,npar);        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   fclose(ficrespow);  #ifdef DEBUG
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        int k[2],l;
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        k[0]=1;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 /**** Computes Hessian and covariance matrix ***/          printf(" %.12e",p[j]);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          fprintf(ficlog," %.12e",p[j]);
 {        }
   double  **a,**y,*x,pd;        printf("\n");
   double **hess;        fprintf(ficlog,"\n");
   int i, j,jk;        for(l=0;l<=1;l++) {
   int *indx;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;          }
   void ludcmp(double **a, int npar, int *indx, double *d) ;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double gompertz(double p[]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   hess=matrix(1,npar,1,npar);        }
   #endif
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  #ifdef LINMINORIGINAL
   for (i=1;i<=npar;i++){  #else
     printf("%d",i);fflush(stdout);        free_ivector(flatdir,1,n); 
     fprintf(ficlog,"%d",i);fflush(ficlog);  #endif
            free_vector(xit,1,n); 
      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);        free_vector(xits,1,n); 
            free_vector(ptt,1,n); 
     /*  printf(" %f ",p[i]);        free_vector(pt,1,n); 
         printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/        return; 
   }      } /* enough precision */ 
        if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=1;i<=npar;i++) {      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
     for (j=1;j<=npar;j++)  {        ptt[j]=2.0*p[j]-pt[j]; 
       if (j>i) {        xit[j]=p[j]-pt[j]; 
         printf(".%d%d",i,j);fflush(stdout);        pt[j]=p[j]; 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      } 
         hess[i][j]=hessij(p,delti,i,j,func,npar);      fptt=(*func)(ptt); /* f_3 */
          #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
         hess[j][i]=hess[i][j];                      if (*iter <=4) {
         /*printf(" %lf ",hess[i][j]);*/  #else
       }  #endif
     }  #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
   }  #else
   printf("\n");      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
   fprintf(ficlog,"\n");  #endif
         /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
          /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   a=matrix(1,npar,1,npar);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   y=matrix(1,npar,1,npar);        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
   x=vector(1,npar);        /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
   indx=ivector(1,npar);        /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
   for (i=1;i<=npar;i++)        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        /*  Even if f3 <f1, directest can be negative and t >0 */
   ludcmp(a,npar,indx,&pd);        /* mu² and del² are equal when f3=f1 */
                           /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
   for (j=1;j<=npar;j++) {                          /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
     for (i=1;i<=npar;i++) x[i]=0;                          /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
     x[j]=1;                          /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
     lubksb(a,npar,indx,x);  #ifdef NRCORIGINAL
     for (i=1;i<=npar;i++){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
       matcov[i][j]=x[i];  #else
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
   }        t= t- del*SQR(fp-fptt);
   #endif
   printf("\n#Hessian matrix#\n");        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
   fprintf(ficlog,"\n#Hessian matrix#\n");  #ifdef DEBUG
   for (i=1;i<=npar;i++) {        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
     for (j=1;j<=npar;j++) {        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       printf("%.3e ",hess[i][j]);        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       fprintf(ficlog,"%.3e ",hess[i][j]);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     }        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     printf("\n");               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     fprintf(ficlog,"\n");        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   }        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
   /* Recompute Inverse */  #ifdef POWELLORIGINAL
   for (i=1;i<=npar;i++)        if (t < 0.0) { /* Then we use it for new direction */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  #else
   ludcmp(a,npar,indx,&pd);        if (directest*t < 0.0) { /* Contradiction between both tests */
                                   printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   /*  printf("\n#Hessian matrix recomputed#\n");          printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
           fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   for (j=1;j<=npar;j++) {          fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     for (i=1;i<=npar;i++) x[i]=0;        } 
     x[j]=1;        if (directest < 0.0) { /* Then we use it for new direction */
     lubksb(a,npar,indx,x);  #endif
     for (i=1;i<=npar;i++){  #ifdef DEBUGLINMIN
       y[i][j]=x[i];          printf("Before linmin in direction P%d-P0\n",n);
       printf("%.3e ",y[i][j]);          for (j=1;j<=n;j++) {
       fprintf(ficlog,"%.3e ",y[i][j]);            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     }            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     printf("\n");            if(j % ncovmodel == 0){
     fprintf(ficlog,"\n");              printf("\n");
   }              fprintf(ficlog,"\n");
   */            }
           }
   free_matrix(a,1,npar,1,npar);  #endif
   free_matrix(y,1,npar,1,npar);  #ifdef LINMINORIGINAL
   free_vector(x,1,npar);          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
   free_ivector(indx,1,npar);  #else
   free_matrix(hess,1,npar,1,npar);          linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
           flatdir[i]=flat; /* Function is vanishing in that direction i */
   #endif
 }          
   #ifdef DEBUGLINMIN
 /*************** hessian matrix ****************/          for (j=1;j<=n;j++) { 
 double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
 {            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
   int i;            if(j % ncovmodel == 0){
   int l=1, lmax=20;              printf("\n");
   double k1,k2;              fprintf(ficlog,"\n");
   double p2[NPARMAX+1];            }
   double res;          }
   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;          for (j=1;j<=n;j++) { 
   int k=0,kmax=10;            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
   double l1;            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
           }
   fx=func(x);  #ifdef LINMINORIGINAL
   for (i=1;i<=npar;i++) p2[i]=x[i];  #else
   for(l=0 ; l <=lmax; l++){          for (j=1, flatd=0;j<=n;j++) {
     l1=pow(10,l);            if(flatdir[j]>0)
     delts=delt;              flatd++;
     for(k=1 ; k <kmax; k=k+1){          }
       delt = delta*(l1*k);          if(flatd >0){
       p2[theta]=x[theta] +delt;            printf("%d flat directions\n",flatd);
       k1=func(p2)-fx;            fprintf(ficlog,"%d flat directions\n",flatd);
       p2[theta]=x[theta]-delt;            for (j=1;j<=n;j++) { 
       k2=func(p2)-fx;              if(flatdir[j]>0){
       /*res= (k1-2.0*fx+k2)/delt/delt; */                printf("%d ",j);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */                fprintf(ficlog,"%d ",j);
                    }
 #ifdef DEBUG            }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            printf("\n");
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            fprintf(ficlog,"\n");
 #endif          }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #endif
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         k=kmax;          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }          
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  #ifdef DEBUG
         k=kmax; l=lmax*10.;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for(j=1;j<=n;j++){
         delts=delt;            printf(" %lf",xit[j]);
       }            fprintf(ficlog," %lf",xit[j]);
     }          }
   }          printf("\n");
   delti[theta]=delts;          fprintf(ficlog,"\n");
   return res;  #endif
          } /* end of t or directest negative */
 }  #ifdef POWELLNOF3INFF1TEST
   #else
 double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)        } /* end if (fptt < fp)  */
 {  #endif
   int i;  #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
   int l=1, l1, lmax=20;      } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
   double k1,k2,k3,k4,res,fx;  #else
   double p2[NPARMAX+1];  #endif
   int k;                  } /* loop iteration */ 
   } 
   fx=func(x);    
   for (k=1; k<=2; k++) {  /**** Prevalence limit (stable or period prevalence)  ****************/
     for (i=1;i<=npar;i++) p2[i]=x[i];    
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    {
     k1=func(p2)-fx;      /* Computes the prevalence limit in each live state at age x and for covariate combination ij 
           (and selected quantitative values in nres)
     p2[thetai]=x[thetai]+delti[thetai]/k;         by left multiplying the unit
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;         matrix by transitions matrix until convergence is reached with precision ftolpl */
     k2=func(p2)-fx;    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
      /* Wx is row vector: population in state 1, population in state 2, population dead */
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* or prevalence in state 1, prevalence in state 2, 0 */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    /* newm is the matrix after multiplications, its rows are identical at a factor */
     k3=func(p2)-fx;    /* Initial matrix pimij */
      /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
     p2[thetai]=x[thetai]-delti[thetai]/k;    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /*  0,                   0                  , 1} */
     k4=func(p2)-fx;    /*
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */     * and after some iteration: */
 #ifdef DEBUG    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /*  0,                   0                  , 1} */
 #endif    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
   }    /* {0.51571254859325999, 0.4842874514067399, */
   return res;    /*  0.51326036147820708, 0.48673963852179264} */
 }    /* If we start from prlim again, prlim tends to a constant matrix */
       
 /************** Inverse of matrix **************/    int i, ii,j,k;
 void ludcmp(double **a, int n, int *indx, double *d)    double *min, *max, *meandiff, maxmax,sumnew=0.;
 {    /* double **matprod2(); */ /* test */
   int i,imax,j,k;    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
   double big,dum,sum,temp;    double **newm;
   double *vv;    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
      int ncvloop=0;
   vv=vector(1,n);    
   *d=1.0;    min=vector(1,nlstate);
   for (i=1;i<=n;i++) {    max=vector(1,nlstate);
     big=0.0;    meandiff=vector(1,nlstate);
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;          /* Starting with matrix unity */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for (ii=1;ii<=nlstate+ndeath;ii++)
     vv[i]=1.0/big;      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {    
       sum=a[i][j];    cov[1]=1.;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    
       a[i][j]=sum;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     big=0.0;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     for (i=j;i<=n;i++) {      ncvloop++;
       sum=a[i][j];      newm=savm;
       for (k=1;k<j;k++)      /* Covariates have to be included here again */
         sum -= a[i][k]*a[k][j];      cov[2]=agefin;
       a[i][j]=sum;      if(nagesqr==1)
       if ( (dum=vv[i]*fabs(sum)) >= big) {        cov[3]= agefin*agefin;;
         big=dum;      for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
         imax=i;                          /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
       }        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
     }        /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
     if (j != imax) {      }
       for (k=1;k<=n;k++) {      for (k=1; k<=nsq;k++) { /* For single varying covariates only */
         dum=a[imax][k];                          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
         a[imax][k]=a[j][k];        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
         a[j][k]=dum;        /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
       }      }
       *d = -(*d);      for (k=1; k<=cptcovage;k++){
       vv[imax]=vv[j];        if(Dummy[Tvar[Tage[k]]]){
     }          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
     indx[j]=imax;        } else{
     if (a[j][j] == 0.0) a[j][j]=TINY;          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
     if (j != n) {        }
       dum=1.0/(a[j][j]);        /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      }
     }      for (k=1; k<=cptcovprod;k++){ /*  */
   }        /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
   free_vector(vv,1,n);  /* Doesn't work */        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
 ;      }
 }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 void lubksb(double **a, int n, int *indx, double b[])      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 {      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   int i,ii=0,ip,j;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   double sum;                  /* age and covariate values of ij are in 'cov' */
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   for (i=1;i<=n;i++) {      
     ip=indx[i];      savm=oldm;
     sum=b[ip];      oldm=newm;
     b[ip]=b[i];  
     if (ii)      for(j=1; j<=nlstate; j++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        max[j]=0.;
     else if (sum) ii=i;        min[j]=1.;
     b[i]=sum;      }
   }      for(i=1;i<=nlstate;i++){
   for (i=n;i>=1;i--) {        sumnew=0;
     sum=b[i];        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        for(j=1; j<=nlstate; j++){ 
     b[i]=sum/a[i][i];          prlim[i][j]= newm[i][j]/(1-sumnew);
   }          max[j]=FMAX(max[j],prlim[i][j]);
 }          min[j]=FMIN(min[j],prlim[i][j]);
         }
 void pstamp(FILE *fichier)      }
 {  
   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);      maxmax=0.;
 }      for(j=1; j<=nlstate; j++){
         meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
 /************ Frequencies ********************/        maxmax=FMAX(maxmax,meandiff[j]);
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
 {  /* Some frequencies */      } /* j loop */
        *ncvyear= (int)age- (int)agefin;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
   int first;      if(maxmax < ftolpl){
   double ***freq; /* Frequencies */        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   double *pp, **prop;        free_vector(min,1,nlstate);
   double pos,posprop, k2, dateintsum=0,k2cpt=0;        free_vector(max,1,nlstate);
   char fileresp[FILENAMELENGTH];        free_vector(meandiff,1,nlstate);
          return prlim;
   pp=vector(1,nlstate);      }
   prop=matrix(1,nlstate,iagemin,iagemax+3);    } /* age loop */
   strcpy(fileresp,"p");      /* After some age loop it doesn't converge */
   strcat(fileresp,fileres);    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   if((ficresp=fopen(fileresp,"w"))==NULL) {  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    free_vector(min,1,nlstate);
     exit(0);    free_vector(max,1,nlstate);
   }    free_vector(meandiff,1,nlstate);
   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);    
   j1=0;    return prlim; /* should not reach here */
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /**** Back Prevalence limit (stable or period prevalence)  ****************/
   first=1;  
    /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
   for(k1=1; k1<=j;k1++){   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
     for(i1=1; i1<=ncodemax[k1];i1++){   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)
       j1++;  {
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
         scanf("%d", i);*/       matrix by transitions matrix until convergence is reached with precision ftolpl */
       for (i=-5; i<=nlstate+ndeath; i++)      /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
         for (jk=-5; jk<=nlstate+ndeath; jk++)      /* Wx is row vector: population in state 1, population in state 2, population dead */
           for(m=iagemin; m <= iagemax+3; m++)    /* or prevalence in state 1, prevalence in state 2, 0 */
             freq[i][jk][m]=0;    /* newm is the matrix after multiplications, its rows are identical at a factor */
     /* Initial matrix pimij */
     for (i=1; i<=nlstate; i++)      /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
       for(m=iagemin; m <= iagemax+3; m++)    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
         prop[i][m]=0;    /*  0,                   0                  , 1} */
          /*
       dateintsum=0;     * and after some iteration: */
       k2cpt=0;    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
       for (i=1; i<=imx; i++) {    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
         bool=1;    /*  0,                   0                  , 1} */
         if  (cptcovn>0) {    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
           for (z1=1; z1<=cptcoveff; z1++)    /* {0.51571254859325999, 0.4842874514067399, */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    /*  0.51326036147820708, 0.48673963852179264} */
               bool=0;    /* If we start from prlim again, prlim tends to a constant matrix */
         }  
         if (bool==1){    int i, ii,j,k;
           for(m=firstpass; m<=lastpass; m++){    double *min, *max, *meandiff, maxmax,sumnew=0.;
             k2=anint[m][i]+(mint[m][i]/12.);    /* double **matprod2(); */ /* test */
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    double **out, cov[NCOVMAX+1], **bmij();
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    double **newm;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    double         **dnewm, **doldm, **dsavm;  /* for use */
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    double         **oldm, **savm;  /* for use */
               if (m<lastpass) {  
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];    int ncvloop=0;
               }    
                  min=vector(1,nlstate);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    max=vector(1,nlstate);
                 dateintsum=dateintsum+k2;    meandiff=vector(1,nlstate);
                 k2cpt++;  
               }          dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
               /*}*/          oldm=oldms; savm=savms;
           }  
         }          /* Starting with matrix unity */
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
                          for (j=1;j<=nlstate+ndeath;j++){
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       pstamp(ficresp);      }
       if  (cptcovn>0) {    
         fprintf(ficresp, "\n#********** Variable ");    cov[1]=1.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficresp, "**********\n#");    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
       for(i=1; i<=nlstate;i++)    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
       fprintf(ficresp, "\n");      ncvloop++;
            newm=savm; /* oldm should be kept from previous iteration or unity at start */
       for(i=iagemin; i <= iagemax+3; i++){                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
         if(i==iagemax+3){      /* Covariates have to be included here again */
           fprintf(ficlog,"Total");      cov[2]=agefin;
         }else{      if(nagesqr==1)
           if(first==1){        cov[3]= agefin*agefin;;
             first=0;      for (k=1; k<=cptcovn;k++) {
             printf("See log file for details...\n");        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
           }        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
           fprintf(ficlog,"Age %d", i);        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
         }      }
         for(jk=1; jk <=nlstate ; jk++){      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (k=1; k<=cptcovprod;k++) /* Useless */
             pp[jk] += freq[jk][m][i];        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         }        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=-1, pos=0; m <=0 ; m++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             pos += freq[jk][m][i];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           if(pp[jk]>=1.e-10){      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
             if(first==1){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
             }                  /* ij should be linked to the correct index of cov */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);                  /* age and covariate values ij are in 'cov', but we need to pass
           }else{                   * ij for the observed prevalence at age and status and covariate
             if(first==1)                   * number:  prevacurrent[(int)agefin][ii][ij]
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                   */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
           }      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
         }      out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
       savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){      oldm=newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for(j=1; j<=nlstate; j++){
             pp[jk] += freq[jk][m][i];        max[j]=0.;
         }              min[j]=1.;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      }
           pos += pp[jk];      for(j=1; j<=nlstate; j++){ 
           posprop += prop[jk][i];        for(i=1;i<=nlstate;i++){
         }          /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
         for(jk=1; jk <=nlstate ; jk++){          bprlim[i][j]= newm[i][j];
           if(pos>=1.e-5){          max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
             if(first==1)          min[i]=FMIN(min[i],bprlim[i][j]);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
           }else{                  
             if(first==1)      maxmax=0.;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for(i=1; i<=nlstate; i++){
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
           }        maxmax=FMAX(maxmax,meandiff[i]);
           if( i <= iagemax){        /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
             if(pos>=1.e-5){      } /* j loop */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);      *ncvyear= -( (int)age- (int)agefin);
               /*probs[i][jk][j1]= pp[jk]/pos;*/      /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      if(maxmax < ftolpl){
             }        /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
             else        free_vector(min,1,nlstate);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);        free_vector(max,1,nlstate);
           }        free_vector(meandiff,1,nlstate);
         }        return bprlim;
              }
         for(jk=-1; jk <=nlstate+ndeath; jk++)    } /* age loop */
           for(m=-1; m <=nlstate+ndeath; m++)      /* After some age loop it doesn't converge */
             if(freq[jk][m][i] !=0 ) {    printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
             if(first==1)  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    free_vector(min,1,nlstate);
             }    free_vector(max,1,nlstate);
         if(i <= iagemax)    free_vector(meandiff,1,nlstate);
           fprintf(ficresp,"\n");    
         if(first==1)    return bprlim; /* should not reach here */
           printf("Others in log...\n");  }
         fprintf(ficlog,"\n");  
       }  /*************** transition probabilities ***************/ 
     }  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   dateintmean=dateintsum/k2cpt;  {
      /* According to parameters values stored in x and the covariate's values stored in cov,
   fclose(ficresp);       computes the probability to be observed in state j being in state i by appying the
   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);       model to the ncovmodel covariates (including constant and age).
   free_vector(pp,1,nlstate);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   /* End of Freq */       ncth covariate in the global vector x is given by the formula:
 }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
 /************ Prevalence ********************/       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 {         Outputs ps[i][j] the probability to be observed in j being in j according to
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      in each health status at the date of interview (if between dateprev1 and dateprev2).    */
      We still use firstpass and lastpass as another selection.    double s1, lnpijopii;
   */    /*double t34;*/
      int i,j, nc, ii, jj;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */    for(i=1; i<= nlstate; i++){
   double *pp, **prop;      for(j=1; j<i;j++){
   double pos,posprop;        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double  y2; /* in fractional years */          /*lnpijopii += param[i][j][nc]*cov[nc];*/
   int iagemin, iagemax;          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   iagemin= (int) agemin;        }
   iagemax= (int) agemax;        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*pp=vector(1,nlstate);*/        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   prop=matrix(1,nlstate,iagemin,iagemax+3);      }
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/      for(j=i+1; j<=nlstate+ndeath;j++){
   j1=0;        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   j=cptcoveff;          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
          }
   for(k1=1; k1<=j;k1++){        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     for(i1=1; i1<=ncodemax[k1];i1++){      }
       j1++;    }
          
       for (i=1; i<=nlstate; i++)      for(i=1; i<= nlstate; i++){
         for(m=iagemin; m <= iagemax+3; m++)      s1=0;
           prop[i][m]=0.0;      for(j=1; j<i; j++){
              s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for (i=1; i<=imx; i++) { /* Each individual */        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         bool=1;      }
         if  (cptcovn>0) {      for(j=i+1; j<=nlstate+ndeath; j++){
           for (z1=1; z1<=cptcoveff; z1++)        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               bool=0;      }
         }      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         if (bool==1) {      ps[i][i]=1./(s1+1.);
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/      /* Computing other pijs */
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */      for(j=1; j<i; j++)
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */        ps[i][j]= exp(ps[i][j])*ps[i][i];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      for(j=i+1; j<=nlstate+ndeath; j++)
               if(agev[m][i]==1) agev[m][i]=iagemax+2;        ps[i][j]= exp(ps[i][j])*ps[i][i];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
               if (s[m][i]>0 && s[m][i]<=nlstate) {    } /* end i */
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/    
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                 prop[s[m][i]][iagemax+3] += weight[i];      for(jj=1; jj<= nlstate+ndeath; jj++){
               }        ps[ii][jj]=0;
             }        ps[ii][ii]=1;
           } /* end selection of waves */      }
         }    }
       }    
       for(i=iagemin; i <= iagemax+3; i++){      
            /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           posprop += prop[jk][i];    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         }    /*   } */
     /*   printf("\n "); */
         for(jk=1; jk <=nlstate ; jk++){        /* } */
           if( i <=  iagemax){    /* printf("\n ");printf("%lf ",cov[2]);*/
             if(posprop>=1.e-5){    /*
               probs[i][jk][j1]= prop[jk][i]/posprop;      for(i=1; i<= npar; i++) printf("%f ",x[i]);
             }                  goto end;*/
           }    return ps;
         }/* end jk */  }
       }/* end i */  
     } /* end i1 */  /*************** backward transition probabilities ***************/ 
   } /* end k1 */  
     /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
   /*free_vector(pp,1,nlstate);*/   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);  {
 }  /* End of prevalence */    /* Computes the backward probability at age agefin and covariate ij
      * and returns in **ps as well as **bmij.
 /************* Waves Concatenation ***************/     */
     int i, ii, j,k;
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    
 {    double **out, **pmij();
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double sumnew=0.;
      Death is a valid wave (if date is known).    double agefin;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]    double **dnewm, **dsavm, **doldm;
      and mw[mi+1][i]. dh depends on stepm.    double **bbmij;
      */    
     doldm=ddoldms; /* global pointers */
   int i, mi, m;    dnewm=ddnewms;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    dsavm=ddsavms;
      double sum=0., jmean=0.;*/    
   int first;    agefin=cov[2];
   int j, k=0,jk, ju, jl;    /* bmij *//* age is cov[2], ij is included in cov, but we need for
   double sum=0.;       the observed prevalence (with this covariate ij) */
   first=0;    dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
   jmin=1e+5;    /* We do have the matrix Px in savm  and we need pij */
   jmax=-1;    for (j=1;j<=nlstate+ndeath;j++){
   jmean=0.;      sumnew=0.; /* w1 p11 + w2 p21 only on live states */
   for(i=1; i<=imx; i++){      for (ii=1;ii<=nlstate;ii++){
     mi=0;        sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
     m=firstpass;      } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
     while(s[m][i] <= nlstate){      for (ii=1;ii<=nlstate+ndeath;ii++){
       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)        if(sumnew >= 1.e-10){
         mw[++mi][i]=m;          /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
       if(m >=lastpass)          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
         break;          /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
       else          /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
         m++;          /* }else */
     }/* end while */          doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
     if (s[m][i] > nlstate){        }else{
       mi++;     /* Death is another wave */          printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);
       /* if(mi==0)  never been interviewed correctly before death */        }
          /* Only death is a correct wave */      } /*End ii */
       mw[mi][i]=m;    } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
     }    /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
     bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
     wav[i]=mi;    /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
     if(mi==0){    /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
       nbwarn++;    /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
       if(first==0){    /* left Product of this matrix by diag matrix of prevalences (savm) */
         printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);    for (j=1;j<=nlstate+ndeath;j++){
         first=1;      for (ii=1;ii<=nlstate+ndeath;ii++){
       }        dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
       if(first==1){      }
         fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);    } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
       }    ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
     } /* end mi==0 */    /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
   } /* End individuals */    /* end bmij */
     return ps; 
   for(i=1; i<=imx; i++){  }
     for(mi=1; mi<wav[i];mi++){  /*************** transition probabilities ***************/ 
       if (stepm <=0)  
         dh[mi][i]=1;  double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       else{  {
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */    /* According to parameters values stored in x and the covariate's values stored in cov,
           if (agedc[i] < 2*AGESUP) {       computes the probability to be observed in state j being in state i by appying the
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);       model to the ncovmodel covariates (including constant and age).
             if(j==0) j=1;  /* Survives at least one month after exam */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             else if(j<0){       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
               nberr++;       ncth covariate in the global vector x is given by the formula:
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
               j=1; /* Temporary Dangerous patch */       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);       Outputs ps[i][j] the probability to be observed in j being in j according to
             }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
             k=k+1;    */
             if (j >= jmax){    double s1, lnpijopii;
               jmax=j;    /*double t34;*/
               ijmax=i;    int i,j, nc, ii, jj;
             }  
             if (j <= jmin){    for(i=1; i<= nlstate; i++){
               jmin=j;      for(j=1; j<i;j++){
               ijmin=i;        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             }          /*lnpijopii += param[i][j][nc]*cov[nc];*/
             sum=sum+j;          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/          /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/        }
           }        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }        /*        printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         else{      }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for(j=i+1; j<=nlstate+ndeath;j++){
 /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           k=k+1;          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           if (j >= jmax) {          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
             jmax=j;        }
             ijmax=i;        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           }      }
           else if (j <= jmin){    }
             jmin=j;    
             ijmin=i;    for(i=1; i<= nlstate; i++){
           }      s1=0;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      for(j=1; j<i; j++){
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           if(j<0){        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             nberr++;      }
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);      for(j=i+1; j<=nlstate+ndeath; j++){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           }        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           sum=sum+j;      }
         }      /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         jk= j/stepm;      ps[i][i]=1./(s1+1.);
         jl= j -jk*stepm;      /* Computing other pijs */
         ju= j -(jk+1)*stepm;      for(j=1; j<i; j++)
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */        ps[i][j]= exp(ps[i][j])*ps[i][i];
           if(jl==0){      for(j=i+1; j<=nlstate+ndeath; j++)
             dh[mi][i]=jk;        ps[i][j]= exp(ps[i][j])*ps[i][i];
             bh[mi][i]=0;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           }else{ /* We want a negative bias in order to only have interpolation ie    } /* end i */
                   * at the price of an extra matrix product in likelihood */    
             dh[mi][i]=jk+1;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
             bh[mi][i]=ju;      for(jj=1; jj<= nlstate+ndeath; jj++){
           }        ps[ii][jj]=0;
         }else{        ps[ii][ii]=1;
           if(jl <= -ju){      }
             dh[mi][i]=jk;    }
             bh[mi][i]=jl;       /* bias is positive if real duration    /* Added for backcast */ /* Transposed matrix too */
                                  * is higher than the multiple of stepm and negative otherwise.    for(jj=1; jj<= nlstate+ndeath; jj++){
                                  */      s1=0.;
           }      for(ii=1; ii<= nlstate+ndeath; ii++){
           else{        s1+=ps[ii][jj];
             dh[mi][i]=jk+1;      }
             bh[mi][i]=ju;      for(ii=1; ii<= nlstate; ii++){
           }        ps[ii][jj]=ps[ii][jj]/s1;
           if(dh[mi][i]==0){      }
             dh[mi][i]=1; /* At least one step */    }
             bh[mi][i]=ju; /* At least one step */    /* Transposition */
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/    for(jj=1; jj<= nlstate+ndeath; jj++){
           }      for(ii=jj; ii<= nlstate+ndeath; ii++){
         } /* end if mle */        s1=ps[ii][jj];
       }        ps[ii][jj]=ps[jj][ii];
     } /* end wave */        ps[jj][ii]=s1;
   }      }
   jmean=sum/k;    }
   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);    /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);    /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
  }    /*    printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     /*   } */
 /*********** Tricode ****************************/    /*   printf("\n "); */
 void tricode(int *Tvar, int **nbcode, int imx)    /* } */
 {    /* printf("\n ");printf("%lf ",cov[2]);*/
      /*
   int Ndum[20],ij=1, k, j, i, maxncov=19;      for(i=1; i<= npar; i++) printf("%f ",x[i]);
   int cptcode=0;      goto end;*/
   cptcoveff=0;    return ps;
    }
   for (k=0; k<maxncov; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   /**************** Product of 2 matrices ******************/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
                                modality*/  {
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       Ndum[ij]++; /*store the modality */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /* in, b, out are matrice of pointers which should have been initialized 
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable       before: only the contents of out is modified. The function returns
                                        Tvar[j]. If V=sex and male is 0 and       a pointer to pointers identical to out */
                                        female is 1, then  cptcode=1.*/    int i, j, k;
     }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++){
     for (i=0; i<=cptcode; i++) {        out[i][k]=0.;
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */        for(j=ncl; j<=nch; j++)
     }          out[i][k] +=in[i][j]*b[j][k];
       }
     ij=1;    return out;
     for (i=1; i<=ncodemax[j]; i++) {  }
       for (k=0; k<= maxncov; k++) {  
         if (Ndum[k] != 0) {  
           nbcode[Tvar[j]][ij]=k;  /************* Higher Matrix Product ***************/
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */  
            double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
           ij++;  {
         }    /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
         if (ij > ncodemax[j]) break;       'nhstepm*hstepm*stepm' months (i.e. until
       }         age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
   }         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
  for (k=0; k< maxncov; k++) Ndum[k]=0;       for the memory).
        Model is determined by parameters x and covariates have to be 
  for (i=1; i<=ncovmodel-2; i++) {       included manually here. 
    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/  
    ij=Tvar[i];       */
    Ndum[ij]++;  
  }    int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
  ij=1;    double **newm;
  for (i=1; i<= maxncov; i++) {    double agexact;
    if((Ndum[i]!=0) && (i<=ncovcol)){    double agebegin, ageend;
      Tvaraff[ij]=i; /*For printing */  
      ij++;    /* Hstepm could be zero and should return the unit matrix */
    }    for (i=1;i<=nlstate+ndeath;i++)
  }      for (j=1;j<=nlstate+ndeath;j++){
          oldm[i][j]=(i==j ? 1.0 : 0.0);
  cptcoveff=ij-1; /*Number of simple covariates*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /*********** Health Expectancies ****************/    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )        newm=savm;
         /* Covariates have to be included here again */
 {        cov[1]=1.;
   /* Health expectancies, no variances */        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;        cov[2]=agexact;
   double age, agelim, hf;        if(nagesqr==1)
   double ***p3mat;          cov[3]= agexact*agexact;
   double eip;        for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                           /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
   pstamp(ficreseij);          cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");          /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
   fprintf(ficreseij,"# Age");        }
   for(i=1; i<=nlstate;i++){        for (k=1; k<=nsq;k++) { /* For single varying covariates only */
     for(j=1; j<=nlstate;j++){          /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
       fprintf(ficreseij," e%1d%1d ",i,j);          cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
     }          /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
     fprintf(ficreseij," e%1d. ",i);        }
   }        for (k=1; k<=cptcovage;k++){
   fprintf(ficreseij,"\n");          if(Dummy[Tvar[Tage[k]]]){
             cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
            } else{
   if(estepm < stepm){            cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }          /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months        for (k=1; k<=cptcovprod;k++){ /*  */
    * This is mainly to measure the difference between two models: for example          /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
    * if stepm=24 months pijx are given only every 2 years and by summing them          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
    * we are calculating an estimate of the Life Expectancy assuming a linear        }
    * progression in between and thus overestimating or underestimating according        /* for (k=1; k<=cptcovn;k++)  */
    * to the curvature of the survival function. If, for the same date, we        /*        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
    * to compare the new estimate of Life expectancy with the same linear        /*        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
    * hypothesis. A more precise result, taking into account a more precise        /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
    * curvature will be obtained if estepm is as small as stepm. */        /*        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
         
