Diff for /imach/src/imach.c between versions 1.91 and 1.125

version 1.91, 2003/06/25 15:30:29 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
   $State$    $State$
   $Log$    $Log$
   Revision 1.91  2003/06/25 15:30:29  brouard    Revision 1.125  2006/04/04 15:20:31  lievre
   * imach.c (Repository): Duplicated warning errors corrected.    Errors in calculation of health expectancies. Age was not initialized.
   (Repository): Elapsed time after each iteration is now output. It    Forecasting file added.
   helps to forecast when convergence will be reached. Elapsed time  
   is stamped in powell.  We created a new html file for the graphs    Revision 1.124  2006/03/22 17:13:53  lievre
   concerning matrix of covariance. It has extension -cov.htm.    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
   Revision 1.90  2003/06/24 12:34:15  brouard  
   (Module): Some bugs corrected for windows. Also, when    Revision 1.123  2006/03/20 10:52:43  brouard
   mle=-1 a template is output in file "or"mypar.txt with the design    * imach.c (Module): <title> changed, corresponds to .htm file
   of the covariance matrix to be input.    name. <head> headers where missing.
   
   Revision 1.89  2003/06/24 12:30:52  brouard    * imach.c (Module): Weights can have a decimal point as for
   (Module): Some bugs corrected for windows. Also, when    English (a comma might work with a correct LC_NUMERIC environment,
   mle=-1 a template is output in file "or"mypar.txt with the design    otherwise the weight is truncated).
   of the covariance matrix to be input.    Modification of warning when the covariates values are not 0 or
     1.
   Revision 1.88  2003/06/23 17:54:56  brouard    Version 0.98g
   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.  
     Revision 1.122  2006/03/20 09:45:41  brouard
   Revision 1.87  2003/06/18 12:26:01  brouard    (Module): Weights can have a decimal point as for
   Version 0.96    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   Revision 1.86  2003/06/17 20:04:08  brouard    Modification of warning when the covariates values are not 0 or
   (Module): Change position of html and gnuplot routines and added    1.
   routine fileappend.    Version 0.98g
   
   Revision 1.85  2003/06/17 13:12:43  brouard    Revision 1.121  2006/03/16 17:45:01  lievre
   * imach.c (Repository): Check when date of death was earlier that    * imach.c (Module): Comments concerning covariates added
   current date of interview. It may happen when the death was just  
   prior to the death. In this case, dh was negative and likelihood    * imach.c (Module): refinements in the computation of lli if
   was wrong (infinity). We still send an "Error" but patch by    status=-2 in order to have more reliable computation if stepm is
   assuming that the date of death was just one stepm after the    not 1 month. Version 0.98f
   interview.  
   (Repository): Because some people have very long ID (first column)    Revision 1.120  2006/03/16 15:10:38  lievre
   we changed int to long in num[] and we added a new lvector for    (Module): refinements in the computation of lli if
   memory allocation. But we also truncated to 8 characters (left    status=-2 in order to have more reliable computation if stepm is
   truncation)    not 1 month. Version 0.98f
   (Repository): No more line truncation errors.  
     Revision 1.119  2006/03/15 17:42:26  brouard
   Revision 1.84  2003/06/13 21:44:43  brouard    (Module): Bug if status = -2, the loglikelihood was
   * imach.c (Repository): Replace "freqsummary" at a correct    computed as likelihood omitting the logarithm. Version O.98e
   place. It differs from routine "prevalence" which may be called  
   many times. Probs is memory consuming and must be used with    Revision 1.118  2006/03/14 18:20:07  brouard
   parcimony.    (Module): varevsij Comments added explaining the second
   Version 0.95a3 (should output exactly the same maximization than 0.8a2)    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   Revision 1.83  2003/06/10 13:39:11  lievre    (Module): Function pstamp added
   *** empty log message ***    (Module): Version 0.98d
   
   Revision 1.82  2003/06/05 15:57:20  brouard    Revision 1.117  2006/03/14 17:16:22  brouard
   Add log in  imach.c and  fullversion number is now printed.    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /*    (Module): Function pstamp added
    Interpolated Markov Chain    (Module): Version 0.98d
   
   Short summary of the programme:    Revision 1.116  2006/03/06 10:29:27  brouard
       (Module): Variance-covariance wrong links and
   This program computes Healthy Life Expectancies from    varian-covariance of ej. is needed (Saito).
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.115  2006/02/27 12:17:45  brouard
   interviewed on their health status or degree of disability (in the    (Module): One freematrix added in mlikeli! 0.98c
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.114  2006/02/26 12:57:58  brouard
   (if any) in individual health status.  Health expectancies are    (Module): Some improvements in processing parameter
   computed from the time spent in each health state according to a    filename with strsep.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.113  2006/02/24 14:20:24  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Memory leaks checks with valgrind and:
   probability to be observed in state j at the second wave    datafile was not closed, some imatrix were not freed and on matrix
   conditional to be observed in state i at the first wave. Therefore    allocation too.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.112  2006/01/30 09:55:26  brouard
   complex model than "constant and age", you should modify the program    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.111  2006/01/25 20:38:18  brouard
   convergence.    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
   The advantage of this computer programme, compared to a simple    can be a simple dot '.'.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.110  2006/01/25 00:51:50  brouard
   intermediate interview, the information is lost, but taken into    (Module): Lots of cleaning and bugs added (Gompertz)
   account using an interpolation or extrapolation.    
     Revision 1.109  2006/01/24 19:37:15  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Comments (lines starting with a #) are allowed in data.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.108  2006/01/19 18:05:42  lievre
   states. This elementary transition (by month, quarter,    Gnuplot problem appeared...
   semester or year) is modelled as a multinomial logistic.  The hPx    To be fixed
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.107  2006/01/19 16:20:37  brouard
   hPijx.    Test existence of gnuplot in imach path
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.106  2006/01/19 13:24:36  brouard
   of the life expectancies. It also computes the stable prevalence.     Some cleaning and links added in html output
     
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.105  2006/01/05 20:23:19  lievre
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.104  2005/09/30 16:11:43  lievre
   It is copyrighted identically to a GNU software product, ie programme and    (Module): sump fixed, loop imx fixed, and simplifications.
   software can be distributed freely for non commercial use. Latest version    (Module): If the status is missing at the last wave but we know
   can be accessed at http://euroreves.ined.fr/imach .    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    contributions to the likelihood is 1 - Prob of dying from last
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       the healthy state at last known wave). Version is 0.98
   **********************************************************************/  
 /*    Revision 1.103  2005/09/30 15:54:49  lievre
   main    (Module): sump fixed, loop imx fixed, and simplifications.
   read parameterfile  
   read datafile    Revision 1.102  2004/09/15 17:31:30  brouard
   concatwav    Add the possibility to read data file including tab characters.
   freqsummary  
   if (mle >= 1)    Revision 1.101  2004/09/15 10:38:38  brouard
     mlikeli    Fix on curr_time
   print results files  
   if mle==1     Revision 1.100  2004/07/12 18:29:06  brouard
      computes hessian    Add version for Mac OS X. Just define UNIX in Makefile
   read end of parameter file: agemin, agemax, bage, fage, estepm  
       begin-prev-date,...    Revision 1.99  2004/06/05 08:57:40  brouard
   open gnuplot file    *** empty log message ***
   open html file  
   stable prevalence    Revision 1.98  2004/05/16 15:05:56  brouard
    for age prevalim()    New version 0.97 . First attempt to estimate force of mortality
   h Pij x    directly from the data i.e. without the need of knowing the health
   variance of p varprob    state at each age, but using a Gompertz model: log u =a + b*age .
   forecasting if prevfcast==1 prevforecast call prevalence()    This is the basic analysis of mortality and should be done before any
   health expectancies    other analysis, in order to test if the mortality estimated from the
   Variance-covariance of DFLE    cross-longitudinal survey is different from the mortality estimated
   prevalence()    from other sources like vital statistic data.
    movingaverage()  
   varevsij()     The same imach parameter file can be used but the option for mle should be -3.
   if popbased==1 varevsij(,popbased)  
   total life expectancies    Agnès, who wrote this part of the code, tried to keep most of the
   Variance of stable prevalence    former routines in order to include the new code within the former code.
  end  
 */    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
   
     Current limitations:
      A) Even if you enter covariates, i.e. with the
 #include <math.h>    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #include <stdio.h>    B) There is no computation of Life Expectancy nor Life Table.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 #include <sys/time.h>    suppressed.
 #include <time.h>  
 #include "timeval.h"    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define MAXLINE 256    rewritten within the same printf. Workaround: many printfs.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.95  2003/07/08 07:54:34  brouard
 #define FILENAMELENGTH 132    * imach.c (Repository):
 /*#define DEBUG*/    (Repository): Using imachwizard code to output a more meaningful covariance
 /*#define windows*/    matrix (cov(a12,c31) instead of numbers.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define NINTERVMAX 8    exist so I changed back to asctime which exists.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Version 0.96b
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.92  2003/06/25 16:30:45  brouard
 #define MAXN 20000    (Module): On windows (cygwin) function asctime_r doesn't
 #define YEARM 12. /* Number of months per year */    exist so I changed back to asctime which exists.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.91  2003/06/25 15:30:29  brouard
 #ifdef unix    * imach.c (Repository): Duplicated warning errors corrected.
 #define DIRSEPARATOR '/'    (Repository): Elapsed time after each iteration is now output. It
 #define ODIRSEPARATOR '\\'    helps to forecast when convergence will be reached. Elapsed time
 #else    is stamped in powell.  We created a new html file for the graphs
 #define DIRSEPARATOR '\\'    concerning matrix of covariance. It has extension -cov.htm.
 #define ODIRSEPARATOR '/'  
 #endif    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 /* $Id$ */    mle=-1 a template is output in file "or"mypar.txt with the design
 /* $State$ */    of the covariance matrix to be input.
   
 char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";    Revision 1.89  2003/06/24 12:30:52  brouard
 char fullversion[]="$Revision$ $Date$";     (Module): Some bugs corrected for windows. Also, when
 int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */    mle=-1 a template is output in file "or"mypar.txt with the design
 int nvar;    of the covariance matrix to be input.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.88  2003/06/23 17:54:56  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.87  2003/06/18 12:26:01  brouard
 int popbased=0;    Version 0.96
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.86  2003/06/17 20:04:08  brouard
 int maxwav; /* Maxim number of waves */    (Module): Change position of html and gnuplot routines and added
 int jmin, jmax; /* min, max spacing between 2 waves */    routine fileappend.
 int gipmx, gsw; /* Global variables on the number of contributions   
                    to the likelihood and the sum of weights (done by funcone)*/    Revision 1.85  2003/06/17 13:12:43  brouard
 int mle, weightopt;    * imach.c (Repository): Check when date of death was earlier that
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    current date of interview. It may happen when the death was just
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    prior to the death. In this case, dh was negative and likelihood
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between    was wrong (infinity). We still send an "Error" but patch by
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    assuming that the date of death was just one stepm after the
 double jmean; /* Mean space between 2 waves */    interview.
 double **oldm, **newm, **savm; /* Working pointers to matrices */    (Repository): Because some people have very long ID (first column)
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    we changed int to long in num[] and we added a new lvector for
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    memory allocation. But we also truncated to 8 characters (left
 FILE *ficlog, *ficrespow;    truncation)
 int globpr; /* Global variable for printing or not */    (Repository): No more line truncation errors.
 double fretone; /* Only one call to likelihood */  
 long ipmx; /* Number of contributions */    Revision 1.84  2003/06/13 21:44:43  brouard
 double sw; /* Sum of weights */    * imach.c (Repository): Replace "freqsummary" at a correct
 char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */    place. It differs from routine "prevalence" which may be called
 FILE *ficresilk;    many times. Probs is memory consuming and must be used with
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    parcimony.
 FILE *ficresprobmorprev;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 FILE *fichtm, *fichtmcov; /* Html File */  
 FILE *ficreseij;    Revision 1.83  2003/06/10 13:39:11  lievre
 char filerese[FILENAMELENGTH];    *** empty log message ***
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.82  2003/06/05 15:57:20  brouard
 FILE  *ficresvpl;    Add log in  imach.c and  fullversion number is now printed.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];  */
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /*
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];     Interpolated Markov Chain
 char tmpout[FILENAMELENGTH];   
 char command[FILENAMELENGTH];    Short summary of the programme:
 int  outcmd=0;   
     This program computes Healthy Life Expectancies from
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 char lfileres[FILENAMELENGTH];    first survey ("cross") where individuals from different ages are
 char filelog[FILENAMELENGTH]; /* Log file */    interviewed on their health status or degree of disability (in the
 char filerest[FILENAMELENGTH];    case of a health survey which is our main interest) -2- at least a
 char fileregp[FILENAMELENGTH];    second wave of interviews ("longitudinal") which measure each change
 char popfile[FILENAMELENGTH];    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 struct timeval start_time, end_time, curr_time, last_time, forecast_time;    simplest model is the multinomial logistic model where pij is the
 struct timezone tzp;    probability to be observed in state j at the second wave
 extern int gettimeofday();    conditional to be observed in state i at the first wave. Therefore
 struct tm tmg, tm, tmf, *gmtime(), *localtime();    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 long time_value;    'age' is age and 'sex' is a covariate. If you want to have a more
 extern long time();    complex model than "constant and age", you should modify the program
 char strcurr[80], strfor[80];    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define NR_END 1    convergence.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define NRANSI     identical for each individual. Also, if a individual missed an
 #define ITMAX 200     intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 #define TOL 2.0e-4   
     hPijx is the probability to be observed in state i at age x+h
 #define CGOLD 0.3819660     conditional to the observed state i at age x. The delay 'h' can be
 #define ZEPS 1.0e-10     split into an exact number (nh*stepm) of unobserved intermediate
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define GOLD 1.618034     matrix is simply the matrix product of nh*stepm elementary matrices
 #define GLIMIT 100.0     and the contribution of each individual to the likelihood is simply
 #define TINY 1.0e-20     hPijx.
   
 static double maxarg1,maxarg2;    Also this programme outputs the covariance matrix of the parameters but also
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    of the life expectancies. It also computes the period (stable) prevalence.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))   
       Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))             Institut national d'études démographiques, Paris.
 #define rint(a) floor(a+0.5)    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 static double sqrarg;    It is copyrighted identically to a GNU software product, ie programme and
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    software can be distributed freely for non commercial use. Latest version
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     can be accessed at http://euroreves.ined.fr/imach .
   
 int imx;     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int stepm;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /* Stepm, step in month: minimum step interpolation*/   
     **********************************************************************/
 int estepm;  /*
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    main
     read parameterfile
 int m,nb;    read datafile
 long *num;    concatwav
 int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    freqsummary
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    if (mle >= 1)
 double **pmmij, ***probs;      mlikeli
 double dateintmean=0;    print results files
     if mle==1
 double *weight;       computes hessian
 int **s; /* Status */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double *agedc, **covar, idx;        begin-prev-date,...
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    open gnuplot file
     open html file
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    period (stable) prevalence
 double ftolhess; /* Tolerance for computing hessian */     for age prevalim()
     h Pij x
 /**************** split *************************/    variance of p varprob
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   char  *ss;                            /* pointer */    Variance-covariance of DFLE
   int   l1, l2;                         /* length counters */    prevalence()
      movingaverage()
   l1 = strlen(path );                   /* length of path */    varevsij()
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    if popbased==1 varevsij(,popbased)
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    total life expectancies
   if ( ss == NULL ) {                   /* no directory, so use current */    Variance of period (stable) prevalence
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)   end
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  */
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
       return( GLOCK_ERROR_GETCWD );   
     }  #include <math.h>
     strcpy( name, path );               /* we've got it */  #include <stdio.h>
   } else {                              /* strip direcotry from path */  #include <stdlib.h>
     ss++;                               /* after this, the filename */  #include <string.h>
     l2 = strlen( ss );                  /* length of filename */  #include <unistd.h>
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
     strcpy( name, ss );         /* save file name */  #include <limits.h>
     strncpy( dirc, path, l1 - l2 );     /* now the directory */  #include <sys/types.h>
     dirc[l1-l2] = 0;                    /* add zero */  #include <sys/stat.h>
   }  #include <errno.h>
   l1 = strlen( dirc );                  /* length of directory */  extern int errno;
   /*#ifdef windows  
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /* #include <sys/time.h> */
 #else  #include <time.h>
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #include "timeval.h"
 #endif  
   */  /* #include <libintl.h> */
   ss = strrchr( name, '.' );            /* find last / */  /* #define _(String) gettext (String) */
   ss++;  
   strcpy(ext,ss);                       /* save extension */  #define MAXLINE 256
   l1= strlen( name);  
   l2= strlen(ss)+1;  #define GNUPLOTPROGRAM "gnuplot"
   strncpy( finame, name, l1-l2);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   finame[l1-l2]= 0;  #define FILENAMELENGTH 132
   return( 0 );                          /* we're done */  
 }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /******************************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 void replace_back_to_slash(char *s, char*t)  
 {  #define NINTERVMAX 8
   int i;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   int lg=0;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   i=0;  #define NCOVMAX 8 /* Maximum number of covariates */
   lg=strlen(t);  #define MAXN 20000
   for(i=0; i<= lg; i++) {  #define YEARM 12. /* Number of months per year */
     (s[i] = t[i]);  #define AGESUP 130
     if (t[i]== '\\') s[i]='/';  #define AGEBASE 40
   }  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 }  #ifdef UNIX
   #define DIRSEPARATOR '/'
 int nbocc(char *s, char occ)  #define CHARSEPARATOR "/"
 {  #define ODIRSEPARATOR '\\'
   int i,j=0;  #else
   int lg=20;  #define DIRSEPARATOR '\\'
   i=0;  #define CHARSEPARATOR "\\"
   lg=strlen(s);  #define ODIRSEPARATOR '/'
   for(i=0; i<= lg; i++) {  #endif
   if  (s[i] == occ ) j++;  
   }  /* $Id$ */
   return j;  /* $State$ */
 }  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
 void cutv(char *u,char *v, char*t, char occ)  char fullversion[]="$Revision$ $Date$";
 {  char strstart[80];
   /* cuts string t into u and v where u is ended by char occ excluding it  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
      gives u="abcedf" and v="ghi2j" */  int nvar;
   int i,lg,j,p=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   i=0;  int npar=NPARMAX;
   for(j=0; j<=strlen(t)-1; j++) {  int nlstate=2; /* Number of live states */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int ndeath=1; /* Number of dead states */
   }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
   lg=strlen(t);  
   for(j=0; j<p; j++) {  int *wav; /* Number of waves for this individuual 0 is possible */
     (u[j] = t[j]);  int maxwav; /* Maxim number of waves */
   }  int jmin, jmax; /* min, max spacing between 2 waves */
      u[p]='\0';  int ijmin, ijmax; /* Individuals having jmin and jmax */
   int gipmx, gsw; /* Global variables on the number of contributions
    for(j=0; j<= lg; j++) {                     to the likelihood and the sum of weights (done by funcone)*/
     if (j>=(p+1))(v[j-p-1] = t[j]);  int mle, weightopt;
   }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /********************** nrerror ********************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 void nrerror(char error_text[])  double **oldm, **newm, **savm; /* Working pointers to matrices */
 {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   fprintf(stderr,"ERREUR ...\n");  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   fprintf(stderr,"%s\n",error_text);  FILE *ficlog, *ficrespow;
   exit(EXIT_FAILURE);  int globpr; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
 /*********************** vector *******************/  long ipmx; /* Number of contributions */
 double *vector(int nl, int nh)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   double *v;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  FILE *ficresilk;
   if (!v) nrerror("allocation failure in vector");  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   return v-nl+NR_END;  FILE *ficresprobmorprev;
 }  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 /************************ free vector ******************/  char filerese[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficrescveij;
 }  char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
 /************************ivector *******************************/  char fileresv[FILENAMELENGTH];
 int *ivector(long nl,long nh)  FILE  *ficresvpl;
 {  char fileresvpl[FILENAMELENGTH];
   int *v;  char title[MAXLINE];
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   if (!v) nrerror("allocation failure in ivector");  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   return v-nl+NR_END;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
 }  char command[FILENAMELENGTH];
   int  outcmd=0;
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   free((FREE_ARG)(v+nl-NR_END));  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /************************lvector *******************************/  char popfile[FILENAMELENGTH];
 long *lvector(long nl,long nh)  
 {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   long *v;  
   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   if (!v) nrerror("allocation failure in ivector");  struct timezone tzp;
   return v-nl+NR_END;  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /******************free lvector **************************/  extern long time();
 void free_lvector(long *v, long nl, long nh)  char strcurr[80], strfor[80];
 {  
   free((FREE_ARG)(v+nl-NR_END));  char *endptr;
 }  long lval;
   double dval;
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)   #define NR_END 1
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   #define FREE_ARG char*
 {   #define FTOL 1.0e-10
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   #define NRANSI
     #define ITMAX 200
   /* allocate pointers to rows */   
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   #define TOL 2.0e-4
   if (!m) nrerror("allocation failure 1 in matrix()");   
   m += NR_END;   #define CGOLD 0.3819660
   m -= nrl;   #define ZEPS 1.0e-10
     #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
     