   /* For example we decided to compute the life expectancy with the smallest unit */        
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
      nhstepm is the number of hstepm from age to agelim        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      nstepm is the number of stepm from age to agelin.                          /* right multiplication of oldm by the current matrix */
      Look at hpijx to understand the reason of that which relies in memory size        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      and note for a fixed period like estepm months */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /* if((int)age == 70){ */
      survival function given by stepm (the optimization length). Unfortunately it        /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
      means that if the survival funtion is printed only each two years of age and if        /*        for(i=1; i<=nlstate+ndeath; i++) { */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        /*          printf("%d pmmij ",i); */
      results. So we changed our mind and took the option of the best precision.        /*          for(j=1;j<=nlstate+ndeath;j++) { */
   */        /*            printf("%f ",pmmij[i][j]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /*          } */
         /*          printf(" oldm "); */
   agelim=AGESUP;        /*          for(j=1;j<=nlstate+ndeath;j++) { */
   /* If stepm=6 months */        /*            printf("%f ",oldm[i][j]); */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        /*          } */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        /*          printf("\n"); */
            /*        } */
 /* nhstepm age range expressed in number of stepm */        /* } */
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);        savm=oldm;
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */        oldm=newm;
   /* if (stepm >= YEARM) hstepm=1;*/      }
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for(i=1; i<=nlstate+ndeath; i++)
   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1;j<=nlstate+ndeath;j++) {
                                   po[i][j][h]=newm[i][j];
   for (age=bage; age<=fage; age ++){                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
       /*printf("h=%d ",h);*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);      } /* end h */
              /*     printf("\n H=%d \n",h); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    return po;
      }
     printf("%d|",(int)age);fflush(stdout);  
     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  /************* Higher Back Matrix Product ***************/
      /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
   double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
     /* Computing expectancies */  {
     for(i=1; i<=nlstate;i++)    /* Computes the transition matrix starting at age 'age' over
       for(j=1; j<=nlstate;j++)       'nhstepm*hstepm*stepm' months (i.e. until
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;       nhstepm*hstepm matrices.
                 Output is stored in matrix po[i][j][h] for h every 'hstepm' step
           /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/       (typically every 2 years instead of every month which is too big
        for the memory).
         }       Model is determined by parameters x and covariates have to be
           included manually here.
     fprintf(ficreseij,"%3.0f",age );  
     for(i=1; i<=nlstate;i++){    */
       eip=0;  
       for(j=1; j<=nlstate;j++){    int i, j, d, h, k;
         eip +=eij[i][j][(int)age];    double **out, cov[NCOVMAX+1];
         fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );    double **newm;
       }    double agexact;
       fprintf(ficreseij,"%9.4f", eip );    double agebegin, ageend;
     }    double **oldm, **savm;
     fprintf(ficreseij,"\n");  
        oldm=oldms;savm=savms;
   }    /* Hstepm could be zero and should return the unit matrix */
   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=nlstate+ndeath;i++)
   printf("\n");      for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"\n");        oldm[i][j]=(i==j ? 1.0 : 0.0);
          po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
 {        newm=savm;
   /* Covariances of health expectancies eij and of total life expectancies according        /* Covariates have to be included here again */
    to initial status i, ei. .        cov[1]=1.;
   */        agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;        /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
   double age, agelim, hf;        cov[2]=agexact;
   double ***p3matp, ***p3matm, ***varhe;        if(nagesqr==1)
   double **dnewm,**doldm;          cov[3]= agexact*agexact;
   double *xp, *xm;        for (k=1; k<=cptcovn;k++)
   double **gp, **gm;          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   double ***gradg, ***trgradg;        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   int theta;        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
           /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   double eip, vip;          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   xp=vector(1,npar);          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
   xm=vector(1,npar);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   dnewm=matrix(1,nlstate*nlstate,1,npar);                          
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);                          
          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   pstamp(ficresstdeij);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");        /* Careful transposed matrix */
   fprintf(ficresstdeij,"# Age");        /* age is in cov[2] */
   for(i=1; i<=nlstate;i++){        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
     for(j=1; j<=nlstate;j++)        /*                                                 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
     fprintf(ficresstdeij," e%1d. ",i);                     1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   }        /* if((int)age == 70){ */
   fprintf(ficresstdeij,"\n");        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
         /*        for(i=1; i<=nlstate+ndeath; i++) { */
   pstamp(ficrescveij);        /*          printf("%d pmmij ",i); */
   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");        /*          for(j=1;j<=nlstate+ndeath;j++) { */
   fprintf(ficrescveij,"# Age");        /*            printf("%f ",pmmij[i][j]); */
   for(i=1; i<=nlstate;i++)        /*          } */
     for(j=1; j<=nlstate;j++){        /*          printf(" oldm "); */
       cptj= (j-1)*nlstate+i;        /*          for(j=1;j<=nlstate+ndeath;j++) { */
       for(i2=1; i2<=nlstate;i2++)        /*            printf("%f ",oldm[i][j]); */
         for(j2=1; j2<=nlstate;j2++){        /*          } */
           cptj2= (j2-1)*nlstate+i2;        /*          printf("\n"); */
           if(cptj2 <= cptj)        /*        } */
             fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);        /* } */
         }        savm=oldm;
     }        oldm=newm;
   fprintf(ficrescveij,"\n");      }
        for(i=1; i<=nlstate+ndeath; i++)
   if(estepm < stepm){        for(j=1;j<=nlstate+ndeath;j++) {
     printf ("Problem %d lower than %d\n",estepm, stepm);          po[i][j][h]=newm[i][j];
   }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months      /*printf("h=%d ",h);*/
    * This is mainly to measure the difference between two models: for example    } /* end h */
    * if stepm=24 months pijx are given only every 2 years and by summing them    /*     printf("\n H=%d \n",h); */
    * we are calculating an estimate of the Life Expectancy assuming a linear    return po;
    * progression in between and thus overestimating or underestimating according  }
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear  #ifdef NLOPT
    * hypothesis. A more precise result, taking into account a more precise    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
    * curvature will be obtained if estepm is as small as stepm. */    double fret;
     double *xt;
   /* For example we decided to compute the life expectancy with the smallest unit */    int j;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    myfunc_data *d2 = (myfunc_data *) pd;
      nhstepm is the number of hstepm from age to agelim  /* xt = (p1-1); */
      nstepm is the number of stepm from age to agelin.    xt=vector(1,n); 
      Look at hpijx to understand the reason of that which relies in memory size    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
      survival function given by stepm (the optimization length). Unfortunately it    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
      means that if the survival funtion is printed only each two years of age and if    printf("Function = %.12lf ",fret);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
      results. So we changed our mind and took the option of the best precision.    printf("\n");
   */   free_vector(xt,1,n);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    return fret;
   }
   /* If stepm=6 months */  #endif
   /* nhstepm age range expressed in number of stepm */  
   agelim=AGESUP;  /*************** log-likelihood *************/
   nstepm=(int) rint((agelim-bage)*YEARM/stepm);  double func( double *x)
   /* Typically if 20 years nstepm = 20*12/6=40 stepm */  {
   /* if (stepm >= YEARM) hstepm=1;*/    int i, ii, j, k, mi, d, kk;
   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int ioffset=0;
      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **out;
   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double lli; /* Individual log likelihood */
   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    int s1, s2;
   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
   gp=matrix(0,nhstepm,1,nlstate*nlstate);    double bbh, survp;
   gm=matrix(0,nhstepm,1,nlstate*nlstate);    long ipmx;
     double agexact;
   for (age=bage; age<=fage; age ++){    /*extern weight */
     /* We are differentiating ll according to initial status */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    */
   
     /* Computing  Variances of health expectancies */    ++countcallfunc;
     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to  
        decrease memory allocation */    cov[1]=1.;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    ioffset=0;
         xm[i] = x[i] - (i==theta ?delti[theta]:0);    if(mle==1){
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);          /* Computes the values of the ncovmodel covariates of the model
       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);             depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
             Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       for(j=1; j<= nlstate; j++){           to be observed in j being in i according to the model.
         for(i=1; i<=nlstate; i++){        */
           for(h=0; h<=nhstepm-1; h++){        ioffset=2+nagesqr+cptcovage;
             gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;     /* Fixed */
             gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;        for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
           }          cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
         }        }
       }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                 is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       for(ij=1; ij<= nlstate*nlstate; ij++)           has been calculated etc */
         for(h=0; h<=nhstepm-1; h++){        /* For an individual i, wav[i] gives the number of effective waves */
           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];        /* We compute the contribution to Likelihood of each effective transition
         }           mw[mi][i] is real wave of the mi th effectve wave */
     }/* End theta */        /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
               s2=s[mw[mi+1][i]][i];
               And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
     for(h=0; h<=nhstepm-1; h++)           But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
       for(j=1; j<=nlstate*nlstate;j++)           meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
         for(theta=1; theta <=npar; theta++)        */
           trgradg[h][j][theta]=gradg[h][theta][j];        for(mi=1; mi<= wav[i]-1; mi++){
              for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
             cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i];
      for(ij=1;ij<=nlstate*nlstate;ij++)          }
       for(ji=1;ji<=nlstate*nlstate;ji++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         varhe[ij][ji][(int)age] =0.;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      printf("%d|",(int)age);fflush(stdout);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            }
      for(h=0;h<=nhstepm-1;h++){          for(d=0; d<dh[mi][i]; d++){
       for(k=0;k<=nhstepm-1;k++){            newm=savm;
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);            cov[2]=agexact;
         for(ij=1;ij<=nlstate*nlstate;ij++)            if(nagesqr==1)
           for(ji=1;ji<=nlstate*nlstate;ji++)              cov[3]= agexact*agexact;  /* Should be changed here */
             varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
     }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     /* Computing expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);              savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       for(j=1; j<=nlstate;j++)          } /* end mult */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          
           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                    /* But now since version 0.9 we anticipate for bias at large stepm.
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
         }           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
     fprintf(ficresstdeij,"%3.0f",age );           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     for(i=1; i<=nlstate;i++){           * probability in order to take into account the bias as a fraction of the way
       eip=0.;                                   * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       vip=0.;                                   * -stepm/2 to stepm/2 .
       for(j=1; j<=nlstate;j++){                                   * For stepm=1 the results are the same as for previous versions of Imach.
         eip += eij[i][j][(int)age];                                   * For stepm > 1 the results are less biased than in previous versions. 
         for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */                                   */
           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];          s1=s[mw[mi][i]][i];
         fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));          /* bias bh is positive if real duration
     }           * is higher than the multiple of stepm and negative otherwise.
     fprintf(ficresstdeij,"\n");           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     fprintf(ficrescveij,"%3.0f",age );          if( s2 > nlstate){ 
     for(i=1; i<=nlstate;i++)            /* i.e. if s2 is a death state and if the date of death is known 
       for(j=1; j<=nlstate;j++){               then the contribution to the likelihood is the probability to 
         cptj= (j-1)*nlstate+i;               die between last step unit time and current  step unit time, 
         for(i2=1; i2<=nlstate;i2++)               which is also equal to probability to die before dh 
           for(j2=1; j2<=nlstate;j2++){               minus probability to die before dh-stepm . 
             cptj2= (j2-1)*nlstate+i2;               In version up to 0.92 likelihood was computed
             if(cptj2 <= cptj)               as if date of death was unknown. Death was treated as any other
               fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);               health state: the date of the interview describes the actual state
           }               and not the date of a change in health state. The former idea was
       }               to consider that at each interview the state was recorded
     fprintf(ficrescveij,"\n");               (healthy, disable or death) and IMaCh was corrected; but when we
                   introduced the exact date of death then we should have modified
   }               the contribution of an exact death to the likelihood. This new
   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);               contribution is smaller and very dependent of the step unit
   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);               stepm. It is no more the probability to die between last interview
   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);               and month of death but the probability to survive from last
   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);               interview up to one month before death multiplied by the
   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               probability to die within a month. Thanks to Chris
   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               Jackson for correcting this bug.  Former versions increased
   printf("\n");               mortality artificially. The bad side is that we add another loop
   fprintf(ficlog,"\n");               which slows down the processing. The difference can be up to 10%
                lower mortality.
   free_vector(xm,1,npar);            */
   free_vector(xp,1,npar);            /* If, at the beginning of the maximization mostly, the
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);               cumulative probability or probability to be dead is
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);               constant (ie = 1) over time d, the difference is equal to
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);               0.  out[s1][3] = savm[s1][3]: probability, being at state
 }               s1 at precedent wave, to be dead a month before current
                wave is equal to probability, being at state s1 at
 /************ Variance ******************/               precedent wave, to be dead at mont of the current
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])               wave. Then the observed probability (that this person died)
 {               is null according to current estimated parameter. In fact,
   /* Variance of health expectancies */               it should be very low but not zero otherwise the log go to
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/               infinity.
   /* double **newm;*/            */
   double **dnewm,**doldm;  /* #ifdef INFINITYORIGINAL */
   double **dnewmp,**doldmp;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   int i, j, nhstepm, hstepm, h, nstepm ;  /* #else */
   int k, cptcode;  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   double *xp;  /*          lli=log(mytinydouble); */
   double **gp, **gm;  /* for var eij */  /*        else */
   double ***gradg, ***trgradg; /*for var eij */  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   double **gradgp, **trgradgp; /* for var p point j */  /* #endif */
   double *gpp, *gmp; /* for var p point j */            lli=log(out[s1][s2] - savm[s1][s2]);
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            
   double ***p3mat;          } else if  ( s2==-1 ) { /* alive */
   double age,agelim, hf;            for (j=1,survp=0. ; j<=nlstate; j++) 
   double ***mobaverage;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int theta;            /*survp += out[s1][j]; */
   char digit[4];            lli= log(survp);
   char digitp[25];          }
           else if  (s2==-4) { 
   char fileresprobmorprev[FILENAMELENGTH];            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   if(popbased==1){            lli= log(survp); 
     if(mobilav!=0)          } 
       strcpy(digitp,"-populbased-mobilav-");          else if  (s2==-5) { 
     else strcpy(digitp,"-populbased-nomobil-");            for (j=1,survp=0. ; j<=2; j++)  
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   else            lli= log(survp); 
     strcpy(digitp,"-stablbased-");          } 
           else{
   if (mobilav!=0) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){          } 
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          /*if(lli ==000.0)*/
     }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
           sw += weight[i];
   strcpy(fileresprobmorprev,"prmorprev");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   sprintf(digit,"%-d",ij);          /* if (lli < log(mytinydouble)){ */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */          /* } */
   strcat(fileresprobmorprev,fileres);        } /* end of wave */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {      } /* end of individual */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    }  else if(mle==2){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            for (j=1;j<=nlstate+ndeath;j++){
   pstamp(ficresprobmorprev);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          for(d=0; d<=dh[mi][i]; d++){
     fprintf(ficresprobmorprev," p.%-d SE",j);            newm=savm;
     for(i=1; i<=nlstate;i++)            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);            cov[2]=agexact;
   }              if(nagesqr==1)
   fprintf(ficresprobmorprev,"\n");              cov[3]= agexact*agexact;
   fprintf(ficgp,"\n# Routine varevsij");            for (kk=1; kk<=cptcovage;kk++) {
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            }
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /*   } */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            savm=oldm;
   pstamp(ficresvij);            oldm=newm;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");          } /* end mult */
   if(popbased==1)        
     fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");          s1=s[mw[mi][i]][i];
   else          s2=s[mw[mi+1][i]][i];
     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");          bbh=(double)bh[mi][i]/(double)stepm; 
   fprintf(ficresvij,"# Age");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for(i=1; i<=nlstate;i++)          ipmx +=1;
     for(j=1; j<=nlstate;j++)          sw += weight[i];
       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvij,"\n");        } /* end of wave */
       } /* end of individual */
   xp=vector(1,npar);    }  else if(mle==3){  /* exponential inter-extrapolation */
   dnewm=matrix(1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   doldm=matrix(1,nlstate,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   gpp=vector(nlstate+1,nlstate+ndeath);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   gmp=vector(nlstate+1,nlstate+ndeath);            }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   if(estepm < stepm){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf ("Problem %d lower than %d\n",estepm, stepm);            cov[2]=agexact;
   }            if(nagesqr==1)
   else  hstepm=estepm;                cov[3]= agexact*agexact;
   /* For example we decided to compute the life expectancy with the smallest unit */            for (kk=1; kk<=cptcovage;kk++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
      nhstepm is the number of hstepm from age to agelim            }
      nstepm is the number of stepm from age to agelin.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Look at hpijx to understand the reason of that which relies in memory size                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and note for a fixed period like k years */            savm=oldm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            oldm=newm;
      survival function given by stepm (the optimization length). Unfortunately it          } /* end mult */
      means that if the survival funtion is printed every two years of age and if        
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          s1=s[mw[mi][i]][i];
      results. So we changed our mind and took the option of the best precision.          s2=s[mw[mi+1][i]][i];
   */          bbh=(double)bh[mi][i]/(double)stepm; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   agelim = AGESUP;          ipmx +=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          sw += weight[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } /* end of wave */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of individual */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     gp=matrix(0,nhstepm,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gm=matrix(0,nhstepm,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     for(theta=1; theta <=npar; theta++){            for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(d=0; d<dh[mi][i]; d++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if (popbased==1) {            cov[2]=agexact;
         if(mobilav ==0){            if(nagesqr==1)
           for(i=1; i<=nlstate;i++)              cov[3]= agexact*agexact;
             prlim[i][i]=probs[(int)age][i][ij];            for (kk=1; kk<=cptcovage;kk++) {
         }else{ /* mobilav */              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
           for(i=1; i<=nlstate;i++)            }
             prlim[i][i]=mobaverage[(int)age][i][ij];          
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(h=0; h<=nhstepm; h++){          } /* end mult */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          if( s2 > nlstate){ 
       /* This for computing probability of death (h=1 means            lli=log(out[s1][s2] - savm[s1][s2]);
          computed over hstepm matrices product = hstepm*stepm months)          } else if  ( s2==-1 ) { /* alive */
          as a weighted average of prlim.            for (j=1,survp=0. ; j<=nlstate; j++) 
       */              survp += out[s1][j];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            lli= log(survp);
         for(i=1,gpp[j]=0.; i<= nlstate; i++)          }else{
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }              }
       /* end probability of death */          ipmx +=1;
           sw += weight[i];
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } /* end of wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
       if (popbased==1) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if(mobilav ==0){        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
           for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
             prlim[i][i]=probs[(int)age][i][ij];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }else{ /* mobilav */            for (j=1;j<=nlstate+ndeath;j++){
           for(i=1; i<=nlstate;i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             prlim[i][i]=mobaverage[(int)age][i][ij];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
       }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
       for(j=1; j<= nlstate; j++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            cov[2]=agexact;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            if(nagesqr==1)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              cov[3]= agexact*agexact;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
       /* This for computing probability of death (h=1 means            }
          computed over hstepm matrices product = hstepm*stepm months)          
          as a weighted average of prlim.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=nlstate+1;j<=nlstate+ndeath;j++){            savm=oldm;
         for(i=1,gmp[j]=0.; i<= nlstate; i++)            oldm=newm;
          gmp[j] += prlim[i][i]*p3mat[i][j][1];          } /* end mult */
       }            
       /* end probability of death */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
       for(j=1; j<= nlstate; j++) /* vareij */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(h=0; h<=nhstepm; h++){          ipmx +=1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        } /* end of wave */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      } /* end of individual */
       }    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     } /* End theta */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    return -l;
   }
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)  /*************** log-likelihood *************/
         for(theta=1; theta <=npar; theta++)  double funcone( double *x)
           trgradg[h][j][theta]=gradg[h][theta][j];  {
     /* Same as func but slower because of a lot of printf and if */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    int i, ii, j, k, mi, d, kk;
       for(theta=1; theta <=npar; theta++)    int ioffset=0;
         trgradgp[j][theta]=gradgp[theta][j];    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      double **out;
     double lli; /* Individual log likelihood */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double llt;
     for(i=1;i<=nlstate;i++)    int s1, s2;
       for(j=1;j<=nlstate;j++)    int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
         vareij[i][j][(int)age] =0.;  
     double bbh, survp;
     for(h=0;h<=nhstepm;h++){    double agexact;
       for(k=0;k<=nhstepm;k++){    double agebegin, ageend;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    /*extern weight */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* We are differentiating ll according to initial status */
         for(i=1;i<=nlstate;i++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for(j=1;j<=nlstate;j++)    /*for(i=1;i<imx;i++) 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      printf(" %d\n",s[4][i]);
       }    */
     }    cov[1]=1.;
    
     /* pptj */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    ioffset=0;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      ioffset=2+nagesqr+cptcovage;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      /* Fixed */
         varppt[j][i]=doldmp[j][i];      /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
     /* end ppptj */      /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
     /*  x centered again */      for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
    /*    cov[2+6]=covar[Tvar[6]][i];  */
     if (popbased==1) {  /*    cov[2+6]=covar[2][i]; V2  */
       if(mobilav ==0){  /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
         for(i=1; i<=nlstate;i++)  /*    cov[2+7]=covar[Tvar[7]][i];  */
           prlim[i][i]=probs[(int)age][i][ij];  /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
       }else{ /* mobilav */  /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
         for(i=1; i<=nlstate;i++)  /*    cov[2+9]=covar[Tvar[9]][i];  */
           prlim[i][i]=mobaverage[(int)age][i][ij];  /*    cov[2+9]=covar[1][i]; V1  */
       }      }
     }      /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
                    /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
     /* This for computing probability of death (h=1 means      /* } */
        computed over hstepm (estepm) matrices product = hstepm*stepm months)      /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
        as a weighted average of prlim.      /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
     */      /* } */
     for(j=nlstate+1;j<=nlstate+ndeath;j++){      
       for(i=1,gmp[j]=0.;i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
     }          /* Wave varying (but not age varying) */
     /* end probability of death */        for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
                                   cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i];
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                          }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));                                  /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
       for(i=1; i<=nlstate;i++){                                  /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);                                  /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
       }                                  /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
     }                                  /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
     fprintf(ficresprobmorprev,"\n");        /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
                           /*      iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
     fprintf(ficresvij,"%.0f ",age );                          /*      /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
     for(i=1; i<=nlstate;i++)                          /*      cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
       for(j=1; j<=nlstate;j++){        /* } */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for (ii=1;ii<=nlstate+ndeath;ii++)
       }                                  for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficresvij,"\n");                                          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gp,0,nhstepm,1,nlstate);                                          savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gm,0,nhstepm,1,nlstate);                                  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
   } /* End age */        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
   free_vector(gpp,nlstate+1,nlstate+ndeath);                                  /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   free_vector(gmp,nlstate+1,nlstate+ndeath);                                          and mw[mi+1][i]. dh depends on stepm.*/
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                                  newm=savm;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                                  agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                                  cov[2]=agexact;
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                                  if(nagesqr==1)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");                                          cov[3]= agexact*agexact;
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */                                  for (kk=1; kk<=cptcovage;kk++) {
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */                                          cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */                                  }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));                                  /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));                                  /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));                                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));                                                                                   1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);                                  /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);                                  /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
 */                                  savm=oldm;
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */                                  oldm=newm;
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        } /* end mult */
         
   free_vector(xp,1,npar);        s1=s[mw[mi][i]][i];
   free_matrix(doldm,1,nlstate,1,nlstate);        s2=s[mw[mi+1][i]][i];
   free_matrix(dnewm,1,nlstate,1,npar);        /* if(s2==-1){ */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        /*        /\* exit(1); *\/ */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        /* } */
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        bbh=(double)bh[mi][i]/(double)stepm; 
   fclose(ficresprobmorprev);        /* bias is positive if real duration
   fflush(ficgp);         * is higher than the multiple of stepm and negative otherwise.
   fflush(fichtm);         */
 }  /* end varevsij */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
                                   lli=log(out[s1][s2] - savm[s1][s2]);
 /************ Variance of prevlim ******************/        } else if  ( s2==-1 ) { /* alive */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])                                  for (j=1,survp=0. ; j<=nlstate; j++) 
 {                                          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* Variance of prevalence limit */                                  lli= log(survp);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/        }else if (mle==1){
   double **newm;                                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double **dnewm,**doldm;        } else if(mle==2){
   int i, j, nhstepm, hstepm;                                  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   int k, cptcode;        } else if(mle==3){  /* exponential inter-extrapolation */
   double *xp;                                  lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double *gp, *gm;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double **gradg, **trgradg;                                  lli=log(out[s1][s2]); /* Original formula */
   double age,agelim;        } else{  /* mle=0 back to 1 */
   int theta;                                  lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                                    /*lli=log(out[s1][s2]); */ /* Original formula */
   pstamp(ficresvpl);        } /* End of if */
   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");        ipmx +=1;
   fprintf(ficresvpl,"# Age");        sw += weight[i];
   for(i=1; i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficresvpl," %1d-%1d",i,i);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficresvpl,"\n");        if(globpr){
                                   fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
   xp=vector(1,npar);   %11.6f %11.6f %11.6f ", \
   dnewm=matrix(1,nlstate,1,npar);                                                                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
   doldm=matrix(1,nlstate,1,nlstate);                                                                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                                    for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   hstepm=1*YEARM; /* Every year of age */                                          llt +=ll[k]*gipmx/gsw;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */                                          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   agelim = AGESUP;                                  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                                  fprintf(ficresilk," %10.6f\n", -llt);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        }
     if (stepm >= YEARM) hstepm=1;          } /* end of wave */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  } /* end of individual */
     gradg=matrix(1,npar,1,nlstate);  for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     gp=vector(1,nlstate);  /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     gm=vector(1,nlstate);  l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   if(globpr==0){ /* First time we count the contributions and weights */
     for(theta=1; theta <=npar; theta++){          gipmx=ipmx;
       for(i=1; i<=npar; i++){ /* Computes gradient */          gsw=sw;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  return -l;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  
      /*************** function likelione ***********/
       for(i=1; i<=npar; i++) /* Computes gradient */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /* This routine should help understanding what is done with 
       for(i=1;i<=nlstate;i++)       the selection of individuals/waves and
         gm[i] = prlim[i][i];       to check the exact contribution to the likelihood.
        Plotting could be done.
       for(i=1;i<=nlstate;i++)     */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int k;
     } /* End theta */  
     if(*globpri !=0){ /* Just counts and sums, no printings */
     trgradg =matrix(1,nlstate,1,npar);      strcpy(fileresilk,"ILK_"); 
       strcat(fileresilk,fileresu);
     for(j=1; j<=nlstate;j++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(theta=1; theta <=npar; theta++)        printf("Problem with resultfile: %s\n", fileresilk);
         trgradg[j][theta]=gradg[theta][j];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
     for(i=1;i<=nlstate;i++)      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       varpl[i][(int)age] =0.;      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for(k=1; k<=nlstate; k++) 
     for(i=1;i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    *fretone=(*funcone)(p);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    if(*globpri !=0){
     fprintf(ficresvpl,"\n");      fclose(ficresilk);
     free_vector(gp,1,nlstate);      if (mle ==0)
     free_vector(gm,1,nlstate);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
     free_matrix(gradg,1,npar,1,nlstate);      else if(mle >=1)
     free_matrix(trgradg,1,nlstate,1,npar);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
   } /* End age */      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       
   free_vector(xp,1,npar);        
   free_matrix(doldm,1,nlstate,1,npar);      for (k=1; k<= nlstate ; k++) {
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
   <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
 }      }
       fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
 /************ Variance of one-step probabilities  ******************/  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
 {  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
   int i, j=0,  i1, k1, l1, t, tj;      fflush(fichtm);
   int k2, l2, j1,  z1;    }
   int k=0,l, cptcode;    return;
   int first=1, first1;  }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;  
   double *xp;  /*********** Maximum Likelihood Estimation ***************/
   double *gp, *gm;  
   double **gradg, **trgradg;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double **mu;  {
   double age,agelim, cov[NCOVMAX];    int i,j, iter=0;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double **xi;
   int theta;    double fret;
   char fileresprob[FILENAMELENGTH];    double fretone; /* Only one call to likelihood */
   char fileresprobcov[FILENAMELENGTH];    /*  char filerespow[FILENAMELENGTH];*/
   char fileresprobcor[FILENAMELENGTH];  
   #ifdef NLOPT
   double ***varpij;    int creturn;
     nlopt_opt opt;
   strcpy(fileresprob,"prob");    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   strcat(fileresprob,fileres);    double *lb;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double minf; /* the minimum objective value, upon return */
     printf("Problem with resultfile: %s\n", fileresprob);    double * p1; /* Shifted parameters from 0 instead of 1 */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    myfunc_data dinst, *d = &dinst;
   }  #endif
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);  
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    xi=matrix(1,npar,1,npar);
     printf("Problem with resultfile: %s\n", fileresprobcov);    for (i=1;i<=npar;i++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   strcpy(fileresprobcor,"probcor");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcat(fileresprobcor,fileres);    strcpy(filerespow,"POW_"); 
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    strcat(filerespow,fileres);
     printf("Problem with resultfile: %s\n", fileresprobcor);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (i=1;i<=nlstate;i++)
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for(j=1;j<=nlstate+ndeath;j++)
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(ficrespow,"\n");
   pstamp(ficresprob);  #ifdef POWELL
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficresprob,"# Age");  #endif
   pstamp(ficresprobcov);  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  #ifdef NLOPT
   fprintf(ficresprobcov,"# Age");  #ifdef NEWUOA
   pstamp(ficresprobcor);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  #else
   fprintf(ficresprobcor,"# Age");    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   #endif
     lb=vector(0,npar-1);
   for(i=1; i<=nlstate;i++)    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     for(j=1; j<=(nlstate+ndeath);j++){    nlopt_set_lower_bounds(opt, lb);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    nlopt_set_initial_step1(opt, 0.1);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     }      d->function = func;
  /* fprintf(ficresprob,"\n");    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   fprintf(ficresprobcov,"\n");    nlopt_set_min_objective(opt, myfunc, d);
   fprintf(ficresprobcor,"\n");    nlopt_set_xtol_rel(opt, ftol);
  */    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
  xp=vector(1,npar);      printf("nlopt failed! %d\n",creturn); 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    else {
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
   first=1;      iter=1; /* not equal */
   fprintf(ficgp,"\n# Routine varprob");    }
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    nlopt_destroy(opt);
   fprintf(fichtm,"\n");  #endif
     free_matrix(xi,1,npar,1,npar);
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);    fclose(ficrespow);
   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   file %s<br>\n",optionfilehtmcov);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
 and drawn. It helps understanding how is the covariance between two incidences.\  
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  }
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \  
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \  /**** Computes Hessian and covariance matrix ***/
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 standard deviations wide on each axis. <br>\  {
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    double  **a,**y,*x,pd;
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\    /* double **hess; */
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");    int i, j;
     int *indx;
   cov[1]=1;  
   tj=cptcoveff;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
   j1=0;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for(t=1; t<=tj;t++){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(i1=1; i1<=ncodemax[t];i1++){    double gompertz(double p[]);
       j1++;    /* hess=matrix(1,npar,1,npar); */
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");    printf("\nCalculation of the hessian matrix. Wait...\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficresprob, "**********\n#\n");    for (i=1;i<=npar;i++){
         fprintf(ficresprobcov, "\n#********** Variable ");      printf("%d-",i);fflush(stdout);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficlog,"%d-",i);fflush(ficlog);
         fprintf(ficresprobcov, "**********\n#\n");     
               hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         fprintf(ficgp, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /*  printf(" %f ",p[i]);
         fprintf(ficgp, "**********\n#\n");          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
            }
            
         fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    for (i=1;i<=npar;i++) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=npar;j++)  {
         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        if (j>i) { 
                  printf(".%d-%d",i,j);fflush(stdout);
         fprintf(ficresprobcor, "\n#********** Variable ");              fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
         fprintf(ficresprobcor, "**********\n#");              
       }          hess[j][i]=hess[i][j];    
                /*printf(" %lf ",hess[i][j]);*/
       for (age=bage; age<=fage; age ++){        }
         cov[2]=age;      }
         for (k=1; k<=cptcovn;k++) {    }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    printf("\n");
         }    fprintf(ficlog,"\n");
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    a=matrix(1,npar,1,npar);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    y=matrix(1,npar,1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    x=vector(1,npar);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    indx=ivector(1,npar);
        for (i=1;i<=npar;i++)
         for(theta=1; theta <=npar; theta++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(i=1; i<=npar; i++)    ludcmp(a,npar,indx,&pd);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);  
              for (j=1;j<=npar;j++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
                x[j]=1;
           k=0;      lubksb(a,npar,indx,x);
           for(i=1; i<= (nlstate); i++){      for (i=1;i<=npar;i++){ 
             for(j=1; j<=(nlstate+ndeath);j++){        matcov[i][j]=x[i];
               k=k+1;      }
               gp[k]=pmmij[i][j];    }
             }  
           }    printf("\n#Hessian matrix#\n");
              fprintf(ficlog,"\n#Hessian matrix#\n");
           for(i=1; i<=npar; i++)    for (i=1;i<=npar;i++) { 
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);      for (j=1;j<=npar;j++) { 
            printf("%.6e ",hess[i][j]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficlog,"%.6e ",hess[i][j]);
           k=0;      }
           for(i=1; i<=(nlstate); i++){      printf("\n");
             for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"\n");
               k=k+1;    }
               gm[k]=pmmij[i][j];  
             }    /* printf("\n#Covariance matrix#\n"); */
           }    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
          /* for (i=1;i<=npar;i++) {  */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    /*   for (j=1;j<=npar;j++) {  */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];      /*     printf("%.6e ",matcov[i][j]); */
         }    /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
     /*   } */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    /*   printf("\n"); */
           for(theta=1; theta <=npar; theta++)    /*   fprintf(ficlog,"\n"); */
             trgradg[j][theta]=gradg[theta][j];    /* } */
          
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    /* Recompute Inverse */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    /* for (i=1;i<=npar;i++) */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /* ludcmp(a,npar,indx,&pd); */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    /*  printf("\n#Hessian matrix recomputed#\n"); */
   
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /* for (j=1;j<=npar;j++) { */
            /*   for (i=1;i<=npar;i++) x[i]=0; */
         k=0;    /*   x[j]=1; */
         for(i=1; i<=(nlstate); i++){    /*   lubksb(a,npar,indx,x); */
           for(j=1; j<=(nlstate+ndeath);j++){    /*   for (i=1;i<=npar;i++){  */
             k=k+1;    /*     y[i][j]=x[i]; */
             mu[k][(int) age]=pmmij[i][j];    /*     printf("%.3e ",y[i][j]); */
           }    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
         }    /*   } */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    /*   printf("\n"); */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    /*   fprintf(ficlog,"\n"); */
             varpij[i][j][(int)age] = doldm[i][j];    /* } */
   
         /*printf("\n%d ",(int)age);    /* Verifying the inverse matrix */
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  #ifdef DEBUGHESS
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
           }*/     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
      fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);    for (j=1;j<=npar;j++) {
         fprintf(ficresprobcor,"\n%d ",(int)age);      for (i=1;i<=npar;i++){ 
         printf("%.2f ",y[i][j]);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficlog,"%.2f ",y[i][j]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      printf("\n");
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficlog,"\n");
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    }
         }  #endif
         i=0;  
         for (k=1; k<=(nlstate);k++){    free_matrix(a,1,npar,1,npar);
           for (l=1; l<=(nlstate+ndeath);l++){    free_matrix(y,1,npar,1,npar);
             i=i++;    free_vector(x,1,npar);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    free_ivector(indx,1,npar);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /* free_matrix(hess,1,npar,1,npar); */
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  }
             }  
           }  /*************** hessian matrix ****************/
         }/* end of loop for state */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       } /* end of loop for age */  { /* Around values of x, computes the function func and returns the scales delti and hessian */
     int i;
       /* Confidence intervalle of pij  */    int l=1, lmax=20;
       /*    double k1,k2, res, fx;
         fprintf(ficgp,"\nset noparametric;unset label");    double p2[MAXPARM+1]; /* identical to x */
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    int k=0,kmax=10;
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double l1;
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    fx=func(x);
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    for (i=1;i<=npar;i++) p2[i]=x[i];
       */    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       l1=pow(10,l);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      delts=delt;
       first1=1;      for(k=1 ; k <kmax; k=k+1){
       for (k2=1; k2<=(nlstate);k2++){        delt = delta*(l1*k);
         for (l2=1; l2<=(nlstate+ndeath);l2++){        p2[theta]=x[theta] +delt;
           if(l2==k2) continue;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           j=(k2-1)*(nlstate+ndeath)+l2;        p2[theta]=x[theta]-delt;
           for (k1=1; k1<=(nlstate);k1++){        k2=func(p2)-fx;
             for (l1=1; l1<=(nlstate+ndeath);l1++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
               if(l1==k1) continue;        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
               i=(k1-1)*(nlstate+ndeath)+l1;        
               if(i<=j) continue;  #ifdef DEBUGHESSII
               for (age=bage; age<=fage; age ++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                 if ((int)age %5==0){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  #endif
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   mu1=mu[i][(int) age]/stepm*YEARM ;          k=kmax;
                   mu2=mu[j][(int) age]/stepm*YEARM;        }
                   c12=cv12/sqrt(v1*v2);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                   /* Computing eigen value of matrix of covariance */          k=kmax; l=lmax*10;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   /* Eigen vectors */          delts=delt;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        }
                   /*v21=sqrt(1.-v11*v11); *//* error */      } /* End loop k */
                   v21=(lc1-v1)/cv12*v11;    }
                   v12=-v21;    delti[theta]=delts;
                   v22=v11;    return res; 
                   tnalp=v21/v11;    
                   if(first1==1){  }
                     first1=0;  
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                   }  {
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    int i;
                   /*printf(fignu*/    int l=1, lmax=20;
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    double k1,k2,k3,k4,res,fx;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    double p2[MAXPARM+1];
                   if(first==1){    int k, kmax=1;
                     first=0;    double v1, v2, cv12, lc1, lc2;
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    int firstime=0;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    fx=func(x);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    for (k=1; k<=kmax; k=k+10) {
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\      for (i=1;i<=npar;i++) p2[i]=x[i];
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\      p2[thetai]=x[thetai]+delti[thetai]*k;
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      k1=func(p2)-fx;
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);      p2[thetai]=x[thetai]+delti[thetai]*k;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      k2=func(p2)-fx;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      p2[thetai]=x[thetai]-delti[thetai]*k;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
                   }else{      k3=func(p2)-fx;
                     first=0;    
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);      p2[thetai]=x[thetai]-delti[thetai]*k;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      k4=func(p2)-fx;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      if(k1*k2*k3*k4 <0.){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        firstime=1;
                   }/* if first */        kmax=kmax+10;
                 } /* age mod 5 */      }
               } /* end loop age */      if(kmax >=10 || firstime ==1){
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
               first=1;        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
             } /*l12 */        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           } /* k12 */        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         } /*l1 */      }
       }/* k1 */  #ifdef DEBUGHESSIJ
     } /* loop covariates */      v1=hess[thetai][thetai];
   }      v2=hess[thetaj][thetaj];
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      cv12=res;
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      /* Computing eigen value of Hessian matrix */
   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_vector(xp,1,npar);      if ((lc2 <0) || (lc1 <0) ){
   fclose(ficresprob);        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
   fclose(ficresprobcov);        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
   fclose(ficresprobcor);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fflush(ficgp);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fflush(fichtmcov);      }
 }  #endif
     }
     return res;
 /******************* Printing html file ***********/  }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\      /* Not done yet: Was supposed to fix if not exactly at the maximum */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
                   int popforecast, int estepm ,\  /* { */
                   double jprev1, double mprev1,double anprev1, \  /*   int i; */
                   double jprev2, double mprev2,double anprev2){  /*   int l=1, lmax=20; */
   int jj1, k1, i1, cpt;  /*   double k1,k2,k3,k4,res,fx; */
   /*   double p2[MAXPARM+1]; */
    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \  /*   int k=0,kmax=10; */
 </ul>");  /*   double l1; */
    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \    
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",  /*   fx=func(x); */
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
    fprintf(fichtm,"\  /*     l1=pow(10,l); */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",  /*     delts=delt; */
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));  /*     for(k=1 ; k <kmax; k=k+1){ */
    fprintf(fichtm,"\  /*       delt = delti*(l1*k); */
  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
    fprintf(fichtm,"\  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
  - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \  /*       k1=func(p2)-fx; */
    <a href=\"%s\">%s</a> <br>\n",        
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
    fprintf(fichtm,"\  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
  - Population projections by age and states: \  /*       k2=func(p2)-fx; */
    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));        
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   /*       k3=func(p2)-fx; */
  m=cptcoveff;        
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
  jj1=0;  /*       k4=func(p2)-fx; */
  for(k1=1; k1<=m;k1++){  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
    for(i1=1; i1<=ncodemax[k1];i1++){  /* #ifdef DEBUGHESSIJ */
      jj1++;  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
      if (cptcovn > 0) {  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  /* #endif */
        for (cpt=1; cpt<=cptcoveff;cpt++)  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*      k=kmax; */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /*       } */
      }  /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
      /* Pij */  /*      k=kmax; l=lmax*10; */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \  /*       } */
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);      /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
      /* Quasi-incidences */  /*      delts=delt; */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\  /*       } */
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \  /*     } /\* End loop k *\/ */
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);  /*   } */
        /* Period (stable) prevalence in each health state */  /*   delti[theta]=delts; */
        for(cpt=1; cpt<nlstate;cpt++){  /*   return res;  */
          fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \  /* } */
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);  
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {  /************** Inverse of matrix **************/
         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \  void ludcmp(double **a, int n, int *indx, double *d) 
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  { 
      }    int i,imax,j,k; 
    } /* end i1 */    double big,dum,sum,temp; 
  }/* End k1 */    double *vv; 
  fprintf(fichtm,"</ul>");   
     vv=vector(1,n); 
     *d=1.0; 
  fprintf(fichtm,"\    for (i=1;i<=n;i++) { 
 \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\      big=0.0; 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);      for (j=1;j<=n;j++) 
         if ((temp=fabs(a[i][j])) > big) big=temp; 
  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));      vv[i]=1.0/big; 
  fprintf(fichtm,"\    } 
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",    for (j=1;j<=n;j++) { 
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
  fprintf(fichtm,"\        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",        a[i][j]=sum; 
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));      } 
  fprintf(fichtm,"\      big=0.0; 
  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \      for (i=j;i<=n;i++) { 
    <a href=\"%s\">%s</a> <br>\n</li>",        sum=a[i][j]; 
            estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));        for (k=1;k<j;k++) 
  fprintf(fichtm,"\          sum -= a[i][k]*a[k][j]; 
  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \        a[i][j]=sum; 
    <a href=\"%s\">%s</a> <br>\n</li>",        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));          big=dum; 
  fprintf(fichtm,"\          imax=i; 
  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",        } 
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));      } 
  fprintf(fichtm,"\      if (j != imax) { 
  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",        for (k=1;k<=n;k++) { 
          subdirf2(fileres,"t"),subdirf2(fileres,"t"));          dum=a[imax][k]; 
  fprintf(fichtm,"\          a[imax][k]=a[j][k]; 
  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\          a[j][k]=dum; 
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));        } 
         *d = -(*d); 
 /*  if(popforecast==1) fprintf(fichtm,"\n */        vv[imax]=vv[j]; 
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */      } 
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */      indx[j]=imax; 
 /*      <br>",fileres,fileres,fileres,fileres); */      if (a[j][j] == 0.0) a[j][j]=TINY; 
 /*  else  */      if (j != n) { 
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */        dum=1.0/(a[j][j]); 
  fflush(fichtm);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      } 
     } 
  m=cptcoveff;    free_vector(vv,1,n);  /* Doesn't work */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  ;
   } 
  jj1=0;  
  for(k1=1; k1<=m;k1++){  void lubksb(double **a, int n, int *indx, double b[]) 
    for(i1=1; i1<=ncodemax[k1];i1++){  { 
      jj1++;    int i,ii=0,ip,j; 
      if (cptcovn > 0) {    double sum; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");   
        for (cpt=1; cpt<=cptcoveff;cpt++)    for (i=1;i<=n;i++) { 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      ip=indx[i]; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      sum=b[ip]; 
      }      b[ip]=b[i]; 
      for(cpt=1; cpt<=nlstate;cpt++) {      if (ii) 
        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\      else if (sum) ii=i; 
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);        b[i]=sum; 
      }    } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    for (i=n;i>=1;i--) { 
 health expectancies in states (1) and (2): %s%d.png<br>\      sum=b[i]; 
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
    } /* end i1 */      b[i]=sum/a[i][i]; 
  }/* End k1 */    } 
  fprintf(fichtm,"</ul>");  } 
  fflush(fichtm);  
 }  void pstamp(FILE *fichier)
   {
 /******************* Gnuplot file **************/    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  }
   
   char dirfileres[132],optfileres[132];  /************ Frequencies ********************/
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
   int ng;                    int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
 /*     printf("Problem with file %s",optionfilegnuplot); */  {  /* Some frequencies */
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    
 /*   } */    int i, m, jk, j1, bool, z1,j, k, iv;
     int iind=0, iage=0;
   /*#ifdef windows */    int mi; /* Effective wave */
   fprintf(ficgp,"cd \"%s\" \n",pathc);    int first;
     /*#endif */    double ***freq; /* Frequencies */
   m=pow(2,cptcoveff);    double *meanq;
     double **meanqt;
   strcpy(dirfileres,optionfilefiname);    double *pp, **prop, *posprop, *pospropt;
   strcpy(optfileres,"vpl");    double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
  /* 1eme*/    char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
   for (cpt=1; cpt<= nlstate ; cpt ++) {    double agebegin, ageend;
    for (k1=1; k1<= m ; k1 ++) {      
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);    pp=vector(1,nlstate);
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
      fprintf(ficgp,"set xlabel \"Age\" \n\    posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
 set ylabel \"Probability\" \n\    pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
 set ter png small\n\    /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
 set size 0.65,0.65\n\    meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);    meanqt=matrix(1,lastpass,1,nqtveff);
     strcpy(fileresp,"P_");
      for (i=1; i<= nlstate ; i ++) {    strcat(fileresp,fileresu);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /*strcat(fileresphtm,fileresu);*/
        else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresp=fopen(fileresp,"w"))==NULL) {
      }      printf("Problem with prevalence resultfile: %s\n", fileresp);
      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      for (i=1; i<= nlstate ; i ++) {      exit(0);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    }
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
      for (i=1; i<= nlstate ; i ++) {      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
        else fprintf(ficgp," \%%*lf (\%%*lf)");      fflush(ficlog);
      }        exit(70); 
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));    }
    }    else{
   }      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   /*2 eme*/  <hr size=\"2\" color=\"#EC5E5E\"> \n\
    Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   for (k1=1; k1<= m ; k1 ++) {              fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);    }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
          