   /* allocate rows and set pointers to them */   #define GOLD 1.618034
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   #define GLIMIT 100.0
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   #define TINY 1.0e-20
   m[nrl] += NR_END;   
   m[nrl] -= ncl;   static double maxarg1,maxarg2;
     #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
   /* return pointer to array of pointers to rows */   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return m;   #define rint(a) floor(a+0.5)
 }   
   static double sqrarg;
 /****************** free_imatrix *************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
       int **m;  int agegomp= AGEGOMP;
       long nch,ncl,nrh,nrl;   
      /* free an int matrix allocated by imatrix() */   int imx;
 {   int stepm=1;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   /* Stepm, step in month: minimum step interpolation*/
   free((FREE_ARG) (m+nrl-NR_END));   
 }   int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  int m,nb;
 {  long *num;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **m;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double *ageexmed,*agecens;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
   int **s; /* Status */
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl] += NR_END;  double *lsurv, *lpop, *tpop;
   m[nrl] -= ncl;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double ftolhess; /* Tolerance for computing hessian */
   return m;  
   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])   /**************** split *************************/
    */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 /*************************free matrix ************************/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    */
 {    char  *ss;                            /* pointer */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int   l1, l2;                         /* length counters */
   free((FREE_ARG)(m+nrl-NR_END));  
 }    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 /******************* ma3x *******************************/    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 {      strcpy( name, path );               /* we got the fullname name because no directory */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double ***m;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      /*    extern  char* getcwd ( char *buf , int len);*/
   if (!m) nrerror("allocation failure 1 in matrix()");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   m += NR_END;        return( GLOCK_ERROR_GETCWD );
   m -= nrl;      }
       /* got dirc from getcwd*/
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      printf(" DIRC = %s \n",dirc);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    } else {                              /* strip direcotry from path */
   m[nrl] += NR_END;      ss++;                               /* after this, the filename */
   m[nrl] -= ncl;      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      dirc[l1-l2] = 0;                    /* add zero */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      printf(" DIRC2 = %s \n",dirc);
   m[nrl][ncl] += NR_END;    }
   m[nrl][ncl] -= nll;    /* We add a separator at the end of dirc if not exists */
   for (j=ncl+1; j<=nch; j++)     l1 = strlen( dirc );                  /* length of directory */
     m[nrl][j]=m[nrl][j-1]+nlay;    if( dirc[l1-1] != DIRSEPARATOR ){
         dirc[l1] =  DIRSEPARATOR;
   for (i=nrl+1; i<=nrh; i++) {      dirc[l1+1] = 0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;      printf(" DIRC3 = %s \n",dirc);
     for (j=ncl+1; j<=nch; j++)     }
       m[i][j]=m[i][j-1]+nlay;    ss = strrchr( name, '.' );            /* find last / */
   }    if (ss >0){
   return m;       ss++;
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])      strcpy(ext,ss);                     /* save extension */
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)      l1= strlen( name);
   */      l2= strlen(ss)+1;
 }      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
 /*************************free ma3x ************************/    }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    return( 0 );                          /* we're done */
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************************************/
   
 /***************** f1dim *************************/  void replace_back_to_slash(char *s, char*t)
 extern int ncom;   {
 extern double *pcom,*xicom;    int i;
 extern double (*nrfunc)(double []);     int lg=0;
      i=0;
 double f1dim(double x)     lg=strlen(t);
 {     for(i=0; i<= lg; i++) {
   int j;       (s[i] = t[i]);
   double f;      if (t[i]== '\\') s[i]='/';
   double *xt;     }
    }
   xt=vector(1,ncom);   
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   int nbocc(char *s, char occ)
   f=(*nrfunc)(xt);   {
   free_vector(xt,1,ncom);     int i,j=0;
   return f;     int lg=20;
 }     i=0;
     lg=strlen(s);
 /*****************brent *************************/    for(i=0; i<= lg; i++) {
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)     if  (s[i] == occ ) j++;
 {     }
   int iter;     return j;
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  void cutv(char *u,char *v, char*t, char occ)
   double p,q,r,tol1,tol2,u,v,w,x,xm;   {
   double e=0.0;     /* cuts string t into u and v where u ends before first occurence of char 'occ'
         and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   a=(ax < cx ? ax : cx);        gives u="abcedf" and v="ghi2j" */
   b=(ax > cx ? ax : cx);     int i,lg,j,p=0;
   x=w=v=bx;     i=0;
   fw=fv=fx=(*f)(x);     for(j=0; j<=strlen(t)-1; j++) {
   for (iter=1;iter<=ITMAX;iter++) {       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     xm=0.5*(a+b);     }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    lg=strlen(t);
     printf(".");fflush(stdout);    for(j=0; j<p; j++) {
     fprintf(ficlog,".");fflush(ficlog);      (u[j] = t[j]);
 #ifdef DEBUG    }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);       u[p]='\0';
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */     for(j=0; j<= lg; j++) {
 #endif      if (j>=(p+1))(v[j-p-1] = t[j]);
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     }
       *xmin=x;   }
       return fx;   
     }   /********************** nrerror ********************/
     ftemp=fu;  
     if (fabs(e) > tol1) {   void nrerror(char error_text[])
       r=(x-w)*(fx-fv);   {
       q=(x-v)*(fx-fw);     fprintf(stderr,"ERREUR ...\n");
       p=(x-v)*q-(x-w)*r;     fprintf(stderr,"%s\n",error_text);
       q=2.0*(q-r);     exit(EXIT_FAILURE);
       if (q > 0.0) p = -p;   }
       q=fabs(q);   /*********************** vector *******************/
       etemp=e;   double *vector(int nl, int nh)
       e=d;   {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     double *v;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       else {     if (!v) nrerror("allocation failure in vector");
         d=p/q;     return v-nl+NR_END;
         u=x+d;   }
         if (u-a < tol2 || b-u < tol2)   
           d=SIGN(tol1,xm-x);   /************************ free vector ******************/
       }   void free_vector(double*v, int nl, int nh)
     } else {   {
       d=CGOLD*(e=(x >= xm ? a-x : b-x));     free((FREE_ARG)(v+nl-NR_END));
     }   }
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));   
     fu=(*f)(u);   /************************ivector *******************************/
     if (fu <= fx) {   int *ivector(long nl,long nh)
       if (u >= x) a=x; else b=x;   {
       SHFT(v,w,x,u)     int *v;
         SHFT(fv,fw,fx,fu)     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         } else {     if (!v) nrerror("allocation failure in ivector");
           if (u < x) a=u; else b=u;     return v-nl+NR_END;
           if (fu <= fw || w == x) {   }
             v=w;   
             w=u;   /******************free ivector **************************/
             fv=fw;   void free_ivector(int *v, long nl, long nh)
             fw=fu;   {
           } else if (fu <= fv || v == x || v == w) {     free((FREE_ARG)(v+nl-NR_END));
             v=u;   }
             fv=fu;   
           }   /************************lvector *******************************/
         }   long *lvector(long nl,long nh)
   }   {
   nrerror("Too many iterations in brent");     long *v;
   *xmin=x;     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   return fx;     if (!v) nrerror("allocation failure in ivector");
 }     return v-nl+NR_END;
   }
 /****************** mnbrak ***********************/  
   /******************free lvector **************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   void free_lvector(long *v, long nl, long nh)
             double (*func)(double))   {
 {     free((FREE_ARG)(v+nl-NR_END));
   double ulim,u,r,q, dum;  }
   double fu;   
    /******************* imatrix *******************************/
   *fa=(*func)(*ax);   int **imatrix(long nrl, long nrh, long ncl, long nch)
   *fb=(*func)(*bx);        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
   if (*fb > *fa) {   {
     SHFT(dum,*ax,*bx,dum)     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       SHFT(dum,*fb,*fa,dum)     int **m;
       }    
   *cx=(*bx)+GOLD*(*bx-*ax);     /* allocate pointers to rows */
   *fc=(*func)(*cx);     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
   while (*fb > *fc) {     if (!m) nrerror("allocation failure 1 in matrix()");
     r=(*bx-*ax)*(*fb-*fc);     m += NR_END;
     q=(*bx-*cx)*(*fb-*fa);     m -= nrl;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    
     ulim=(*bx)+GLIMIT*(*cx-*bx);     /* allocate rows and set pointers to them */
     if ((*bx-u)*(u-*cx) > 0.0) {     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
       fu=(*func)(u);     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     } else if ((*cx-u)*(u-ulim) > 0.0) {     m[nrl] += NR_END;
       fu=(*func)(u);     m[nrl] -= ncl;
       if (fu < *fc) {    
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
           SHFT(*fb,*fc,fu,(*func)(u))    
           }     /* return pointer to array of pointers to rows */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     return m;
       u=ulim;   }
       fu=(*func)(u);   
     } else {   /****************** free_imatrix *************************/
       u=(*cx)+GOLD*(*cx-*bx);   void free_imatrix(m,nrl,nrh,ncl,nch)
       fu=(*func)(u);         int **m;
     }         long nch,ncl,nrh,nrl;
     SHFT(*ax,*bx,*cx,u)        /* free an int matrix allocated by imatrix() */
       SHFT(*fa,*fb,*fc,fu)   {
       }     free((FREE_ARG) (m[nrl]+ncl-NR_END));
 }     free((FREE_ARG) (m+nrl-NR_END));
   }
 /*************** linmin ************************/  
   /******************* matrix *******************************/
 int ncom;   double **matrix(long nrl, long nrh, long ncl, long nch)
 double *pcom,*xicom;  {
 double (*nrfunc)(double []);     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      double **m;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   
 {     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double brent(double ax, double bx, double cx,     if (!m) nrerror("allocation failure 1 in matrix()");
                double (*f)(double), double tol, double *xmin);     m += NR_END;
   double f1dim(double x);     m -= nrl;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,   
               double *fc, double (*func)(double));     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int j;     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double xx,xmin,bx,ax;     m[nrl] += NR_END;
   double fx,fb,fa;    m[nrl] -= ncl;
    
   ncom=n;     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   pcom=vector(1,n);     return m;
   xicom=vector(1,n);     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
   nrfunc=func;      */
   for (j=1;j<=n;j++) {   }
     pcom[j]=p[j];   
     xicom[j]=xi[j];   /*************************free matrix ************************/
   }   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   ax=0.0;   {
   xx=1.0;     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     free((FREE_ARG)(m+nrl-NR_END));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   }
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /******************* ma3x *******************************/
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 #endif  {
   for (j=1;j<=n;j++) {     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     xi[j] *= xmin;     double ***m;
     p[j] += xi[j];   
   }     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free_vector(xicom,1,n);     if (!m) nrerror("allocation failure 1 in matrix()");
   free_vector(pcom,1,n);     m += NR_END;
 }     m -= nrl;
   
 char *asc_diff_time(long time_sec, char ascdiff[])    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   long sec_left, days, hours, minutes;    m[nrl] += NR_END;
   days = (time_sec) / (60*60*24);    m[nrl] -= ncl;
   sec_left = (time_sec) % (60*60*24);  
   hours = (sec_left) / (60*60) ;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   sec_left = (sec_left) %(60*60);  
   minutes = (sec_left) /60;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   sec_left = (sec_left) % (60);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);      m[nrl][ncl] += NR_END;
   return ascdiff;    m[nrl][ncl] -= nll;
 }    for (j=ncl+1; j<=nch; j++)
       m[nrl][j]=m[nrl][j-1]+nlay;
 /*************** powell ************************/   
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     for (i=nrl+1; i<=nrh; i++) {
             double (*func)(double []))       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {       for (j=ncl+1; j<=nch; j++)
   void linmin(double p[], double xi[], int n, double *fret,         m[i][j]=m[i][j-1]+nlay;
               double (*func)(double []));     }
   int i,ibig,j;     return m;
   double del,t,*pt,*ptt,*xit;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double fp,fptt;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double *xits;    */
   int niterf, itmp;  }
   
   pt=vector(1,n);   /*************************free ma3x ************************/
   ptt=vector(1,n);   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   xit=vector(1,n);   {
   xits=vector(1,n);     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   *fret=(*func)(p);     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];     free((FREE_ARG)(m+nrl-NR_END));
   for (*iter=1;;++(*iter)) {   }
     fp=(*fret);   
     ibig=0;   /*************** function subdirf ***********/
     del=0.0;   char *subdirf(char fileres[])
     last_time=curr_time;  {
     (void) gettimeofday(&curr_time,&tzp);    /* Caution optionfilefiname is hidden */
     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);    strcpy(tmpout,optionfilefiname);
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);    strcat(tmpout,"/"); /* Add to the right */
     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);    strcat(tmpout,fileres);
     for (i=1;i<=n;i++) {    return tmpout;
       printf(" %d %.12f",i, p[i]);  }
       fprintf(ficlog," %d %.12lf",i, p[i]);  
       fprintf(ficrespow," %.12lf", p[i]);  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
     printf("\n");  {
     fprintf(ficlog,"\n");   
     fprintf(ficrespow,"\n");fflush(ficrespow);    /* Caution optionfilefiname is hidden */
     if(*iter <=3){    strcpy(tmpout,optionfilefiname);
       tm = *localtime(&curr_time.tv_sec);    strcat(tmpout,"/");
       asctime_r(&tm,strcurr);    strcat(tmpout,preop);
       forecast_time=curr_time;    strcat(tmpout,fileres);
       itmp = strlen(strcurr);    return tmpout;
       if(strcurr[itmp-1]=='\n')  }
         strcurr[itmp-1]='\0';  
       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  /*************** function subdirf3 ***********/
       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);  char *subdirf3(char fileres[], char *preop, char *preop2)
       for(niterf=10;niterf<=30;niterf+=10){  {
         forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);   
         tmf = *localtime(&forecast_time.tv_sec);    /* Caution optionfilefiname is hidden */
         asctime_r(&tmf,strfor);    strcpy(tmpout,optionfilefiname);
 /*      strcpy(strfor,asctime(&tmf)); */    strcat(tmpout,"/");
         itmp = strlen(strfor);    strcat(tmpout,preop);
         if(strfor[itmp-1]=='\n')    strcat(tmpout,preop2);
         strfor[itmp-1]='\0';    strcat(tmpout,fileres);
         printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);    return tmpout;
         fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);  }
       }  
     }  /***************** f1dim *************************/
     for (i=1;i<=n;i++) {   extern int ncom;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   extern double *pcom,*xicom;
       fptt=(*fret);   extern double (*nrfunc)(double []);
 #ifdef DEBUG   
       printf("fret=%lf \n",*fret);  double f1dim(double x)
       fprintf(ficlog,"fret=%lf \n",*fret);  {
 #endif    int j;
       printf("%d",i);fflush(stdout);    double f;
       fprintf(ficlog,"%d",i);fflush(ficlog);    double *xt;
       linmin(p,xit,n,fret,func);    
       if (fabs(fptt-(*fret)) > del) {     xt=vector(1,ncom);
         del=fabs(fptt-(*fret));     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
         ibig=i;     f=(*nrfunc)(xt);
       }     free_vector(xt,1,ncom);
 #ifdef DEBUG    return f;
       printf("%d %.12e",i,(*fret));  }
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /*****************brent *************************/
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
         printf(" x(%d)=%.12e",j,xit[j]);  {
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    int iter;
       }    double a,b,d,etemp;
       for(j=1;j<=n;j++) {    double fu,fv,fw,fx;
         printf(" p=%.12e",p[j]);    double ftemp;
         fprintf(ficlog," p=%.12e",p[j]);    double p,q,r,tol1,tol2,u,v,w,x,xm;
       }    double e=0.0;
       printf("\n");   
       fprintf(ficlog,"\n");    a=(ax < cx ? ax : cx);
 #endif    b=(ax > cx ? ax : cx);
     }     x=w=v=bx;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    fw=fv=fx=(*f)(x);
 #ifdef DEBUG    for (iter=1;iter<=ITMAX;iter++) {
       int k[2],l;      xm=0.5*(a+b);
       k[0]=1;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
       k[1]=-1;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf("Max: %.12e",(*func)(p));      printf(".");fflush(stdout);
       fprintf(ficlog,"Max: %.12e",(*func)(p));      fprintf(ficlog,".");fflush(ficlog);
       for (j=1;j<=n;j++) {  #ifdef DEBUG
         printf(" %.12e",p[j]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         fprintf(ficlog," %.12e",p[j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf("\n");  #endif
       fprintf(ficlog,"\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
       for(l=0;l<=1;l++) {        *xmin=x;
         for (j=1;j<=n;j++) {        return fx;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      ftemp=fu;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      if (fabs(e) > tol1) {
         }        r=(x-w)*(fx-fv);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        q=(x-v)*(fx-fw);
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        p=(x-v)*q-(x-w)*r;
       }        q=2.0*(q-r);
 #endif        if (q > 0.0) p = -p;
         q=fabs(q);
         etemp=e;
       free_vector(xit,1,n);         e=d;
       free_vector(xits,1,n);         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
       free_vector(ptt,1,n);           d=CGOLD*(e=(x >= xm ? a-x : b-x));
       free_vector(pt,1,n);         else {
       return;           d=p/q;
     }           u=x+d;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");           if (u-a < tol2 || b-u < tol2)
     for (j=1;j<=n;j++) {             d=SIGN(tol1,xm-x);
       ptt[j]=2.0*p[j]-pt[j];         }
       xit[j]=p[j]-pt[j];       } else {
       pt[j]=p[j];         d=CGOLD*(e=(x >= xm ? a-x : b-x));
     }       }
     fptt=(*func)(ptt);       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     if (fptt < fp) {       fu=(*f)(u);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       if (fu <= fx) {
       if (t < 0.0) {         if (u >= x) a=x; else b=x;
         linmin(p,xit,n,fret,func);         SHFT(v,w,x,u)
         for (j=1;j<=n;j++) {           SHFT(fv,fw,fx,fu)
           xi[j][ibig]=xi[j][n];           } else {
           xi[j][n]=xit[j];             if (u < x) a=u; else b=u;
         }            if (fu <= fw || w == x) {
 #ifdef DEBUG              v=w;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              w=u;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              fv=fw;
         for(j=1;j<=n;j++){              fw=fu;
           printf(" %.12e",xit[j]);            } else if (fu <= fv || v == x || v == w) {
           fprintf(ficlog," %.12e",xit[j]);              v=u;
         }              fv=fu;
         printf("\n");            }
         fprintf(ficlog,"\n");          }
 #endif    }
       }    nrerror("Too many iterations in brent");
     }     *xmin=x;
   }     return fx;
 }   }
   