     for (i=1; i<= nlstate+1 ; i ++) {    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
       k=2*i;    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      fflush(ficlog);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      exit(70); 
       }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    else{
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
       for (j=1; j<= nlstate+1 ; j ++) {  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    }
       }      fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
       fprintf(ficgp,"\" t\"\" w l 0,");  
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
       for (j=1; j<= nlstate+1 ; j ++) {    j1=0;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
         else fprintf(ficgp," \%%*lf (\%%*lf)");    /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
       }      j=cptcoveff;  /* Only dummy covariates of the model */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    first=1;
   }  
      /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
   /*3eme*/       reference=low_education V1=0,V2=0
         med_educ                V1=1 V2=0, 
   for (k1=1; k1<= m ; k1 ++) {       high_educ               V1=0 V2=1
     for (cpt=1; cpt<= nlstate ; cpt ++) {       Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
       /*       k=2+nlstate*(2*cpt-2); */    */
       k=2+(nlstate+1)*(cpt-1);  
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);    for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
       fprintf(ficgp,"set ter png small\n\      posproptt=0.;
 set size 0.65,0.65\n\      /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);        scanf("%d", i);*/
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for (i=-5; i<=nlstate+ndeath; i++)  
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for (jk=-5; jk<=nlstate+ndeath; jk++)  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                                  for(m=iagemin; m <= iagemax+3; m++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                                          freq[i][jk][m]=0;
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                  
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      for (i=1; i<=nlstate; i++)  {
                for(m=iagemin; m <= iagemax+3; m++)
       */                                  prop[i][m]=0;
       for (i=1; i< nlstate ; i ++) {        posprop[i]=0;
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);        pospropt[i]=0;
         /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/      }
              /* for (z1=1; z1<= nqfveff; z1++) {   */
       }      /*   meanq[z1]+=0.; */
       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);      /*   for(m=1;m<=lastpass;m++){ */
     }      /*  meanqt[m][z1]=0.; */
   }      /*   } */
        /* } */
   /* CV preval stable (period) */                  
   for (k1=1; k1<= m ; k1 ++) {      dateintsum=0;
     for (cpt=1; cpt<=nlstate ; cpt ++) {      k2cpt=0;
       k=3;      /* For that combination of covariate j1, we count and print the frequencies in one pass */
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);      for (iind=1; iind<=imx; iind++) { /* For each individual iind */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\        bool=1;
 set ter png small\nset size 0.65,0.65\n\        if(anyvaryingduminmodel==0){ /* If All fixed covariates */
 unset log y\n\          if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);            /* for (z1=1; z1<= nqfveff; z1++) {   */
                  /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */
       for (i=1; i< nlstate ; i ++)            /* } */
         fprintf(ficgp,"+$%d",k+i+1);            for (z1=1; z1<=cptcoveff; z1++) {  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              /* if(Tvaraff[z1] ==-20){ */
                    /*   /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
       l=3+(nlstate+ndeath)*cpt;              /* }else  if(Tvaraff[z1] ==-10){ */
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);              /*   /\* sumnew+=coqvar[z1][iind]; *\/ */
       for (i=1; i< nlstate ; i ++) {              /* }else  */
         l=3+(nlstate+ndeath)*cpt;              if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
         fprintf(ficgp,"+$%d",l+i+1);                /* Tests if this individual iind responded to j1 (V4=1 V3=0) */
       }                bool=0;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
     }                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
   }                     j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                  /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
   /* proba elementaires */              } /* Onlyf fixed */
   for(i=1,jk=1; i <=nlstate; i++){            } /* end z1 */
     for(k=1; k <=(nlstate+ndeath); k++){          } /* cptcovn > 0 */
       if (k != i) {        } /* end any */
         for(j=1; j <=ncovmodel; j++){        if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          /* for(m=firstpass; m<=lastpass; m++){ */
           jk++;          for(mi=1; mi<wav[iind];mi++){ /* For that wave */
           fprintf(ficgp,"\n");            m=mw[mi][iind];
         }            if(anyvaryingduminmodel==1){ /* Some are varying covariates */
       }              for (z1=1; z1<=cptcoveff; z1++) {
     }                if( Fixed[Tmodelind[z1]]==1){
    }                  iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                   if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                    bool=0;
      for(jk=1; jk <=m; jk++) {                }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);                  if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
        if (ng==2)                    bool=0;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                  }
        else                }
          fprintf(ficgp,"\nset title \"Probability\"\n");              }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
        i=1;            /* bool =0 we keep that guy which corresponds to the combination of dummy values */
        for(k2=1; k2<=nlstate; k2++) {            if(bool==1){
          k3=i;              /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
          for(k=1; k<=(nlstate+ndeath); k++) {                 and mw[mi+1][iind]. dh depends on stepm. */
            if (k != k2){              agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
              if(ng==2)              ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              if(m >=firstpass && m <=lastpass){
              else                k2=anint[m][iind]+(mint[m][iind]/12.);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
              ij=1;                if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
              for(j=3; j <=ncovmodel; j++) {                if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                  ij++;                if (m<lastpass) {
                }                  /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                else                  /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                  if(s[m][iind]==-1)
              }                    printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
              fprintf(ficgp,")/(1");                  freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                                /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
              for(k1=1; k1 <=nlstate; k1++){                    freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                }
                ij=1;              } /* end if between passes */  
                for(j=3; j <=ncovmodel; j++){              if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                dateintsum=dateintsum+k2;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                k2cpt++;
                    ij++;                /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
                  }              }
                  else            } /* end bool 2 */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          } /* end m */
                }        } /* end bool */
                fprintf(ficgp,")");      } /* end iind = 1 to imx */
              }      /* prop[s][age] is feeded for any initial and valid live state as well as
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);         freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                  
              i=i+ncovmodel;                  
            }      /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
          } /* end k */      pstamp(ficresp);
        } /* end k2 */      /* if  (ncoveff>0) { */
      } /* end jk */      if  (cptcoveff>0) {
    } /* end ng */        fprintf(ficresp, "\n#********** Variable "); 
    fflush(ficgp);        fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
 }  /* end gnuplot */        fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++){
           fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 /*************** Moving average **************/          fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){          fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         }
   int i, cpt, cptcod;        fprintf(ficresp, "**********\n#");
   int modcovmax =1;        fprintf(ficresphtm, "**********</h3>\n");
   int mobilavrange, mob;        fprintf(ficresphtmfr, "**********</h3>\n");
   double age;        fprintf(ficlog, "\n#********** Variable "); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose        fprintf(ficlog, "**********\n");
                            a covariate has 2 modalities */      }
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */      fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
       for(i=1; i<=nlstate;i++) {
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     if(mobilav==1) mobilavrange=5; /* default */        fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
     else mobilavrange=mobilav;      }
     for (age=bage; age<=fage; age++)      fprintf(ficresp, "\n");
       for (i=1; i<=nlstate;i++)      fprintf(ficresphtm, "\n");
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                  
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];      /* Header of frequency table by age */
     /* We keep the original values on the extreme ages bage, fage and for      fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2      fprintf(ficresphtmfr,"<th>Age</th> ");
        we use a 5 terms etc. until the borders are no more concerned.      for(jk=-1; jk <=nlstate+ndeath; jk++){
     */        for(m=-1; m <=nlstate+ndeath; m++){
     for (mob=3;mob <=mobilavrange;mob=mob+2){          if(jk!=0 && m!=0)
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){            fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
         for (i=1; i<=nlstate;i++){        }
           for (cptcod=1;cptcod<=modcovmax;cptcod++){      }
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];      fprintf(ficresphtmfr, "\n");
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                  
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];      /* For each age */
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];      for(iage=iagemin; iage <= iagemax+3; iage++){
               }        fprintf(ficresphtm,"<tr>");
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;        if(iage==iagemax+1){
           }                                  fprintf(ficlog,"1");
         }                                  fprintf(ficresphtmfr,"<tr><th>0</th> ");
       }/* end age */        }else if(iage==iagemax+2){
     }/* end mob */                                  fprintf(ficlog,"0");
   }else return -1;                                  fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
   return 0;        }else if(iage==iagemax+3){
 }/* End movingaverage */                                  fprintf(ficlog,"Total");
                                   fprintf(ficresphtmfr,"<tr><th>Total</th> ");
         }else{
 /************** Forecasting ******************/                                  if(first==1){
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                                          first=0;
   /* proj1, year, month, day of starting projection                                          printf("See log file for details...\n");
      agemin, agemax range of age                                  }
      dateprev1 dateprev2 range of dates during which prevalence is computed                                  fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
      anproj2 year of en of projection (same day and month as proj1).                                  fprintf(ficlog,"Age %d", iage);
   */        }
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;        for(jk=1; jk <=nlstate ; jk++){
   int *popage;                                  for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   double agec; /* generic age */                                          pp[jk] += freq[jk][m][iage]; 
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;        for(jk=1; jk <=nlstate ; jk++){
   double ***p3mat;                                  for(m=-1, pos=0; m <=0 ; m++)
   double ***mobaverage;                                          pos += freq[jk][m][iage];
   char fileresf[FILENAMELENGTH];                                  if(pp[jk]>=1.e-10){
                                           if(first==1){
   agelim=AGESUP;                                                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                                          }
                                            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   strcpy(fileresf,"f");                                  }else{
   strcat(fileresf,fileres);                                          if(first==1)
   if((ficresf=fopen(fileresf,"w"))==NULL) {                                                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     printf("Problem with forecast resultfile: %s\n", fileresf);                                          fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                                  }
   }        }
   printf("Computing forecasting: result on file '%s' \n", fileresf);                          
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        for(jk=1; jk <=nlstate ; jk++){ 
                                   /* posprop[jk]=0; */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                                  for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
                                           pp[jk] += freq[jk][m][iage];
   if (mobilav!=0) {        } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                          
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){        for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);                                  pos += pp[jk]; /* pos is the total number of transitions until this age */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);                                  posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
     }                                                                                                                                                                          from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
   }                                  pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
                                                                                                                                                                   from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;        for(jk=1; jk <=nlstate ; jk++){
   if(estepm < stepm){                                  if(pos>=1.e-5){
     printf ("Problem %d lower than %d\n",estepm, stepm);                                          if(first==1)
   }                                                  printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   else  hstepm=estepm;                                            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                                   }else{
   hstepm=hstepm/stepm;                                          if(first==1)
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and                                                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                                fractional in yp1 */                                          fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   anprojmean=yp;                                  }
   yp2=modf((yp1*12),&yp);                                  if( iage <= iagemax){
   mprojmean=yp;                                          if(pos>=1.e-5){
   yp1=modf((yp2*30.5),&yp);                                                  fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
   jprojmean=yp;                                                  fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
   if(jprojmean==0) jprojmean=1;                                                  /*probs[iage][jk][j1]= pp[jk]/pos;*/
   if(mprojmean==0) jprojmean=1;                                                  /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
                                           }
   i1=cptcoveff;                                          else{
   if (cptcovn < 1){i1=1;}                                                  fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
                                                    fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);                                          }
                                    }
   fprintf(ficresf,"#****** Routine prevforecast **\n");                                  pospropt[jk] +=posprop[jk];
         } /* end loop jk */
 /*            if (h==(int)(YEARM*yearp)){ */        /* pospropt=0.; */
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){        for(jk=-1; jk <=nlstate+ndeath; jk++){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                  for(m=-1; m <=nlstate+ndeath; m++){
       k=k+1;                                          if(freq[jk][m][iage] !=0 ) { /* minimizing output */
       fprintf(ficresf,"\n#******");                                                  if(first==1){
       for(j=1;j<=cptcoveff;j++) {                                                          printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                                                  }
       }                                                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
       fprintf(ficresf,"******\n");                                          }
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");                                          if(jk!=0 && m!=0)
       for(j=1; j<=nlstate+ndeath;j++){                                                  fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);
         for(i=1; i<=nlstate;i++)                                                }
           fprintf(ficresf," p%d%d",i,j);        } /* end loop jk */
         fprintf(ficresf," p.%d",j);        posproptt=0.; 
       }        for(jk=1; jk <=nlstate; jk++){
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {                                  posproptt += pospropt[jk];
         fprintf(ficresf,"\n");        }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);          fprintf(ficresphtmfr,"</tr>\n ");
         if(iage <= iagemax){
         for (agec=fage; agec>=(ageminpar-1); agec--){                                  fprintf(ficresp,"\n");
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);                                  fprintf(ficresphtm,"</tr>\n");
           nhstepm = nhstepm/hstepm;        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(first==1)
           oldm=oldms;savm=savms;                                  printf("Others in log...\n");
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);          fprintf(ficlog,"\n");
              } /* end loop age iage */
           for (h=0; h<=nhstepm; h++){      fprintf(ficresphtm,"<tr><th>Tot</th>");
             if (h*hstepm/YEARM*stepm ==yearp) {      for(jk=1; jk <=nlstate ; jk++){
               fprintf(ficresf,"\n");        if(posproptt < 1.e-5){
               for(j=1;j<=cptcoveff;j++)                                  fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);   
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }else{
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);                                  fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);    
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {      }
               ppij=0.;      fprintf(ficresphtm,"</tr>\n");
               for(i=1; i<=nlstate;i++) {      fprintf(ficresphtm,"</table>\n");
                 if (mobilav==1)      fprintf(ficresphtmfr,"</table>\n");
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];      if(posproptt < 1.e-5){
                 else {        fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];        fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                 }        fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);
                 if (h*hstepm/YEARM*stepm== yearp) {        invalidvarcomb[j1]=1;
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);      }else{
                 }        fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
               } /* end i */        invalidvarcomb[j1]=0;
               if (h*hstepm/YEARM*stepm==yearp) {      }
                 fprintf(ficresf," %.3f", ppij);      fprintf(ficresphtmfr,"</table>\n");
               }    } /* end selected combination of covariate j1 */
             }/* end j */    dateintmean=dateintsum/k2cpt; 
           } /* end h */          
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresp);
         } /* end agec */    fclose(ficresphtm);
       } /* end yearp */    fclose(ficresphtmfr);
     } /* end cptcod */    free_vector(meanq,1,nqfveff);
   } /* end  cptcov */    free_matrix(meanqt,1,lastpass,1,nqtveff);
            free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(pospropt,1,nlstate);
     free_vector(posprop,1,nlstate);
   fclose(ficresf);    free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
 }    free_vector(pp,1,nlstate);
     /* End of freqsummary */
 /************** Forecasting *****not tested NB*************/  }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
    /************ Prevalence ********************/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int *popage;  {  
   double calagedatem, agelim, kk1, kk2;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   double *popeffectif,*popcount;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   double ***p3mat,***tabpop,***tabpopprev;       We still use firstpass and lastpass as another selection.
   double ***mobaverage;    */
   char filerespop[FILENAMELENGTH];   
     int i, m, jk, j1, bool, z1,j, iv;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int mi; /* Effective wave */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int iage;
   agelim=AGESUP;    double agebegin, ageend;
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
      double **prop;
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    double posprop; 
      double  y2; /* in fractional years */
      int iagemin, iagemax;
   strcpy(filerespop,"pop");    int first; /** to stop verbosity which is redirected to log file */
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    iagemin= (int) agemin;
     printf("Problem with forecast resultfile: %s\n", filerespop);    iagemax= (int) agemax;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    /*pp=vector(1,nlstate);*/
   }    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    j1=0;
     
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (mobilav!=0) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    first=1;
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);      for (i=1; i<=nlstate; i++)  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
     }          prop[i][iage]=0.0;
   }      printf("Prevalence combination of varying and fixed dummies %d\n",j1);
       /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
   if (stepm<=12) stepsize=1;      
        for (i=1; i<=imx; i++) { /* Each individual */
   agelim=AGESUP;        bool=1;
          /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
   hstepm=1;        for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
   hstepm=hstepm/stepm;          m=mw[mi][i];
            /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
   if (popforecast==1) {          /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
     if((ficpop=fopen(popfile,"r"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++){
       printf("Problem with population file : %s\n",popfile);exit(0);            if( Fixed[Tmodelind[z1]]==1){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);              iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
     }              if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
     popage=ivector(0,AGESUP);                bool=0;
     popeffectif=vector(0,AGESUP);            }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
     popcount=vector(0,AGESUP);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                    bool=0;
     i=1;                }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          }
              if(bool==1){ /* Otherwise we skip that wave/person */
     imx=i;            agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
   }            if(m >=firstpass && m <=lastpass){
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       k=k+1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficrespop,"\n#******");                if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
       for(j=1;j<=cptcoveff;j++) {                  printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  exit(1);
       }                }
       fprintf(ficrespop,"******\n");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       fprintf(ficrespop,"# Age");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
       if (popforecast==1)  fprintf(ficrespop," [Population]");                  prop[s[m][i]][iagemax+3] += weight[i]; 
                      } /* end valid statuses */ 
       for (cpt=0; cpt<=0;cpt++) {              } /* end selection of dates */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              } /* end selection of waves */
                  } /* end bool */
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){        } /* end wave */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      } /* end individual */
           nhstepm = nhstepm/hstepm;      for(i=iagemin; i <= iagemax+3; i++){  
                  for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          posprop += prop[jk][i]; 
           oldm=oldms;savm=savms;        } 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
                for(jk=1; jk <=nlstate ; jk++){       
           for (h=0; h<=nhstepm; h++){          if( i <=  iagemax){ 
             if (h==(int) (calagedatem+YEARM*cpt)) {            if(posprop>=1.e-5){ 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              probs[i][jk][j1]= prop[jk][i]/posprop;
             }            } else{
             for(j=1; j<=nlstate+ndeath;j++) {              if(first==1){
               kk1=0.;kk2=0;                first=0;
               for(i=1; i<=nlstate;i++) {                              printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);
                 if (mobilav==1)              }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            }
                 else {          } 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        }/* end jk */ 
                 }      }/* end i */ 
               }       /*} *//* end i1 */
               if (h==(int)(calagedatem+12*cpt)){    } /* end j1 */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    
                   /*fprintf(ficrespop," %.3f", kk1);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /*free_vector(pp,1,nlstate);*/
               }    free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
             }  }  /* End of prevalence */
             for(i=1; i<=nlstate;i++){  
               kk1=0.;  /************* Waves Concatenation ***************/
                 for(j=1; j<=nlstate;j++){  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                 }  {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
             }       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);       and mw[mi+1][i]. dh depends on stepm.
           }    */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    int i=0, mi=0, m=0, mli=0;
       }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   /******/    int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
     int j, k=0,jk, ju, jl;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double sum=0.;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      first=0;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){    firstwo=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    firsthree=0;
           nhstepm = nhstepm/hstepm;    firstfour=0;
              jmin=100000;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmax=-1;
           oldm=oldms;savm=savms;    jmean=0.;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){  /* Treating live states */
             if (h==(int) (calagedatem+YEARM*cpt)) {    for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      mi=0;  /* First valid wave */
             }      mli=0; /* Last valid wave */
             for(j=1; j<=nlstate+ndeath;j++) {      m=firstpass;
               kk1=0.;kk2=0;      while(s[m][i] <= nlstate){  /* a live state */
               for(i=1; i<=nlstate;i++) {                      if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              mli=m-1;/* mw[++mi][i]=m-1; */
               }        }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  mw[++mi][i]=m;
             }          mli=m;
           }        } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(m < lastpass){ /* m < lastpass, standard case */
         }          m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
       }        }
    }        else{ /* m >= lastpass, eventual special issue with warning */
   }  #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
            break;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  #else
           if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
   if (popforecast==1) {            if(firsthree == 0){
     free_ivector(popage,0,AGESUP);              printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
     free_vector(popeffectif,0,AGESUP);              firsthree=1;
     free_vector(popcount,0,AGESUP);            }
   }            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            mw[++mi][i]=m;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            mli=m;
   fclose(ficrespop);          }
 } /* End of popforecast */          if(s[m][i]==-2){ /* Vital status is really unknown */
             nbwarn++;
 int fileappend(FILE *fichier, char *optionfich)            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
 {              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
   if((fichier=fopen(optionfich,"a"))==NULL) {              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
     printf("Problem with file: %s\n", optionfich);            }
     fprintf(ficlog,"Problem with file: %s\n", optionfich);            break;
     return (0);          }
   }          break;
   fflush(fichier);  #endif
   return (1);        }/* End m >= lastpass */
 }      }/* end while */
   
       /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
 /**************** function prwizard **********************/      /* After last pass */
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)  /* Treating death states */
 {      if (s[m][i] > nlstate){  /* In a death state */
         /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
   /* Wizard to print covariance matrix template */        /* } */
         mi++;     /* Death is another wave */
   char ca[32], cb[32], cc[32];        /* if(mi==0)  never been interviewed correctly before death */
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;        /* Only death is a correct wave */
   int numlinepar;        mw[mi][i]=m;
       }
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
   for(i=1; i <=nlstate; i++){        /* m++; */
     jj=0;        /* mi++; */
     for(j=1; j <=nlstate+ndeath; j++){        /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
       if(j==i) continue;        /* mw[mi][i]=m; */
       jj++;        if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
       /*ca[0]= k+'a'-1;ca[1]='\0';*/          if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
       printf("%1d%1d",i,j);            nbwarn++;
       fprintf(ficparo,"%1d%1d",i,j);            if(firstfiv==0){
       for(k=1; k<=ncovmodel;k++){              printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
         /*        printf(" %lf",param[i][j][k]); */              firstfiv=1;
         /*        fprintf(ficparo," %lf",param[i][j][k]); */            }else{
         printf(" 0.");              fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
         fprintf(ficparo," 0.");            }
       }          }else{ /* Death occured afer last wave potential bias */
       printf("\n");            nberr++;
       fprintf(ficparo,"\n");            if(firstwo==0){
     }              printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
   }              firstwo=1;
   printf("# Scales (for hessian or gradient estimation)\n");            }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");            fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/          }
   for(i=1; i <=nlstate; i++){        }else{ /* end date of interview is known */
     jj=0;          /* death is known but not confirmed by death status at any wave */
     for(j=1; j <=nlstate+ndeath; j++){          if(firstfour==0){
       if(j==i) continue;            printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
       jj++;            firstfour=1;
       fprintf(ficparo,"%1d%1d",i,j);          }
       printf("%1d%1d",i,j);          fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
       fflush(stdout);        }
       for(k=1; k<=ncovmodel;k++){      } /* end if date of death is known */
         /*      printf(" %le",delti3[i][j][k]); */  #endif
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */      wav[i]=mi; /* mi should be the last effective wave (or mli) */
         printf(" 0.");      /* wav[i]=mw[mi][i]; */
         fprintf(ficparo," 0.");      if(mi==0){
       }        nbwarn++;
       numlinepar++;        if(first==0){
       printf("\n");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficparo,"\n");          first=1;
     }        }
   }        if(first==1){
   printf("# Covariance matrix\n");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 /* # 121 Var(a12)\n\ */        }
 /* # 122 Cov(b12,a12) Var(b12)\n\ */      } /* end mi==0 */
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */    } /* End individuals */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */    /* wav and mw are no more changed */
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */          
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */    
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */    for(i=1; i<=imx; i++){
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */      for(mi=1; mi<wav[i];mi++){
   fflush(stdout);        if (stepm <=0)
   fprintf(ficparo,"# Covariance matrix\n");          dh[mi][i]=1;
   /* # 121 Var(a12)\n\ */        else{
   /* # 122 Cov(b12,a12) Var(b12)\n\ */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   /* #   ...\n\ */            if (agedc[i] < 2*AGESUP) {
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   for(itimes=1;itimes<=2;itimes++){              else if(j<0){
     jj=0;                nberr++;
     for(i=1; i <=nlstate; i++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1; j <=nlstate+ndeath; j++){                j=1; /* Temporary Dangerous patch */
         if(j==i) continue;                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         for(k=1; k<=ncovmodel;k++){                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           jj++;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           ca[0]= k+'a'-1;ca[1]='\0';              }
           if(itimes==1){              k=k+1;
             printf("#%1d%1d%d",i,j,k);              if (j >= jmax){
             fprintf(ficparo,"#%1d%1d%d",i,j,k);                jmax=j;
           }else{                ijmax=i;
             printf("%1d%1d%d",i,j,k);              }
             fprintf(ficparo,"%1d%1d%d",i,j,k);              if (j <= jmin){
             /*  printf(" %.5le",matcov[i][j]); */                jmin=j;
           }                ijmin=i;
           ll=0;              }
           for(li=1;li <=nlstate; li++){              sum=sum+j;
             for(lj=1;lj <=nlstate+ndeath; lj++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               if(lj==li) continue;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
               for(lk=1;lk<=ncovmodel;lk++){            }
                 ll++;          }
                 if(ll<=jj){          else{
                   cb[0]= lk +'a'-1;cb[1]='\0';            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   if(ll<jj){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                     if(itimes==1){                                          
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            k=k+1;
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);            if (j >= jmax) {
                     }else{              jmax=j;
                       printf(" 0.");              ijmax=i;
                       fprintf(ficparo," 0.");            }
                     }            else if (j <= jmin){
                   }else{              jmin=j;
                     if(itimes==1){              ijmin=i;
                       printf(" Var(%s%1d%1d)",ca,i,j);            }
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                     }else{            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                       printf(" 0.");            if(j<0){
                       fprintf(ficparo," 0.");              nberr++;
                     }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 }            }
               } /* end lk */            sum=sum+j;
             } /* end lj */          }
           } /* end li */          jk= j/stepm;
           printf("\n");          jl= j -jk*stepm;
           fprintf(ficparo,"\n");          ju= j -(jk+1)*stepm;
           numlinepar++;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         } /* end k*/            if(jl==0){
       } /*end j */              dh[mi][i]=jk;
     } /* end i */              bh[mi][i]=0;
   } /* end itimes */            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
 } /* end of prwizard */              dh[mi][i]=jk+1;
 /******************* Gompertz Likelihood ******************************/              bh[mi][i]=ju;
 double gompertz(double x[])            }
 {          }else{
   double A,B,L=0.0,sump=0.,num=0.;            if(jl <= -ju){
   int i,n=0; /* n is the size of the sample */              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   for (i=0;i<=imx-1 ; i++) {                                   * is higher than the multiple of stepm and negative otherwise.
     sump=sump+weight[i];                                   */
     /*    sump=sump+1;*/            }
     num=num+1;            else{
   }              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
              }
   /* for (i=0; i<=imx; i++)            if(dh[mi][i]==0){
      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   for (i=1;i<=imx ; i++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     {            }
       if (cens[i] == 1 && wav[i]>1)          } /* end if mle */
         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));        }
            } /* end wave */
       if (cens[i] == 0 && wav[i]>1)    }
         A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))    jmean=sum/k;
              +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
          fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */  }
       if (wav[i] > 1 ) { /* ??? */  
         L=L+A*weight[i];  /*********** Tricode ****************************/
         /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/   void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
       }  {
     }    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
   return -2*L*num/sump;     * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
 }    */
   
 /******************* Printing html file ***********/    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
 void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \    int modmaxcovj=0; /* Modality max of covariates j */
                   int lastpass, int stepm, int weightopt, char model[],\    int cptcode=0; /* Modality max of covariates j */
                   int imx,  double p[],double **matcov,double agemortsup){    int modmincovj=0; /* Modality min of covariates j */
   int i,k;  
   
   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");    /* cptcoveff=0;  */
   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);          /* *cptcov=0; */
   for (i=1;i<=2;i++)   
     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");  
   fprintf(fichtm,"</ul>");    /* Loop on covariates without age and products and no quantitative variable */
     /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
 fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");    for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
       for (j=-1; (j < maxncov); j++) Ndum[j]=0;
  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");      if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
         switch(Fixed[k]) {
  for (k=agegomp;k<(agemortsup-2);k++)        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);                                  for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
                                           ij=(int)(covar[Tvar[k]][i]);
                                            /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   fflush(fichtm);                                           * If product of Vn*Vm, still boolean *:
 }                                           * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 /******************* Gnuplot file **************/                                          /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
 void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){                                                   modality of the nth covariate of individual i. */
                                           if (ij > modmaxcovj)
   char dirfileres[132],optfileres[132];                                                  modmaxcovj=ij; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                                          else if (ij < modmincovj) 
   int ng;                                                  modmincovj=ij; 
                                           if ((ij < -1) && (ij > NCOVMAX)){
                                                   printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   /*#ifdef windows */                                                  exit(1);
   fprintf(ficgp,"cd \"%s\" \n",pathc);                                          }else
     /*#endif */                                                  Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                                           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                                           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   strcpy(dirfileres,optionfilefiname);                                          /* getting the maximum value of the modality of the covariate
   strcpy(optfileres,"vpl");                                                   (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   fprintf(ficgp,"set out \"graphmort.png\"\n ");                                                   female ies 1, then modmaxcovj=1.
   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");                                          */
   fprintf(ficgp, "set ter png small\n set log y\n");                                  } /* end for loop on individuals i */
   fprintf(ficgp, "set size 0.65,0.65\n");                                  printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);                                  fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                                   cptcode=modmaxcovj;
 }                                  /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                                   /*for (i=0; i<=cptcode; i++) {*/
                                   for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                                           printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                                           fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                                           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
 /***********************************************/                                                  if( j != -1){
 /**************** Main Program *****************/                                                          ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
 /***********************************************/                                                                                                                                   covariate for which somebody answered excluding 
                                                                                                                                    undefined. Usually 2: 0 and 1. */
 int main(int argc, char *argv[])                                                  }
 {                                                  ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                                                                                                                                                  covariate for which somebody answered including 
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                                                                                                                                                  undefined. Usually 3: -1, 0 and 1. */
   int linei, month, year,iout;                                          }       /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
   int jj, ll, li, lj, lk, imk;                                                   * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   int numlinepar=0; /* Current linenumber of parameter file */                                  } /* Ndum[-1] number of undefined modalities */
   int itimes;                          
   int NDIM=2;                                  /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                                   /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
   char ca[32], cb[32], cc[32];                                  /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
   char dummy[]="                         ";                                  /* modmincovj=3; modmaxcovj = 7; */
   /*  FILE *fichtm; *//* Html File */                                  /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
   /* FILE *ficgp;*/ /*Gnuplot File */                                  /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
   struct stat info;                            /*             defining two dummy variables: variables V1_1 and V1_2.*/
   double agedeb, agefin,hf;                /* nbcode[Tvar[j]][ij]=k; */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                /* nbcode[Tvar[j]][1]=0; */
                 /* nbcode[Tvar[j]][2]=1; */
   double fret;                /* nbcode[Tvar[j]][3]=2; */
   double **xi,tmp,delta;                /* To be continued (not working yet). */
                 ij=0; /* ij is similar to i but can jump over null modalities */
   double dum; /* Dummy variable */                                  for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
   double ***p3mat;            if (Ndum[i] == 0) { /* If nobody responded to this modality k */
   double ***mobaverage;                    break;
   int *indx;                  }
   char line[MAXLINE], linepar[MAXLINE];                                          ij++;
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];                                          nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/
   char pathr[MAXLINE], pathimach[MAXLINE];                                          cptcode = ij; /* New max modality for covar j */
   char **bp, *tok, *val; /* pathtot */                                  } /* end of loop on modality i=-1 to 1 or more */
   int firstobs=1, lastobs=10;                                  break;
   int sdeb, sfin; /* Status at beginning and end */        case 1: /* Testing on varying covariate, could be simple and
   int c,  h , cpt,l;                 * should look at waves or product of fixed *
   int ju,jl, mi;                 * varying. No time to test -1, assuming 0 and 1 only */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                                  ij=0;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;                                  for(i=0; i<=1;i++){
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */                                          nbcode[Tvar[k]][++ij]=i;
   int mobilav=0,popforecast=0;                                  }
   int hstepm, nhstepm;                                  break;
   int agemortsup;        default:
   float  sumlpop=0.;                                  break;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;        } /* end switch */
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;      } /* end dummy test */
       
   double bage, fage, age, agelim, agebase;      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
   double ftolpl=FTOL;      /*  /\*recode from 0 *\/ */
   double **prlim;      /*                               k is a modality. If we have model=V1+V1*sex  */
   double *severity;      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double ***param; /* Matrix of parameters */      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
   double  *p;      /*  } */
   double **matcov; /* Matrix of covariance */      /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
   double ***delti3; /* Scale */      /*  if (ij > ncodemax[j]) { */
   double *delti; /* Scale */      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
   double ***eij, ***vareij;      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
   double **varpl; /* Variances of prevalence limits by age */      /*    break; */
   double *epj, vepp;      /*  } */
   double kk1, kk2;      /*   }  /\* end of loop on modality k *\/ */
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   double **ximort;    
   char *alph[]={"a","a","b","c","d","e"}, str[4];    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   int *dcwave;    /* Look at fixed dummy (single or product) covariates to check empty modalities */
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
   char z[1]="c", occ;      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
   char  *strt, strtend[80];      /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
   char *stratrunc;    } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
   int lstra;    
     ij=0;
   long total_usecs;    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
      for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 /*   setlocale (LC_ALL, ""); */      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 /*   bindtextdomain (PACKAGE, LOCALEDIR); */      /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
 /*   textdomain (PACKAGE); */      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
 /*   setlocale (LC_CTYPE, ""); */        /* If product not in single variable we don't print results */
 /*   setlocale (LC_MESSAGES, ""); */        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
         ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
   (void) gettimeofday(&start_time,&tzp);        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
   curr_time=start_time;        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
   tm = *localtime(&start_time.tv_sec);        if(Fixed[k]!=0)
   tmg = *gmtime(&start_time.tv_sec);          anyvaryingduminmodel=1;
   strcpy(strstart,asctime(&tm));                          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                           /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
 /*  printf("Localtime (at start)=%s",strstart); */                          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
 /*  tp.tv_sec = tp.tv_sec +86400; */                          /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
 /*  tm = *localtime(&start_time.tv_sec); */                          /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                          /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */      } 
 /*   tmg.tm_hour=tmg.tm_hour + 1; */    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
 /*   tp.tv_sec = mktime(&tmg); */    /* ij--; */
 /*   strt=asctime(&tmg); */    /* cptcoveff=ij; /\*Number of total covariates*\/ */
 /*   printf("Time(after) =%s",strstart);  */    *cptcov=ij; /*Number of total real effective covariates: effective
 /*  (void) time (&time_value);                                                           * because they can be excluded from the model and real
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);                                                           * if in the model but excluded because missing values, but how to get k from ij?*/
 *  tm = *localtime(&time_value);    for(j=ij+1; j<= cptcovt; j++){
 *  strstart=asctime(&tm);      Tvaraff[j]=0;
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);      Tmodelind[j]=0;
 */    }
     for(j=ntveff+1; j<= cptcovt; j++){
   nberr=0; /* Number of errors and warnings */      TmodelInvind[j]=0;
   nbwarn=0;    }
   getcwd(pathcd, size);    /* To be sorted */
     ;
   printf("\n%s\n%s",version,fullversion);  }
   if(argc <=1){  
     printf("\nEnter the parameter file name: ");  
     fgets(pathr,FILENAMELENGTH,stdin);  /*********** Health Expectancies ****************/
     i=strlen(pathr);  
     if(pathr[i-1]=='\n')   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
       pathr[i-1]='\0';  
    for (tok = pathr; tok != NULL; ){  {
       printf("Pathr |%s|\n",pathr);    /* Health expectancies, no variances */
       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');    int i, j, nhstepm, hstepm, h, nstepm;
       printf("val= |%s| pathr=%s\n",val,pathr);    int nhstepma, nstepma; /* Decreasing with age */
       strcpy (pathtot, val);    double age, agelim, hf;
       if(pathr[0] == '\0') break; /* Dirty */    double ***p3mat;
     }    double eip;
   }  
   else{    pstamp(ficreseij);
     strcpy(pathtot,argv[1]);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   }    fprintf(ficreseij,"# Age");
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/    for(i=1; i<=nlstate;i++){
   /*cygwin_split_path(pathtot,path,optionfile);      for(j=1; j<=nlstate;j++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        fprintf(ficreseij," e%1d%1d ",i,j);
   /* cutv(path,optionfile,pathtot,'\\');*/      }
       fprintf(ficreseij," e%1d. ",i);
   /* Split argv[0], imach program to get pathimach */    }
   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);    fprintf(ficreseij,"\n");
   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);  
   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);    
  /*   strcpy(pathimach,argv[0]); */    if(estepm < stepm){
   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */      printf ("Problem %d lower than %d\n",estepm, stepm);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    else  hstepm=estepm;   
   chdir(path); /* Can be a relative path */    /* We compute the life expectancy from trapezoids spaced every estepm months
   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */     * This is mainly to measure the difference between two models: for example
     printf("Current directory %s!\n",pathcd);     * if stepm=24 months pijx are given only every 2 years and by summing them
   strcpy(command,"mkdir ");     * we are calculating an estimate of the Life Expectancy assuming a linear 
   strcat(command,optionfilefiname);     * progression in between and thus overestimating or underestimating according
   if((outcmd=system(command)) != 0){     * to the curvature of the survival function. If, for the same date, we 
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */     * to compare the new estimate of Life expectancy with the same linear 
     /* fclose(ficlog); */     * hypothesis. A more precise result, taking into account a more precise
 /*     exit(1); */     * curvature will be obtained if estepm is as small as stepm. */
   }  
 /*   if((imk=mkdir(optionfilefiname))<0){ */    /* For example we decided to compute the life expectancy with the smallest unit */
 /*     perror("mkdir"); */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 /*   } */       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   /*-------- arguments in the command line --------*/       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   /* Log file */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcat(filelog, optionfilefiname);       survival function given by stepm (the optimization length). Unfortunately it
   strcat(filelog,".log");    /* */       means that if the survival funtion is printed only each two years of age and if
   if((ficlog=fopen(filelog,"w"))==NULL)    {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with logfile %s\n",filelog);       results. So we changed our mind and took the option of the best precision.
     goto end;    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fprintf(ficlog,"Log filename:%s\n",filelog);  
   fprintf(ficlog,"\n%s\n%s",version,fullversion);    agelim=AGESUP;
   fprintf(ficlog,"\nEnter the parameter file name: \n");    /* If stepm=6 months */
   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  path=%s \n\         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  optionfile=%s\n\      
  optionfilext=%s\n\  /* nhstepm age range expressed in number of stepm */
  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Local time (at start):%s",strstart);    /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficlog,"Local time (at start): %s",strstart);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   fflush(ficlog);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /*   (void) gettimeofday(&curr_time,&tzp); */  
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcpy(fileres,"r");      /* if (stepm >= YEARM) hstepm=1;*/
   strcat(fileres, optionfilefiname);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   strcat(fileres,".txt");    /* Other files have txt extension */  
       /* If stepm=6 months */
   /*---------arguments file --------*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      
     printf("Problem with optionfile %s\n",optionfile);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      
     fflush(ficlog);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     goto end;      
   }      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
   strcpy(filereso,"o");      for(i=1; i<=nlstate;i++)
   strcat(filereso,fileres);        for(j=1; j<=nlstate;j++)
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     printf("Problem with Output resultfile: %s\n", filereso);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);            
     fflush(ficlog);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     goto end;  
   }          }
   
   /* Reads comments: lines beginning with '#' */      fprintf(ficreseij,"%3.0f",age );
   numlinepar=0;      for(i=1; i<=nlstate;i++){
   while((c=getc(ficpar))=='#' && c!= EOF){        eip=0;
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);          eip +=eij[i][j][(int)age];
     numlinepar++;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     puts(line);        }
     fputs(line,ficparo);        fprintf(ficreseij,"%9.4f", eip );
     fputs(line,ficlog);      }
   }      fprintf(ficreseij,"\n");
   ungetc(c,ficpar);      
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   numlinepar++;    printf("\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    fprintf(ficlog,"\n");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  }
   fflush(ficlog);  
   while((c=getc(ficpar))=='#' && c!= EOF){   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  {
     numlinepar++;    /* Covariances of health expectancies eij and of total life expectancies according
     puts(line);       to initial status i, ei. .
     fputs(line,ficparo);    */
     fputs(line,ficlog);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
   ungetc(c,ficpar);    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
        double **dnewm,**doldm;
   covar=matrix(0,NCOVMAX,1,n);    double *xp, *xm;
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/    double **gp, **gm;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double ***gradg, ***trgradg;
     int theta;
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double eip, vip;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    xp=vector(1,npar);
   delti=delti3[1][1];    xm=vector(1,npar);
   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);    
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    pstamp(ficresstdeij);
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresstdeij,"# Age");
     fclose (ficparo);    for(i=1; i<=nlstate;i++){
     fclose (ficlog);      for(j=1; j<=nlstate;j++)
     goto end;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     exit(0);      fprintf(ficresstdeij," e%1d. ",i);
   }    }
   else if(mle==-3) {    fprintf(ficresstdeij,"\n");
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);  
     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    pstamp(ficrescveij);
     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficrescveij,"# Age");
     matcov=matrix(1,npar,1,npar);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++){
   else{        cptj= (j-1)*nlstate+i;
     /* Read guess parameters */        for(i2=1; i2<=nlstate;i2++)
     /* Reads comments: lines beginning with '#' */          for(j2=1; j2<=nlstate;j2++){
     while((c=getc(ficpar))=='#' && c!= EOF){            cptj2= (j2-1)*nlstate+i2;
       ungetc(c,ficpar);            if(cptj2 <= cptj)
       fgets(line, MAXLINE, ficpar);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       numlinepar++;          }
       puts(line);      }
       fputs(line,ficparo);    fprintf(ficrescveij,"\n");
       fputs(line,ficlog);    
     }    if(estepm < stepm){
     ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
        }
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    else  hstepm=estepm;   
     for(i=1; i <=nlstate; i++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       j=0;     * This is mainly to measure the difference between two models: for example
       for(jj=1; jj <=nlstate+ndeath; jj++){     * if stepm=24 months pijx are given only every 2 years and by summing them
         if(jj==i) continue;     * we are calculating an estimate of the Life Expectancy assuming a linear 
         j++;     * progression in between and thus overestimating or underestimating according
         fscanf(ficpar,"%1d%1d",&i1,&j1);     * to the curvature of the survival function. If, for the same date, we 
         if ((i1 != i) && (j1 != j)){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \     * to compare the new estimate of Life expectancy with the same linear 
 It might be a problem of design; if ncovcol and the model are correct\n \     * hypothesis. A more precise result, taking into account a more precise
 run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);     * curvature will be obtained if estepm is as small as stepm. */
           exit(1);  
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficparo,"%1d%1d",i1,j1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         if(mle==1)       nhstepm is the number of hstepm from age to agelim 
           printf("%1d%1d",i,j);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficlog,"%1d%1d",i,j);       Look at hpijx to understand the reason of that which relies in memory size
         for(k=1; k<=ncovmodel;k++){       and note for a fixed period like estepm months */
           fscanf(ficpar," %lf",&param[i][j][k]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           if(mle==1){       survival function given by stepm (the optimization length). Unfortunately it
             printf(" %lf",param[i][j][k]);       means that if the survival funtion is printed only each two years of age and if
             fprintf(ficlog," %lf",param[i][j][k]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
           else    */
             fprintf(ficlog," %lf",param[i][j][k]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           fprintf(ficparo," %lf",param[i][j][k]);  
         }    /* If stepm=6 months */
         fscanf(ficpar,"\n");    /* nhstepm age range expressed in number of stepm */
         numlinepar++;    agelim=AGESUP;
         if(mle==1)    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           printf("\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficlog,"\n");    /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficparo,"\n");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }    
     }      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fflush(ficlog);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     p=param[1][1];    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
     /* Reads comments: lines beginning with '#' */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ 
       fgets(line, MAXLINE, ficpar);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       numlinepar++;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       puts(line);      /* if (stepm >= YEARM) hstepm=1;*/
       fputs(line,ficparo);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       fputs(line,ficlog);                  
     }      /* If stepm=6 months */
     ungetc(c,ficpar);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     for(i=1; i <=nlstate; i++){      
       for(j=1; j <=nlstate+ndeath-1; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         fscanf(ficpar,"%1d%1d",&i1,&j1);                  
         if ((i1-i)*(j1-j)!=0){      /* Computing  Variances of health expectancies */
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           exit(1);         decrease memory allocation */
         }      for(theta=1; theta <=npar; theta++){
         printf("%1d%1d",i,j);        for(i=1; i<=npar; i++){ 
         fprintf(ficparo,"%1d%1d",i1,j1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficlog,"%1d%1d",i1,j1);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         for(k=1; k<=ncovmodel;k++){        }
           fscanf(ficpar,"%le",&delti3[i][j][k]);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
           printf(" %le",delti3[i][j][k]);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
           fprintf(ficparo," %le",delti3[i][j][k]);                          
           fprintf(ficlog," %le",delti3[i][j][k]);        for(j=1; j<= nlstate; j++){
         }          for(i=1; i<=nlstate; i++){
         fscanf(ficpar,"\n");            for(h=0; h<=nhstepm-1; h++){
         numlinepar++;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         printf("\n");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         fprintf(ficparo,"\n");            }
         fprintf(ficlog,"\n");          }
       }        }
     }                          
     fflush(ficlog);        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
     delti=delti3[1][1];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */      
        
     /* Reads comments: lines beginning with '#' */      for(h=0; h<=nhstepm-1; h++)
     while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate*nlstate;j++)
       ungetc(c,ficpar);          for(theta=1; theta <=npar; theta++)
       fgets(line, MAXLINE, ficpar);            trgradg[h][j][theta]=gradg[h][theta][j];
       numlinepar++;      
       puts(line);                  
       fputs(line,ficparo);      for(ij=1;ij<=nlstate*nlstate;ij++)
       fputs(line,ficlog);        for(ji=1;ji<=nlstate*nlstate;ji++)
     }          varhe[ij][ji][(int)age] =0.;
     ungetc(c,ficpar);                  
        printf("%d|",(int)age);fflush(stdout);
     matcov=matrix(1,npar,1,npar);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     for(i=1; i <=npar; i++){      for(h=0;h<=nhstepm-1;h++){
       fscanf(ficpar,"%s",&str);        for(k=0;k<=nhstepm-1;k++){
       if(mle==1)          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         printf("%s",str);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       fprintf(ficlog,"%s",str);          for(ij=1;ij<=nlstate*nlstate;ij++)
       fprintf(ficparo,"%s",str);            for(ji=1;ji<=nlstate*nlstate;ji++)
       for(j=1; j <=i; j++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         fscanf(ficpar," %le",&matcov[i][j]);        }
         if(mle==1){      }
           printf(" %.5le",matcov[i][j]);                  
         }      /* Computing expectancies */
         fprintf(ficlog," %.5le",matcov[i][j]);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
         fprintf(ficparo," %.5le",matcov[i][j]);      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
       fscanf(ficpar,"\n");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       numlinepar++;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       if(mle==1)                                          
         printf("\n");            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficlog,"\n");                                          
       fprintf(ficparo,"\n");          }
     }                  
     for(i=1; i <=npar; i++)      fprintf(ficresstdeij,"%3.0f",age );
       for(j=i+1;j<=npar;j++)      for(i=1; i<=nlstate;i++){
         matcov[i][j]=matcov[j][i];        eip=0.;
            vip=0.;
     if(mle==1)        for(j=1; j<=nlstate;j++){
       printf("\n");          eip += eij[i][j][(int)age];
     fprintf(ficlog,"\n");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     fflush(ficlog);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            }
     /*-------- Rewriting parameter file ----------*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     strcpy(rfileres,"r");    /* "Rparameterfile */      }
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      fprintf(ficresstdeij,"\n");
     strcat(rfileres,".");    /* */                  
     strcat(rfileres,optionfilext);    /* Other files have txt extension */      fprintf(ficrescveij,"%3.0f",age );
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(j=1; j<=nlstate;j++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          cptj= (j-1)*nlstate+i;
     }          for(i2=1; i2<=nlstate;i2++)
     fprintf(ficres,"#%s\n",version);            for(j2=1; j2<=nlstate;j2++){
   }    /* End of mle != -3 */              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   /*-------- data file ----------*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   if((fic=fopen(datafile,"r"))==NULL)    {            }
     printf("Problem while opening datafile: %s\n", datafile);goto end;        }
     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;      fprintf(ficrescveij,"\n");
   }                  
     }
   n= lastobs;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   severity = vector(1,maxwav);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   outcome=imatrix(1,maxwav+1,1,n);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   num=lvector(1,n);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   moisnais=vector(1,n);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   annais=vector(1,n);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   moisdc=vector(1,n);    printf("\n");
   andc=vector(1,n);    fprintf(ficlog,"\n");
   agedc=vector(1,n);          
   cod=ivector(1,n);    free_vector(xm,1,npar);
   weight=vector(1,n);    free_vector(xp,1,npar);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   mint=matrix(1,maxwav,1,n);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   anint=matrix(1,maxwav,1,n);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   s=imatrix(1,maxwav+1,1,n);  }
   tab=ivector(1,NCOVMAX);   
   ncodemax=ivector(1,8);  /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
   i=1;   {
   linei=0;     /* Variance of health expectancies */
   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     linei=linei+1;     /* double **newm;*/
     for(j=strlen(line); j>=0;j--){  /* Untabifies line */     /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
       if(line[j] == '\t')    
         line[j] = ' ';     /* int movingaverage(); */
     }     double **dnewm,**doldm;
     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){     double **dnewmp,**doldmp;
       ;     int i, j, nhstepm, hstepm, h, nstepm ;
     };     int k;
     line[j+1]=0;  /* Trims blanks at end of line */     double *xp;
     if(line[0]=='#'){     double **gp, **gm;  /* for var eij */
       fprintf(ficlog,"Comment line\n%s\n",line);     double ***gradg, ***trgradg; /*for var eij */
       printf("Comment line\n%s\n",line);     double **gradgp, **trgradgp; /* for var p point j */
       continue;     double *gpp, *gmp; /* for var p point j */
     }     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
     for (j=maxwav;j>=1;j--){     double age,agelim, hf;
       cutv(stra, strb,line,' ');     /* double ***mobaverage; */
       errno=0;     int theta;
       lval=strtol(strb,&endptr,10);     char digit[4];
       /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/     char digitp[25];
       if( strb[0]=='\0' || (*endptr != '\0')){  
         printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);     char fileresprobmorprev[FILENAMELENGTH];
         exit(1);  
       }     if(popbased==1){
       s[j][i]=lval;       if(mobilav!=0)
               strcpy(digitp,"-POPULBASED-MOBILAV_");
       strcpy(line,stra);       else strcpy(digitp,"-POPULBASED-NOMOBIL_");
       cutv(stra, strb,line,' ');     }
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){     else 
       }       strcpy(digitp,"-STABLBASED_");
       else  if(iout=sscanf(strb,"%s.") != 0){  
         month=99;     /* if (mobilav!=0) { */
         year=9999;     /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
       }else{     /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);     /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
         exit(1);     /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
       }     /*   } */
       anint[j][i]= (double) year;     /* } */
       mint[j][i]= (double)month;  
       strcpy(line,stra);     strcpy(fileresprobmorprev,"PRMORPREV-"); 
     } /* ENd Waves */     sprintf(digit,"%-d",ij);
         /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     cutv(stra, strb,line,' ');     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }     strcat(fileresprobmorprev,fileresu);
     else  if(iout=sscanf(strb,"%s.",dummy) != 0){     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       month=99;       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       year=9999;       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }else{     }
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       exit(1);     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     }     pstamp(ficresprobmorprev);
     andc[i]=(double) year;     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     moisdc[i]=(double) month;     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     strcpy(line,stra);     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficresprobmorprev," p.%-d SE",j);
     cutv(stra, strb,line,' ');       for(i=1; i<=nlstate;i++)
     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }     }  
     else  if(iout=sscanf(strb,"%s.") != 0){     fprintf(ficresprobmorprev,"\n");
       month=99;    
       year=9999;     fprintf(ficgp,"\n# Routine varevsij");
     }else{     fprintf(ficgp,"\nunset title \n");
       printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       exit(1);     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     }     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     annais[i]=(double)(year);     /*   } */
     moisnais[i]=(double)(month);     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     strcpy(line,stra);     pstamp(ficresvij);
         fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     cutv(stra, strb,line,' ');     if(popbased==1)
     errno=0;       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     dval=strtod(strb,&endptr);     else
     if( strb[0]=='\0' || (*endptr != '\0')){       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);     fprintf(ficresvij,"# Age");
       exit(1);     for(i=1; i<=nlstate;i++)
     }       for(j=1; j<=nlstate;j++)
     weight[i]=dval;         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     strcpy(line,stra);     fprintf(ficresvij,"\n");
      
     for (j=ncovcol;j>=1;j--){     xp=vector(1,npar);
       cutv(stra, strb,line,' ');     dnewm=matrix(1,nlstate,1,npar);
       errno=0;     doldm=matrix(1,nlstate,1,nlstate);
       lval=strtol(strb,&endptr,10);     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       if( strb[0]=='\0' || (*endptr != '\0')){     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);  
         exit(1);     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       }     gpp=vector(nlstate+1,nlstate+ndeath);
       if(lval <-1 || lval >1){     gmp=vector(nlstate+1,nlstate+ndeath);
         printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \    
  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \     if(estepm < stepm){
  For example, for multinomial values like 1, 2 and 3,\n \       printf ("Problem %d lower than %d\n",estepm, stepm);
  build V1=0 V2=0 for the reference value (1),\n \     }
         V1=1 V2=0 for (2) \n \     else  hstepm=estepm;   
  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \     /* For example we decided to compute the life expectancy with the smallest unit */
  output of IMaCh is often meaningless.\n \     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  Exiting.\n",lval,linei, i,line,j);        nhstepm is the number of hstepm from age to agelim 
         exit(1);        nstepm is the number of stepm from age to agelim. 
       }        Look at function hpijx to understand why because of memory size limitations, 
       covar[j][i]=(double)(lval);        we decided (b) to get a life expectancy respecting the most precise curvature of the
       strcpy(line,stra);        survival function given by stepm (the optimization length). Unfortunately it
     }        means that if the survival funtion is printed every two years of age and if
     lstra=strlen(stra);        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
            results. So we changed our mind and took the option of the best precision.
     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */     */
       stratrunc = &(stra[lstra-9]);     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       num[i]=atol(stratrunc);     agelim = AGESUP;
     }     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     else       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       num[i]=atol(stra);       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           gp=matrix(0,nhstepm,1,nlstate);
     i=i+1;       gm=matrix(0,nhstepm,1,nlstate);
   } /* End loop reading  data */                  
   fclose(fic);                  
   /* printf("ii=%d", ij);       for(theta=1; theta <=npar; theta++){
      scanf("%d",i);*/         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   imx=i-1; /* Number of individuals */           xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   /* for (i=1; i<=imx; i++){                          
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nresult);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                          
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;         if (popbased==1) {
     }*/           if(mobilav ==0){
    /*  for (i=1; i<=imx; i++){             for(i=1; i<=nlstate;i++)
      if (s[4][i]==9)  s[4][i]=-1;               prlim[i][i]=probs[(int)age][i][ij];
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/           }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
   /* for (i=1; i<=imx; i++) */               prlim[i][i]=mobaverage[(int)age][i][ij];
             }
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;         }
      else weight[i]=1;*/                          
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
   /* Calculation of the number of parameters from char model */         for(j=1; j<= nlstate; j++){
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */           for(h=0; h<=nhstepm; h++){
   Tprod=ivector(1,15);             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   Tvaraff=ivector(1,15);               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   Tvard=imatrix(1,15,1,2);           }
   Tage=ivector(1,15);               }
             /* Next for computing probability of death (h=1 means
   if (strlen(model) >1){ /* If there is at least 1 covariate */            computed over hstepm matrices product = hstepm*stepm months) 
     j=0, j1=0, k1=1, k2=1;            as a weighted average of prlim.
     j=nbocc(model,'+'); /* j=Number of '+' */         */
     j1=nbocc(model,'*'); /* j1=Number of '*' */         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     cptcovn=j+1;           for(i=1,gpp[j]=0.; i<= nlstate; i++)
     cptcovprod=j1; /*Number of products */             gpp[j] += prlim[i][i]*p3mat[i][j][1];
             }    
     strcpy(modelsav,model);         /* end probability of death */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){                          
       printf("Error. Non available option model=%s ",model);         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       fprintf(ficlog,"Error. Non available option model=%s ",model);           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       goto end;                          
     }         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nresult);
                              
     /* This loop fills the array Tvar from the string 'model'.*/         if (popbased==1) {
            if(mobilav ==0){
     for(i=(j+1); i>=1;i--){             for(i=1; i<=nlstate;i++)
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */               prlim[i][i]=probs[(int)age][i][ij];
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */           }else{ /* mobilav */ 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/             for(i=1; i<=nlstate;i++)
       /*scanf("%d",i);*/               prlim[i][i]=mobaverage[(int)age][i][ij];
       if (strchr(strb,'*')) {  /* Model includes a product */           }
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/         }
         if (strcmp(strc,"age")==0) { /* Vn*age */                          
           cptcovprod--;         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
           cutv(strb,stre,strd,'V');                          
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           cptcovage++;           for(h=0; h<=nhstepm; h++){
             Tage[cptcovage]=i;             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             /*printf("stre=%s ", stre);*/               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         }           }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */         }
           cptcovprod--;         /* This for computing probability of death (h=1 means
           cutv(strb,stre,strc,'V');            computed over hstepm matrices product = hstepm*stepm months) 
           Tvar[i]=atoi(stre);            as a weighted average of prlim.
           cptcovage++;         */
           Tage[cptcovage]=i;         for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }           for(i=1,gmp[j]=0.; i<= nlstate; i++)
         else {  /* Age is not in the model */             gmp[j] += prlim[i][i]*p3mat[i][j][1];
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/         }    
           Tvar[i]=ncovcol+k1;         /* end probability of death */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                          
           Tprod[k1]=i;         for(j=1; j<= nlstate; j++) /* vareij */
           Tvard[k1][1]=atoi(strc); /* m*/           for(h=0; h<=nhstepm; h++){
           Tvard[k1][2]=atoi(stre); /* n */             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           Tvar[cptcovn+k2]=Tvard[k1][1];           }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                          
           for (k=1; k<=lastobs;k++)         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           k1++;         }
           k2=k2+2;                          
         }       } /* End theta */
       }                  
       else { /* no more sum */       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                  
        /*  scanf("%d",i);*/       for(h=0; h<=nhstepm; h++) /* veij */
       cutv(strd,strc,strb,'V');         for(j=1; j<=nlstate;j++)
       Tvar[i]=atoi(strc);           for(theta=1; theta <=npar; theta++)
       }             trgradg[h][j][theta]=gradg[h][theta][j];
       strcpy(modelsav,stra);                    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         scanf("%d",i);*/         for(theta=1; theta <=npar; theta++)
     } /* end of loop + */           trgradgp[j][theta]=gradgp[theta][j];
   } /* end model */                  
                    