 /**** Prevalence limit (stable prevalence)  ****************/  /****************** mnbrak ***********************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
 {              double (*func)(double))
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  {
      matrix by transitions matrix until convergence is reached */    double ulim,u,r,q, dum;
     double fu;
   int i, ii,j,k;   
   double min, max, maxmin, maxmax,sumnew=0.;    *fa=(*func)(*ax);
   double **matprod2();    *fb=(*func)(*bx);
   double **out, cov[NCOVMAX], **pmij();    if (*fb > *fa) {
   double **newm;      SHFT(dum,*ax,*bx,dum)
   double agefin, delaymax=50 ; /* Max number of years to converge */        SHFT(dum,*fb,*fa,dum)
         }
   for (ii=1;ii<=nlstate+ndeath;ii++)    *cx=(*bx)+GOLD*(*bx-*ax);
     for (j=1;j<=nlstate+ndeath;j++){    *fc=(*func)(*cx);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    while (*fb > *fc) {
     }      r=(*bx-*ax)*(*fb-*fc);
       q=(*bx-*cx)*(*fb-*fa);
    cov[1]=1.;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
          (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      ulim=(*bx)+GLIMIT*(*cx-*bx);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      if ((*bx-u)*(u-*cx) > 0.0) {
     newm=savm;        fu=(*func)(u);
     /* Covariates have to be included here again */      } else if ((*cx-u)*(u-ulim) > 0.0) {
      cov[2]=agefin;        fu=(*func)(u);
           if (fu < *fc) {
       for (k=1; k<=cptcovn;k++) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            SHFT(*fb,*fc,fu,(*func)(u))
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/            }
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        u=ulim;
       for (k=1; k<=cptcovprod;k++)        fu=(*func)(u);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      } else {
         u=(*cx)+GOLD*(*cx-*bx);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        fu=(*func)(u);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      SHFT(*ax,*bx,*cx,u)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        SHFT(*fa,*fb,*fc,fu)
         }
     savm=oldm;  }
     oldm=newm;  
     maxmax=0.;  /*************** linmin ************************/
     for(j=1;j<=nlstate;j++){  
       min=1.;  int ncom;
       max=0.;  double *pcom,*xicom;
       for(i=1; i<=nlstate; i++) {  double (*nrfunc)(double []);
         sumnew=0;   
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    double brent(double ax, double bx, double cx,
         min=FMIN(min,prlim[i][j]);                 double (*f)(double), double tol, double *xmin);
       }    double f1dim(double x);
       maxmin=max-min;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
       maxmax=FMAX(maxmax,maxmin);                double *fc, double (*func)(double));
     }    int j;
     if(maxmax < ftolpl){    double xx,xmin,bx,ax;
       return prlim;    double fx,fb,fa;
     }   
   }    ncom=n;
 }    pcom=vector(1,n);
     xicom=vector(1,n);
 /*************** transition probabilities ***************/     nrfunc=func;
     for (j=1;j<=n;j++) {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      pcom[j]=p[j];
 {      xicom[j]=xi[j];
   double s1, s2;    }
   /*double t34;*/    ax=0.0;
   int i,j,j1, nc, ii, jj;    xx=1.0;
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
     for(i=1; i<= nlstate; i++){    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
     for(j=1; j<i;j++){  #ifdef DEBUG
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         /*s2 += param[i][j][nc]*cov[nc];*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #endif
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    for (j=1;j<=n;j++) {
       }      xi[j] *= xmin;
       ps[i][j]=s2;      p[j] += xi[j];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    }
     }    free_vector(xicom,1,n);
     for(j=i+1; j<=nlstate+ndeath;j++){    free_vector(pcom,1,n);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  char *asc_diff_time(long time_sec, char ascdiff[])
       }  {
       ps[i][j]=s2;    long sec_left, days, hours, minutes;
     }    days = (time_sec) / (60*60*24);
   }    sec_left = (time_sec) % (60*60*24);
     /*ps[3][2]=1;*/    hours = (sec_left) / (60*60) ;
     sec_left = (sec_left) %(60*60);
   for(i=1; i<= nlstate; i++){    minutes = (sec_left) /60;
      s1=0;    sec_left = (sec_left) % (60);
     for(j=1; j<i; j++)    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       s1+=exp(ps[i][j]);    return ascdiff;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /*************** powell ************************/
     for(j=1; j<i; j++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
       ps[i][j]= exp(ps[i][j])*ps[i][i];              double (*func)(double []))
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    void linmin(double p[], double xi[], int n, double *fret,
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */                double (*func)(double []));
   } /* end i */    int i,ibig,j;
     double del,t,*pt,*ptt,*xit;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double fp,fptt;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double *xits;
       ps[ii][jj]=0;    int niterf, itmp;
       ps[ii][ii]=1;  
     }    pt=vector(1,n);
   }    ptt=vector(1,n);
     xit=vector(1,n);
     xits=vector(1,n);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    *fret=(*func)(p);
     for(jj=1; jj<= nlstate+ndeath; jj++){    for (j=1;j<=n;j++) pt[j]=p[j];
      printf("%lf ",ps[ii][jj]);    for (*iter=1;;++(*iter)) {
    }      fp=(*fret);
     printf("\n ");      ibig=0;
     }      del=0.0;
     printf("\n ");printf("%lf ",cov[2]);*/      last_time=curr_time;
 /*      (void) gettimeofday(&curr_time,&tzp);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   goto end;*/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     return ps;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 }     for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
 /**************** Product of 2 matrices ******************/        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      }
 {      printf("\n");
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      fprintf(ficlog,"\n");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      fprintf(ficrespow,"\n");fflush(ficrespow);
   /* in, b, out are matrice of pointers which should have been initialized       if(*iter <=3){
      before: only the contents of out is modified. The function returns        tm = *localtime(&curr_time.tv_sec);
      a pointer to pointers identical to out */        strcpy(strcurr,asctime(&tm));
   long i, j, k;  /*       asctime_r(&tm,strcurr); */
   for(i=nrl; i<= nrh; i++)        forecast_time=curr_time;
     for(k=ncolol; k<=ncoloh; k++)        itmp = strlen(strcurr);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         out[i][k] +=in[i][j]*b[j][k];          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   return out;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 }        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
           tmf = *localtime(&forecast_time.tv_sec);
 /************* Higher Matrix Product ***************/  /*      asctime_r(&tmf,strfor); */
           strcpy(strfor,asctime(&tmf));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          itmp = strlen(strfor);
 {          if(strfor[itmp-1]=='\n')
   /* Computes the transition matrix starting at age 'age' over           strfor[itmp-1]='\0';
      'nhstepm*hstepm*stepm' months (i.e. until          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
      nhstepm*hstepm matrices.         }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step       }
      (typically every 2 years instead of every month which is too big       for (i=1;i<=n;i++) {
      for the memory).        for (j=1;j<=n;j++) xit[j]=xi[j][i];
      Model is determined by parameters x and covariates have to be         fptt=(*fret);
      included manually here.   #ifdef DEBUG
         printf("fret=%lf \n",*fret);
      */        fprintf(ficlog,"fret=%lf \n",*fret);
   #endif
   int i, j, d, h, k;        printf("%d",i);fflush(stdout);
   double **out, cov[NCOVMAX];        fprintf(ficlog,"%d",i);fflush(ficlog);
   double **newm;        linmin(p,xit,n,fret,func);
         if (fabs(fptt-(*fret)) > del) {
   /* Hstepm could be zero and should return the unit matrix */          del=fabs(fptt-(*fret));
   for (i=1;i<=nlstate+ndeath;i++)          ibig=i;
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
       po[i][j][0]=(i==j ? 1.0 : 0.0);        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        for (j=1;j<=n;j++) {
   for(h=1; h <=nhstepm; h++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(d=1; d <=hstepm; d++){          printf(" x(%d)=%.12e",j,xit[j]);
       newm=savm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       /* Covariates have to be included here again */        }
       cov[1]=1.;        for(j=1;j<=n;j++) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          printf(" p=%.12e",p[j]);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          fprintf(ficlog," p=%.12e",p[j]);
       for (k=1; k<=cptcovage;k++)        }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("\n");
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"\n");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #endif
       }
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #ifdef DEBUG
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        int k[2],l;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         k[0]=1;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        k[1]=-1;
       savm=oldm;        printf("Max: %.12e",(*func)(p));
       oldm=newm;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     for(i=1; i<=nlstate+ndeath; i++)          printf(" %.12e",p[j]);
       for(j=1;j<=nlstate+ndeath;j++) {          fprintf(ficlog," %.12e",p[j]);
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        printf("\n");
          */        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
   } /* end h */          for (j=1;j<=n;j++) {
   return po;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /*************** log-likelihood *************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double func( double *x)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   int i, ii, j, k, mi, d, kk;  #endif
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  
   double sw; /* Sum of weights */        free_vector(xit,1,n);
   double lli; /* Individual log likelihood */        free_vector(xits,1,n);
   int s1, s2;        free_vector(ptt,1,n);
   double bbh, survp;        free_vector(pt,1,n);
   long ipmx;        return;
   /*extern weight */      }
   /* We are differentiating ll according to initial status */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for (j=1;j<=n;j++) {
   /*for(i=1;i<imx;i++)         ptt[j]=2.0*p[j]-pt[j];
     printf(" %d\n",s[4][i]);        xit[j]=p[j]-pt[j];
   */        pt[j]=p[j];
   cov[1]=1.;      }
       fptt=(*func)(ptt);
   for(k=1; k<=nlstate; k++) ll[k]=0.;      if (fptt < fp) {
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
   if(mle==1){        if (t < 0.0) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          linmin(p,xit,n,fret,func);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          for (j=1;j<=n;j++) {
       for(mi=1; mi<= wav[i]-1; mi++){            xi[j][ibig]=xi[j][n];
         for (ii=1;ii<=nlstate+ndeath;ii++)            xi[j][n]=xit[j];
           for (j=1;j<=nlstate+ndeath;j++){          }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #ifdef DEBUG
             savm[ii][j]=(ii==j ? 1.0 : 0.0);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(d=0; d<dh[mi][i]; d++){          for(j=1;j<=n;j++){
           newm=savm;            printf(" %.12e",xit[j]);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            fprintf(ficlog," %.12e",xit[j]);
           for (kk=1; kk<=cptcovage;kk++) {          }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          printf("\n");
           }          fprintf(ficlog,"\n");
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  #endif
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        }
           savm=oldm;      }
           oldm=newm;    }
         } /* end mult */  }
         
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  /**** Prevalence limit (stable or period prevalence)  ****************/
         /* But now since version 0.9 we anticipate for bias and large stepm.  
          * If stepm is larger than one month (smallest stepm) and if the exact delay   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
          * (in months) between two waves is not a multiple of stepm, we rounded to   {
          * the nearest (and in case of equal distance, to the lowest) interval but now    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
          * we keep into memory the bias bh[mi][i] and also the previous matrix product       matrix by transitions matrix until convergence is reached */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  
          * probability in order to take into account the bias as a fraction of the way    int i, ii,j,k;
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies    double min, max, maxmin, maxmax,sumnew=0.;
          * -stepm/2 to stepm/2 .    double **matprod2();
          * For stepm=1 the results are the same as for previous versions of Imach.    double **out, cov[NCOVMAX], **pmij();
          * For stepm > 1 the results are less biased than in previous versions.     double **newm;
          */    double agefin, delaymax=50 ; /* Max number of years to converge */
         s1=s[mw[mi][i]][i];  
         s2=s[mw[mi+1][i]][i];    for (ii=1;ii<=nlstate+ndeath;ii++)
         bbh=(double)bh[mi][i]/(double)stepm;       for (j=1;j<=nlstate+ndeath;j++){
         /* bias is positive if real duration        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
          * is higher than the multiple of stepm and negative otherwise.      }
          */  
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/     cov[1]=1.;
         if( s2 > nlstate){    
           /* i.e. if s2 is a death state and if the date of death is known then the contribution   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              to the likelihood is the probability to die between last step unit time and current     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
              step unit time, which is also the differences between probability to die before dh       newm=savm;
              and probability to die before dh-stepm .       /* Covariates have to be included here again */
              In version up to 0.92 likelihood was computed       cov[2]=agefin;
         as if date of death was unknown. Death was treated as any other   
         health state: the date of the interview describes the actual state        for (k=1; k<=cptcovn;k++) {
         and not the date of a change in health state. The former idea was          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         to consider that at each interview the state was recorded          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         (healthy, disable or death) and IMaCh was corrected; but when we        }
         introduced the exact date of death then we should have modified        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         the contribution of an exact death to the likelihood. This new        for (k=1; k<=cptcovprod;k++)
         contribution is smaller and very dependent of the step unit          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         stepm. It is no more the probability to die between last interview  
         and month of death but the probability to survive from last        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         interview up to one month before death multiplied by the        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         probability to die within a month. Thanks to Chris        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         Jackson for correcting this bug.  Former versions increased      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         mortality artificially. The bad side is that we add another loop  
         which slows down the processing. The difference can be up to 10%      savm=oldm;
         lower mortality.      oldm=newm;
           */      maxmax=0.;
           lli=log(out[s1][s2] - savm[s1][s2]);      for(j=1;j<=nlstate;j++){
         }else{        min=1.;
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */        max=0.;
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */        for(i=1; i<=nlstate; i++) {
         }           sumnew=0;
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         /*if(lli ==000.0)*/          prlim[i][j]= newm[i][j]/(1-sumnew);
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          max=FMAX(max,prlim[i][j]);
         ipmx +=1;          min=FMIN(min,prlim[i][j]);
         sw += weight[i];        }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        maxmin=max-min;
       } /* end of wave */        maxmax=FMAX(maxmax,maxmin);
     } /* end of individual */      }
   }  else if(mle==2){      if(maxmax < ftolpl){
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        return prlim;
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){    }
         for (ii=1;ii<=nlstate+ndeath;ii++)  }
           for (j=1;j<=nlstate+ndeath;j++){  
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** transition probabilities ***************/
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  
           }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         for(d=0; d<=dh[mi][i]; d++){  {
           newm=savm;    double s1, s2;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /*double t34;*/
           for (kk=1; kk<=cptcovage;kk++) {    int i,j,j1, nc, ii, jj;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
           }      for(i=1; i<= nlstate; i++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for(j=1; j<i;j++){
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           savm=oldm;            /*s2 += param[i][j][nc]*cov[nc];*/
           oldm=newm;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         } /* end mult */  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
                 }
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          ps[i][j]=s2;
         /* But now since version 0.9 we anticipate for bias and large stepm.  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
          * If stepm is larger than one month (smallest stepm) and if the exact delay         }
          * (in months) between two waves is not a multiple of stepm, we rounded to         for(j=i+1; j<=nlstate+ndeath;j++){
          * the nearest (and in case of equal distance, to the lowest) interval but now          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
          * we keep into memory the bias bh[mi][i] and also the previous matrix product            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
          * probability in order to take into account the bias as a fraction of the way          }
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          ps[i][j]=s2;
          * -stepm/2 to stepm/2 .        }
          * For stepm=1 the results are the same as for previous versions of Imach.      }
          * For stepm > 1 the results are less biased than in previous versions.       /*ps[3][2]=1;*/
          */     
         s1=s[mw[mi][i]][i];      for(i=1; i<= nlstate; i++){
         s2=s[mw[mi+1][i]][i];        s1=0;
         bbh=(double)bh[mi][i]/(double)stepm;         for(j=1; j<i; j++)
         /* bias is positive if real duration          s1+=exp(ps[i][j]);
          * is higher than the multiple of stepm and negative otherwise.        for(j=i+1; j<=nlstate+ndeath; j++)
          */          s1+=exp(ps[i][j]);
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        ps[i][i]=1./(s1+1.);
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        for(j=1; j<i; j++)
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/        for(j=i+1; j<=nlstate+ndeath; j++)
         /*if(lli ==000.0)*/          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         ipmx +=1;      } /* end i */
         sw += weight[i];     
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       } /* end of wave */        for(jj=1; jj<= nlstate+ndeath; jj++){
     } /* end of individual */          ps[ii][jj]=0;
   }  else if(mle==3){  /* exponential inter-extrapolation */          ps[ii][ii]=1;
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
       for(mi=1; mi<= wav[i]-1; mi++){     
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  /*         printf("ddd %lf ",ps[ii][jj]); */
           }  /*       } */
         for(d=0; d<dh[mi][i]; d++){  /*       printf("\n "); */
           newm=savm;  /*        } */
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*        printf("\n ");printf("%lf ",cov[2]); */
           for (kk=1; kk<=cptcovage;kk++) {         /*
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           }        goto end;*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      return ps;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
           savm=oldm;  
           oldm=newm;  /**************** Product of 2 matrices ******************/
         } /* end mult */  
         double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  {
         /* But now since version 0.9 we anticipate for bias and large stepm.    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
          * If stepm is larger than one month (smallest stepm) and if the exact delay        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          * (in months) between two waves is not a multiple of stepm, we rounded to     /* in, b, out are matrice of pointers which should have been initialized
          * the nearest (and in case of equal distance, to the lowest) interval but now       before: only the contents of out is modified. The function returns
          * we keep into memory the bias bh[mi][i] and also the previous matrix product       a pointer to pointers identical to out */
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    long i, j, k;
          * probability in order to take into account the bias as a fraction of the way    for(i=nrl; i<= nrh; i++)
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies      for(k=ncolol; k<=ncoloh; k++)
          * -stepm/2 to stepm/2 .        for(j=ncl,out[i][k]=0.; j<=nch; j++)
          * For stepm=1 the results are the same as for previous versions of Imach.          out[i][k] +=in[i][j]*b[j][k];
          * For stepm > 1 the results are less biased than in previous versions.   
          */    return out;
         s1=s[mw[mi][i]][i];  }
         s2=s[mw[mi+1][i]][i];  
         bbh=(double)bh[mi][i]/(double)stepm;   
         /* bias is positive if real duration  /************* Higher Matrix Product ***************/
          * is higher than the multiple of stepm and negative otherwise.  
          */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */  {
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */    /* Computes the transition matrix starting at age 'age' over
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/       'nhstepm*hstepm*stepm' months (i.e. until
         /*if(lli ==000.0)*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */       nhstepm*hstepm matrices.
         ipmx +=1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
         sw += weight[i];       (typically every 2 years instead of every month which is too big
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       for the memory).
       } /* end of wave */       Model is determined by parameters x and covariates have to be
     } /* end of individual */       included manually here.
   }else if (mle==4){  /* ml=4 no inter-extrapolation */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){       */
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
       for(mi=1; mi<= wav[i]-1; mi++){    int i, j, d, h, k;
         for (ii=1;ii<=nlstate+ndeath;ii++)    double **out, cov[NCOVMAX];
           for (j=1;j<=nlstate+ndeath;j++){    double **newm;
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    /* Hstepm could be zero and should return the unit matrix */
           }    for (i=1;i<=nlstate+ndeath;i++)
         for(d=0; d<dh[mi][i]; d++){      for (j=1;j<=nlstate+ndeath;j++){
           newm=savm;        oldm[i][j]=(i==j ? 1.0 : 0.0);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for (kk=1; kk<=cptcovage;kk++) {      }
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           }    for(h=1; h <=nhstepm; h++){
               for(d=1; d <=hstepm; d++){
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        newm=savm;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        /* Covariates have to be included here again */
           savm=oldm;        cov[1]=1.;
           oldm=newm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         } /* end mult */        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               for (k=1; k<=cptcovage;k++)
         s1=s[mw[mi][i]][i];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         s2=s[mw[mi+1][i]][i];        for (k=1; k<=cptcovprod;k++)
         if( s2 > nlstate){           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           lli=log(out[s1][s2] - savm[s1][s2]);  
         }else{  
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         ipmx +=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
         sw += weight[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        savm=oldm;
 /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */        oldm=newm;
       } /* end of wave */      }
     } /* end of individual */      for(i=1; i<=nlstate+ndeath; i++)
   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */        for(j=1;j<=nlstate+ndeath;j++) {
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){          po[i][j][h]=newm[i][j];
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       for(mi=1; mi<= wav[i]-1; mi++){           */
         for (ii=1;ii<=nlstate+ndeath;ii++)        }
           for (j=1;j<=nlstate+ndeath;j++){    } /* end h */
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);    return po;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);  }
           }  
         for(d=0; d<dh[mi][i]; d++){  
           newm=savm;  /*************** log-likelihood *************/
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double func( double *x)
           for (kk=1; kk<=cptcovage;kk++) {  {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int i, ii, j, k, mi, d, kk;
           }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             double **out;
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double sw; /* Sum of weights */
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double lli; /* Individual log likelihood */
           savm=oldm;    int s1, s2;
           oldm=newm;    double bbh, survp;
         } /* end mult */    long ipmx;
           /*extern weight */
         s1=s[mw[mi][i]][i];    /* We are differentiating ll according to initial status */
         s2=s[mw[mi+1][i]][i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */    /*for(i=1;i<imx;i++)
         ipmx +=1;      printf(" %d\n",s[4][i]);
         sw += weight[i];    */
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    cov[1]=1.;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/  
       } /* end of wave */    for(k=1; k<=nlstate; k++) ll[k]=0.;
     } /* end of individual */  
   } /* End of if */    if(mle==1){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        for(mi=1; mi<= wav[i]-1; mi++){
   return -l;          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** log-likelihood *************/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 double funcone( double *x)            }
 {          for(d=0; d<dh[mi][i]; d++){
   /* Same as likeli but slower because of a lot of printf and if */            newm=savm;
   int i, ii, j, k, mi, d, kk;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];            for (kk=1; kk<=cptcovage;kk++) {
   double **out;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double lli; /* Individual log likelihood */            }
   double llt;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int s1, s2;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double bbh, survp;            savm=oldm;
   /*extern weight */            oldm=newm;
   /* We are differentiating ll according to initial status */          } /* end mult */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       
   /*for(i=1;i<imx;i++)           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     printf(" %d\n",s[4][i]);          /* But now since version 0.9 we anticipate for bias at large stepm.
   */           * If stepm is larger than one month (smallest stepm) and if the exact delay
   cov[1]=1.;           * (in months) between two waves is not a multiple of stepm, we rounded to
            * the nearest (and in case of equal distance, to the lowest) interval but now
   for(k=1; k<=nlstate; k++) ll[k]=0.;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){           * probability in order to take into account the bias as a fraction of the way
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     for(mi=1; mi<= wav[i]-1; mi++){           * -stepm/2 to stepm/2 .
       for (ii=1;ii<=nlstate+ndeath;ii++)           * For stepm=1 the results are the same as for previous versions of Imach.
         for (j=1;j<=nlstate+ndeath;j++){           * For stepm > 1 the results are less biased than in previous versions.
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);           */
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       for(d=0; d<dh[mi][i]; d++){          bbh=(double)bh[mi][i]/(double)stepm;
         newm=savm;          /* bias bh is positive if real duration
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           * is higher than the multiple of stepm and negative otherwise.
         for (kk=1; kk<=cptcovage;kk++) {           */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         }          if( s2 > nlstate){
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            /* i.e. if s2 is a death state and if the date of death is known
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));               then the contribution to the likelihood is the probability to
         savm=oldm;               die between last step unit time and current  step unit time,
         oldm=newm;               which is also equal to probability to die before dh
       } /* end mult */               minus probability to die before dh-stepm .
                      In version up to 0.92 likelihood was computed
       s1=s[mw[mi][i]][i];          as if date of death was unknown. Death was treated as any other
       s2=s[mw[mi+1][i]][i];          health state: the date of the interview describes the actual state
       bbh=(double)bh[mi][i]/(double)stepm;           and not the date of a change in health state. The former idea was
       /* bias is positive if real duration          to consider that at each interview the state was recorded
        * is higher than the multiple of stepm and negative otherwise.          (healthy, disable or death) and IMaCh was corrected; but when we
        */          introduced the exact date of death then we should have modified
       if( s2 > nlstate && (mle <5) ){  /* Jackson */          the contribution of an exact death to the likelihood. This new
         lli=log(out[s1][s2] - savm[s1][s2]);          contribution is smaller and very dependent of the step unit
       } else if (mle==1){          stepm. It is no more the probability to die between last interview
         lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */          and month of death but the probability to survive from last
       } else if(mle==2){          interview up to one month before death multiplied by the
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */          probability to die within a month. Thanks to Chris
       } else if(mle==3){  /* exponential inter-extrapolation */          Jackson for correcting this bug.  Former versions increased
         lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */          mortality artificially. The bad side is that we add another loop
       } else if (mle==4){  /* mle=4 no inter-extrapolation */          which slows down the processing. The difference can be up to 10%
         lli=log(out[s1][s2]); /* Original formula */          lower mortality.
       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */            */
         lli=log(out[s1][s2]); /* Original formula */            lli=log(out[s1][s2] - savm[s1][s2]);
       } /* End of if */  
       ipmx +=1;  
       sw += weight[i];          } else if  (s2==-2) {
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1,survp=0. ; j<=nlstate; j++)
 /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       if(globpr){            /*survp += out[s1][j]; */
         fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\            lli= log(survp);
  %10.6f %10.6f %10.6f ", \          }
                 num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],         
                 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);          else if  (s2==-4) {
         for(k=1,llt=0.,l=0.; k<=nlstate; k++){            for (j=3,survp=0. ; j<=nlstate; j++)  
           llt +=ll[k]*gipmx/gsw;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);            lli= log(survp);
         }          }
         fprintf(ficresilk," %10.6f\n", -llt);  
       }          else if  (s2==-5) {
     } /* end of wave */            for (j=1,survp=0. ; j<=2; j++)  
   } /* end of individual */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            lli= log(survp);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */          }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */         
   if(globpr==0){ /* First time we count the contributions and weights */          else{
     gipmx=ipmx;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gsw=sw;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   }          }
   return -l;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 }          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 char *subdirf(char fileres[])          ipmx +=1;
 {          sw += weight[i];
   /* Caution optionfilefiname is hidden */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(tmpout,optionfilefiname);        } /* end of wave */
   strcat(tmpout,"/"); /* Add to the right */      } /* end of individual */
   strcat(tmpout,fileres);    }  else if(mle==2){
   return tmpout;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 char *subdirf2(char fileres[], char *preop)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
                 oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(tmpout,optionfilefiname);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(tmpout,"/");            }
   strcat(tmpout,preop);          for(d=0; d<=dh[mi][i]; d++){
   strcat(tmpout,fileres);            newm=savm;
   return tmpout;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
 char *subdirf3(char fileres[], char *preop, char *preop2)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
               out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(tmpout,optionfilefiname);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(tmpout,"/");            savm=oldm;
   strcat(tmpout,preop);            oldm=newm;
   strcat(tmpout,preop2);          } /* end mult */
   strcat(tmpout,fileres);       
   return tmpout;          s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm;
 void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 {          ipmx +=1;
   /* This routine should help understanding what is done with           sw += weight[i];
      the selection of individuals/waves and          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      to check the exact contribution to the likelihood.        } /* end of wave */
      Plotting could be done.      } /* end of individual */
    */    }  else if(mle==3){  /* exponential inter-extrapolation */
   int k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if(*globpri !=0){ /* Just counts and sums, no printings */        for(mi=1; mi<= wav[i]-1; mi++){
     strcpy(fileresilk,"ilk");           for (ii=1;ii<=nlstate+ndeath;ii++)
     strcat(fileresilk,fileres);            for (j=1;j<=nlstate+ndeath;j++){
     if((ficresilk=fopen(fileresilk,"w"))==NULL) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       printf("Problem with resultfile: %s\n", fileresilk);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);            }
     }          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");            newm=savm;
     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */            for (kk=1; kk<=cptcovage;kk++) {
     for(k=1; k<=nlstate; k++)               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);            }
     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   *fretone=(*funcone)(p);            oldm=newm;
   if(*globpri !=0){          } /* end mult */
     fclose(ficresilk);       
     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));          s1=s[mw[mi][i]][i];
     fflush(fichtm);           s2=s[mw[mi+1][i]][i];
   }           bbh=(double)bh[mi][i]/(double)stepm;
   return;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*********** Maximum Likelihood Estimation ***************/        } /* end of wave */
       } /* end of individual */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    }else if (mle==4){  /* ml=4 no inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i,j, iter;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **xi;        for(mi=1; mi<= wav[i]-1; mi++){
   double fret;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double fretone; /* Only one call to likelihood */            for (j=1;j<=nlstate+ndeath;j++){
   char filerespow[FILENAMELENGTH];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   xi=matrix(1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++)            }
     for (j=1;j<=npar;j++)          for(d=0; d<dh[mi][i]; d++){
       xi[i][j]=(i==j ? 1.0 : 0.0);            newm=savm;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(filerespow,"pow");             for (kk=1; kk<=cptcovage;kk++) {
   strcat(filerespow,fileres);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if((ficrespow=fopen(filerespow,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", filerespow);         
     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficrespow,"# Powell\n# iter -2*LL");            savm=oldm;
   for (i=1;i<=nlstate;i++)            oldm=newm;
     for(j=1;j<=nlstate+ndeath;j++)          } /* end mult */
       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);       
   fprintf(ficrespow,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   powell(p,xi,npar,ftol,&iter,&fret,func);          if( s2 > nlstate){
             lli=log(out[s1][s2] - savm[s1][s2]);
   fclose(ficrespow);          }else{
   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          ipmx +=1;
           sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 /**** Computes Hessian and covariance matrix ***/        } /* end of wave */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      } /* end of individual */
 {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double  **a,**y,*x,pd;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **hess;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i, j,jk;        for(mi=1; mi<= wav[i]-1; mi++){
   int *indx;          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   double hessii(double p[], double delta, int theta, double delti[]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double hessij(double p[], double delti[], int i, int j);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   void lubksb(double **a, int npar, int *indx, double b[]) ;            }
   void ludcmp(double **a, int npar, int *indx, double *d) ;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   hess=matrix(1,npar,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   printf("\nCalculation of the hessian matrix. Wait...\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");            }
   for (i=1;i<=npar;i++){         
     printf("%d",i);fflush(stdout);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficlog,"%d",i);fflush(ficlog);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hess[i][i]=hessii(p,ftolhess,i,delti);            savm=oldm;
     /*printf(" %f ",p[i]);*/            oldm=newm;
     /*printf(" %lf ",hess[i][i]);*/          } /* end mult */
   }       
             s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++) {          s2=s[mw[mi+1][i]][i];
     for (j=1;j<=npar;j++)  {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       if (j>i) {           ipmx +=1;
         printf(".%d%d",i,j);fflush(stdout);          sw += weight[i];
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         hess[i][j]=hessij(p,delti,i,j);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         hess[j][i]=hess[i][j];            } /* end of wave */
         /*printf(" %lf ",hess[i][j]);*/      } /* end of individual */
       }    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   printf("\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficlog,"\n");    return -l;
   }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  /*************** log-likelihood *************/
     double funcone( double *x)
   a=matrix(1,npar,1,npar);  {
   y=matrix(1,npar,1,npar);    /* Same as likeli but slower because of a lot of printf and if */
   x=vector(1,npar);    int i, ii, j, k, mi, d, kk;
   indx=ivector(1,npar);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++)    double **out;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double lli; /* Individual log likelihood */
   ludcmp(a,npar,indx,&pd);    double llt;
     int s1, s2;
   for (j=1;j<=npar;j++) {    double bbh, survp;
     for (i=1;i<=npar;i++) x[i]=0;    /*extern weight */
     x[j]=1;    /* We are differentiating ll according to initial status */
     lubksb(a,npar,indx,x);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (i=1;i<=npar;i++){     /*for(i=1;i<imx;i++)
       matcov[i][j]=x[i];      printf(" %d\n",s[4][i]);
     }    */
   }    cov[1]=1.;
   