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/       for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);           vareij[i][j][(int)age] =0.;
   printf("cptcovprod=%d ", cptcovprod);                  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);       for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
   scanf("%d ",i);*/           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     /*  if(mle==1){*/           for(i=1;i<=nlstate;i++)
   if (weightopt != 1) { /* Maximisation without weights*/             for(j=1;j<=nlstate;j++)
     for(i=1;i<=n;i++) weight[i]=1.0;               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   }         }
     /*-calculation of age at interview from date of interview and age at death -*/       }
   agev=matrix(1,maxwav,1,imx);                  
        /* pptj */
   for (i=1; i<=imx; i++) {       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     for(m=2; (m<= maxwav); m++) {       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         anint[m][i]=9999;         for(i=nlstate+1;i<=nlstate+ndeath;i++)
         s[m][i]=-1;           varppt[j][i]=doldmp[j][i];
       }       /* end ppptj */
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){       /*  x centered again */
         nberr++;                  
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nresult);
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);                  
         s[m][i]=-1;       if (popbased==1) {
       }         if(mobilav ==0){
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){           for(i=1; i<=nlstate;i++)
         nberr++;             prlim[i][i]=probs[(int)age][i][ij];
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);         }else{ /* mobilav */ 
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);           for(i=1; i<=nlstate;i++)
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */             prlim[i][i]=mobaverage[(int)age][i][ij];
       }         }
     }       }
   }                  
        /* This for computing probability of death (h=1 means
   for (i=1; i<=imx; i++)  {          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          as a weighted average of prlim.
     for(m=firstpass; (m<= lastpass); m++){       */
       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
         if (s[m][i] >= nlstate+1) {       for(j=nlstate+1;j<=nlstate+ndeath;j++){
           if(agedc[i]>0)         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
               agev[m][i]=agedc[i];       }    
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/       /* end probability of death */
             else {                  
               if ((int)andc[i]!=9999){       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                 nbwarn++;       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);         for(i=1; i<=nlstate;i++){
                 agev[m][i]=-1;           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               }         }
             }       } 
         }       fprintf(ficresprobmorprev,"\n");
         else if(s[m][i] !=9){ /* Standard case, age in fractional                  
                                  years but with the precision of a month */       fprintf(ficresvij,"%.0f ",age );
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       for(i=1; i<=nlstate;i++)
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)         for(j=1; j<=nlstate;j++){
             agev[m][i]=1;           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           else if(agev[m][i] <agemin){         }
             agemin=agev[m][i];       fprintf(ficresvij,"\n");
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/       free_matrix(gp,0,nhstepm,1,nlstate);
           }       free_matrix(gm,0,nhstepm,1,nlstate);
           else if(agev[m][i] >agemax){       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             agemax=agev[m][i];       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }     } /* End age */
           /*agev[m][i]=anint[m][i]-annais[i];*/     free_vector(gpp,nlstate+1,nlstate+ndeath);
           /*     agev[m][i] = age[i]+2*m;*/     free_vector(gmp,nlstate+1,nlstate+ndeath);
         }     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         else { /* =9 */     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           agev[m][i]=1;     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
           s[m][i]=-1;     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
         }     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       }     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       else /*= 0 Unknown */     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
         agev[m][i]=1;     /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }     /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   for (i=1; i<=imx; i++)  {     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     for(m=firstpass; (m<=lastpass); m++){     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       if (s[m][i] > (nlstate+ndeath)) {     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         nberr++;     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);         /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          */
         goto end;     /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
       }     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     }  
   }     free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
   /*for (i=1; i<=imx; i++){     free_matrix(dnewm,1,nlstate,1,npar);
   for (m=firstpass; (m<lastpass); m++){     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 }     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
 }*/     fclose(ficresprobmorprev);
      fflush(ficgp);
      fflush(fichtm); 
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   }  /* end varevsij */
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   /************ Variance of prevlim ******************/
   agegomp=(int)agemin;   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
   free_vector(severity,1,maxwav);  {
   free_imatrix(outcome,1,maxwav+1,1,n);    /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
   free_vector(moisnais,1,n);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   free_vector(annais,1,n);  
   /* free_matrix(mint,1,maxwav,1,n);    double **dnewm,**doldm;
      free_matrix(anint,1,maxwav,1,n);*/    int i, j, nhstepm, hstepm;
   free_vector(moisdc,1,n);    double *xp;
   free_vector(andc,1,n);    double *gp, *gm;
     double **gradg, **trgradg;
        double **mgm, **mgp;
   wav=ivector(1,imx);    double age,agelim;
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    int theta;
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    
   mw=imatrix(1,lastpass-firstpass+1,1,imx);    pstamp(ficresvpl);
        fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   /* Concatenates waves */    fprintf(ficresvpl,"# Age");
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    fprintf(ficresvpl,"\n");
   
   Tcode=ivector(1,100);    xp=vector(1,npar);
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    dnewm=matrix(1,nlstate,1,npar);
   ncodemax[1]=1;    doldm=matrix(1,nlstate,1,nlstate);
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    
          hstepm=1*YEARM; /* Every year of age */
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                                  the estimations*/    agelim = AGESUP;
   h=0;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   m=pow(2,cptcoveff);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   for(k=1;k<=cptcoveff; k++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     for(i=1; i <=(m/pow(2,k));i++){      gradg=matrix(1,npar,1,nlstate);
       for(j=1; j <= ncodemax[k]; j++){      mgp=matrix(1,npar,1,nlstate);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      mgm=matrix(1,npar,1,nlstate);
           h++;      gp=vector(1,nlstate);
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      gm=vector(1,nlstate);
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient */
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
      codtab[1][2]=1;codtab[2][2]=2; */          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
   /* for(i=1; i <=m ;i++){        else
      for(k=1; k <=cptcovn; k++){          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(i=1;i<=nlstate;i++){
      }          gp[i] = prlim[i][i];
      printf("\n");          mgp[theta][i] = prlim[i][i];
      }        }
      scanf("%d",i);*/        for(i=1; i<=npar; i++) /* Computes gradient */
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /*------------ gnuplot -------------*/        if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
   strcpy(optionfilegnuplot,optionfilefiname);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
   if(mle==-3)        else
     strcat(optionfilegnuplot,"-mort");          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
   strcat(optionfilegnuplot,".gp");        for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          mgm[theta][i] = prlim[i][i];
     printf("Problem with file %s",optionfilegnuplot);        }
   }        for(i=1;i<=nlstate;i++)
   else{          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     fprintf(ficgp,"\n# %s\n", version);        /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
     fprintf(ficgp,"# %s\n", optionfilegnuplot);      } /* End theta */
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }      trgradg =matrix(1,nlstate,1,npar);
   /*  fclose(ficgp);*/  
   /*--------- index.htm --------*/      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */          trgradg[j][theta]=gradg[theta][j];
   if(mle==-3)      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
     strcat(optionfilehtm,"-mort");      /*   printf("\nmgm mgp %d ",(int)age); */
   strcat(optionfilehtm,".htm");      /*   for(j=1; j<=nlstate;j++){ */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      /*  printf(" %d ",j); */
     printf("Problem with %s \n",optionfilehtm), exit(0);      /*  for(theta=1; theta <=npar; theta++) */
   }      /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */      /*   } */
   strcat(optionfilehtmcov,"-cov.htm");      /* } */
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {      /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      /*   printf("\n gradg %d ",(int)age); */
   }      /*   for(j=1; j<=nlstate;j++){ */
   else{      /*  printf("%d ",j); */
   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      /*  for(theta=1; theta <=npar; theta++) */
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      /*    printf("%d %lf ",theta,gradg[theta][j]); */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      /*  printf("\n "); */
           optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);      /*   } */
   }      /* } */
   
   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \      for(i=1;i<=nlstate;i++)
 <hr size=\"2\" color=\"#EC5E5E\"> \n\        varpl[i][(int)age] =0.;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\      if((int)age==79 ||(int)age== 80  ||(int)age== 81){
 \n\      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 <hr  size=\"2\" color=\"#EC5E5E\">\      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
  <ul><li><h4>Parameter files</h4>\n\      }else{
  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      for(i=1;i<=nlstate;i++)
  - Date and time at start: %s</ul>\n",\        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\  
           optionfilefiname,optionfilext,optionfilefiname,optionfilext,\      fprintf(ficresvpl,"%.0f ",age );
           fileres,fileres,\      for(i=1; i<=nlstate;i++)
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   fflush(fichtm);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   strcpy(pathr,path);      free_vector(gm,1,nlstate);
   strcat(pathr,optionfilefiname);      free_matrix(mgm,1,npar,1,nlstate);
   chdir(optionfilefiname); /* Move to directory named optionfile */      free_matrix(mgp,1,npar,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
   /* Calculates basic frequencies. Computes observed prevalence at single age      free_matrix(trgradg,1,nlstate,1,npar);
      and prints on file fileres'p'. */    } /* End age */
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);  
     free_vector(xp,1,npar);
   fprintf(fichtm,"\n");    free_matrix(doldm,1,nlstate,1,npar);
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    free_matrix(dnewm,1,nlstate,1,nlstate);
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\  }
           imx,agemin,agemax,jmin,jmax,jmean);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Variance of one-step probabilities  ******************/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */     int i, j=0,  k1, l1, tj;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     int k2, l2, j1,  z1;
         int k=0, l;
         int first=1, first1, first2;
   /* For Powell, parameters are in a vector p[] starting at p[1]     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */     double **dnewm,**doldm;
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */     double *xp;
      double *gp, *gm;
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/     double **gradg, **trgradg;
      double **mu;
   if (mle==-3){     double age, cov[NCOVMAX+1];
     ximort=matrix(1,NDIM,1,NDIM);     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     cens=ivector(1,n);     int theta;
     ageexmed=vector(1,n);     char fileresprob[FILENAMELENGTH];
     agecens=vector(1,n);     char fileresprobcov[FILENAMELENGTH];
     dcwave=ivector(1,n);     char fileresprobcor[FILENAMELENGTH];
       double ***varpij;
     for (i=1; i<=imx; i++){  
       dcwave[i]=-1;     strcpy(fileresprob,"PROB_"); 
       for (m=firstpass; m<=lastpass; m++)     strcat(fileresprob,fileres);
         if (s[m][i]>nlstate) {     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           dcwave[i]=m;       printf("Problem with resultfile: %s\n", fileresprob);
           /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           break;     }
         }     strcpy(fileresprobcov,"PROBCOV_"); 
     }     strcat(fileresprobcov,fileresu);
      if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     for (i=1; i<=imx; i++) {       printf("Problem with resultfile: %s\n", fileresprobcov);
       if (wav[i]>0){       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         ageexmed[i]=agev[mw[1][i]][i];     }
         j=wav[i];     strcpy(fileresprobcor,"PROBCOR_"); 
         agecens[i]=1.;     strcat(fileresprobcor,fileresu);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         if (ageexmed[i]> 1 && wav[i] > 0){       printf("Problem with resultfile: %s\n", fileresprobcor);
           agecens[i]=agev[mw[j][i]][i];       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
           cens[i]= 1;     }
         }else if (ageexmed[i]< 1)     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           cens[i]= -1;     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           cens[i]=0 ;     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       }     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       else cens[i]=-1;     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     }     pstamp(ficresprob);
         fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     for (i=1;i<=NDIM;i++) {     fprintf(ficresprob,"# Age");
       for (j=1;j<=NDIM;j++)     pstamp(ficresprobcov);
         ximort[i][j]=(i == j ? 1.0 : 0.0);     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     }     fprintf(ficresprobcov,"# Age");
         pstamp(ficresprobcor);
     p[1]=0.0268; p[NDIM]=0.083;     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     /*printf("%lf %lf", p[1], p[2]);*/     fprintf(ficresprobcor,"# Age");
      
      
     printf("Powell\n");  fprintf(ficlog,"Powell\n");     for(i=1; i<=nlstate;i++)
     strcpy(filerespow,"pow-mort");       for(j=1; j<=(nlstate+ndeath);j++){
     strcat(filerespow,fileres);         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {         fprintf(ficresprobcov," p%1d-%1d ",i,j);
       printf("Problem with resultfile: %s\n", filerespow);         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);       }  
     }     /* fprintf(ficresprob,"\n");
     fprintf(ficrespow,"# Powell\n# iter -2*LL");        fprintf(ficresprobcov,"\n");
     /*  for (i=1;i<=nlstate;i++)        fprintf(ficresprobcor,"\n");
         for(j=1;j<=nlstate+ndeath;j++)     */
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);     xp=vector(1,npar);
     */     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     fprintf(ficrespow,"\n");     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fclose(ficrespow);     first=1;
         fprintf(ficgp,"\n# Routine varprob");
     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
      fprintf(fichtm,"\n");
     for(i=1; i <=NDIM; i++)  
       for(j=i+1;j<=NDIM;j++)     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
         matcov[i][j]=matcov[j][i];     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
         fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
     printf("\nCovariance matrix\n ");  and drawn. It helps understanding how is the covariance between two incidences.\
     for(i=1; i <=NDIM; i++) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       for(j=1;j<=NDIM;j++){     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         printf("%f ",matcov[i][j]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       }  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       printf("\n ");  standard deviations wide on each axis. <br>\
     }   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     for (i=1;i<=NDIM;i++)  
       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));     cov[1]=1;
      /* tj=cptcoveff; */
     lsurv=vector(1,AGESUP);     tj = (int) pow(2,cptcoveff);
     lpop=vector(1,AGESUP);     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     tpop=vector(1,AGESUP);     j1=0;
     lsurv[agegomp]=100000;     for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
           if  (cptcovn>0) {
     for (k=agegomp;k<=AGESUP;k++) {         fprintf(ficresprob, "\n#********** Variable "); 
       agemortsup=k;         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       if (p[1]*exp(p[2]*(k-agegomp))>1) break;         fprintf(ficresprob, "**********\n#\n");
     }         fprintf(ficresprobcov, "\n#********** Variable "); 
             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     for (k=agegomp;k<agemortsup;k++)         fprintf(ficresprobcov, "**********\n#\n");
       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));                          
             fprintf(ficgp, "\n#********** Variable "); 
     for (k=agegomp;k<agemortsup;k++){         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;         fprintf(ficgp, "**********\n#\n");
       sumlpop=sumlpop+lpop[k];                          
     }                          
             fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     tpop[agegomp]=sumlpop;         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
     for (k=agegomp;k<(agemortsup-3);k++){         fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       /*  tpop[k+1]=2;*/                          
       tpop[k+1]=tpop[k]-lpop[k];         fprintf(ficresprobcor, "\n#********** Variable ");    
     }         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
             fprintf(ficresprobcor, "**********\n#");    
             if(invalidvarcomb[j1]){
     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");           fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
     for (k=agegomp;k<(agemortsup-2);k++)           fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);           continue;
             }
           }
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \       gm=vector(1,(nlstate)*(nlstate+ndeath));
                      stepm, weightopt,\       for (age=bage; age<=fage; age ++){ 
                      model,imx,p,matcov,agemortsup);         cov[2]=age;
             if(nagesqr==1)
     free_vector(lsurv,1,AGESUP);           cov[3]= age*age;
     free_vector(lpop,1,AGESUP);         for (k=1; k<=cptcovn;k++) {
     free_vector(tpop,1,AGESUP);           cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
   } /* Endof if mle==-3 */           /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                                        * 1  1 1 1 1
   else{ /* For mle >=1 */                                                                      * 2  2 1 1 1
                                                                        * 3  1 2 1 1
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */                                                                      */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);           /* nbcode[1][1]=0 nbcode[1][2]=1;*/
     for (k=1; k<=npar;k++)         }
       printf(" %d %8.5f",k,p[k]);         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     printf("\n");         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
     globpr=1; /* to print the contributions */         for (k=1; k<=cptcovprod;k++)
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);                          
     for (k=1; k<=npar;k++)                          
       printf(" %d %8.5f",k,p[k]);         for(theta=1; theta <=npar; theta++){
     printf("\n");           for(i=1; i<=npar; i++)
     if(mle>=1){ /* Could be 1 or 2 */             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                                  
     }           pmij(pmmij,cov,ncovmodel,xp,nlstate);
                                      
     /*--------- results files --------------*/           k=0;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);           for(i=1; i<= (nlstate); i++){
                 for(j=1; j<=(nlstate+ndeath);j++){
                   k=k+1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");               gp[k]=pmmij[i][j];
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");             }
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           }
     for(i=1,jk=1; i <=nlstate; i++){                                  
       for(k=1; k <=(nlstate+ndeath); k++){           for(i=1; i<=npar; i++)
         if (k != i) {             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           printf("%d%d ",i,k);                                  
           fprintf(ficlog,"%d%d ",i,k);           pmij(pmmij,cov,ncovmodel,xp,nlstate);
           fprintf(ficres,"%1d%1d ",i,k);           k=0;
           for(j=1; j <=ncovmodel; j++){           for(i=1; i<=(nlstate); i++){
             printf("%lf ",p[jk]);             for(j=1; j<=(nlstate+ndeath);j++){
             fprintf(ficlog,"%lf ",p[jk]);               k=k+1;
             fprintf(ficres,"%lf ",p[jk]);               gm[k]=pmmij[i][j];
             jk++;             }
           }           }
           printf("\n");                                  
           fprintf(ficlog,"\n");           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           fprintf(ficres,"\n");             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
         }         }
       }  
     }         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     if(mle!=0){           for(theta=1; theta <=npar; theta++)
       /* Computing hessian and covariance matrix */             trgradg[j][theta]=gradg[theta][j];
       ftolhess=ftol; /* Usually correct */                          
       hesscov(matcov, p, npar, delti, ftolhess, func);         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     }         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                          
     printf("# Scales (for hessian or gradient estimation)\n");         pmij(pmmij,cov,ncovmodel,x,nlstate);
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");                          
     for(i=1,jk=1; i <=nlstate; i++){         k=0;
       for(j=1; j <=nlstate+ndeath; j++){         for(i=1; i<=(nlstate); i++){
         if (j!=i) {           for(j=1; j<=(nlstate+ndeath);j++){
           fprintf(ficres,"%1d%1d",i,j);             k=k+1;
           printf("%1d%1d",i,j);             mu[k][(int) age]=pmmij[i][j];
           fprintf(ficlog,"%1d%1d",i,j);           }
           for(k=1; k<=ncovmodel;k++){         }
             printf(" %.5e",delti[jk]);         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficlog," %.5e",delti[jk]);           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             fprintf(ficres," %.5e",delti[jk]);             varpij[i][j][(int)age] = doldm[i][j];
             jk++;                          
           }         /*printf("\n%d ",(int)age);
           printf("\n");           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           fprintf(ficlog,"\n");           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           fprintf(ficres,"\n");           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         }           }*/
       }                          
     }         fprintf(ficresprob,"\n%d ",(int)age);
             fprintf(ficresprobcov,"\n%d ",(int)age);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fprintf(ficresprobcor,"\n%d ",(int)age);
     if(mle>=1)                          
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     /* # 121 Var(a12)\n\ */         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /* # 122 Cov(b12,a12) Var(b12)\n\ */           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */         }
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */         i=0;
     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */         for (k=1; k<=(nlstate);k++){
     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */           for (l=1; l<=(nlstate+ndeath);l++){ 
     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */             i++;
                 fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                 fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     /* Just to have a covariance matrix which will be more understandable             for (j=1; j<=i;j++){
        even is we still don't want to manage dictionary of variables               /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
     */               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     for(itimes=1;itimes<=2;itimes++){               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       jj=0;             }
       for(i=1; i <=nlstate; i++){           }
         for(j=1; j <=nlstate+ndeath; j++){         }/* end of loop for state */
           if(j==i) continue;       } /* end of loop for age */
           for(k=1; k<=ncovmodel;k++){       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
             jj++;       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
             ca[0]= k+'a'-1;ca[1]='\0';       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             if(itimes==1){       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               if(mle>=1)      
                 printf("#%1d%1d%d",i,j,k);       /* Confidence intervalle of pij  */
               fprintf(ficlog,"#%1d%1d%d",i,j,k);       /*
               fprintf(ficres,"#%1d%1d%d",i,j,k);         fprintf(ficgp,"\nunset parametric;unset label");
             }else{         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
               if(mle>=1)         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                 printf("%1d%1d%d",i,j,k);         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               fprintf(ficlog,"%1d%1d%d",i,j,k);         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
               fprintf(ficres,"%1d%1d%d",i,j,k);         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
             }         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
             ll=0;       */
             for(li=1;li <=nlstate; li++){                  
               for(lj=1;lj <=nlstate+ndeath; lj++){       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                 if(lj==li) continue;       first1=1;first2=2;
                 for(lk=1;lk<=ncovmodel;lk++){       for (k2=1; k2<=(nlstate);k2++){
                   ll++;         for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   if(ll<=jj){           if(l2==k2) continue;
                     cb[0]= lk +'a'-1;cb[1]='\0';           j=(k2-1)*(nlstate+ndeath)+l2;
                     if(ll<jj){           for (k1=1; k1<=(nlstate);k1++){
                       if(itimes==1){             for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                         if(mle>=1)               if(l1==k1) continue;
                           printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);               i=(k1-1)*(nlstate+ndeath)+l1;
                         fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);               if(i<=j) continue;
                         fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);               for (age=bage; age<=fage; age ++){ 
                       }else{                 if ((int)age %5==0){
                         if(mle>=1)                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                           printf(" %.5e",matcov[jj][ll]);                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                         fprintf(ficres," %.5e",matcov[jj][ll]);                   mu1=mu[i][(int) age]/stepm*YEARM ;
                       }                   mu2=mu[j][(int) age]/stepm*YEARM;
                     }else{                   c12=cv12/sqrt(v1*v2);
                       if(itimes==1){                   /* Computing eigen value of matrix of covariance */
                         if(mle>=1)                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                           printf(" Var(%s%1d%1d)",ca,i,j);                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                         fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);                   if ((lc2 <0) || (lc1 <0) ){
                         fprintf(ficres," Var(%s%1d%1d)",ca,i,j);                     if(first2==1){
                       }else{                       first1=0;
                         if(mle>=1)                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                           printf(" %.5e",matcov[jj][ll]);                     }
                         fprintf(ficlog," %.5e",matcov[jj][ll]);                     fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                         fprintf(ficres," %.5e",matcov[jj][ll]);                     /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       }                     /* lc2=fabs(lc2); */
                     }                   }
                   }                                                                  
                 } /* end lk */                   /* Eigen vectors */
               } /* end lj */                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             } /* end li */                   /*v21=sqrt(1.-v11*v11); *//* error */
             if(mle>=1)                   v21=(lc1-v1)/cv12*v11;
               printf("\n");                   v12=-v21;
             fprintf(ficlog,"\n");                   v22=v11;
             fprintf(ficres,"\n");                   tnalp=v21/v11;
             numlinepar++;                   if(first1==1){
           } /* end k*/                     first1=0;
         } /*end j */                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       } /* end i */                   }
     } /* end itimes */                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                       /*printf(fignu*/
     fflush(ficlog);                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     fflush(ficres);                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                       if(first==1){
     while((c=getc(ficpar))=='#' && c!= EOF){                     first=0;
       ungetc(c,ficpar);                     fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
       fgets(line, MAXLINE, ficpar);                     fprintf(ficgp,"\nset parametric;unset label");
       puts(line);                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       fputs(line,ficparo);                     fprintf(ficgp,"\nset ter svg size 640, 480");
     }                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     ungetc(c,ficpar);   :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                           \
      %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
     estepm=0;                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                             subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
     if (estepm==0 || estepm < stepm) estepm=stepm;                     fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
     if (fage <= 2) {                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       bage = ageminpar;                     fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
       fage = agemaxpar;                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     }                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                         fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                   }else{
                         first=0;
     while((c=getc(ficpar))=='#' && c!= EOF){                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       ungetc(c,ficpar);                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       fgets(line, MAXLINE, ficpar);                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       puts(line);                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
       fputs(line,ficparo);                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \
     }                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     ungetc(c,ficpar);                   }/* if first */
                     } /* age mod 5 */
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);               } /* end loop age */
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);               fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);               first=1;
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);             } /*l12 */
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);           } /* k12 */
             } /*l1 */
     while((c=getc(ficpar))=='#' && c!= EOF){       }/* k1 */
       ungetc(c,ficpar);     }  /* loop on combination of covariates j1 */
       fgets(line, MAXLINE, ficpar);     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
       puts(line);     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       fputs(line,ficparo);     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     }     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     ungetc(c,ficpar);     free_vector(xp,1,npar);
         fclose(ficresprob);
         fclose(ficresprobcov);
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;     fclose(ficresprobcor);
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;     fflush(ficgp);
         fflush(fichtmcov);
     fscanf(ficpar,"pop_based=%d\n",&popbased);   }
     fprintf(ficparo,"pop_based=%d\n",popbased);    
     fprintf(ficres,"pop_based=%d\n",popbased);    
      /******************* Printing html file ***********/
     while((c=getc(ficpar))=='#' && c!= EOF){  void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
       ungetc(c,ficpar);                    int lastpass, int stepm, int weightopt, char model[],\
       fgets(line, MAXLINE, ficpar);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
       puts(line);                    int popforecast, int prevfcast, int backcast, int estepm , \
       fputs(line,ficparo);                    double jprev1, double mprev1,double anprev1, double dateprev1, \
     }                    double jprev2, double mprev2,double anprev2, double dateprev2){
     ungetc(c,ficpar);    int jj1, k1, i1, cpt;
      