   printf("\n#Hessian matrix#\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(ficlog,"\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=1;j<=npar;j++) {       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       printf("%.3e ",hess[i][j]);      for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficlog,"%.3e ",hess[i][j]);        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
     printf("\n");            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }          }
         for(d=0; d<dh[mi][i]; d++){
   /* Recompute Inverse */          newm=savm;
   for (i=1;i<=npar;i++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          for (kk=1; kk<=cptcovage;kk++) {
   ludcmp(a,npar,indx,&pd);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   /*  printf("\n#Hessian matrix recomputed#\n");          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (j=1;j<=npar;j++) {          savm=oldm;
     for (i=1;i<=npar;i++) x[i]=0;          oldm=newm;
     x[j]=1;        } /* end mult */
     lubksb(a,npar,indx,x);       
     for (i=1;i<=npar;i++){         s1=s[mw[mi][i]][i];
       y[i][j]=x[i];        s2=s[mw[mi+1][i]][i];
       printf("%.3e ",y[i][j]);        bbh=(double)bh[mi][i]/(double)stepm;
       fprintf(ficlog,"%.3e ",y[i][j]);        /* bias is positive if real duration
     }         * is higher than the multiple of stepm and negative otherwise.
     printf("\n");         */
     fprintf(ficlog,"\n");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
   */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++)
   free_matrix(a,1,npar,1,npar);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(y,1,npar,1,npar);          lli= log(survp);
   free_vector(x,1,npar);        }else if (mle==1){
   free_ivector(indx,1,npar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_matrix(hess,1,npar,1,npar);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
 }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
 /*************** hessian matrix ****************/          lli=log(out[s1][s2]); /* Original formula */
 double hessii( double x[], double delta, int theta, double delti[])        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
 {          lli=log(out[s1][s2]); /* Original formula */
   int i;        } /* End of if */
   int l=1, lmax=20;        ipmx +=1;
   double k1,k2;        sw += weight[i];
   double p2[NPARMAX+1];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double res;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        if(globpr){
   double fx;          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   int k=0,kmax=10;   %11.6f %11.6f %11.6f ", \
   double l1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   fx=func(x);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   for (i=1;i<=npar;i++) p2[i]=x[i];            llt +=ll[k]*gipmx/gsw;
   for(l=0 ; l <=lmax; l++){            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     l1=pow(10,l);          }
     delts=delt;          fprintf(ficresilk," %10.6f\n", -llt);
     for(k=1 ; k <kmax; k=k+1){        }
       delt = delta*(l1*k);      } /* end of wave */
       p2[theta]=x[theta] +delt;    } /* end of individual */
       k1=func(p2)-fx;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       p2[theta]=x[theta]-delt;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       k2=func(p2)-fx;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    if(globpr==0){ /* First time we count the contributions and weights */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      gipmx=ipmx;
             gsw=sw;
 #ifdef DEBUG    }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return -l;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  }
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*************** function likelione ***********/
         k=kmax;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    /* This routine should help understanding what is done with
         k=kmax; l=lmax*10.;       the selection of individuals/waves and
       }       to check the exact contribution to the likelihood.
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        Plotting could be done.
         delts=delt;     */
       }    int k;
     }  
   }    if(*globpri !=0){ /* Just counts and sums, no printings */
   delti[theta]=delts;      strcpy(fileresilk,"ilk");
   return res;       strcat(fileresilk,fileres);
         if((ficresilk=fopen(fileresilk,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresilk);
         fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
 double hessij( double x[], double delti[], int thetai,int thetaj)      }
 {      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   int i;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   int l=1, l1, lmax=20;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double k1,k2,k3,k4,res,fx;      for(k=1; k<=nlstate; k++)
   double p2[NPARMAX+1];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   int k;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
   fx=func(x);  
   for (k=1; k<=2; k++) {    *fretone=(*funcone)(p);
     for (i=1;i<=npar;i++) p2[i]=x[i];    if(*globpri !=0){
     p2[thetai]=x[thetai]+delti[thetai]/k;      fclose(ficresilk);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     k1=func(p2)-fx;      fflush(fichtm);
       }
     p2[thetai]=x[thetai]+delti[thetai]/k;    return;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
     
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*********** Maximum Likelihood Estimation ***************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     {
     p2[thetai]=x[thetai]-delti[thetai]/k;    int i,j, iter;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double **xi;
     k4=func(p2)-fx;    double fret;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double fretone; /* Only one call to likelihood */
 #ifdef DEBUG    /*  char filerespow[FILENAMELENGTH];*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    xi=matrix(1,npar,1,npar);
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    for (i=1;i<=npar;i++)
 #endif      for (j=1;j<=npar;j++)
   }        xi[i][j]=(i==j ? 1.0 : 0.0);
   return res;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 }    strcpy(filerespow,"pow");
     strcat(filerespow,fileres);
 /************** Inverse of matrix **************/    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 void ludcmp(double **a, int n, int *indx, double *d)       printf("Problem with resultfile: %s\n", filerespow);
 {       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   int i,imax,j,k;     }
   double big,dum,sum,temp;     fprintf(ficrespow,"# Powell\n# iter -2*LL");
   double *vv;     for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   vv=vector(1,n);         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   *d=1.0;     fprintf(ficrespow,"\n");
   for (i=1;i<=n;i++) {   
     big=0.0;     powell(p,xi,npar,ftol,&iter,&fret,func);
     for (j=1;j<=n;j++)   
       if ((temp=fabs(a[i][j])) > big) big=temp;     free_matrix(xi,1,npar,1,npar);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");     fclose(ficrespow);
     vv[i]=1.0/big;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   }     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (j=1;j<=n;j++) {     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=1;i<j;i++) {   
       sum=a[i][j];   }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;   /**** Computes Hessian and covariance matrix ***/
     }   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     big=0.0;   {
     for (i=j;i<=n;i++) {     double  **a,**y,*x,pd;
       sum=a[i][j];     double **hess;
       for (k=1;k<j;k++)     int i, j,jk;
         sum -= a[i][k]*a[k][j];     int *indx;
       a[i][j]=sum;   
       if ( (dum=vv[i]*fabs(sum)) >= big) {     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         big=dum;     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         imax=i;     void lubksb(double **a, int npar, int *indx, double b[]) ;
       }     void ludcmp(double **a, int npar, int *indx, double *d) ;
     }     double gompertz(double p[]);
     if (j != imax) {     hess=matrix(1,npar,1,npar);
       for (k=1;k<=n;k++) {   
         dum=a[imax][k];     printf("\nCalculation of the hessian matrix. Wait...\n");
         a[imax][k]=a[j][k];     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         a[j][k]=dum;     for (i=1;i<=npar;i++){
       }       printf("%d",i);fflush(stdout);
       *d = -(*d);       fprintf(ficlog,"%d",i);fflush(ficlog);
       vv[imax]=vv[j];      
     }        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     indx[j]=imax;      
     if (a[j][j] == 0.0) a[j][j]=TINY;       /*  printf(" %f ",p[i]);
     if (j != n) {           printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       dum=1.0/(a[j][j]);     }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    
     }     for (i=1;i<=npar;i++) {
   }       for (j=1;j<=npar;j++)  {
   free_vector(vv,1,n);  /* Doesn't work */        if (j>i) {
 ;          printf(".%d%d",i,j);fflush(stdout);
 }           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
 void lubksb(double **a, int n, int *indx, double b[])          
 {           hess[j][i]=hess[i][j];    
   int i,ii=0,ip,j;           /*printf(" %lf ",hess[i][j]);*/
   double sum;         }
        }
   for (i=1;i<=n;i++) {     }
     ip=indx[i];     printf("\n");
     sum=b[ip];     fprintf(ficlog,"\n");
     b[ip]=b[i];   
     if (ii)     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     else if (sum) ii=i;    
     b[i]=sum;     a=matrix(1,npar,1,npar);
   }     y=matrix(1,npar,1,npar);
   for (i=n;i>=1;i--) {     x=vector(1,npar);
     sum=b[i];     indx=ivector(1,npar);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];     for (i=1;i<=npar;i++)
     b[i]=sum/a[i][i];       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   }     ludcmp(a,npar,indx,&pd);
 }   
     for (j=1;j<=npar;j++) {
 /************ Frequencies ********************/      for (i=1;i<=npar;i++) x[i]=0;
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)      x[j]=1;
 {  /* Some frequencies */      lubksb(a,npar,indx,x);
         for (i=1;i<=npar;i++){
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        matcov[i][j]=x[i];
   int first;      }
   double ***freq; /* Frequencies */    }
   double *pp, **prop;  
   double pos,posprop, k2, dateintsum=0,k2cpt=0;    printf("\n#Hessian matrix#\n");
   FILE *ficresp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   char fileresp[FILENAMELENGTH];    for (i=1;i<=npar;i++) {
         for (j=1;j<=npar;j++) {
   pp=vector(1,nlstate);        printf("%.3e ",hess[i][j]);
   prop=matrix(1,nlstate,iagemin,iagemax+3);        fprintf(ficlog,"%.3e ",hess[i][j]);
   strcpy(fileresp,"p");      }
   strcat(fileresp,fileres);      printf("\n");
   if((ficresp=fopen(fileresp,"w"))==NULL) {      fprintf(ficlog,"\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);    }
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);    /* Recompute Inverse */
   }    for (i=1;i<=npar;i++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   j1=0;    ludcmp(a,npar,indx,&pd);
     
   j=cptcoveff;    /*  printf("\n#Hessian matrix recomputed#\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
     for (j=1;j<=npar;j++) {
   first=1;      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
   for(k1=1; k1<=j;k1++){      lubksb(a,npar,indx,x);
     for(i1=1; i1<=ncodemax[k1];i1++){      for (i=1;i<=npar;i++){
       j1++;        y[i][j]=x[i];
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        printf("%.3e ",y[i][j]);
         scanf("%d", i);*/        fprintf(ficlog,"%.3e ",y[i][j]);
       for (i=-1; i<=nlstate+ndeath; i++)        }
         for (jk=-1; jk<=nlstate+ndeath; jk++)        printf("\n");
           for(m=iagemin; m <= iagemax+3; m++)      fprintf(ficlog,"\n");
             freq[i][jk][m]=0;    }
     */
     for (i=1; i<=nlstate; i++)    
       for(m=iagemin; m <= iagemax+3; m++)    free_matrix(a,1,npar,1,npar);
         prop[i][m]=0;    free_matrix(y,1,npar,1,npar);
           free_vector(x,1,npar);
       dateintsum=0;    free_ivector(indx,1,npar);
       k2cpt=0;    free_matrix(hess,1,npar,1,npar);
       for (i=1; i<=imx; i++) {  
         bool=1;  
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)   
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   /*************** hessian matrix ****************/
               bool=0;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         }  {
         if (bool==1){    int i;
           for(m=firstpass; m<=lastpass; m++){    int l=1, lmax=20;
             k2=anint[m][i]+(mint[m][i]/12.);    double k1,k2;
             /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/    double p2[NPARMAX+1];
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    double res;
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];    double fx;
               if (m<lastpass) {    int k=0,kmax=10;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double l1;
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];  
               }    fx=func(x);
                   for (i=1;i<=npar;i++) p2[i]=x[i];
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {    for(l=0 ; l <=lmax; l++){
                 dateintsum=dateintsum+k2;      l1=pow(10,l);
                 k2cpt++;      delts=delt;
               }      for(k=1 ; k <kmax; k=k+1){
               /*}*/        delt = delta*(l1*k);
           }        p2[theta]=x[theta] +delt;
         }        k1=func(p2)-fx;
       }        p2[theta]=x[theta]-delt;
                k2=func(p2)-fx;
       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       if  (cptcovn>0) {       
         fprintf(ficresp, "\n#********** Variable ");   #ifdef DEBUG
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficresp, "**********\n#");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       }  #endif
       for(i=1; i<=nlstate;i++)         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       fprintf(ficresp, "\n");          k=kmax;
               }
       for(i=iagemin; i <= iagemax+3; i++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         if(i==iagemax+3){          k=kmax; l=lmax*10.;
           fprintf(ficlog,"Total");        }
         }else{        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
           if(first==1){          delts=delt;
             first=0;        }
             printf("See log file for details...\n");      }
           }    }
           fprintf(ficlog,"Age %d", i);    delti[theta]=delts;
         }    return res;
         for(jk=1; jk <=nlstate ; jk++){   
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
             pp[jk] += freq[jk][m][i];   
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    int i;
             pos += freq[jk][m][i];    int l=1, l1, lmax=20;
           if(pp[jk]>=1.e-10){    double k1,k2,k3,k4,res,fx;
             if(first==1){    double p2[NPARMAX+1];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    int k;
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    fx=func(x);
           }else{    for (k=1; k<=2; k++) {
             if(first==1)      for (i=1;i<=npar;i++) p2[i]=x[i];
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetai]=x[thetai]+delti[thetai]/k;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k1=func(p2)-fx;
         }   
       p2[thetai]=x[thetai]+delti[thetai]/k;
         for(jk=1; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      k2=func(p2)-fx;
             pp[jk] += freq[jk][m][i];   
         }             p2[thetai]=x[thetai]-delti[thetai]/k;
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           pos += pp[jk];      k3=func(p2)-fx;
           posprop += prop[jk][i];   
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(jk=1; jk <=nlstate ; jk++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           if(pos>=1.e-5){      k4=func(p2)-fx;
             if(first==1)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  #ifdef DEBUG
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }else{      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             if(first==1)  #endif
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    }
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return res;
           }  }
           if( i <= iagemax){  
             if(pos>=1.e-5){  /************** Inverse of matrix **************/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);  void ludcmp(double **a, int n, int *indx, double *d)
               /*probs[i][jk][j1]= pp[jk]/pos;*/  {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int i,imax,j,k;
             }    double big,dum,sum,temp;
             else    double *vv;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);   
           }    vv=vector(1,n);
         }    *d=1.0;
             for (i=1;i<=n;i++) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)      big=0.0;
           for(m=-1; m <=nlstate+ndeath; m++)      for (j=1;j<=n;j++)
             if(freq[jk][m][i] !=0 ) {        if ((temp=fabs(a[i][j])) > big) big=temp;
             if(first==1)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      vv[i]=1.0/big;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    }
             }    for (j=1;j<=n;j++) {
         if(i <= iagemax)      for (i=1;i<j;i++) {
           fprintf(ficresp,"\n");        sum=a[i][j];
         if(first==1)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
           printf("Others in log...\n");        a[i][j]=sum;
         fprintf(ficlog,"\n");      }
       }      big=0.0;
     }      for (i=j;i<=n;i++) {
   }        sum=a[i][j];
   dateintmean=dateintsum/k2cpt;         for (k=1;k<j;k++)
            sum -= a[i][k]*a[k][j];
   fclose(ficresp);        a[i][j]=sum;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);        if ( (dum=vv[i]*fabs(sum)) >= big) {
   free_vector(pp,1,nlstate);          big=dum;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);          imax=i;
   /* End of Freq */        }
 }      }
       if (j != imax) {
 /************ Prevalence ********************/        for (k=1;k<=n;k++) {
 void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)          dum=a[imax][k];
 {            a[imax][k]=a[j][k];
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people          a[j][k]=dum;
      in each health status at the date of interview (if between dateprev1 and dateprev2).        }
      We still use firstpass and lastpass as another selection.        *d = -(*d);
   */        vv[imax]=vv[j];
        }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      indx[j]=imax;
   double ***freq; /* Frequencies */      if (a[j][j] == 0.0) a[j][j]=TINY;
   double *pp, **prop;      if (j != n) {
   double pos,posprop;         dum=1.0/(a[j][j]);
   double  y2; /* in fractional years */        for (i=j+1;i<=n;i++) a[i][j] *= dum;
   int iagemin, iagemax;      }
     }
   iagemin= (int) agemin;    free_vector(vv,1,n);  /* Doesn't work */
   iagemax= (int) agemax;  ;
   /*pp=vector(1,nlstate);*/  }
   prop=matrix(1,nlstate,iagemin,iagemax+3);   
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/  void lubksb(double **a, int n, int *indx, double b[])
   j1=0;  {
       int i,ii=0,ip,j;
   j=cptcoveff;    double sum;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}   
       for (i=1;i<=n;i++) {
   for(k1=1; k1<=j;k1++){      ip=indx[i];
     for(i1=1; i1<=ncodemax[k1];i1++){      sum=b[ip];
       j1++;      b[ip]=b[i];
             if (ii)
       for (i=1; i<=nlstate; i++)          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
         for(m=iagemin; m <= iagemax+3; m++)      else if (sum) ii=i;
           prop[i][m]=0.0;      b[i]=sum;
          }
       for (i=1; i<=imx; i++) { /* Each individual */    for (i=n;i>=1;i--) {
         bool=1;      sum=b[i];
         if  (cptcovn>0) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
           for (z1=1; z1<=cptcoveff; z1++)       b[i]=sum/a[i][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     }
               bool=0;  }
         }   
         if (bool==1) {   void pstamp(FILE *fichier)
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/  {
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */  }
               if(agev[m][i]==0) agev[m][i]=iagemax+1;  
               if(agev[m][i]==1) agev[m][i]=iagemax+2;  /************ Frequencies ********************/
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
               if (s[m][i]>0 && s[m][i]<=nlstate) {   {  /* Some frequencies */
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/   
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
                 prop[s[m][i]][iagemax+3] += weight[i];     int first;
               }     double ***freq; /* Frequencies */
             }    double *pp, **prop;
           } /* end selection of waves */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         }    char fileresp[FILENAMELENGTH];
       }   
       for(i=iagemin; i <= iagemax+3; i++){      pp=vector(1,nlstate);
             prop=matrix(1,nlstate,iagemin,iagemax+3);
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {     strcpy(fileresp,"p");
           posprop += prop[jk][i];     strcat(fileresp,fileres);
         }     if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(jk=1; jk <=nlstate ; jk++){           fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           if( i <=  iagemax){       exit(0);
             if(posprop>=1.e-5){     }
               probs[i][jk][j1]= prop[jk][i]/posprop;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             }     j1=0;
           }    
         }/* end jk */     j=cptcoveff;
       }/* end i */     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     } /* end i1 */  
   } /* end k1 */    first=1;
     