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  </ul>");
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);     fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
     /* day and month of proj2 are not used but only year anproj2.*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
         fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
                 jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
         fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/     fprintf(fichtm,"\
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                 stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */     fprintf(fichtm,"\
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);   - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                 stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\     fprintf(fichtm,"\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);             subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
           fprintf(fichtm,"\
    /*------------ free_vector  -------------*/   - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
    /*  chdir(path); */             subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
       fprintf(fichtm,"\
     free_ivector(wav,1,imx);   - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);     <a href=\"%s\">%s</a> <br>\n",
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);             estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       if(prevfcast==1){
     free_lvector(num,1,n);       fprintf(fichtm,"\
     free_vector(agedc,1,n);   - Prevalence projections by age and states:                            \
     /*free_matrix(covar,0,NCOVMAX,1,n);*/     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
     /*free_matrix(covar,1,NCOVMAX,1,n);*/     }
     fclose(ficparo);  
     fclose(ficres);     fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
      m=pow(2,cptcoveff);
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
    
     strcpy(filerespl,"pl");     jj1=0;
     strcat(filerespl,fileres);     for(k1=1; k1<=m;k1++){
     if((ficrespl=fopen(filerespl,"w"))==NULL) {  
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;       jj1++;
     }       if (cptcovn > 0) {
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);         for (cpt=1; cpt<=cptcoveff;cpt++){ 
     pstamp(ficrespl);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
     fprintf(ficrespl,"# Period (stable) prevalence \n");           printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
     fprintf(ficrespl,"#Age ");         }
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);         /* if(nqfveff+nqtveff 0) */ /* Test to be done */
     fprintf(ficrespl,"\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           if(invalidvarcomb[k1]){
     prlim=matrix(1,nlstate,1,nlstate);           fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
            printf("\nCombination (%d) ignored because no cases \n",k1); 
     agebase=ageminpar;           continue;
     agelim=agemaxpar;         }
     ftolpl=1.e-10;       }
     i1=cptcoveff;       /* aij, bij */
     if (cptcovn < 1){i1=1;}       fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){       /* Pij */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
         k=k+1;  <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/       /* Quasi-incidences */
         fprintf(ficrespl,"\n#******");       fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         printf("\n#******");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
         fprintf(ficlog,"\n#******");   incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
         for(j=1;j<=cptcoveff;j++) {  divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       /* Survival functions (period) in state j */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for(cpt=1; cpt<=nlstate;cpt++){
         }         fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
         fprintf(ficrespl,"******\n");  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
         printf("******\n");       }
         fprintf(ficlog,"******\n");       /* State specific survival functions (period) */
               for(cpt=1; cpt<=nlstate;cpt++){
         for (age=agebase; age<=agelim; age++){         fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   Or probability to survive in various states (1 to %d) being in state %d at different ages.     \
           fprintf(ficrespl,"%.0f ",age );   <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
           for(j=1;j<=cptcoveff;j++)       }
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       /* Period (stable) prevalence in each health state */
           for(i=1; i<=nlstate;i++)       for(cpt=1; cpt<=nlstate;cpt++){
             fprintf(ficrespl," %.5f", prlim[i][i]);         fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
           fprintf(ficrespl,"\n");  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
         }       }
       }       if(backcast==1){
     }         /* Period (stable) back prevalence in each health state */
     fclose(ficrespl);         for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
     /*------------- h Pij x at various ages ------------*/  <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
           }
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);       }
     if((ficrespij=fopen(filerespij,"w"))==NULL) {       if(prevfcast==1){
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;         /* Projection of prevalence up to period (stable) prevalence in each health state */
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;         for(cpt=1; cpt<=nlstate;cpt++){
     }           fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
     printf("Computing pij: result on file '%s' \n", filerespij);  <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);         }
         }
     stepsize=(int) (stepm+YEARM-1)/YEARM;           
     /*if (stepm<=24) stepsize=2;*/       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
     agelim=AGESUP;  <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
     hstepm=stepsize*YEARM; /* Every year of age */       }
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       /* } /\* end i1 *\/ */
      }/* End k1 */
     /* hstepm=1;   aff par mois*/     fprintf(fichtm,"</ul>");
     pstamp(ficrespij);  
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");     fprintf(fichtm,"\
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
         k=k+1;   - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
         fprintf(ficrespij,"\n#****** ");  But because parameters are usually highly correlated (a higher incidence of disability \
         for(j=1;j<=cptcoveff;j++)  and a higher incidence of recovery can give very close observed transition) it might \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  be very useful to look not only at linear confidence intervals estimated from the \
         fprintf(ficrespij,"******\n");  variances but at the covariance matrix. And instead of looking at the estimated coefficients \
          (parameters) of the logistic regression, it might be more meaningful to visualize the \
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  covariance matrix of the one-step probabilities. \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
      fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           /*      nhstepm=nhstepm*YEARM; aff par mois*/             subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
      fprintf(fichtm,"\
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           oldm=oldms;savm=savms;             subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");     fprintf(fichtm,"\
           for(i=1; i<=nlstate;i++)   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             for(j=1; j<=nlstate+ndeath;j++)             subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
               fprintf(ficrespij," %1d-%1d",i,j);     fprintf(fichtm,"\
           fprintf(ficrespij,"\n");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
           for (h=0; h<=nhstepm; h++){     <a href=\"%s\">%s</a> <br>\n</li>",
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );             estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
             for(i=1; i<=nlstate;i++)     fprintf(fichtm,"\
               for(j=1; j<=nlstate+ndeath;j++)   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     <a href=\"%s\">%s</a> <br>\n</li>",
             fprintf(ficrespij,"\n");             estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
           }     fprintf(fichtm,"\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
           fprintf(ficrespij,"\n");             estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
         }     fprintf(fichtm,"\
       }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
     }             estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
      fprintf(fichtm,"\
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
              subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
     fclose(ficrespij);  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     for(i=1;i<=AGESUP;i++)  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       for(j=1;j<=NCOVMAX;j++)  /*      <br>",fileres,fileres,fileres,fileres); */
         for(k=1;k<=NCOVMAX;k++)  /*  else  */
           probs[i][j][k]=0.;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
      fflush(fichtm);
     /*---------- Forecasting ------------------*/     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/  
     if(prevfcast==1){     m=pow(2,cptcoveff);
       /*    if(stepm ==1){*/     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/     jj1=0;
       /*      }  */     for(k1=1; k1<=m;k1++){
       /*      else{ */       /* for(i1=1; i1<=ncodemax[k1];i1++){ */
       /*        erreur=108; */       jj1++;
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */       if (cptcovn > 0) {
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       /*      } */         for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   
     /*---------- Health expectancies and variances ------------*/         if(invalidvarcomb[k1]){
            fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
     strcpy(filerest,"t");           continue;
     strcat(filerest,fileres);         }
     if((ficrest=fopen(filerest,"w"))==NULL) {       }
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;         fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
     }  prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\
     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);  <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
     strcpy(filerese,"e");  true period expectancies (those weighted with period prevalences are also\
     strcat(filerese,fileres);   drawn in addition to the population based expectancies computed using\
     if((ficreseij=fopen(filerese,"w"))==NULL) {   observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       /* } /\* end i1 *\/ */
     }     }/* End k1 */
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);     fprintf(fichtm,"</ul>");
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);     fflush(fichtm);
   }
     strcpy(fileresstde,"stde");  
     strcat(fileresstde,fileres);  /******************* Gnuplot file **************/
     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {  void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);  
       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);    char dirfileres[132],optfileres[132];
     }    char gplotcondition[132];
     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0,l=0;
     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);    int lv=0, vlv=0, kl=0;
     int ng=0;
     strcpy(filerescve,"cve");    int vpopbased;
     strcat(filerescve,fileres);    int ioffset; /* variable offset for columns */
     if((ficrescveij=fopen(filerescve,"w"))==NULL) {    int nres=0; /* Index of resultline */
       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  
       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     }  /*     printf("Problem with file %s",optionfilegnuplot); */
     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);  /*   } */
   
     strcpy(fileresv,"v");    /*#ifdef windows */
     strcat(fileresv,fileres);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {    /*#endif */
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    m=pow(2,cptcoveff);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
     }    /* Contribution to likelihood */
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* Plot the probability implied in the likelihood */
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */    /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    fprintf(ficgp,"\nset ter pngcairo size 640, 480");
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\  /* nice for mle=4 plot by number of matrix products.
         ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);     replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
     */  /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
     /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
     if (mobilav!=0) {    fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
         printf(" Error in movingaverage mobilav=%d\n",mobilav);    for (i=1; i<= nlstate ; i ++) {
       }      fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
     }      fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
       fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      for (j=2; j<= nlstate+ndeath ; j ++) {
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         k=k+1;      }
         fprintf(ficrest,"\n#****** ");      fprintf(ficgp,";\nset out; unset ylabel;\n"); 
         for(j=1;j<=cptcoveff;j++)    }
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */                
         fprintf(ficrest,"******\n");    /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
     /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
         fprintf(ficreseij,"\n#****** ");    fprintf(ficgp,"\nset out;unset log\n");
         fprintf(ficresstdeij,"\n#****** ");    /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
         fprintf(ficrescveij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++) {    strcpy(dirfileres,optionfilefiname);
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(optfileres,"vpl");
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* 1eme*/
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
         }      for(nres=1; nres <= nresult; nres++) /* For each resultline */
         fprintf(ficreseij,"******\n");      for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */
         fprintf(ficresstdeij,"******\n");      /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficrescveij,"******\n");        if(TKresult[nres]!= k1)
           continue;
         fprintf(ficresvij,"\n#****** ");        /* We are interested in selected combination by the resultline */
         for(j=1;j<=cptcoveff;j++)        printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt);
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
         fprintf(ficresvij,"******\n");        for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         oldm=oldms;savm=savms;          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
         cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);            vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
            /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          printf(" V%d=%d ",Tvaraff[k],vlv);
         oldm=oldms;savm=savms;          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);        }
         if(popbased==1){        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);          printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         } 
         pstamp(ficrest);        printf("\n#\n");
         fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");        fprintf(ficgp,"\n#\n");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        if(invalidvarcomb[k1]){
         fprintf(ficrest,"\n");          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         epj=vector(1,nlstate+1);        }
         for(age=bage; age <=fage ;age++){        
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
           if (popbased==1) {        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
             if(mobilav ==0){        fprintf(ficgp,"set xlabel \"Age\" \n\
               for(i=1; i<=nlstate;i++)  set ylabel \"Probability\" \n             \
                 prlim[i][i]=probs[(int)age][i][k];  set ter svg size 640, 480\n                                             \
             }else{ /* mobilav */  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
               for(i=1; i<=nlstate;i++)        
                 prlim[i][i]=mobaverage[(int)age][i][k];        for (i=1; i<= nlstate ; i ++) {
             }          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           }          else        fprintf(ficgp," %%*lf (%%*lf)");
                }
           fprintf(ficrest," %4.0f",age);        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        for (i=1; i<= nlstate ; i ++) {
             for(i=1, epj[j]=0.;i <=nlstate;i++) {          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
               epj[j] += prlim[i][i]*eij[i][j][(int)age];          else fprintf(ficgp," %%*lf (%%*lf)");
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        } 
             }        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
             epj[nlstate+1] +=epj[j];        for (i=1; i<= nlstate ; i ++) {
           }          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
           for(i=1, vepp=0.;i <=nlstate;i++)        }  
             for(j=1;j <=nlstate;j++)        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
               vepp += vareij[i][j][(int)age];        if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
           for(j=1;j <=nlstate;j++){          fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          if(cptcoveff ==0){
           }            fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ",  2+(cpt-1),  cpt );
           fprintf(ficrest,"\n");          }else{
         }            kl=0;
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
         free_vector(epj,1,nlstate+1);              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
       }              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
     }              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     free_vector(weight,1,n);              vlv= nbcode[Tvaraff[k]][lv];
     free_imatrix(Tvard,1,15,1,2);              kl++;
     free_imatrix(s,1,maxwav+1,1,n);              /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
     free_matrix(anint,1,maxwav,1,n);              /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
     free_matrix(mint,1,maxwav,1,n);              /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
     free_ivector(cod,1,n);              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
     free_ivector(tab,1,NCOVMAX);              if(k==cptcoveff){
     fclose(ficreseij);                fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
     fclose(ficresstdeij);                        4+(cpt-1),  cpt );  /* 4 or 6 ?*/
     fclose(ficrescveij);              }else{
     fclose(ficresvij);                fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
     fclose(ficrest);                kl++;
     fclose(ficpar);              }
              } /* end covariate */
     /*------- Variance of period (stable) prevalence------*/            } /* end if no covariate */
         } /* end if backcast */
     strcpy(fileresvpl,"vpl");        fprintf(ficgp,"\nset out \n");
     strcat(fileresvpl,fileres);      } /* k1 */
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    } /* cpt */
       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);  
       exit(0);    
     }    /*2 eme*/
     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){      for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
         k=k+1;        if(TKresult[nres]!= k)
         fprintf(ficresvpl,"\n#****** ");          continue;
         for(j=1;j<=cptcoveff;j++)        lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
         fprintf(ficresvpl,"******\n");        /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
         varpl=matrix(1,nlstate,(int) bage, (int) fage);        vlv= nbcode[Tvaraff[k]][lv];
         oldm=oldms;savm=savms;        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
     }        }
       }
     fclose(ficresvpl);      fprintf(ficgp,"\n#\n");
       if(invalidvarcomb[k1]){
     /*---------- End : free ----------------*/        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        continue;
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
                           
   }  /* mle==-3 arrives here for freeing */      fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
   free_matrix(prlim,1,nlstate,1,nlstate);      for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        if(vpopbased==0)
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        else
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficgp,"\nreplot ");
     free_matrix(covar,0,NCOVMAX,1,n);        for (i=1; i<= nlstate+1 ; i ++) {
     free_matrix(matcov,1,npar,1,npar);          k=2*i;
     /*free_vector(delti,1,npar);*/          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          for (j=1; j<= nlstate+1 ; j ++) {
     free_matrix(agev,1,maxwav,1,imx);            if (j==i) fprintf(ficgp," %%lf (%%lf)");
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            else fprintf(ficgp," %%*lf (%%*lf)");
           }   
     free_ivector(ncodemax,1,8);          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
     free_ivector(Tvar,1,15);          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
     free_ivector(Tprod,1,15);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
     free_ivector(Tvaraff,1,15);          for (j=1; j<= nlstate+1 ; j ++) {
     free_ivector(Tage,1,15);            if (j==i) fprintf(ficgp," %%lf (%%lf)");
     free_ivector(Tcode,1,100);            else fprintf(ficgp," %%*lf (%%*lf)");
           }   
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);          fprintf(ficgp,"\" t\"\" w l lt 0,");
     free_imatrix(codtab,1,100,1,10);          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
   fflush(fichtm);          for (j=1; j<= nlstate+1 ; j ++) {
   fflush(ficgp);            if (j==i) fprintf(ficgp," %%lf (%%lf)");
              else fprintf(ficgp," %%*lf (%%*lf)");
           }   
   if((nberr >0) || (nbwarn>0)){          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);        } /* state */
   }else{      } /* vpopbased */
     printf("End of Imach\n");      fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     fprintf(ficlog,"End of Imach\n");    } /* k1 end 2 eme*/
   }          
   printf("See log file on %s\n",filelog);          
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /*3eme*/
   (void) gettimeofday(&end_time,&tzp);    for (k1=1; k1<= m ; k1 ++) { 
   tm = *localtime(&end_time.tv_sec);  
   tmg = *gmtime(&end_time.tv_sec);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcpy(strtend,asctime(&tm));        fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);        for(nres=1; nres <= nresult; nres++) /* For each resultline */
   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));          if(TKresult[nres]!= k)
             continue;
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
   /*  printf("Total time was %d uSec.\n", total_usecs);*/          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
 /*   if(fileappend(fichtm,optionfilehtm)){ */          vlv= nbcode[Tvaraff[k]][lv];
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
   fclose(fichtm);          for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);            printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
   fclose(fichtmcov);            fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
   fclose(ficgp);          }       
   fclose(ficlog);        }
   /*------ End -----------*/        fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
    printf("Before Current directory %s!\n",pathcd);          continue;
    if(chdir(pathcd) != 0)        }
     printf("Can't move to directory %s!\n",path);                          
   if(getcwd(pathcd,MAXLINE) > 0)        /*       k=2+nlstate*(2*cpt-2); */
     printf("Current directory %s!\n",pathcd);        k=2+(nlstate+1)*(cpt-1);
   /*strcat(plotcmd,CHARSEPARATOR);*/        fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
   sprintf(plotcmd,"gnuplot");        fprintf(ficgp,"set ter svg size 640, 480\n\
 #ifndef UNIX  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 #endif          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if(!stat(plotcmd,&info)){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     if(!stat(getenv("GNUPLOTBIN"),&info)){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
       printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }else                                  
       strcpy(pplotcmd,plotcmd);        */
 #ifdef UNIX        for (i=1; i< nlstate ; i ++) {
     strcpy(plotcmd,GNUPLOTPROGRAM);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
     if(!stat(plotcmd,&info)){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);                                  
     }else        } 
       strcpy(pplotcmd,plotcmd);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
 #endif      }
   }else    }
     strcpy(pplotcmd,plotcmd);    
      /* 4eme */
   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);    /* Survival functions (period) from state i in state j by initial state i */
   printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   
   if((outcmd=system(plotcmd)) != 0){      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
     printf("\n Problem with gnuplot\n");        fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
   }        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
   printf(" Wait...");          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
   while (z[0] != 'q') {          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
     /* chdir(path); */          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
     printf("\nType e to edit output files, g to graph again and q for exiting: ");          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
     scanf("%s",z);          vlv= nbcode[Tvaraff[k]][lv];
 /*     if (z[0] == 'c') system("./imach"); */          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
     if (z[0] == 'e') {        }
       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);        fprintf(ficgp,"\n#\n");
       system(optionfilehtm);        if(invalidvarcomb[k1]){
     }          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
     else if (z[0] == 'g') system(plotcmd);          continue;
     else if (z[0] == 'q') exit(0);        }
   }                          
   end:        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
   while (z[0] != 'q') {        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
     printf("\nType  q for exiting: ");  set ter svg size 640, 480\n                                                                                                                                                                                     \
     scanf("%s",z);  unset log y\n                                                                                                                                                                                                                                           \
   }  plot [%.f:%.f]  ", ageminpar, agemaxpar);
 }        k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1){
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           }else{
             fprintf(ficgp,", '' ");
           }
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
           
   /* 5eme */
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
                           
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
   /* 6eme */
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[k]][lv];
           fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
         }
         fprintf(ficgp,"\n#\n");
         if(invalidvarcomb[k1]){
           fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
           continue;
         }
         
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     
   /* 7eme */
     if(backcast == 1){
       /* CV back preval stable (period) for each covariate */
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1;
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     /* 8eme */
     if(prevfcast==1){
       /* Projection from cross-sectional to stable (period) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[k]][lv];
             fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
           }
           fprintf(ficgp,"\n#\n");
           if(invalidvarcomb[k1]){
             fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
             continue;
           }
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               ioffset=2; /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               fprintf(ficgp," u %d:(", ioffset); 
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{ /* more than 2 covariates */
               if(cptcoveff ==1){
                 ioffset=4; /* Age is in 4 */
               }else{
                 ioffset=6; /* Age is in 6 */
                 /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                 /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
               }   
               fprintf(ficgp," u %d:(",ioffset); 
               kl=0;
               strcpy(gplotcondition,"(");
               for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                 kl++;
                 sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                 kl++;
                 if(k <cptcoveff && cptcoveff>1)
                   sprintf(gplotcondition+strlen(gplotcondition)," && ");
               }
               strcpy(gplotcondition+strlen(gplotcondition),")");
               /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
               /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
               /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
               /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
               if(i==nlstate+1){
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
               }else{
                 fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                         ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
               }
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
     
     
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
     }
     fprintf(ficgp,"##############\n#\n");
     
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
     for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
       fprintf(ficgp,"# ng=%d\n",ng);
       fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
       for(jk=1; jk <=m; jk++) {
         fprintf(ficgp,"#    jk=%d\n",jk);
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
         fprintf(ficgp,"\nset ter svg size 640, 480 ");
         if (ng==1){
           fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
           fprintf(ficgp,"\nunset log y");
         }else if (ng==2){
           fprintf(ficgp,"\nset ylabel \"Probability\"\n");
           fprintf(ficgp,"\nset log y");
         }else if (ng==3){
           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           fprintf(ficgp,"\nset log y");
         }else
           fprintf(ficgp,"\nunset title ");
         fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         i=1;
         for(k2=1; k2<=nlstate; k2++) {
           k3=i;
           for(k=1; k<=(nlstate+ndeath); k++) {
             if (k != k2){
               switch( ng) {
               case 1:
                 if(nagesqr==0)
                   fprintf(ficgp," p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 2: /* ng=2 */
                 if(nagesqr==0)
                   fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                 break;
               case 3:
                 if(nagesqr==0)
                   fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                 break;
               }
               ij=1;/* To be checked else nbcode[0][0] wrong */
               for(j=3; j <=ncovmodel-nagesqr; j++) {
                 /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                 if(ij <=cptcovage) { /* Bug valgrind */
                   if((j-2)==Tage[ij]) { /* Bug valgrind */
                     fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                     /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                     ij++;
                   }
                 }
                 else
                   fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); /* Valgrind bug nbcode */
               }
             }else{
               i=i-ncovmodel;
               if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                 fprintf(ficgp," (1.");
             }
             
             if(ng != 1){
               fprintf(ficgp,")/(1");
               
               for(k1=1; k1 <=nlstate; k1++){ 
                 if(nagesqr==0)
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                 else /* nagesqr =1 */
                   fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                  
                 ij=1;
                 for(j=3; j <=ncovmodel-nagesqr; j++){
                   if(ij <=cptcovage) { /* Bug valgrind */
                     if((j-2)==Tage[ij]) { /* Bug valgrind */
                       fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                       /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                       ij++;
                     }
                   }
                   else
                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */
                 }
                 fprintf(ficgp,")");
               }
               fprintf(ficgp,")");
               if(ng ==2)
                 fprintf(ficgp," t \"p%d%d\" ", k2,k);
               else /* ng= 3 */
                 fprintf(ficgp," t \"i%d%d\" ", k2,k);
             }else{ /* end ng <> 1 */
               if( k !=k2) /* logit p11 is hard to draw */
                 fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
             }
             if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
               fprintf(ficgp,",");
             if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
               fprintf(ficgp,",");
             i=i+ncovmodel;
           } /* end k */
         } /* end k2 */
         fprintf(ficgp,"\n set out\n");
       } /* end jk */
     } /* end ng */
     /* avoid: */
     fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
    int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
      int i, cpt, cptcod;
      int modcovmax =1;
      int mobilavrange, mob;
      int iage=0;
   
      double sum=0.;
      double age;
      double *sumnewp, *sumnewm;
      double *agemingood, *agemaxgood; /* Currently identical for all covariates */
     
     
      /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */
      /*              a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */
   
      sumnewp = vector(1,ncovcombmax);
      sumnewm = vector(1,ncovcombmax);
      agemingood = vector(1,ncovcombmax);  
      agemaxgood = vector(1,ncovcombmax);
   
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        sumnewm[cptcod]=0.;
        sumnewp[cptcod]=0.;
        agemingood[cptcod]=0;
        agemaxgood[cptcod]=0;
      }
      if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
     
      if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if(mobilav==1) mobilavrange=5; /* default */
        else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
        /* We keep the original values on the extreme ages bage, fage and for 
           fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           we use a 5 terms etc. until the borders are no more concerned. 
        */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
          for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
              }
            }
          }/* end age */
        }/* end mob */
      }else
        return -1;
      for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
        /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
        if(invalidvarcomb[cptcod]){
          printf("\nCombination (%d) ignored because no cases \n",cptcod); 
          continue;
        }
   
        agemingood[cptcod]=fage-(mob-1)/2;
        for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemingood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
        /* From youngest, finding the oldest wrong */
        agemaxgood[cptcod]=bage+(mob-1)/2;
        for (age=bage+(mob-1)/2; age<=fage; age++){
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
          }
          if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
            agemaxgood[cptcod]=age;
          }else{ /* bad */
            for (i=1; i<=nlstate;i++){
              mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            } /* i */
          } /* end bad */
        }/* age */
        sum=0.;
        for (i=1; i<=nlstate;i++){
          sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
        }
        if(fabs(sum - 1.) > 1.e-3) { /* bad */
          printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
          /* for (i=1; i<=nlstate;i++){ */
          /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
          /* } /\* i *\/ */
        } /* end bad */
                   
        for (age=bage; age<=fage; age++){
          /* printf("%d %d ", cptcod, (int)age); */
          sumnewp[cptcod]=0.;
          sumnewm[cptcod]=0.;
          for (i=1; i<=nlstate;i++){
            sumnewp[cptcod]+=probs[(int)age][i][cptcod];
            sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
            /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
          }
          /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
        }
        /* printf("\n"); */
        /* } */
        /* brutal averaging */
        for (i=1; i<=nlstate;i++){
          for (age=1; age<=bage; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }        
          for (age=fage; age<=AGESUP; age++){
            mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
            /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
          }
        } /* end i status */
        for (i=nlstate+1; i<=nlstate+ndeath;i++){
          for (age=1; age<=AGESUP; age++){
            /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
            mobaverage[(int)age][i][cptcod]=0.;
          }
        }
      }/* end cptcod */
      free_vector(sumnewm,1, ncovcombmax);
      free_vector(sumnewp,1, ncovcombmax);
      free_vector(agemaxgood,1, ncovcombmax);
      free_vector(agemingood,1, ncovcombmax);
      return 0;
    }/* End movingaverage */
    
   
   /************** Forecasting ******************/
    void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
      int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
     
   /*            if (h==(int)(YEARM*yearp)){ */
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(TKresult[nres]!= k)
         continue;
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) projection ignored because no cases \n",k); 
         continue;
       }
       fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficresf," yearproj age");
       for(j=1; j<=nlstate+ndeath;j++){ 
         for(i=1; i<=nlstate;i++)        
           fprintf(ficresf," p%d%d",i,j);
         fprintf(ficresf," wp.%d",j);
       }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
         fprintf(ficresf,"\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         for (agec=fage; agec>=(ageminpar-1); agec--){ 
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           nhstepm = nhstepm/hstepm; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
           
           for (h=0; h<=nhstepm; h++){
             if (h*hstepm/YEARM*stepm ==yearp) {
               fprintf(ficresf,"\n");
               for(j=1;j<=cptcoveff;j++) 
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
             } 
             for(j=1; j<=nlstate+ndeath;j++) {
               ppij=0.;
               for(i=1; i<=nlstate;i++) {
                 if (mobilav==1) 
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];
                 else {
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                 }
                 if (h*hstepm/YEARM*stepm== yearp) {
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);
                 }
               } /* end i */
               if (h*hstepm/YEARM*stepm==yearp) {
                 fprintf(ficresf," %.3f", ppij);
               }
             }/* end j */
           } /* end h */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         } /* end agec */
       } /* end yearp */
     } /* end  k */
           
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /* /\************** Back Forecasting ******************\/ */
   /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
   /*   /\* back1, year, month, day of starting backection  */
   /*      agemin, agemax range of age */
   /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
   /*      anback2 year of en of backection (same day and month as back1). */
   /*   *\/ */
   /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
   /*   double agec; /\* generic age *\/ */
   /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char fileresfb[FILENAMELENGTH]; */
           
   /*   agelim=AGESUP; */
   /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
   /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
   /*      We still use firstpass and lastpass as another selection. */
   /*   *\/ */
   /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
   /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
           
   /*   strcpy(fileresfb,"FB_");  */
   /*   strcat(fileresfb,fileresu); */
   /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
   /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
   /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
   /*   } */
   /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
   /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
           
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
           
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
           
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
   /*   if(estepm < stepm){ */
   /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
   /*   } */
   /*   else  hstepm=estepm;    */
           
   /*   hstepm=hstepm/stepm;  */
   /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
   /*                                fractional in yp1 *\/ */
   /*   anprojmean=yp; */
   /*   yp2=modf((yp1*12),&yp); */
   /*   mprojmean=yp; */
   /*   yp1=modf((yp2*30.5),&yp); */
   /*   jprojmean=yp; */
   /*   if(jprojmean==0) jprojmean=1; */
   /*   if(mprojmean==0) jprojmean=1; */
           
   /*   i1=cptcoveff; */
   /*   if (cptcovn < 1){i1=1;} */
     
   /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
     
   /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
           
   /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */
   /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficresfb," yearbproj age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++){  */
   /*                              for(i=1; i<=nlstate;i++)               */
   /*           fprintf(ficresfb," p%d%d",i,j); */
   /*                              fprintf(ficresfb," p.%d",j); */
   /*       } */
   /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
   /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
   /*                              fprintf(ficresfb,"\n"); */
   /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
   /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */
   /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
   /*                                      nhstepm = nhstepm/hstepm;  */
   /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                                      oldm=oldms;savm=savms; */
   /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
   /*                                      for (h=0; h<=nhstepm; h++){ */
   /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */
   /*               fprintf(ficresfb,"\n"); */
   /*               for(j=1;j<=cptcoveff;j++)  */
   /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
   /*                                              }  */
   /*                                              for(j=1; j<=nlstate+ndeath;j++) { */
   /*                                                      ppij=0.; */
   /*                                                      for(i=1; i<=nlstate;i++) { */
   /*                                                              if (mobilav==1)  */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
   /*                                                              else { */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
   /*                                                              } */
   /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */
   /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
   /*                                                              } */
   /*                                                      } /\* end i *\/ */
   /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */
   /*                                                              fprintf(ficresfb," %.3f", ppij); */
   /*                                                      } */
   /*                                              }/\* end j *\/ */
   /*                                      } /\* end h *\/ */
   /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                              } /\* end agec *\/ */
   /*       } /\* end yearp *\/ */
   /*     } /\* end cptcod *\/ */
   /*   } /\* end  cptcov *\/ */
           
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
           
   /*   fclose(ficresfb); */
   /*   printf("End of Computing Back forecasting \n"); */
   /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
           
   /* } */
   
   /************** Forecasting *****not tested NB*************/
   /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
     
   /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
   /*   int *popage; */
   /*   double calagedatem, agelim, kk1, kk2; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat,***tabpop,***tabpopprev; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char filerespop[FILENAMELENGTH]; */
   