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/    for(k1=1; k1<=j;k1++){
   /*free_vector(pp,1,nlstate);*/      for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);        j1++;
 }  /* End of prevalence */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
 /************* Waves Concatenation ***************/        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            for(m=iagemin; m <= iagemax+3; m++)
 {              freq[i][jk][m]=0;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).      for (i=1; i<=nlstate; i++)  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        for(m=iagemin; m <= iagemax+3; m++)
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]          prop[i][m]=0;
      and mw[mi+1][i]. dh depends on stepm.       
      */        dateintsum=0;
         k2cpt=0;
   int i, mi, m;        for (i=1; i<=imx; i++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          bool=1;
      double sum=0., jmean=0.;*/          if  (cptcovn>0) {
   int first;            for (z1=1; z1<=cptcoveff; z1++)
   int j, k=0,jk, ju, jl;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   double sum=0.;                bool=0;
   first=0;          }
   jmin=1e+5;          if (bool==1){
   jmax=-1;            for(m=firstpass; m<=lastpass; m++){
   jmean=0.;              k2=anint[m][i]+(mint[m][i]/12.);
   for(i=1; i<=imx; i++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     mi=0;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     m=firstpass;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     while(s[m][i] <= nlstate){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       if(s[m][i]>=1)                if (m<lastpass) {
         mw[++mi][i]=m;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       if(m >=lastpass)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         break;                }
       else               
         m++;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     }/* end while */                  dateintsum=dateintsum+k2;
     if (s[m][i] > nlstate){                  k2cpt++;
       mi++;     /* Death is another wave */                }
       /* if(mi==0)  never been interviewed correctly before death */                /*}*/
          /* Only death is a correct wave */            }
       mw[mi][i]=m;          }
     }        }
          
     wav[i]=mi;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     if(mi==0){        pstamp(ficresp);
       nbwarn++;        if  (cptcovn>0) {
       if(first==0){          fprintf(ficresp, "\n#********** Variable ");
         printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         first=1;          fprintf(ficresp, "**********\n#");
       }        }
       if(first==1){        for(i=1; i<=nlstate;i++)
         fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       }        fprintf(ficresp, "\n");
     } /* end mi==0 */       
   } /* End individuals */        for(i=iagemin; i <= iagemax+3; i++){
           if(i==iagemax+3){
   for(i=1; i<=imx; i++){            fprintf(ficlog,"Total");
     for(mi=1; mi<wav[i];mi++){          }else{
       if (stepm <=0)            if(first==1){
         dh[mi][i]=1;              first=0;
       else{              printf("See log file for details...\n");
         if (s[mw[mi+1][i]][i] > nlstate) { /* A death */            }
           if (agedc[i] < 2*AGESUP) {            fprintf(ficlog,"Age %d", i);
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);           }
             if(j==0) j=1;  /* Survives at least one month after exam */          for(jk=1; jk <=nlstate ; jk++){
             else if(j<0){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               nberr++;              pp[jk] += freq[jk][m][i];
               printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          }
               j=1; /* Temporary Dangerous patch */          for(jk=1; jk <=nlstate ; jk++){
               printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);            for(m=-1, pos=0; m <=0 ; m++)
               fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);              pos += freq[jk][m][i];
               fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);            if(pp[jk]>=1.e-10){
             }              if(first==1){
             k=k+1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             if (j >= jmax) jmax=j;              }
             if (j <= jmin) jmin=j;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             sum=sum+j;            }else{
             /*if (j<0) printf("j=%d num=%d \n",j,i);*/              if(first==1)
             /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
         else{          }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/          for(jk=1; jk <=nlstate ; jk++){
           k=k+1;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           if (j >= jmax) jmax=j;              pp[jk] += freq[jk][m][i];
           else if (j <= jmin)jmin=j;          }      
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/            pos += pp[jk];
           if(j<0){            posprop += prop[jk][i];
             nberr++;          }
             printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);            if(pos>=1.e-5){
           }              if(first==1)
           sum=sum+j;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         jk= j/stepm;            }else{
         jl= j -jk*stepm;              if(first==1)
         ju= j -(jk+1)*stepm;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           if(jl==0){            }
             dh[mi][i]=jk;            if( i <= iagemax){
             bh[mi][i]=0;              if(pos>=1.e-5){
           }else{ /* We want a negative bias in order to only have interpolation ie                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   * at the price of an extra matrix product in likelihood */                /*probs[i][jk][j1]= pp[jk]/pos;*/
             dh[mi][i]=jk+1;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             bh[mi][i]=ju;              }
           }              else
         }else{                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           if(jl <= -ju){            }
             dh[mi][i]=jk;          }
             bh[mi][i]=jl;       /* bias is positive if real duration         
                                  * is higher than the multiple of stepm and negative otherwise.          for(jk=-1; jk <=nlstate+ndeath; jk++)
                                  */            for(m=-1; m <=nlstate+ndeath; m++)
           }              if(freq[jk][m][i] !=0 ) {
           else{              if(first==1)
             dh[mi][i]=jk+1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
             bh[mi][i]=ju;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           }              }
           if(dh[mi][i]==0){          if(i <= iagemax)
             dh[mi][i]=1; /* At least one step */            fprintf(ficresp,"\n");
             bh[mi][i]=ju; /* At least one step */          if(first==1)
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/            printf("Others in log...\n");
           }          fprintf(ficlog,"\n");
         } /* end if mle */        }
       }      }
     } /* end wave */    }
   }    dateintmean=dateintsum/k2cpt;
   jmean=sum/k;   
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    fclose(ficresp);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
  }    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 /*********** Tricode ****************************/    /* End of Freq */
 void tricode(int *Tvar, int **nbcode, int imx)  }
 {  
     /************ Prevalence ********************/
   int Ndum[20],ij=1, k, j, i, maxncov=19;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   int cptcode=0;  {  
   cptcoveff=0;     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   for (k=0; k<maxncov; k++) Ndum[k]=0;       We still use firstpass and lastpass as another selection.
   for (k=1; k<=7; k++) ncodemax[k]=0;    */
    
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum     double ***freq; /* Frequencies */
                                modality*/     double *pp, **prop;
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/    double pos,posprop;
       Ndum[ij]++; /*store the modality */    double  y2; /* in fractional years */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int iagemin, iagemax;
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable   
                                        Tvar[j]. If V=sex and male is 0 and     iagemin= (int) agemin;
                                        female is 1, then  cptcode=1.*/    iagemax= (int) agemax;
     }    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     for (i=0; i<=cptcode; i++) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */    j1=0;
     }   
     j=cptcoveff;
     ij=1;     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     for (i=1; i<=ncodemax[j]; i++) {   
       for (k=0; k<= maxncov; k++) {    for(k1=1; k1<=j;k1++){
         if (Ndum[k] != 0) {      for(i1=1; i1<=ncodemax[k1];i1++){
           nbcode[Tvar[j]][ij]=k;         j1++;
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */       
                   for (i=1; i<=nlstate; i++)  
           ij++;          for(m=iagemin; m <= iagemax+3; m++)
         }            prop[i][m]=0.0;
         if (ij > ncodemax[j]) break;        
       }          for (i=1; i<=imx; i++) { /* Each individual */
     }           bool=1;
   }            if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++)
  for (k=0; k< maxncov; k++) Ndum[k]=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
                 bool=0;
  for (i=1; i<=ncovmodel-2; i++) {           }
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/          if (bool==1) {
    ij=Tvar[i];            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
    Ndum[ij]++;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
  ij=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  for (i=1; i<= maxncov; i++) {                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
    if((Ndum[i]!=0) && (i<=ncovcol)){                if (s[m][i]>0 && s[m][i]<=nlstate) {
      Tvaraff[ij]=i; /*For printing */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      ij++;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
    }                  prop[s[m][i]][iagemax+3] += weight[i];
  }                }
                }
  cptcoveff=ij-1; /*Number of simple covariates*/            } /* end selection of waves */
 }          }
         }
 /*********** Health Expectancies ****************/        for(i=iagemin; i <= iagemax+3; i++){  
          
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
             posprop += prop[jk][i];
 {          }
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          for(jk=1; jk <=nlstate ; jk++){    
   double age, agelim, hf;            if( i <=  iagemax){
   double ***p3mat,***varhe;              if(posprop>=1.e-5){
   double **dnewm,**doldm;                probs[i][jk][j1]= prop[jk][i]/posprop;
   double *xp;              }
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          }/* end jk */
   int theta;        }/* end i */
       } /* end i1 */
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);    } /* end k1 */
   xp=vector(1,npar);   
   dnewm=matrix(1,nlstate*nlstate,1,npar);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);    /*free_vector(pp,1,nlstate);*/
       free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   fprintf(ficreseij,"# Health expectancies\n");  }  /* End of prevalence */
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  /************* Waves Concatenation ***************/
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   fprintf(ficreseij,"\n");  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if(estepm < stepm){       Death is a valid wave (if date is known).
     printf ("Problem %d lower than %d\n",estepm, stepm);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   else  hstepm=estepm;          and mw[mi+1][i]. dh depends on stepm.
   /* We compute the life expectancy from trapezoids spaced every estepm months       */
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    int i, mi, m;
    * we are calculating an estimate of the Life Expectancy assuming a linear     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
    * progression in between and thus overestimating or underestimating according       double sum=0., jmean=0.;*/
    * to the curvature of the survival function. If, for the same date, we     int first;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    int j, k=0,jk, ju, jl;
    * to compare the new estimate of Life expectancy with the same linear     double sum=0.;
    * hypothesis. A more precise result, taking into account a more precise    first=0;
    * curvature will be obtained if estepm is as small as stepm. */    jmin=1e+5;
     jmax=-1;
   /* For example we decided to compute the life expectancy with the smallest unit */    jmean=0.;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.     for(i=1; i<=imx; i++){
      nhstepm is the number of hstepm from age to agelim       mi=0;
      nstepm is the number of stepm from age to agelin.       m=firstpass;
      Look at hpijx to understand the reason of that which relies in memory size      while(s[m][i] <= nlstate){
      and note for a fixed period like estepm months */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          mw[++mi][i]=m;
      survival function given by stepm (the optimization length). Unfortunately it        if(m >=lastpass)
      means that if the survival funtion is printed only each two years of age and if          break;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         else
      results. So we changed our mind and took the option of the best precision.          m++;
   */      }/* end while */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   agelim=AGESUP;        /* if(mi==0)  never been interviewed correctly before death */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           /* Only death is a correct wave */
     /* nhstepm age range expressed in number of stepm */        mw[mi][i]=m;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);       }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */   
     /* if (stepm >= YEARM) hstepm=1;*/      wav[i]=mi;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      if(mi==0){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        nbwarn++;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);        if(first==0){
     gp=matrix(0,nhstepm,1,nlstate*nlstate);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);          first=1;
         }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        if(first==1){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          }
        } /* end mi==0 */
     } /* End individuals */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
     for(i=1; i<=imx; i++){
     /* Computing Variances of health expectancies */      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
      for(theta=1; theta <=npar; theta++){          dh[mi][i]=1;
       for(i=1; i<=npar; i++){         else{
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
                 if(j==0) j=1;  /* Survives at least one month after exam */
       cptj=0;              else if(j<0){
       for(j=1; j<= nlstate; j++){                nberr++;
         for(i=1; i<=nlstate; i++){                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           cptj=cptj+1;                j=1; /* Temporary Dangerous patch */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }              }
       }              k=k+1;
                    if (j >= jmax){
                      jmax=j;
       for(i=1; i<=npar; i++)                 ijmax=i;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if (j <= jmin){
                       jmin=j;
       cptj=0;                ijmin=i;
       for(j=1; j<= nlstate; j++){              }
         for(i=1;i<=nlstate;i++){              sum=sum+j;
           cptj=cptj+1;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          }
           }          else{
         }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for(j=1; j<= nlstate*nlstate; j++)  
         for(h=0; h<=nhstepm-1; h++){            k=k+1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if (j >= jmax) {
         }              jmax=j;
      }               ijmax=i;
                }
 /* End theta */            else if (j <= jmin){
               jmin=j;
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);              ijmin=i;
             }
      for(h=0; h<=nhstepm-1; h++)            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for(j=1; j<=nlstate*nlstate;j++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(theta=1; theta <=npar; theta++)            if(j<0){
           trgradg[h][j][theta]=gradg[h][theta][j];              nberr++;
                    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for(i=1;i<=nlstate*nlstate;i++)            }
       for(j=1;j<=nlstate*nlstate;j++)            sum=sum+j;
         varhe[i][j][(int)age] =0.;          }
           jk= j/stepm;
      printf("%d|",(int)age);fflush(stdout);          jl= j -jk*stepm;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          ju= j -(jk+1)*stepm;
      for(h=0;h<=nhstepm-1;h++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for(k=0;k<=nhstepm-1;k++){            if(jl==0){
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);              dh[mi][i]=jk;
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);              bh[mi][i]=0;
         for(i=1;i<=nlstate*nlstate;i++)            }else{ /* We want a negative bias in order to only have interpolation ie
           for(j=1;j<=nlstate*nlstate;j++)                    * at the price of an extra matrix product in likelihood */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;              dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     }            }
     /* Computing expectancies */          }else{
     for(i=1; i<=nlstate;i++)            if(jl <= -ju){
       for(j=1; j<=nlstate;j++)              dh[mi][i]=jk;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){              bh[mi][i]=jl;       /* bias is positive if real duration
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;                                   * is higher than the multiple of stepm and negative otherwise.
                                              */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            }
             else{
         }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     fprintf(ficreseij,"%3.0f",age );            }
     cptj=0;            if(dh[mi][i]==0){
     for(i=1; i<=nlstate;i++)              dh[mi][i]=1; /* At least one step */
       for(j=1; j<=nlstate;j++){              bh[mi][i]=ju; /* At least one step */
         cptj++;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            }
       }          } /* end if mle */
     fprintf(ficreseij,"\n");        }
          } /* end wave */
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);    }
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    jmean=sum/k;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   }
   }  
   printf("\n");  /*********** Tricode ****************************/
   fprintf(ficlog,"\n");  void tricode(int *Tvar, int **nbcode, int imx)
   {
   free_vector(xp,1,npar);   
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);    int cptcode=0;
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);    cptcoveff=0;
 }   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
 /************ Variance ******************/    for (k=1; k<=7; k++) ncodemax[k]=0;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)  
 {    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   /* Variance of health expectancies */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                                 modality*/
   /* double **newm;*/        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double **dnewm,**doldm;        Ndum[ij]++; /*store the modality */
   double **dnewmp,**doldmp;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   int i, j, nhstepm, hstepm, h, nstepm ;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
   int k, cptcode;                                         Tvar[j]. If V=sex and male is 0 and
   double *xp;                                         female is 1, then  cptcode=1.*/
   double **gp, **gm;  /* for var eij */      }
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */      for (i=0; i<=cptcode; i++) {
   double *gpp, *gmp; /* for var p point j */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      }
   double ***p3mat;  
   double age,agelim, hf;      ij=1;
   double ***mobaverage;      for (i=1; i<=ncodemax[j]; i++) {
   int theta;        for (k=0; k<= maxncov; k++) {
   char digit[4];          if (Ndum[k] != 0) {
   char digitp[25];            nbcode[Tvar[j]][ij]=k;
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   char fileresprobmorprev[FILENAMELENGTH];           
             ij++;
   if(popbased==1){          }
     if(mobilav!=0)          if (ij > ncodemax[j]) break;
       strcpy(digitp,"-populbased-mobilav-");        }  
     else strcpy(digitp,"-populbased-nomobil-");      }
   }    }  
   else   
     strcpy(digitp,"-stablbased-");   for (k=0; k< maxncov; k++) Ndum[k]=0;
   
   if (mobilav!=0) {   for (i=1; i<=ncovmodel-2; i++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){     ij=Tvar[i];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     Ndum[ij]++;
       printf(" Error in movingaverage mobilav=%d\n",mobilav);   }
     }  
   }   ij=1;
    for (i=1; i<= maxncov; i++) {
   strcpy(fileresprobmorprev,"prmorprev");      if((Ndum[i]!=0) && (i<=ncovcol)){
   sprintf(digit,"%-d",ij);       Tvaraff[ij]=i; /*For printing */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/       ij++;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */     }
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */   }
   strcat(fileresprobmorprev,fileres);   
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {   cptcoveff=ij-1; /*Number of simple covariates*/
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }  /*********** Health Expectancies ****************/
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);  
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    /* Health expectancies, no variances */
     fprintf(ficresprobmorprev," p.%-d SE",j);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     for(i=1; i<=nlstate;i++)    double age, agelim, hf;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double ***p3mat;
   }      double eip;
   fprintf(ficresprobmorprev,"\n");  
   fprintf(ficgp,"\n# Routine varevsij");    pstamp(ficreseij);
   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);    fprintf(ficreseij,"# Age");
 /*   } */    for(i=1; i<=nlstate;i++){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      }
   fprintf(ficresvij,"# Age");      fprintf(ficreseij," e%1d. ",i);
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=nlstate;j++)    fprintf(ficreseij,"\n");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");   
     if(estepm < stepm){
   xp=vector(1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   dnewm=matrix(1,nlstate,1,npar);    }
   doldm=matrix(1,nlstate,1,nlstate);    else  hstepm=estepm;  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    /* We compute the life expectancy from trapezoids spaced every estepm months
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);     * we are calculating an estimate of the Life Expectancy assuming a linear
   gpp=vector(nlstate+1,nlstate+ndeath);     * progression in between and thus overestimating or underestimating according
   gmp=vector(nlstate+1,nlstate+ndeath);     * to the curvature of the survival function. If, for the same date, we
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/     * estimate the model with stepm=1 month, we can keep estepm to 24 months
        * to compare the new estimate of Life expectancy with the same linear
   if(estepm < stepm){     * hypothesis. A more precise result, taking into account a more precise
     printf ("Problem %d lower than %d\n",estepm, stepm);     * curvature will be obtained if estepm is as small as stepm. */
   }  
   else  hstepm=estepm;       /* For example we decided to compute the life expectancy with the smallest unit */
   /* For example we decided to compute the life expectancy with the smallest unit */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        nhstepm is the number of hstepm from age to agelim
      nhstepm is the number of hstepm from age to agelim        nstepm is the number of stepm from age to agelin.
      nstepm is the number of stepm from age to agelin.        Look at hpijx to understand the reason of that which relies in memory size
      Look at hpijx to understand the reason of that which relies in memory size       and note for a fixed period like estepm months */
      and note for a fixed period like k years */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       survival function given by stepm (the optimization length). Unfortunately it
      survival function given by stepm (the optimization length). Unfortunately it       means that if the survival funtion is printed only each two years of age and if
      means that if the survival funtion is printed every two years of age and if       you sum them up and add 1 year (area under the trapezoids) you won't get the same
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        results. So we changed our mind and took the option of the best precision.
      results. So we changed our mind and took the option of the best precision.    */
   */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */   
   agelim = AGESUP;    agelim=AGESUP;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /* If stepm=6 months */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       /* Computed by stepm unit matrices, product of hstepm matrices, stored
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  /* nhstepm age range expressed in number of stepm */
     gp=matrix(0,nhstepm,1,nlstate);    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     gm=matrix(0,nhstepm,1,nlstate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(theta=1; theta <=npar; theta++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (age=bage; age<=fage; age ++){
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      
       if (popbased==1) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         if(mobilav ==0){     
           for(i=1; i<=nlstate;i++)      printf("%d|",(int)age);fflush(stdout);
             prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         }else{ /* mobilav */      
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=mobaverage[(int)age][i][ij];      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
             for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       for(j=1; j<= nlstate; j++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(h=0; h<=nhstepm; h++){           
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }          }
       }     
       /* This for computing probability of death (h=1 means      fprintf(ficreseij,"%3.0f",age );
          computed over hstepm matrices product = hstepm*stepm months)       for(i=1; i<=nlstate;i++){
          as a weighted average of prlim.        eip=0;
       */        for(j=1; j<=nlstate;j++){
       for(j=nlstate+1;j<=nlstate+ndeath;j++){          eip +=eij[i][j][(int)age];
         for(i=1,gpp[j]=0.; i<= nlstate; i++)          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        }
       }            fprintf(ficreseij,"%9.4f", eip );
       /* end probability of death */      }
       fprintf(ficreseij,"\n");
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */     
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\n");
      fprintf(ficlog,"\n");
       if (popbased==1) {   
         if(mobilav ==0){  }
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][ij];  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         }else{ /* mobilav */   
           for(i=1; i<=nlstate;i++)  {
             prlim[i][i]=mobaverage[(int)age][i][ij];    /* Covariances of health expectancies eij and of total life expectancies according
         }     to initial status i, ei. .
       }    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       for(j=1; j<= nlstate; j++){    double age, agelim, hf;
         for(h=0; h<=nhstepm; h++){    double ***p3matp, ***p3matm, ***varhe;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double **dnewm,**doldm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double *xp, *xm;
         }    double **gp, **gm;
       }    double ***gradg, ***trgradg;
       /* This for computing probability of death (h=1 means    int theta;
          computed over hstepm matrices product = hstepm*stepm months)   
          as a weighted average of prlim.    double eip, vip;
       */  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         for(i=1,gmp[j]=0.; i<= nlstate; i++)    xp=vector(1,npar);
          gmp[j] += prlim[i][i]*p3mat[i][j][1];    xm=vector(1,npar);
       }        dnewm=matrix(1,nlstate*nlstate,1,npar);
       /* end probability of death */    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
    
       for(j=1; j<= nlstate; j++) /* vareij */    pstamp(ficresstdeij);
         for(h=0; h<=nhstepm; h++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficresstdeij,"# Age");
         }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      fprintf(ficresstdeij," e%1d. ",i);
       }    }
     fprintf(ficresstdeij,"\n");
     } /* End theta */  
     pstamp(ficrescveij);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(h=0; h<=nhstepm; h++) /* veij */    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)      for(j=1; j<=nlstate;j++){
         for(theta=1; theta <=npar; theta++)        cptj= (j-1)*nlstate+i;
           trgradg[h][j][theta]=gradg[h][theta][j];        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            cptj2= (j2-1)*nlstate+i2;
       for(theta=1; theta <=npar; theta++)            if(cptj2 <= cptj)
         trgradgp[j][theta]=gradgp[theta][j];              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             }
       }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    fprintf(ficrescveij,"\n");
     for(i=1;i<=nlstate;i++)   
       for(j=1;j<=nlstate;j++)    if(estepm < stepm){
         vareij[i][j][(int)age] =0.;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     for(h=0;h<=nhstepm;h++){    else  hstepm=estepm;  
       for(k=0;k<=nhstepm;k++){    /* We compute the life expectancy from trapezoids spaced every estepm months
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);     * This is mainly to measure the difference between two models: for example
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);     * if stepm=24 months pijx are given only every 2 years and by summing them
         for(i=1;i<=nlstate;i++)     * we are calculating an estimate of the Life Expectancy assuming a linear
           for(j=1;j<=nlstate;j++)     * progression in between and thus overestimating or underestimating according
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;     * to the curvature of the survival function. If, for the same date, we
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     }     * to compare the new estimate of Life expectancy with the same linear
        * hypothesis. A more precise result, taking into account a more precise
     /* pptj */     * curvature will be obtained if estepm is as small as stepm. */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    /* For example we decided to compute the life expectancy with the smallest unit */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       for(i=nlstate+1;i<=nlstate+ndeath;i++)       nhstepm is the number of hstepm from age to agelim
         varppt[j][i]=doldmp[j][i];       nstepm is the number of stepm from age to agelin.
     /* end ppptj */       Look at hpijx to understand the reason of that which relies in memory size
     /*  x centered again */       and note for a fixed period like estepm months */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
     if (popbased==1) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same
       if(mobilav ==0){       results. So we changed our mind and took the option of the best precision.
         for(i=1; i<=nlstate;i++)    */
           prlim[i][i]=probs[(int)age][i][ij];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
       }else{ /* mobilav */   
         for(i=1; i<=nlstate;i++)    /* If stepm=6 months */
           prlim[i][i]=mobaverage[(int)age][i][ij];    /* nhstepm age range expressed in number of stepm */
       }    agelim=AGESUP;
     }    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
                  /* Typically if 20 years nstepm = 20*12/6=40 stepm */
     /* This for computing probability of death (h=1 means    /* if (stepm >= YEARM) hstepm=1;*/
        computed over hstepm (estepm) matrices product = hstepm*stepm months)     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        as a weighted average of prlim.   
     */    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=nlstate+1;j<=nlstate+ndeath;j++){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1,gmp[j]=0.;i<= nlstate; i++)     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     }        gp=matrix(0,nhstepm,1,nlstate*nlstate);
     /* end probability of death */    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    for (age=bage; age<=fage; age ++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       for(i=1; i<=nlstate;i++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);   
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     }   
     fprintf(ficresprobmorprev,"\n");      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     fprintf(ficresvij,"%.0f ",age );         decrease memory allocation */
     for(i=1; i<=nlstate;i++)      for(theta=1; theta <=npar; theta++){
       for(j=1; j<=nlstate;j++){        for(i=1; i<=npar; i++){
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     fprintf(ficresvij,"\n");        }
     free_matrix(gp,0,nhstepm,1,nlstate);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     free_matrix(gm,0,nhstepm,1,nlstate);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);   
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        for(j=1; j<= nlstate; j++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=nlstate; i++){
   } /* End age */            for(h=0; h<=nhstepm-1; h++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   free_vector(gmp,nlstate+1,nlstate+ndeath);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);            }
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        for(ij=1; ij<= nlstate*nlstate; ij++)
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */          for(h=0; h<=nhstepm-1; h++){
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */          }
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));      }/* End theta */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));     
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));     
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));      for(h=0; h<=nhstepm-1; h++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);        for(j=1; j<=nlstate*nlstate;j++)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          for(theta=1; theta <=npar; theta++)
 */            trgradg[h][j][theta]=gradg[h][theta][j];
 /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */     
   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   free_vector(xp,1,npar);        for(ji=1;ji<=nlstate*nlstate;ji++)
   free_matrix(doldm,1,nlstate,1,nlstate);          varhe[ij][ji][(int)age] =0.;
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       printf("%d|",(int)age);fflush(stdout);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);       for(h=0;h<=nhstepm-1;h++){
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(k=0;k<=nhstepm-1;k++){
   fclose(ficresprobmorprev);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fflush(ficgp);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fflush(fichtm);           for(ij=1;ij<=nlstate*nlstate;ij++)
 }  /* end varevsij */            for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 /************ Variance of prevlim ******************/        }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      }
 {  
   /* Variance of prevalence limit */      /* Computing expectancies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double **newm;      for(i=1; i<=nlstate;i++)
   double **dnewm,**doldm;        for(j=1; j<=nlstate;j++)
   int i, j, nhstepm, hstepm;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int k, cptcode;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double *xp;           
   double *gp, *gm;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double **gradg, **trgradg;  
   double age,agelim;          }
   int theta;  
          fprintf(ficresstdeij,"%3.0f",age );
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");      for(i=1; i<=nlstate;i++){
   fprintf(ficresvpl,"# Age");        eip=0.;
   for(i=1; i<=nlstate;i++)        vip=0.;
       fprintf(ficresvpl," %1d-%1d",i,i);        for(j=1; j<=nlstate;j++){
   fprintf(ficresvpl,"\n");          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   xp=vector(1,npar);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   doldm=matrix(1,nlstate,1,nlstate);        }
           fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   hstepm=1*YEARM; /* Every year of age */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       fprintf(ficresstdeij,"\n");
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      fprintf(ficrescveij,"%3.0f",age );
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       for(i=1; i<=nlstate;i++)
     if (stepm >= YEARM) hstepm=1;        for(j=1; j<=nlstate;j++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          cptj= (j-1)*nlstate+i;
     gradg=matrix(1,npar,1,nlstate);          for(i2=1; i2<=nlstate;i2++)
     gp=vector(1,nlstate);            for(j2=1; j2<=nlstate;j2++){
     gm=vector(1,nlstate);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
     for(theta=1; theta <=npar; theta++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
       }      fprintf(ficrescveij,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     
       for(i=1;i<=nlstate;i++)    }
         gp[i] = prlim[i][i];    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       for(i=1; i<=npar; i++) /* Computes gradient */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(i=1;i<=nlstate;i++)    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         gm[i] = prlim[i][i];    printf("\n");
     fprintf(ficlog,"\n");
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    free_vector(xm,1,npar);
     } /* End theta */    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     trgradg =matrix(1,nlstate,1,npar);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     for(j=1; j<=nlstate;j++)  }
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] =0.;    /* Variance of health expectancies */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /* double **newm;*/
     for(i=1;i<=nlstate;i++)    double **dnewm,**doldm;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     fprintf(ficresvpl,"%.0f ",age );    int k, cptcode;
     for(i=1; i<=nlstate;i++)    double *xp;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double **gp, **gm;  /* for var eij */
     fprintf(ficresvpl,"\n");    double ***gradg, ***trgradg; /*for var eij */
     free_vector(gp,1,nlstate);    double **gradgp, **trgradgp; /* for var p point j */
     free_vector(gm,1,nlstate);    double *gpp, *gmp; /* for var p point j */
     free_matrix(gradg,1,npar,1,nlstate);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     free_matrix(trgradg,1,nlstate,1,npar);    double ***p3mat;
   } /* End age */    double age,agelim, hf;
     double ***mobaverage;
   free_vector(xp,1,npar);    int theta;
   free_matrix(doldm,1,nlstate,1,npar);    char digit[4];
   free_matrix(dnewm,1,nlstate,1,nlstate);    char digitp[25];
   
 }    char fileresprobmorprev[FILENAMELENGTH];
   
 /************ Variance of one-step probabilities  ******************/    if(popbased==1){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      if(mobilav!=0)
 {        strcpy(digitp,"-populbased-mobilav-");
   int i, j=0,  i1, k1, l1, t, tj;      else strcpy(digitp,"-populbased-nomobil-");
   int k2, l2, j1,  z1;    }
   int k=0,l, cptcode;    else
   int first=1, first1;      strcpy(digitp,"-stablbased-");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;    if (mobilav!=0) {
   double *xp;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   double *gp, *gm;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   double **gradg, **trgradg;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   double **mu;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   double age,agelim, cov[NCOVMAX];      }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;  
   char fileresprob[FILENAMELENGTH];    strcpy(fileresprobmorprev,"prmorprev");
   char fileresprobcov[FILENAMELENGTH];    sprintf(digit,"%-d",ij);
   char fileresprobcor[FILENAMELENGTH];    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   double ***varpij;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   strcpy(fileresprob,"prob");     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   strcat(fileresprob,fileres);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     printf("Problem with resultfile: %s\n", fileresprob);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }   
   strcpy(fileresprobcov,"probcov");     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   strcat(fileresprobcov,fileres);    pstamp(ficresprobmorprev);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     printf("Problem with resultfile: %s\n", fileresprobcov);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   }      fprintf(ficresprobmorprev," p.%-d SE",j);
   strcpy(fileresprobcor,"probcor");       for(i=1; i<=nlstate;i++)
   strcat(fileresprobcor,fileres);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    }  
     printf("Problem with resultfile: %s\n", fileresprobcor);    fprintf(ficresprobmorprev,"\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  /*   } */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    pstamp(ficresvij);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       if(popbased==1)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
   fprintf(ficresprob,"# Age");    else
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   fprintf(ficresprobcov,"# Age");    fprintf(ficresvij,"# Age");
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    for(i=1; i<=nlstate;i++)
   fprintf(ficresprobcov,"# Age");      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){    xp=vector(1,npar);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     }      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  /* fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   fprintf(ficresprobcor,"\n");    gpp=vector(nlstate+1,nlstate+ndeath);
  */    gmp=vector(nlstate+1,nlstate+ndeath);
  xp=vector(1,npar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);   
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    if(estepm < stepm){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      printf ("Problem %d lower than %d\n",estepm, stepm);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    }
   first=1;    else  hstepm=estepm;  
   fprintf(ficgp,"\n# Routine varprob");    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   fprintf(fichtm,"\n");       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\       and note for a fixed period like k years */
   file %s<br>\n",optionfilehtmcov);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\       survival function given by stepm (the optimization length). Unfortunately it
 and drawn. It helps understanding how is the covariance between two incidences.\       means that if the survival funtion is printed every two years of age and if
  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \       results. So we changed our mind and took the option of the best precision.
 It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \    */
 would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
 standard deviations wide on each axis. <br>\    agelim = AGESUP;
  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
 To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   cov[1]=1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   tj=cptcoveff;      gp=matrix(0,nhstepm,1,nlstate);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      gm=matrix(0,nhstepm,1,nlstate);
   j1=0;  
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){       for(theta=1; theta <=npar; theta++){
       j1++;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       if  (cptcovn>0) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficresprob, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         fprintf(ficresprob, "**********\n#\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficresprobcov, "\n#********** Variable ");   
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if (popbased==1) {
         fprintf(ficresprobcov, "**********\n#\n");          if(mobilav ==0){
                     for(i=1; i<=nlstate;i++)
         fprintf(ficgp, "\n#********** Variable ");               prlim[i][i]=probs[(int)age][i][ij];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          }else{ /* mobilav */
         fprintf(ficgp, "**********\n#\n");            for(i=1; i<=nlstate;i++)
                       prlim[i][i]=mobaverage[(int)age][i][ij];
                   }
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        for(j=1; j<= nlstate; j++){
                   for(h=0; h<=nhstepm; h++){
         fprintf(ficresprobcor, "\n#********** Variable ");                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficresprobcor, "**********\n#");              }
       }        }
               /* This for computing probability of death (h=1 means
       for (age=bage; age<=fage; age ++){            computed over hstepm matrices product = hstepm*stepm months)
         cov[2]=age;           as a weighted average of prlim.
         for (k=1; k<=cptcovn;k++) {        */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         for (k=1; k<=cptcovprod;k++)        }    
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        /* end probability of death */
           
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         gp=vector(1,(nlstate)*(nlstate+ndeath));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         gm=vector(1,(nlstate)*(nlstate+ndeath));        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        
         for(theta=1; theta <=npar; theta++){        if (popbased==1) {
           for(i=1; i<=npar; i++)          if(mobilav ==0){
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);            for(i=1; i<=nlstate;i++)
                         prlim[i][i]=probs[(int)age][i][ij];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          }else{ /* mobilav */
                       for(i=1; i<=nlstate;i++)
           k=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
           for(i=1; i<= (nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){        }
               k=k+1;  
               gp[k]=pmmij[i][j];        for(j=1; j<= nlstate; j++){
             }          for(h=0; h<=nhstepm; h++){
           }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                         gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           for(i=1; i<=npar; i++)          }
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);        }
             /* This for computing probability of death (h=1 means
           pmij(pmmij,cov,ncovmodel,xp,nlstate);           computed over hstepm matrices product = hstepm*stepm months)
           k=0;           as a weighted average of prlim.
           for(i=1; i<=(nlstate); i++){        */
             for(j=1; j<=(nlstate+ndeath);j++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
               k=k+1;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
               gm[k]=pmmij[i][j];           gmp[j] += prlim[i][i]*p3mat[i][j][1];
             }        }    
           }        /* end probability of death */
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)         for(j=1; j<= nlstate; j++) /* vareij */
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];            for(h=0; h<=nhstepm; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
             trgradg[j][theta]=gradg[theta][j];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                 }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);   
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      } /* End theta */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for(theta=1; theta <=npar; theta++)
                     trgradg[h][j][theta]=gradg[h][theta][j];
         k=0;  
         for(i=1; i<=(nlstate); i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           for(j=1; j<=(nlstate+ndeath);j++){        for(theta=1; theta <=npar; theta++)
             k=k+1;          trgradgp[j][theta]=gradgp[theta][j];
             mu[k][(int) age]=pmmij[i][j];   
           }  
         }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      for(i=1;i<=nlstate;i++)
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        for(j=1;j<=nlstate;j++)
             varpij[i][j][(int)age] = doldm[i][j];          vareij[i][j][(int)age] =0.;
   
         /*printf("\n%d ",(int)age);      for(h=0;h<=nhstepm;h++){
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        for(k=0;k<=nhstepm;k++){
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           }*/          for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
         fprintf(ficresprob,"\n%d ",(int)age);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         fprintf(ficresprobcov,"\n%d ",(int)age);        }
         fprintf(ficresprobcor,"\n%d ",(int)age);      }
    
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      /* pptj */
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         }          varppt[j][i]=doldmp[j][i];
         i=0;      /* end ppptj */
         for (k=1; k<=(nlstate);k++){      /*  x centered again */
           for (l=1; l<=(nlstate+ndeath);l++){       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             i=i++;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);   
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      if (popbased==1) {
             for (j=1; j<=i;j++){        if(mobilav ==0){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for(i=1; i<=nlstate;i++)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            prlim[i][i]=probs[(int)age][i][ij];
             }        }else{ /* mobilav */
           }          for(i=1; i<=nlstate;i++)
         }/* end of loop for state */            prlim[i][i]=mobaverage[(int)age][i][ij];
       } /* end of loop for age */        }
       }
       /* Confidence intervalle of pij  */               
       /*      /* This for computing probability of death (h=1 means
         fprintf(ficgp,"\nset noparametric;unset label");         computed over hstepm (estepm) matrices product = hstepm*stepm months)
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");         as a weighted average of prlim.
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      */
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        for(i=1,gmp[j]=0.;i<= nlstate; i++)
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      }    
       */      /* end probability of death */
   