   /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   agelim=AGESUP; */
   /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
     
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
     
     
   /*   strcpy(filerespop,"POP_");  */
   /*   strcat(filerespop,fileresu); */
   /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
   /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
   /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
   /*   } */
   /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
   /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
   
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
   
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
   
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
     
   /*   agelim=AGESUP; */
     
   /*   hstepm=1; */
   /*   hstepm=hstepm/stepm;  */
           
   /*   if (popforecast==1) { */
   /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
   /*       printf("Problem with population file : %s\n",popfile);exit(0); */
   /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
   /*     }  */
   /*     popage=ivector(0,AGESUP); */
   /*     popeffectif=vector(0,AGESUP); */
   /*     popcount=vector(0,AGESUP); */
       
   /*     i=1;    */
   /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
       
   /*     imx=i; */
   /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
   /*   } */
     
   /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficrespop,"\n#******"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*      fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficrespop,"******\n"); */
   /*       fprintf(ficrespop,"# Age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
   /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
         
   /*       for (cpt=0; cpt<=0;cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
           
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
             
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              if (mobilav==1)  */
   /*                kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
   /*              else { */
   /*                kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
   /*              } */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)){ */
   /*              tabpop[(int)(agedeb)][j][cptcod]=kk1; */
   /*              /\*fprintf(ficrespop," %.3f", kk1); */
   /*                if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
   /*            } */
   /*          } */
   /*          for(i=1; i<=nlstate;i++){ */
   /*            kk1=0.; */
   /*            for(j=1; j<=nlstate;j++){ */
   /*              kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
   /*            } */
   /*            tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
   /*          } */
               
   /*          if (h==(int)(calagedatem+12*cpt)) */
   /*            for(j=1; j<=nlstate;j++)  */
   /*              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
         
   /*       /\******\/ */
         
   /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
   /*      fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
   /*      for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
   /*        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
   /*        nhstepm = nhstepm/hstepm;  */
             
   /*        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*        oldm=oldms;savm=savms; */
   /*        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
   /*        for (h=0; h<=nhstepm; h++){ */
   /*          if (h==(int) (calagedatem+YEARM*cpt)) { */
   /*            fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
   /*          }  */
   /*          for(j=1; j<=nlstate+ndeath;j++) { */
   /*            kk1=0.;kk2=0; */
   /*            for(i=1; i<=nlstate;i++) {               */
   /*              kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
   /*            } */
   /*            if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
   /*          } */
   /*        } */
   /*        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*      } */
   /*       } */
   /*     }  */
   /*   } */
     
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
     
   /*   if (popforecast==1) { */
   /*     free_ivector(popage,0,AGESUP); */
   /*     free_vector(popeffectif,0,AGESUP); */
   /*     free_vector(popcount,0,AGESUP); */
   /*   } */
   /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   /*   fclose(ficrespop); */
   /* } /\* End of popforecast *\/ */
    
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=1;i<=imx ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0, iv=0;
     int lstra;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
   
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
       
       /* Loops on waves */
       for (j=maxwav;j>=1;j--){
         for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
                                   cutv(stra, strb, line, ' '); 
                                   if(strb[0]=='.') { /* Missing value */
                                           lval=-1;
                                           cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
                                           cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
                                           if(isalpha(strb[1])) { /* .m or .d Really Missing value */
                                                   printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
                                                   fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
                                                   return 1;
                                           }
                                   }else{
                                           errno=0;
                                           /* what_kind_of_number(strb); */
                                           dval=strtod(strb,&endptr); 
                                           /* if( strb[0]=='\0' || (*endptr != '\0')){ */
                                           /* if(strb != endptr && *endptr == '\0') */
                                           /*    dval=dlval; */
                                           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                                           if( strb[0]=='\0' || (*endptr != '\0')){
                                                   printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
                                                   fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
                                                   return 1;
                                           }
                                           cotqvar[j][iv][i]=dval; 
                                           cotvar[j][ntv+iv][i]=dval; 
                                   }
                                   strcpy(line,stra);
         }/* end loop ntqv */
         
         for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
                                   cutv(stra, strb, line, ' '); 
                                   if(strb[0]=='.') { /* Missing value */
                                           lval=-1;
                                   }else{
                                           errno=0;
                                           lval=strtol(strb,&endptr,10); 
                                           /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                                           if( strb[0]=='\0' || (*endptr != '\0')){
                                                   printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
                                                   fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
                                                   return 1;
                                           }
                                   }
                                   if(lval <-1 || lval >1){
                                           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                                                                 \
    build V1=0 V2=0 for the reference value (1),\n                                                                                                 \
           V1=1 V2=0 for (2) \n                                                                                                                                                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                                                                                                                \
    Exiting.\n",lval,linei, i,line,j);
                                           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                                                                 \
    build V1=0 V2=0 for the reference value (1),\n                                                                                                 \
           V1=1 V2=0 for (2) \n                                                                                                                                                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                                                                                                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
                                           return 1;
                                   }
                                   cotvar[j][iv][i]=(double)(lval);
                                   strcpy(line,stra);
         }/* end loop ntv */
         
         /* Statuses  at wave */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
                                   lval=-1;
         }else{
                                   errno=0;
                                   lval=strtol(strb,&endptr,10); 
                                   /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                                   if( strb[0]=='\0' || (*endptr != '\0')){
                                           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
                                           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
                                           return 1;
                                   }
         }
         
         s[j][i]=lval;
         
         /* Date of Interview */
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* End loop on waves */
       
       /* Date of death */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       /* Date of birth */
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
         return 1;
         
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       /* Sample weight */
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing value */
           lval=-1;
         }else{
           errno=0;
           /* what_kind_of_number(strb); */
           dval=strtod(strb,&endptr);
           /* if(strb != endptr && *endptr == '\0') */
           /*   dval=dlval; */
           /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
             return 1;
           }
           coqvar[iv][i]=dval; 
           covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
         }
         strcpy(line,stra);
       }/* end loop nqv */
       
       /* Covariate values */
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing covariate value */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n                 \
    build V1=0 V2=0 for the reference value (1),\n                         \
           V1=1 V2=0 for (2) \n                                            \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n                                \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     
     *imax=i-1; /* Number of individuals */
     fclose(fic);
     
     return (0);
     /* endread: */
     printf("Exiting readdata: ");
     fclose(fic);
     return (1);
   }
   
   void removefirstspace(char **stri){/*, char stro[]) {*/
     char *p1 = *stri, *p2 = *stri;
     while (*p2 == ' ')
       p2++; 
     /* while ((*p1++ = *p2++) !=0) */
     /*   ; */
     /* do */
     /*   while (*p2 == ' ') */
     /*     p2++; */
     /* while (*p1++ == *p2++); */
     *stri=p2; 
   }
   
   int decoderesult ( char resultline[], int nres)
   /**< This routine decode one result line and returns the combination # of dummy covariates only **/
   {
     int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
     char resultsav[MAXLINE];
     int resultmodel[MAXLINE];
     int modelresult[MAXLINE];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     removefirstspace(&resultline);
     printf("decoderesult:%s\n",resultline);
   
     if (strstr(resultline,"v") !=0){
       printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
       fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
       return 1;
     }
     trimbb(resultsav, resultline);
     if (strlen(resultsav) >1){
       j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
     }
     if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
       printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
       fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
     }
     for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
       if(nbocc(resultsav,'=') >1){
          cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' 
                                         resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
          cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */
       }else
         cutl(strc,strd,resultsav,'=');
       Tvalsel[k]=atof(strc); /* 1 */
       
       cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
       Tvarsel[k]=atoi(strc);
       /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
       /* cptcovsel++;     */
       if (nbocc(stra,'=') >0)
         strcpy(resultsav,stra); /* and analyzes it */
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k1=1; k1<= cptcovt ;k1++){ /* model line */
       if(Typevar[k1]==0){
         match=0;
         for(k2=1; k2 <=j;k2++){
           if(Tvar[k1]==Tvarsel[k2]) {
             modelresult[k2]=k1;
             match=1;
             break;
           }
         }
         if(match == 0){
           printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
         }
       }
     }
     /* Checking for missing or useless values in comparison of current model needs */
     for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
       match=0;
       for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         if(Typevar[k1]==0){ /* Single */
           if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=5 == Tvarsel[1]=4   */
             resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
             ++match;
           }
         }
       }
       if(match == 0){
         printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
       }else if(match > 1){
         printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
       }
     }
         
     /* We need to deduce which combination number is chosen and save quantitative values */
     /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
     /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */
     /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
     /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
     /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
     /*    1 0 0 0 */
     /*    2 1 0 0 */
     /*    3 0 1 0 */ 
     /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */
     /*    5 0 0 1 */
     /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */
     /*    7 0 1 1 */
     /*    8 1 1 1 */
     for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
       if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
         k3= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
         k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */
         Tresult[nres][k4+1]=Tvalsel[k3];
         Tvresult[nres][k4+1]=(int)Tvarsel[k3];
         printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
         k4++;;
       }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
         k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
         k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
         Tqresult[nres][k4q+1]=Tvalsel[k3q];
         Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q];
         printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
         k4q++;;
       }
     }
     
     TKresult[nres]=++k; /* Combination for the nresult and the model */
     return (0);
   }
   
   int decodemodel( char model[], int lastobs)
    /**< This routine decodes the model and returns:
           * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
           * - nagesqr = 1 if age*age in the model, otherwise 0.
           * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
           * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
           * - cptcovage number of covariates with age*products =2
           * - cptcovs number of simple covariates
           * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
           *     which is a new column after the 9 (ncovcol) variables. 
           * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
           * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
           *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
           * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
           */
   {
     int i, j, k, ks;
     int  j1, k1, k2, k3, k4;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
           printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
           fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
           return 1;
         }
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                        * cst, age and age*age 
                        * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
         /* including age products which are counted in cptcovage.
          * but the covariates which are products must be treated 
          * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
         
         
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
         
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
           Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
         }
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               Typevar[k]=1;  /* 1 for age product */
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                                                   because this model-covariate is a construction we invent a new column
                                                   which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                                                   If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                                   Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               Typevar[k]=2;  /* 2 for double fixed dummy covariates */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
               /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
               /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
               /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
               /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
             cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
             Tvar[k]=atoi(strd);
             Typevar[k]=0;  /* 0 for simple covariates */
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
                                   /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                                     scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
     
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
        printf("cptcovprod=%d ", cptcovprod);
        fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
        scanf("%d ",i);*/
   
   
   /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
      of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
   /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
      model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
      k =           1    2   3     4       5       6      7      8        9
      Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
      Typevar[k]=   0    0   0     2       1       0      2      1        1
      Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
      Dummy[k]      1    0   0     0       3       1      1      2        3
             Tmodelind[combination of covar]=k;
   */  
   /* Dispatching between quantitative and time varying covariates */
     /* If Tvar[k] >ncovcol it is a product */
     /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
           /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
     printf("Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
     fprintf(ficlog,"Model=%s\n\
   Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
   Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
   Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
   
     for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
       if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         nsd++;
         modell[k].maintype= FTYPE;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
         Fixed[k]= 0;
         Dummy[k]= 0;
         ncoveff++;
         ncovf++;
         modell[k].maintype= FTYPE;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
         TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
       }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){ /* Remind that product Vn*Vm are added in k*/ /* Only simple fixed quantitative variable */
         Fixed[k]= 0;
         Dummy[k]= 1;
         nqfveff++;
         modell[k].maintype= FTYPE;
         modell[k].subtype= FQ;
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         ncovf++;
         TvarF[ncovf]=Tvar[k];
         TvarFind[ncovf]=k;
         TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
         TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
       }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying variables */
         Fixed[k]= 1;
         Dummy[k]= 0;
         ntveff++; /* Only simple time varying dummy variable */
         modell[k].maintype= VTYPE;
         modell[k].subtype= VD;
         nsd++;
         TvarsD[nsd]=Tvar[k];
         TvarsDind[nsd]=k;
         ncovv++; /* Only simple time varying variables */
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k;
         TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
         printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
         printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
         Fixed[k]= 1;
         Dummy[k]= 1;
         nqtveff++;
         modell[k].maintype= VTYPE;
         modell[k].subtype= VQ;
         ncovv++; /* Only simple time varying variables */
         nsq++;
         TvarsQ[nsq]=Tvar[k];
         TvarsQind[nsq]=k;
         TvarV[ncovv]=Tvar[k];
         TvarVind[ncovv]=k;
         TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
         TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
         /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
         printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
         printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
       }else if (Typevar[k] == 1) {  /* product with age */
         ncova++;
         TvarA[ncova]=Tvar[k];
         TvarAind[ncova]=k;
         if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
           Fixed[k]= 2;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFD;
           /* ncoveff++; */
         }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
           Fixed[k]= 2;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
           /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv ){
           Fixed[k]= 3;
           Dummy[k]= 2;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVD;                /*      Product age * varying dummy */
           /* ntveff++; /\* Only simple time varying dummy variable *\/ */
         }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
           Fixed[k]= 3;
           Dummy[k]= 3;
           modell[k].maintype= ATYPE;
           modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
           /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
         }
       }else if (Typevar[k] == 2) {  /* product without age */
         k1=Tposprod[k];
         if(Tvard[k1][1] <=ncovcol){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
             ncovf++; /* Varying variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           } 
         }else if(Tvard[k1][1] <=ncovcol+nqv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 0;  /* or 2 ?*/
             Dummy[k]= 1;
             modell[k].maintype= FTYPE;
             modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
             ncovf++; /* Fixed variables without age */
             TvarF[ncovf]=Tvar[k];
             TvarFind[ncovf]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           } 
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 0;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           } 
         }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
           if(Tvard[k1][2] <=ncovcol){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
             Fixed[k]= 1;
             Dummy[k]= 1;
             modell[k].maintype= VTYPE;
             modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
             ncovv++; /* Varying variables without age */
             TvarV[ncovv]=Tvar[k];
             TvarVind[ncovv]=k;
           } 
         }else{
           printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
           fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
         } /* end k1 */
       }else{
         printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
         fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
       }
       printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
       printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
       fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
     }
     /* Searching for doublons in the model */
     for(k1=1; k1<= cptcovt;k1++){
       for(k2=1; k2 <k1;k2++){
         if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){
           if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
             if(Tvar[k1]==Tvar[k2]){
               printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }else if (Typevar[k1] ==2){
             k3=Tposprod[k1];
             k4=Tposprod[k2];
             if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
               printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
               fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
               return(1);
             }
           }
         }
       }
     }
     printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
     printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
     fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
     printf("Exiting decodemodel: ");
     return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
     int firstone=0;
     
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           if(firstone == 0){
             firstone=1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           }
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
   }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1, k4=0, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
     agebase=ageminpar;
     agelim=agemaxpar;
   
     /* i1=pow(2,ncoveff); */
     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
     if (cptcovn < 1){i1=1;}
   
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){
       if(TKresult[nres]!= k)
         continue;
   
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       /* k=k+1; */
       /* to clean */
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
       fprintf(ficrespl,"#******");
       printf("#******");
       fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff ;j++) {/* all covariates */
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
         printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
       }
       fprintf(ficrespl,"******\n");
       printf("******\n");
       fprintf(ficlog,"******\n");
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) ignored because no case \n",k); 
         fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
         fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
                                                   continue;
       }
   
       fprintf(ficrespl,"#Age ");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
       fprintf(ficrespl,"Total Years_to_converge\n");
       
       for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */
         prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
         fprintf(ficrespl,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
           tot +=  prlim[i][i];
           fprintf(ficrespl," %.5f", prlim[i][i]);
         }
         fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     return 0;
   }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1, nres=0 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(nres=1; nres <= nresult; nres++) /* For each resultline */
     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
       if(TKresult[nres]!= k)
         continue;
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
       fprintf(ficresplb,"#******");
       printf("#******");
       fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff ;j++) {/* all covariates */
         fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
         printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
       }
       fprintf(ficresplb,"******\n");
       printf("******\n");
       fprintf(ficlog,"******\n");
       if(invalidvarcomb[k]){
         printf("\nCombination (%d) ignored because no cases \n",k); 
         fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
         fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
         continue;
       }
       
       fprintf(ficresplb,"#Age ");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
       fprintf(ficresplb,"Total Years_to_converge\n");
       
       
       for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */
         if(mobilavproj > 0){
           /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
           /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
           bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);
         }else if (mobilavproj == 0){
           printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
           fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
           exit(1);
         }else{
           /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
           bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);
         }
         fprintf(ficresplb,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
           tot +=  bprlim[i][i];
           fprintf(ficresplb," %.5f", bprlim[i][i]);
         }
         fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k, k4, nres=0;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
                   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   /*      k=k+1;  */
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
           fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
         }
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
       return 0;
   }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for (k=1; k <= (int) pow(2,cptcoveff); k++){
       fprintf(ficrespijb,"\n#****** ");
       for(j=1;j<=cptcoveff;j++)
         fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       fprintf(ficrespijb,"******\n");
       if(invalidvarcomb[k]){
         fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
         continue;
       }
       
       /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
       for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
         /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
         nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
         
         /*          nhstepm=nhstepm*YEARM; aff par mois*/
         
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /* oldm=oldms;savm=savms; */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
         hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
         fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %1d-%1d",i,j);
         fprintf(ficrespijb,"\n");
         for (h=0; h<=nhstepm; h++){
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
           fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
           /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
           fprintf(ficrespijb,"\n");
         }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespijb,"\n");
       }
       /*}*/
     }
     return 0;
    } /*  hBijx */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
     int nres=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
     double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     /* double ***mobaverage; */
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char  modeltemp[MAXLINE];
     char resultline[MAXLINE];
     
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double **bprlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
   
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 11) {
         printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */
     cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n);  /**< Time varying covariate (dummy and quantitative)*/
     cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }  else if(mle==-5) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }  else{ /* Begin of mle != -1 or -5 */
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
       
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
       
       /* Reads covariance matrix */
       delti=delti3[1][1];
                   
                   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
                   
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else{
           if(mle==1)
             printf("%1d%1d%d",i1,j1,jk);
         }
         fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
                                   printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
     
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     weight=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     for(i=1;i<=n;i++){
       num[i]=0;
       moisnais[i]=0;
       annais[i]=0;
       moisdc[i]=0;
       andc[i]=0;
       agedc[i]=0;
       cod[i]=0;
       weight[i]=1.0; /* Equal weights, 1 by default */
     }
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
     */
     
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     TvarsDind=ivector(1,NCOVMAX); /*  */
     TvarsD=ivector(1,NCOVMAX); /*  */
     TvarsQind=ivector(1,NCOVMAX); /*  */
     TvarsQ=ivector(1,NCOVMAX); /*  */
     TvarF=ivector(1,NCOVMAX); /*  */
     TvarFind=ivector(1,NCOVMAX); /*  */
     TvarV=ivector(1,NCOVMAX); /*  */
     TvarVind=ivector(1,NCOVMAX); /*  */
     TvarA=ivector(1,NCOVMAX); /*  */
     TvarAind=ivector(1,NCOVMAX); /*  */
     TvarFD=ivector(1,NCOVMAX); /*  */
     TvarFDind=ivector(1,NCOVMAX); /*  */
     TvarFQ=ivector(1,NCOVMAX); /*  */
     TvarFQind=ivector(1,NCOVMAX); /*  */
     TvarVD=ivector(1,NCOVMAX); /*  */
     TvarVDind=ivector(1,NCOVMAX); /*  */
     TvarVQ=ivector(1,NCOVMAX); /*  */
     TvarVQind=ivector(1,NCOVMAX); /*  */
   
     Tvalsel=vector(1,NCOVMAX); /*  */
     Tvarsel=ivector(1,NCOVMAX); /*  */
     Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
     Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
     Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
     Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
        Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
     Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual dummy, fixed or varying:
                                   * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                                   * V1 df, V2 qf, V3 & V4 dv, V5 qv
                                   * Tmodelind[1]@9={9,0,3,2,}*/
     TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
     TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
                                   * individual quantitative, fixed or varying:
                                   * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                                   * 3, 1, 0, 0, 0, 0, 0, 0},
                                   * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     cptcoveff=0;
     if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
       tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     }
     
     ncovcombmax=pow(2,cptcoveff);
     invalidvarcomb=ivector(1, ncovcombmax); 
     for(i=1;i<ncovcombmax;i++)
       invalidvarcomb[i]=0;
     
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
     
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
     /*if (cptcovn > 0) */
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000000        = 1 & ((h-1) >> (k-1))
        *          +1= 00000001 =1 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
                    * codtabm and decodtabm are identical
        */
   
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age 
                    and for any valid combination of covariates
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
           oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
                   for(i=1;i<=NDIM;i++)
                           for(j=1;j<=NDIM;j++)
                                   ximort[i][j]=0.;
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
                   
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
       
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
           
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
                                   matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
                                   printf("%f ",matcov[i][j]);
                                   fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   ageminpar=50;
                   agemaxpar=100;
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
                           printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                           fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   }
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
       free_matrix(ximort,1,NDIM,1,NDIM);
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
   #ifdef GSL
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
       
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
         
         if (num_filled != 6) {
           printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
           goto end;
         }
         printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
       }
       /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
       /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
       
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       /* Results */
       nresult=0;
       while(fgets(line, MAXLINE, ficpar)) {
         /* If line starts with a # it is a comment */
         if (line[0] == '#') {
           numlinepar++;
           fputs(line,stdout);
           fputs(line,ficparo);
           fputs(line,ficlog);
           continue;
         }else
           break;
       }
       while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
         if (num_filled == 0)
           resultline[0]='\0';
         else if (num_filled != 1){
           printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line);
         }
         nresult++; /* Sum of resultlines */
         printf("Result %d: result=%s\n",nresult, resultline);
         if(nresult > MAXRESULTLINES){
           printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
           fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
           goto end;
         }
         decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
         while(fgets(line, MAXLINE, ficpar)) {
           /* If line starts with a # it is a comment */
           if (line[0] == '#') {
             numlinepar++;
             fputs(line,stdout);
             fputs(line,ficparo);
             fputs(line,ficlog);
             continue;
           }else
             break;
         }
         if (feof(ficpar))
           break;
         else{ /* Processess output results for this combination of covariate values */
         }                            
       }
   
   
       
       /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
         printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
         fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else{
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
       }
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
                   
       /*------------ free_vector  -------------*/
       /*  chdir(path); */
                   
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
                   
                   
       /* Other results (useful)*/
                   
                   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
       
       /* ncovcombmax=  pow(2,cptcoveff); */
       /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
       
       /* Prevalence for each covariates in probs[age][status][cov] */
       probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
           for(k=1;k<=ncovcombmax;k++)
             probs[i][j][k]=0.;
       prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       if (mobilav!=0 ||mobilavproj !=0 ) {
         mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
         for(i=1;i<=AGESUP;i++)
           for(j=1;j<=nlstate;j++)
             for(k=1;k<=ncovcombmax;k++)
               mobaverages[i][j][k]=0.;
         mobaverage=mobaverages;
         if (mobilav!=0) {
           printf("Movingaveraging observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
             fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }
         }
         /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
         /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
         else if (mobilavproj !=0) {
           printf("Movingaveraging projected observed prevalence\n");
           if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
             fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
             printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
           }
         }
       }/* end if moving average */
       
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       }
       if(backcast==1){
         ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);        
         ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
         /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
   
         bprlim=matrix(1,nlstate,1,nlstate);
         back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
         fclose(ficresplb);
   
         hBijx(p, bage, fage, mobaverage);
         fclose(ficrespijb);
         free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
   
         /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
            bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
         free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
         free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
       }
       
    
       /* ------ Other prevalence ratios------------ */
   
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
                   
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficreseij,"\n#****** ");
         printf("\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         }
         fprintf(ficreseij,"******\n");
         printf("******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
         
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
                   
       /*---------- State-specific expectancies and variances ------------*/
                   
                   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
       if (cptcovn < 1){i1=1;}
       
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
         if(TKresult[nres]!= k)
           continue;
         printf("\n#****** Selected:");
         fprintf(ficrest,"\n#****** Selected:");
         fprintf(ficlog,"\n#****** Selected:");
         for(j=1;j<=cptcoveff;j++){ 
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficrest,"******\n");
         fprintf(ficlog,"******\n");
         printf("******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij ");
         fprintf(ficlog, " cvevsij ");
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij vpopbased=%d \n",vpopbased);
           fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done selection\n");fflush(stdout);
         fprintf(ficlog,"done selection\n");fflush(ficlog);
         
         /*}*/
       } /* End k selection */
   
       printf("done State-specific expectancies\n");fflush(stdout);
       fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
   
       /*------- Variance of period (stable) prevalence------*/   
       
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
       
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
       
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(nres=1; nres <= nresult; nres++) /* For each resultline */
       for(k=1; k<=i1;k++){
         if(TKresult[nres]!= k)
           continue;
         fprintf(ficresvpl,"\n#****** ");
         printf("\n#****** ");
         fprintf(ficlog,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
           printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
           fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
         } 
         fprintf(ficresvpl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart, nres);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
       
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
       
       
       /*---------- End : free ----------------*/
       if (mobilav!=0 ||mobilavproj !=0)
         free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
       free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     }  /* mle==-3 arrives here for freeing */
     /* endfree:*/
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
     free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);
     free_matrix(coqvar,1,maxwav,1,n);
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_matrix(hess,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     
     free_ivector(ncodemax,1,NCOVMAX);
     free_ivector(ncodemaxwundef,1,NCOVMAX);
     free_ivector(Dummy,-1,NCOVMAX);
     free_ivector(Fixed,-1,NCOVMAX);
     free_ivector(Typevar,-1,NCOVMAX);
     free_ivector(Tvar,1,NCOVMAX);
     free_ivector(TvarsQ,1,NCOVMAX);
     free_ivector(TvarsQind,1,NCOVMAX);
     free_ivector(TvarsD,1,NCOVMAX);
     free_ivector(TvarsDind,1,NCOVMAX);
     free_ivector(TvarFD,1,NCOVMAX);
     free_ivector(TvarFDind,1,NCOVMAX);
     free_ivector(TvarF,1,NCOVMAX);
     free_ivector(TvarFind,1,NCOVMAX);
     free_ivector(TvarV,1,NCOVMAX);
     free_ivector(TvarVind,1,NCOVMAX);
     free_ivector(TvarA,1,NCOVMAX);
     free_ivector(TvarAind,1,NCOVMAX);
     free_ivector(TvarFQ,1,NCOVMAX);
     free_ivector(TvarFQind,1,NCOVMAX);
     free_ivector(TvarVD,1,NCOVMAX);
     free_ivector(TvarVDind,1,NCOVMAX);
     free_ivector(TvarVQ,1,NCOVMAX);
     free_ivector(TvarVQind,1,NCOVMAX);
     free_ivector(Tvarsel,1,NCOVMAX);
     free_vector(Tvalsel,1,NCOVMAX);
     free_ivector(Tposprod,1,NCOVMAX);
     free_ivector(Tprod,1,NCOVMAX);
     free_ivector(Tvaraff,1,NCOVMAX);
     free_ivector(invalidvarcomb,1,ncovcombmax);
     free_ivector(Tage,1,NCOVMAX);
     free_ivector(Tmodelind,1,NCOVMAX);
     free_ivector(TmodelInvind,1,NCOVMAX);
     free_ivector(TmodelInvQind,1,NCOVMAX);
     
     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
     /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
     
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
     
     
     printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
     if (_chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(_getcwd(pathcd,MAXLINE) > 0)
   #else
       if(chdir(pathcd) != 0)
         printf("Can't move to directory %s!\n", path);
     if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
     
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
   end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.125  
changed lines
  Added in v.1.235


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>