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       first1=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for (k2=1; k2<=(nlstate);k2++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for (l2=1; l2<=(nlstate+ndeath);l2++){         for(i=1; i<=nlstate;i++){
           if(l2==k2) continue;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           j=(k2-1)*(nlstate+ndeath)+l2;        }
           for (k1=1; k1<=(nlstate);k1++){      }
             for (l1=1; l1<=(nlstate+ndeath);l1++){       fprintf(ficresprobmorprev,"\n");
               if(l1==k1) continue;  
               i=(k1-1)*(nlstate+ndeath)+l1;      fprintf(ficresvij,"%.0f ",age );
               if(i<=j) continue;      for(i=1; i<=nlstate;i++)
               for (age=bage; age<=fage; age ++){         for(j=1; j<=nlstate;j++){
                 if ((int)age %5==0){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficresvij,"\n");
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      free_matrix(gp,0,nhstepm,1,nlstate);
                   mu1=mu[i][(int) age]/stepm*YEARM ;      free_matrix(gm,0,nhstepm,1,nlstate);
                   mu2=mu[j][(int) age]/stepm*YEARM;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   c12=cv12/sqrt(v1*v2);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   /* Computing eigen value of matrix of covariance */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    } /* End age */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   /* Eigen vectors */    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   /*v21=sqrt(1.-v11*v11); *//* error */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   v21=(lc1-v1)/cv12*v11;    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   v12=-v21;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   v22=v11;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   tnalp=v21/v11;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   if(first1==1){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     first1=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                   }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                   /*printf(fignu*/    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   if(first==1){  */
                     first=0;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                     fprintf(ficgp,"\nset parametric;unset label");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    free_vector(xp,1,npar);
                     fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\    free_matrix(doldm,1,nlstate,1,nlstate);
  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\    free_matrix(dnewm,1,nlstate,1,npar);
 %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                             subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                     fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                     fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    fclose(ficresprobmorprev);
                     fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    fflush(ficgp);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    fflush(fichtm);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  }  /* end varevsij */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  /************ Variance of prevlim ******************/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                   }else{  {
                     first=0;    /* Variance of prevalence limit */
                     fprintf(fichtmcov," %d (%.3f),",(int) age, c12);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double **newm;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double **dnewm,**doldm;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int i, j, nhstepm, hstepm;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    int k, cptcode;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double *xp;
                   }/* if first */    double *gp, *gm;
                 } /* age mod 5 */    double **gradg, **trgradg;
               } /* end loop age */    double age,agelim;
               fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);    int theta;
               first=1;   
             } /*l12 */    pstamp(ficresvpl);
           } /* k12 */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
         } /*l1 */    fprintf(ficresvpl,"# Age");
       }/* k1 */    for(i=1; i<=nlstate;i++)
     } /* loop covariates */        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    xp=vector(1,npar);
   free_vector(xp,1,npar);    dnewm=matrix(1,nlstate,1,npar);
   fclose(ficresprob);    doldm=matrix(1,nlstate,1,nlstate);
   fclose(ficresprobcov);   
   fclose(ficresprobcor);    hstepm=1*YEARM; /* Every year of age */
   fflush(ficgp);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
   fflush(fichtmcov);    agelim = AGESUP;
 }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
       if (stepm >= YEARM) hstepm=1;
 /******************* Printing html file ***********/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      gradg=matrix(1,npar,1,nlstate);
                   int lastpass, int stepm, int weightopt, char model[],\      gp=vector(1,nlstate);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      gm=vector(1,nlstate);
                   int popforecast, int estepm ,\  
                   double jprev1, double mprev1,double anprev1, \      for(theta=1; theta <=npar; theta++){
                   double jprev2, double mprev2,double anprev2){        for(i=1; i<=npar; i++){ /* Computes gradient */
   int jj1, k1, i1, cpt;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*char optionfilehtm[FILENAMELENGTH];*/        }
 /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 /*     printf("Problem with %s \n",optionfilehtm), exit(0); */        for(i=1;i<=nlstate;i++)
 /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */          gp[i] = prlim[i][i];
 /*   } */     
         for(i=1; i<=npar; i++) /* Computes gradient */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \          xp[i] = x[i] - (i==theta ?delti[theta]:0);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \        for(i=1;i<=nlstate;i++)
  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \          gm[i] = prlim[i][i];
  - Life expectancies by age and initial health status (estepm=%2d months): \  
    <a href=\"%s\">%s</a> <br>\n</li>", \        for(i=1;i<=nlstate;i++)
            jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
            stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\      } /* End theta */
            subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\  
            estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));      trgradg =matrix(1,nlstate,1,npar);
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
  m=cptcoveff;          trgradg[j][theta]=gradg[theta][j];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
       for(i=1;i<=nlstate;i++)
  jj1=0;        varpl[i][(int)age] =0.;
  for(k1=1; k1<=m;k1++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
    for(i1=1; i1<=ncodemax[k1];i1++){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      jj1++;      for(i=1;i<=nlstate;i++)
      if (cptcovn > 0) {        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
        for (cpt=1; cpt<=cptcoveff;cpt++)       fprintf(ficresvpl,"%.0f ",age );
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      for(i=1; i<=nlstate;i++)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
      }      fprintf(ficresvpl,"\n");
      /* Pij */      free_vector(gp,1,nlstate);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \      free_vector(gm,1,nlstate);
 <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);           free_matrix(gradg,1,npar,1,nlstate);
      /* Quasi-incidences */      free_matrix(trgradg,1,nlstate,1,npar);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\    } /* End age */
  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \  
 <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     free_vector(xp,1,npar);
        /* Stable prevalence in each health state */    free_matrix(doldm,1,nlstate,1,npar);
        for(cpt=1; cpt<nlstate;cpt++){    free_matrix(dnewm,1,nlstate,1,nlstate);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \  
 <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);  }
        }  
      for(cpt=1; cpt<=nlstate;cpt++) {  /************ Variance of one-step probabilities  ******************/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);  {
      }    int i, j=0,  i1, k1, l1, t, tj;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and \    int k2, l2, j1,  z1;
 health expectancies in states (1) and (2): %s%d.png<br>\    int k=0,l, cptcode;
 <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);    int first=1, first1;
    } /* end i1 */    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
  }/* End k1 */    double **dnewm,**doldm;
  fprintf(fichtm,"</ul>");    double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\    double **mu;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\    double age,agelim, cov[NCOVMAX];
  - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    int theta;
  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\    char fileresprob[FILENAMELENGTH];
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\    char fileresprobcov[FILENAMELENGTH];
  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\    char fileresprobcor[FILENAMELENGTH];
  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\  
          rfileres,rfileres,\    double ***varpij;
          subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\  
          subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\    strcpy(fileresprob,"prob");
          subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\    strcat(fileresprob,fileres);
          estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          subdirf2(fileres,"t"),subdirf2(fileres,"t"),\      printf("Problem with resultfile: %s\n", fileresprob);
          subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
 /*  if(popforecast==1) fprintf(fichtm,"\n */    strcpy(fileresprobcov,"probcov");
 /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */    strcat(fileresprobcov,fileres);
 /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
 /*      <br>",fileres,fileres,fileres,fileres); */      printf("Problem with resultfile: %s\n", fileresprobcov);
 /*  else  */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */    }
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    strcpy(fileresprobcor,"probcor");
     strcat(fileresprobcor,fileres);
  m=cptcoveff;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  jj1=0;    }
  for(k1=1; k1<=m;k1++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    for(i1=1; i1<=ncodemax[k1];i1++){    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      jj1++;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      if (cptcovn > 0) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        for (cpt=1; cpt<=cptcoveff;cpt++)     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    pstamp(ficresprob);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      }    fprintf(ficresprob,"# Age");
      for(cpt=1; cpt<=nlstate;cpt++) {    pstamp(ficresprobcov);
        fprintf(fichtm,"<br>- Observed and period prevalence (with confident\    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 interval) in state (%d): %s%d%d.png <br>\    fprintf(ficresprobcov,"# Age");
 <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);      pstamp(ficresprobcor);
      }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
    } /* end i1 */    fprintf(ficresprobcor,"# Age");
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  
  fflush(fichtm);    for(i=1; i<=nlstate;i++)
 }      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 /******************* Gnuplot file **************/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
   char dirfileres[132],optfileres[132];   /* fprintf(ficresprob,"\n");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    fprintf(ficresprobcov,"\n");
   int ng;    fprintf(ficresprobcor,"\n");
 /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */   */
 /*     printf("Problem with file %s",optionfilegnuplot); */   xp=vector(1,npar);
 /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 /*   } */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   /*#ifdef windows */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    first=1;
     /*#endif */    fprintf(ficgp,"\n# Routine varprob");
   m=pow(2,cptcoveff);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   strcpy(dirfileres,optionfilefiname);  
   strcpy(optfileres,"vpl");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
  /* 1eme*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   for (cpt=1; cpt<= nlstate ; cpt ++) {    file %s<br>\n",optionfilehtmcov);
    for (k1=1; k1<= m ; k1 ++) {    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);  and drawn. It helps understanding how is the covariance between two incidences.\
      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(ficgp,"set xlabel \"Age\" \n\    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
 set ylabel \"Probability\" \n\  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
 set ter png small\n\  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 set size 0.65,0.65\n\  standard deviations wide on each axis. <br>\
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      for (i=1; i<= nlstate ; i ++) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
        else fprintf(ficgp," \%%*lf (\%%*lf)");    cov[1]=1;
      }    tj=cptcoveff;
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      for (i=1; i<= nlstate ; i ++) {    j1=0;
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(t=1; t<=tj;t++){
        else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i1=1; i1<=ncodemax[t];i1++){
      }         j1++;
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);         if  (cptcovn>0) {
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresprob, "\n#********** Variable ");
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprob, "**********\n#\n");
      }            fprintf(ficresprobcov, "\n#********** Variable ");
      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    }          fprintf(ficresprobcov, "**********\n#\n");
   }         
   /*2 eme*/          fprintf(ficgp, "\n#********** Variable ");
             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for (k1=1; k1<= m ; k1 ++) {           fprintf(ficgp, "**********\n#\n");
     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);         
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);         
               fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
     for (i=1; i<= nlstate+1 ; i ++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       k=2*i;          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);         
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficresprobcor, "\n#********** Variable ");    
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresprobcor, "**********\n#");    
       }           }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for (age=bage; age<=fage; age ++){
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);          cov[2]=age;
       for (j=1; j<= nlstate+1 ; j ++) {          for (k=1; k<=cptcovn;k++) {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }
       }             for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       fprintf(ficgp,"\" t\"\" w l 0,");          for (k=1; k<=cptcovprod;k++)
       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (j=1; j<= nlstate+1 ; j ++) {         
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         else fprintf(ficgp," \%%*lf (\%%*lf)");          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }             gp=vector(1,(nlstate)*(nlstate+ndeath));
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          gm=vector(1,(nlstate)*(nlstate+ndeath));
       else fprintf(ficgp,"\" t\"\" w l 0,");     
     }          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
                 xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   /*3eme*/           
               pmij(pmmij,cov,ncovmodel,xp,nlstate);
   for (k1=1; k1<= m ; k1 ++) {            
     for (cpt=1; cpt<= nlstate ; cpt ++) {            k=0;
       k=2+nlstate*(2*cpt-2);            for(i=1; i<= (nlstate); i++){
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);              for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficgp,"set ter png small\n\                k=k+1;
 set size 0.65,0.65\n\                gp[k]=pmmij[i][j];
 plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);              }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");           
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(i=1; i<=npar; i++)
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");     
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                     k=0;
       */            for(i=1; i<=(nlstate); i++){
       for (i=1; i< nlstate ; i ++) {              for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);                k=k+1;
                         gm[k]=pmmij[i][j];
       }               }
     }            }
   }       
               for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
   /* CV preval stable (period) */              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   for (k1=1; k1<= m ; k1 ++) {           }
     for (cpt=1; cpt<=nlstate ; cpt ++) {  
       k=3;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);            for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\              trgradg[j][theta]=gradg[theta][j];
 set ter png small\nset size 0.65,0.65\n\         
 unset log y\n\          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
 plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                 free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for (i=1; i< nlstate ; i ++)          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficgp,"+$%d",k+i+1);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
       l=3+(nlstate+ndeath)*cpt;          pmij(pmmij,cov,ncovmodel,x,nlstate);
       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);         
       for (i=1; i< nlstate ; i ++) {          k=0;
         l=3+(nlstate+ndeath)*cpt;          for(i=1; i<=(nlstate); i++){
         fprintf(ficgp,"+$%d",l+i+1);            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                 mu[k][(int) age]=pmmij[i][j];
     }             }
   }            }
             for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   /* proba elementaires */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   for(i=1,jk=1; i <=nlstate; i++){              varpij[i][j][(int)age] = doldm[i][j];
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {          /*printf("\n%d ",(int)age);
         for(j=1; j <=ncovmodel; j++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           jk++;             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           fprintf(ficgp,"\n");            }*/
         }  
       }          fprintf(ficresprob,"\n%d ",(int)age);
     }          fprintf(ficresprobcov,"\n%d ",(int)age);
    }          fprintf(ficresprobcor,"\n%d ",(int)age);
   
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      for(jk=1; jk <=m; jk++) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
        if (ng==2)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
        else          }
          fprintf(ficgp,"\nset title \"Probability\"\n");          i=0;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          for (k=1; k<=(nlstate);k++){
        i=1;            for (l=1; l<=(nlstate+ndeath);l++){
        for(k2=1; k2<=nlstate; k2++) {              i=i++;
          k3=i;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
          for(k=1; k<=(nlstate+ndeath); k++) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
            if (k != k2){              for (j=1; j<=i;j++){
              if(ng==2)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
              else              }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
              ij=1;          }/* end of loop for state */
              for(j=3; j <=ncovmodel; j++) {        } /* end of loop for age */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /* Confidence intervalle of pij  */
                  ij++;        /*
                }          fprintf(ficgp,"\nset noparametric;unset label");
                else          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
              fprintf(ficgp,")/(1");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
              for(k1=1; k1 <=nlstate; k1++){             fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        */
                ij=1;  
                for(j=3; j <=ncovmodel; j++){        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        first1=1;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (k2=1; k2<=(nlstate);k2++){
                    ij++;          for (l2=1; l2<=(nlstate+ndeath);l2++){
                  }            if(l2==k2) continue;
                  else            j=(k2-1)*(nlstate+ndeath)+l2;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for (k1=1; k1<=(nlstate);k1++){
                }              for (l1=1; l1<=(nlstate+ndeath);l1++){
                fprintf(ficgp,")");                if(l1==k1) continue;
              }                i=(k1-1)*(nlstate+ndeath)+l1;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                if(i<=j) continue;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                for (age=bage; age<=fage; age ++){
              i=i+ncovmodel;                  if ((int)age %5==0){
            }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
          } /* end k */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
        } /* end k2 */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
      } /* end jk */                    mu1=mu[i][(int) age]/stepm*YEARM ;
    } /* end ng */                    mu2=mu[j][(int) age]/stepm*YEARM;
    fflush(ficgp);                     c12=cv12/sqrt(v1*v2);
 }  /* end gnuplot */                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 /*************** Moving average **************/                    /* Eigen vectors */
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   int i, cpt, cptcod;                    v21=(lc1-v1)/cv12*v11;
   int modcovmax =1;                    v12=-v21;
   int mobilavrange, mob;                    v22=v11;
   double age;                    tnalp=v21/v11;
                     if(first1==1){
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose                       first1=0;
                            a covariate has 2 modalities */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */                    }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){                    /*printf(fignu*/
     if(mobilav==1) mobilavrange=5; /* default */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
     else mobilavrange=mobilav;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     for (age=bage; age<=fage; age++)                    if(first==1){
       for (i=1; i<=nlstate;i++)                      first=0;
         for (cptcod=1;cptcod<=modcovmax;cptcod++)                      fprintf(ficgp,"\nset parametric;unset label");
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     /* We keep the original values on the extreme ages bage, fage and for                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
        we use a 5 terms etc. until the borders are no more concerned.    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     */   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     for (mob=3;mob <=mobilavrange;mob=mob+2){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         for (i=1; i<=nlstate;i++){                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
               }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           }                    }else{
         }                      first=0;
       }/* end age */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     }/* end mob */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }else return -1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   return 0;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
 }/* End movingaverage */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
 /************** Forecasting ******************/                  } /* age mod 5 */
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){                } /* end loop age */
   /* proj1, year, month, day of starting projection                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
      agemin, agemax range of age                first=1;
      dateprev1 dateprev2 range of dates during which prevalence is computed              } /*l12 */
      anproj2 year of en of projection (same day and month as proj1).            } /* k12 */
   */          } /*l1 */
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;        }/* k1 */
   int *popage;      } /* loop covariates */
   double agec; /* generic age */    }
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double *popeffectif,*popcount;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   double ***p3mat;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   double ***mobaverage;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   char fileresf[FILENAMELENGTH];    free_vector(xp,1,npar);
     fclose(ficresprob);
   agelim=AGESUP;    fclose(ficresprobcov);
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    fclose(ficresprobcor);
      fflush(ficgp);
   strcpy(fileresf,"f");     fflush(fichtmcov);
   strcat(fileresf,fileres);  }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   printf("Computing forecasting: result on file '%s' \n", fileresf);                    int lastpass, int stepm, int weightopt, char model[],\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   if (mobilav!=0) {    int jj1, k1, i1, cpt;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  </ul>");
     }     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"\
   if (stepm<=12) stepsize=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   if(estepm < stepm){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     printf ("Problem %d lower than %d\n",estepm, stepm);     fprintf(fichtm,"\
   }   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   else  hstepm=estepm;                subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
   hstepm=hstepm/stepm;    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and     <a href=\"%s\">%s</a> <br>\n",
                                fractional in yp1 */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   anprojmean=yp;     fprintf(fichtm,"\
   yp2=modf((yp1*12),&yp);   - Population projections by age and states: \
   mprojmean=yp;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}   jj1=0;
      for(k1=1; k1<=m;k1++){
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);      for(i1=1; i1<=ncodemax[k1];i1++){
          jj1++;
   fprintf(ficresf,"#****** Routine prevforecast **\n");       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 /*            if (h==(int)(YEARM*yearp)){ */         for (cpt=1; cpt<=cptcoveff;cpt++)
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       k=k+1;       }
       fprintf(ficresf,"\n#******");       /* Pij */
       for(j=1;j<=cptcoveff;j++) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
       }       /* Quasi-incidences */
       fprintf(ficresf,"******\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       for(j=1; j<=nlstate+ndeath;j++){   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
         for(i=1; i<=nlstate;i++)                       /* Period (stable) prevalence in each health state */
           fprintf(ficresf," p%d%d",i,j);         for(cpt=1; cpt<nlstate;cpt++){
         fprintf(ficresf," p.%d",j);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
       }  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {          }
         fprintf(ficresf,"\n");       for(cpt=1; cpt<=nlstate;cpt++) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);             fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         for (agec=fage; agec>=(ageminpar-1); agec--){        }
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);      } /* end i1 */
           nhstepm = nhstepm/hstepm;    }/* End k1 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm,"</ul>");
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);    
            fprintf(fichtm,"\
           for (h=0; h<=nhstepm; h++){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
             if (h*hstepm/YEARM*stepm ==yearp) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
               fprintf(ficresf,"\n");  
               for(j=1;j<=cptcoveff;j++)    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);   fprintf(fichtm,"\
             }    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             for(j=1; j<=nlstate+ndeath;j++) {           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
               ppij=0.;  
               for(i=1; i<=nlstate;i++) {   fprintf(fichtm,"\
                 if (mobilav==1)    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                 else {   fprintf(fichtm,"\
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                 }     <a href=\"%s\">%s</a> <br>\n</li>",
                 if (h*hstepm/YEARM*stepm== yearp) {             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);   fprintf(fichtm,"\
                 }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
               } /* end i */     <a href=\"%s\">%s</a> <br>\n</li>",
               if (h*hstepm/YEARM*stepm==yearp) {             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                 fprintf(ficresf," %.3f", ppij);   fprintf(fichtm,"\
               }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
             }/* end j */           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           } /* end h */   fprintf(fichtm,"\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
         } /* end agec */           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       } /* end yearp */   fprintf(fichtm,"\
     } /* end cptcod */   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   } /* end  cptcov */           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   fclose(ficresf);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
 }  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
 /************** Forecasting *****not tested NB*************/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){   fflush(fichtm);
      fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;   m=cptcoveff;
   double calagedatem, agelim, kk1, kk2;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;   jj1=0;
   double ***mobaverage;   for(k1=1; k1<=m;k1++){
   char filerespop[FILENAMELENGTH];     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       if (cptcovn > 0) {
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   agelim=AGESUP;         for (cpt=1; cpt<=cptcoveff;cpt++)
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
            fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);       }
          for(cpt=1; cpt<=nlstate;cpt++) {
            fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   strcpy(filerespop,"pop");   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   strcat(filerespop,fileres);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {       }
     printf("Problem with forecast resultfile: %s\n", filerespop);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  health expectancies in states (1) and (2): %s%d.png<br>\
   }  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   printf("Computing forecasting: result on file '%s' \n", filerespop);     } /* end i1 */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);   }/* End k1 */
    fprintf(fichtm,"</ul>");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   fflush(fichtm);
   }
   if (mobilav!=0) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /******************* Gnuplot file **************/
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);  
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    char dirfileres[132],optfileres[132];
     }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  /*     printf("Problem with file %s",optionfilegnuplot); */
   if (stepm<=12) stepsize=1;  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
     /*   } */
   agelim=AGESUP;  
       /*#ifdef windows */
   hstepm=1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
   hstepm=hstepm/stepm;       /*#endif */
       m=pow(2,cptcoveff);
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    strcpy(dirfileres,optionfilefiname);
       printf("Problem with population file : %s\n",popfile);exit(0);    strcpy(optfileres,"vpl");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);   /* 1eme*/
     }     for (cpt=1; cpt<= nlstate ; cpt ++) {
     popage=ivector(0,AGESUP);     for (k1=1; k1<= m ; k1 ++) {
     popeffectif=vector(0,AGESUP);       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     popcount=vector(0,AGESUP);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
            fprintf(ficgp,"set xlabel \"Age\" \n\
     i=1;     set ylabel \"Probability\" \n\
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  set ter png small\n\
      set size 0.65,0.65\n\
     imx=i;  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }       for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       }
       k=k+1;       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficrespop,"\n#******");       for (i=1; i<= nlstate ; i ++) {
       for(j=1;j<=cptcoveff;j++) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         else fprintf(ficgp," \%%*lf (\%%*lf)");
       }       }
       fprintf(ficrespop,"******\n");       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
       fprintf(ficrespop,"# Age");       for (i=1; i<= nlstate ; i ++) {
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       if (popforecast==1)  fprintf(ficrespop," [Population]");         else fprintf(ficgp," \%%*lf (\%%*lf)");
              }  
       for (cpt=0; cpt<=0;cpt++) {        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
             }
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){     /*2 eme*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;     for (k1=1; k1<= m ; k1 ++) {
                 fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
           oldm=oldms;savm=savms;     
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (i=1; i<= nlstate+1 ; i ++) {
                 k=2*i;
           for (h=0; h<=nhstepm; h++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
             if (h==(int) (calagedatem+YEARM*cpt)) {        for (j=1; j<= nlstate+1 ; j ++) {
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             }           else fprintf(ficgp," \%%*lf (\%%*lf)");
             for(j=1; j<=nlstate+ndeath;j++) {        }  
               kk1=0.;kk2=0;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
               for(i=1; i<=nlstate;i++) {                      else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                 if (mobilav==1)         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        for (j=1; j<= nlstate+1 ; j ++) {
                 else {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          else fprintf(ficgp," \%%*lf (\%%*lf)");
                 }        }  
               }        fprintf(ficgp,"\" t\"\" w l 0,");
               if (h==(int)(calagedatem+12*cpt)){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        for (j=1; j<= nlstate+1 ; j ++) {
                   /*fprintf(ficrespop," %.3f", kk1);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
               }        }  
             }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
             for(i=1; i<=nlstate;i++){        else fprintf(ficgp,"\" t\"\" w l 0,");
               kk1=0.;      }
                 for(j=1; j<=nlstate;j++){    }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }    /*3eme*/
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];   
             }    for (k1=1; k1<= m ; k1 ++) {
       for (cpt=1; cpt<= nlstate ; cpt ++) {
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)         /*       k=2+nlstate*(2*cpt-2); */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        k=2+(nlstate+1)*(cpt-1);
           }        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"set ter png small\n\
         }  set size 0.65,0.65\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /******/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          
           nhstepm = nhstepm/hstepm;         */
                   for (i=1; i< nlstate ; i ++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           oldm=oldms;savm=savms;          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedatem+YEARM*cpt)) {        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }     }
             for(j=1; j<=nlstate+ndeath;j++) {   
               kk1=0.;kk2=0;    /* CV preval stable (period) */
               for(i=1; i<=nlstate;i++) {                  for (k1=1; k1<= m ; k1 ++) {
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          for (cpt=1; cpt<=nlstate ; cpt ++) {
               }        k=3;
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
             }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
           }  set ter png small\nset size 0.65,0.65\n\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  unset log y\n\
         }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
       }       
    }         for (i=1; i< nlstate ; i ++)
   }          fprintf(ficgp,"+$%d",k+i+1);
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       
         l=3+(nlstate+ndeath)*cpt;
   if (popforecast==1) {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     free_ivector(popage,0,AGESUP);        for (i=1; i< nlstate ; i ++) {
     free_vector(popeffectif,0,AGESUP);          l=3+(nlstate+ndeath)*cpt;
     free_vector(popcount,0,AGESUP);          fprintf(ficgp,"+$%d",l+i+1);
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   fclose(ficrespop);    }  
 } /* End of popforecast */   
     /* proba elementaires */
 int fileappend(FILE *fichier, char *optionfich)    for(i=1,jk=1; i <=nlstate; i++){
 {      for(k=1; k <=(nlstate+ndeath); k++){
   if((fichier=fopen(optionfich,"a"))==NULL) {        if (k != i) {
     printf("Problem with file: %s\n", optionfich);          for(j=1; j <=ncovmodel; j++){
     fprintf(ficlog,"Problem with file: %s\n", optionfich);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     return (0);            jk++;
   }            fprintf(ficgp,"\n");
   fflush(fichier);          }
   return (1);        }
 }      }
 void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)     }
 {  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   char ca[32], cb[32], cc[32];       for(jk=1; jk <=m; jk++) {
   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
   int numlinepar;         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         else
   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
   for(i=1; i <=nlstate; i++){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     jj=0;         i=1;
     for(j=1; j <=nlstate+ndeath; j++){         for(k2=1; k2<=nlstate; k2++) {
       if(j==i) continue;           k3=i;
       jj++;           for(k=1; k<=(nlstate+ndeath); k++) {
       /*ca[0]= k+'a'-1;ca[1]='\0';*/             if (k != k2){
       printf("%1d%1d",i,j);               if(ng==2)
       fprintf(ficparo,"%1d%1d",i,j);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       for(k=1; k<=ncovmodel;k++){               else
         /*        printf(" %lf",param[i][j][k]); */                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         /*        fprintf(ficparo," %lf",param[i][j][k]); */               ij=1;
         printf(" 0.");               for(j=3; j <=ncovmodel; j++) {
         fprintf(ficparo," 0.");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       printf("\n");                   ij++;
       fprintf(ficparo,"\n");                 }
     }                 else
   }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   printf("# Scales (for hessian or gradient estimation)\n");               }
   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");               fprintf(ficgp,")/(1");
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/                
   for(i=1; i <=nlstate; i++){               for(k1=1; k1 <=nlstate; k1++){  
     jj=0;                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     for(j=1; j <=nlstate+ndeath; j++){                 ij=1;
       if(j==i) continue;                 for(j=3; j <=ncovmodel; j++){
       jj++;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       fprintf(ficparo,"%1d%1d",i,j);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       printf("%1d%1d",i,j);                     ij++;
       fflush(stdout);                   }
       for(k=1; k<=ncovmodel;k++){                   else
         /*      printf(" %le",delti3[i][j][k]); */                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         /*      fprintf(ficparo," %le",delti3[i][j][k]); */                 }
         printf(" 0.");                 fprintf(ficgp,")");
         fprintf(ficparo," 0.");               }
       }               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       numlinepar++;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       printf("\n");               i=i+ncovmodel;
       fprintf(ficparo,"\n");             }
     }           } /* end k */
   }         } /* end k2 */
   printf("# Covariance matrix\n");       } /* end jk */
 /* # 121 Var(a12)\n\ */     } /* end ng */
 /* # 122 Cov(b12,a12) Var(b12)\n\ */     fflush(ficgp);
 /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */  }  /* end gnuplot */
 /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */  
 /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */  
 /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */  /*************** Moving average **************/
 /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
 /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */  
   fflush(stdout);    int i, cpt, cptcod;
   fprintf(ficparo,"# Covariance matrix\n");    int modcovmax =1;
   /* # 121 Var(a12)\n\ */    int mobilavrange, mob;
   /* # 122 Cov(b12,a12) Var(b12)\n\ */    double age;
   /* #   ...\n\ */  
   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                                a covariate has 2 modalities */
   for(itimes=1;itimes<=2;itimes++){    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     jj=0;  
     for(i=1; i <=nlstate; i++){    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       for(j=1; j <=nlstate+ndeath; j++){      if(mobilav==1) mobilavrange=5; /* default */
         if(j==i) continue;      else mobilavrange=mobilav;
         for(k=1; k<=ncovmodel;k++){      for (age=bage; age<=fage; age++)
           jj++;        for (i=1; i<=nlstate;i++)
           ca[0]= k+'a'-1;ca[1]='\0';          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           if(itimes==1){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
             printf("#%1d%1d%d",i,j,k);      /* We keep the original values on the extreme ages bage, fage and for
             fprintf(ficparo,"#%1d%1d%d",i,j,k);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           }else{         we use a 5 terms etc. until the borders are no more concerned.
             printf("%1d%1d%d",i,j,k);      */
             fprintf(ficparo,"%1d%1d%d",i,j,k);      for (mob=3;mob <=mobilavrange;mob=mob+2){
             /*  printf(" %.5le",matcov[i][j]); */        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           }          for (i=1; i<=nlstate;i++){
           ll=0;            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           for(li=1;li <=nlstate; li++){              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
             for(lj=1;lj <=nlstate+ndeath; lj++){                for (cpt=1;cpt<=(mob-1)/2;cpt++){
               if(lj==li) continue;                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
               for(lk=1;lk<=ncovmodel;lk++){                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 ll++;                }
                 if(ll<=jj){              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   cb[0]= lk +'a'-1;cb[1]='\0';            }
                   if(ll<jj){          }
                     if(itimes==1){        }/* end age */
                       printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);      }/* end mob */
                       fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);    }else return -1;
                     }else{    return 0;
                       printf(" 0.");  }/* End movingaverage */
                       fprintf(ficparo," 0.");  
                     }  
                   }else{  /************** Forecasting ******************/
                     if(itimes==1){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                       printf(" Var(%s%1d%1d)",ca,i,j);    /* proj1, year, month, day of starting projection
                       fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);       agemin, agemax range of age
                     }else{       dateprev1 dateprev2 range of dates during which prevalence is computed
                       printf(" 0.");       anproj2 year of en of projection (same day and month as proj1).
                       fprintf(ficparo," 0.");    */
                     }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
                   }    int *popage;
                 }    double agec; /* generic age */
               } /* end lk */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
             } /* end lj */    double *popeffectif,*popcount;
           } /* end li */    double ***p3mat;
           printf("\n");    double ***mobaverage;
           fprintf(ficparo,"\n");    char fileresf[FILENAMELENGTH];
           numlinepar++;  
         } /* end k*/    agelim=AGESUP;
       } /*end j */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     } /* end i */   
   }    strcpy(fileresf,"f");
     strcat(fileresf,fileres);
 } /* end of prwizard */    if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 /***********************************************/    }
 /**************** Main Program *****************/    printf("Computing forecasting: result on file '%s' \n", fileresf);
 /***********************************************/    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
 int main(int argc, char *argv[])    if (cptcoveff==0) ncodemax[cptcoveff]=1;
 {  
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);    if (mobilav!=0) {
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int jj, imk;      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   int numlinepar=0; /* Current linenumber of parameter file */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /*  FILE *fichtm; *//* Html File */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* FILE *ficgp;*/ /*Gnuplot File */      }
   double agedeb, agefin,hf;    }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     stepsize=(int) (stepm+YEARM-1)/YEARM;
   double fret;    if (stepm<=12) stepsize=1;
   double **xi,tmp,delta;    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
   double dum; /* Dummy variable */    }
   double ***p3mat;    else  hstepm=estepm;  
   double ***mobaverage;  
   int *indx;    hstepm=hstepm/stepm;
   char line[MAXLINE], linepar[MAXLINE];    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];                                 fractional in yp1 */
   char pathr[MAXLINE];     anprojmean=yp;
   int firstobs=1, lastobs=10;    yp2=modf((yp1*12),&yp);
   int sdeb, sfin; /* Status at beginning and end */    mprojmean=yp;
   int c,  h , cpt,l;    yp1=modf((yp2*30.5),&yp);
   int ju,jl, mi;    jprojmean=yp;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    if(jprojmean==0) jprojmean=1;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;     if(mprojmean==0) jprojmean=1;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */  
   int mobilav=0,popforecast=0;    i1=cptcoveff;
   int hstepm, nhstepm;    if (cptcovn < 1){i1=1;}
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;   
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
    
   double bage, fage, age, agelim, agebase;    fprintf(ficresf,"#****** Routine prevforecast **\n");
   double ftolpl=FTOL;  
   double **prlim;  /*            if (h==(int)(YEARM*yearp)){ */
   double *severity;    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
   double ***param; /* Matrix of parameters */      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   double  *p;        k=k+1;
   double **matcov; /* Matrix of covariance */        fprintf(ficresf,"\n#******");
   double ***delti3; /* Scale */        for(j=1;j<=cptcoveff;j++) {
   double *delti; /* Scale */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   double ***eij, ***vareij;        }
   double **varpl; /* Variances of prevalence limits by age */        fprintf(ficresf,"******\n");
   double *epj, vepp;        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
   double kk1, kk2;        for(j=1; j<=nlstate+ndeath;j++){
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;          for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
   char z[1]="c", occ;          fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   char strstart[80], *strt, strtend[80];          for (agec=fage; agec>=(ageminpar-1); agec--){
   char *stratrunc;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
   int lstra;            nhstepm = nhstepm/hstepm;
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   long total_usecs;            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */         
   (void) gettimeofday(&start_time,&tzp);            for (h=0; h<=nhstepm; h++){
   curr_time=start_time;              if (h*hstepm/YEARM*stepm ==yearp) {
   tm = *localtime(&start_time.tv_sec);                fprintf(ficresf,"\n");
   tmg = *gmtime(&start_time.tv_sec);                for(j=1;j<=cptcoveff;j++)
   strcpy(strstart,asctime(&tm));                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
 /*  printf("Localtime (at start)=%s",strstart); */              }
 /*  tp.tv_sec = tp.tv_sec +86400; */              for(j=1; j<=nlstate+ndeath;j++) {
 /*  tm = *localtime(&start_time.tv_sec); */                ppij=0.;
 /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */                for(i=1; i<=nlstate;i++) {
 /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */                  if (mobilav==1)
 /*   tmg.tm_hour=tmg.tm_hour + 1; */                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
 /*   tp.tv_sec = mktime(&tmg); */                  else {
 /*   strt=asctime(&tmg); */                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
 /*   printf("Time(after) =%s",strstart);  */                  }
 /*  (void) time (&time_value);                  if (h*hstepm/YEARM*stepm== yearp) {
 *  printf("time=%d,t-=%d\n",time_value,time_value-86400);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
 *  tm = *localtime(&time_value);                  }
 *  strstart=asctime(&tm);                } /* end i */
 *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);                 if (h*hstepm/YEARM*stepm==yearp) {
 */                  fprintf(ficresf," %.3f", ppij);
                 }
   nberr=0; /* Number of errors and warnings */              }/* end j */
   nbwarn=0;            } /* end h */
   getcwd(pathcd, size);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
   printf("\n%s\n%s",version,fullversion);        } /* end yearp */
   if(argc <=1){      } /* end cptcod */
     printf("\nEnter the parameter file name: ");    } /* end  cptcov */
     scanf("%s",pathtot);         
   }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   else{  
     strcpy(pathtot,argv[1]);    fclose(ficresf);
   }  }
   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);  /************** Forecasting *****not tested NB*************/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   /* cutv(path,optionfile,pathtot,'\\');*/   
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    int *popage;
   printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double calagedatem, agelim, kk1, kk2;
   chdir(path);    double *popeffectif,*popcount;
   strcpy(command,"mkdir ");    double ***p3mat,***tabpop,***tabpopprev;
   strcat(command,optionfilefiname);    double ***mobaverage;
   if((outcmd=system(command)) != 0){    char filerespop[FILENAMELENGTH];
     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);  
     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     /* fclose(ficlog); */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*     exit(1); */    agelim=AGESUP;
   }    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
 /*   if((imk=mkdir(optionfilefiname))<0){ */   
 /*     perror("mkdir"); */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 /*   } */   
    
   /*-------- arguments in the command line --------*/    strcpy(filerespop,"pop");
     strcat(filerespop,fileres);
   /* Log file */    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   strcat(filelog, optionfilefiname);      printf("Problem with forecast resultfile: %s\n", filerespop);
   strcat(filelog,".log");    /* */      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    }
     printf("Problem with logfile %s\n",filelog);    printf("Computing forecasting: result on file '%s' \n", filerespop);
     goto end;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   }  
   fprintf(ficlog,"Log filename:%s\n",filelog);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   fprintf(ficlog,"\n%s\n%s",version,fullversion);  
   fprintf(ficlog,"\nEnter the parameter file name: ");    if (mobilav!=0) {
   fprintf(ficlog,"pathtot=%s\n\      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  path=%s \n\      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
  optionfile=%s\n\        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  optionfilext=%s\n\        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      }
     }
   printf("Localtime (at start):%s",strstart);  
   fprintf(ficlog,"Localtime (at start): %s",strstart);    stepsize=(int) (stepm+YEARM-1)/YEARM;
   fflush(ficlog);    if (stepm<=12) stepsize=1;
 /*   (void) gettimeofday(&curr_time,&tzp); */   
 /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */    agelim=AGESUP;
    
   /* */    hstepm=1;
   strcpy(fileres,"r");    hstepm=hstepm/stepm;
   strcat(fileres, optionfilefiname);   
   strcat(fileres,".txt");    /* Other files have txt extension */    if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
   /*---------arguments file --------*/        printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);      popage=ivector(0,AGESUP);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      popeffectif=vector(0,AGESUP);
     fflush(ficlog);      popcount=vector(0,AGESUP);
     goto end;     
   }      i=1;  
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
   strcpy(filereso,"o");      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */  
     printf("Problem with Output resultfile: %s\n", filereso);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     fflush(ficlog);        k=k+1;
     goto end;        fprintf(ficrespop,"\n#******");
   }        for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   /* Reads comments: lines beginning with '#' */        }
   numlinepar=0;        fprintf(ficrespop,"******\n");
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficrespop,"# Age");
     ungetc(c,ficpar);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     fgets(line, MAXLINE, ficpar);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     numlinepar++;       
     puts(line);        for (cpt=0; cpt<=0;cpt++) {
     fputs(line,ficparo);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
     fputs(line,ficlog);         
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);           
   numlinepar++;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);            oldm=oldms;savm=savms;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);         
   fflush(ficlog);            for (h=0; h<=nhstepm; h++){
   while((c=getc(ficpar))=='#' && c!= EOF){              if (h==(int) (calagedatem+YEARM*cpt)) {
     ungetc(c,ficpar);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fgets(line, MAXLINE, ficpar);              }
     numlinepar++;              for(j=1; j<=nlstate+ndeath;j++) {
     puts(line);                kk1=0.;kk2=0;
     fputs(line,ficparo);                for(i=1; i<=nlstate;i++) {              
     fputs(line,ficlog);                  if (mobilav==1)
   }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   ungetc(c,ficpar);                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                      }
   covar=matrix(0,NCOVMAX,1,n);                 }
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/                if (h==(int)(calagedatem+12*cpt)){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                }
                }
   if(mle==-1){ /* Print a wizard for help writing covariance matrix */              for(i=1; i<=nlstate;i++){
     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);                kk1=0.;
     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                  for(j=1; j<=nlstate;j++){
     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
     fclose (ficparo);                  }
     fclose (ficlog);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     exit(0);              }
   }  
   /* Read guess parameters */              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
   /* Reads comments: lines beginning with '#' */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);          }
     numlinepar++;        }
     puts(line);   
     fputs(line,ficparo);    /******/
     fputs(line,ficlog);  
   }        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
   ungetc(c,ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
   for(i=1; i <=nlstate; i++){            nhstepm = nhstepm/hstepm;
     j=0;           
     for(jj=1; jj <=nlstate+ndeath; jj++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if(jj==i) continue;            oldm=oldms;savm=savms;
       j++;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for (h=0; h<=nhstepm; h++){
       if ((i1 != i) && (j1 != j)){              if (h==(int) (calagedatem+YEARM*cpt)) {
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         exit(1);              }
       }              for(j=1; j<=nlstate+ndeath;j++) {
       fprintf(ficparo,"%1d%1d",i1,j1);                kk1=0.;kk2=0;
       if(mle==1)                for(i=1; i<=nlstate;i++) {              
         printf("%1d%1d",i,j);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
       fprintf(ficlog,"%1d%1d",i,j);                }
       for(k=1; k<=ncovmodel;k++){                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
         fscanf(ficpar," %lf",&param[i][j][k]);              }
         if(mle==1){            }
           printf(" %lf",param[i][j][k]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficlog," %lf",param[i][j][k]);          }
         }        }
         else     }
           fprintf(ficlog," %lf",param[i][j][k]);    }
         fprintf(ficparo," %lf",param[i][j][k]);   
       }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fscanf(ficpar,"\n");  
       numlinepar++;    if (popforecast==1) {
       if(mle==1)      free_ivector(popage,0,AGESUP);
         printf("\n");      free_vector(popeffectif,0,AGESUP);
       fprintf(ficlog,"\n");      free_vector(popcount,0,AGESUP);
       fprintf(ficparo,"\n");    }
     }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fflush(ficlog);    fclose(ficrespop);
   } /* End of popforecast */
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/  
   int fileappend(FILE *fichier, char *optionfich)
   p=param[1][1];  {
       if((fichier=fopen(optionfich,"a"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with file: %s\n", optionfich);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with file: %s\n", optionfich);
     ungetc(c,ficpar);      return (0);
     fgets(line, MAXLINE, ficpar);    }
     numlinepar++;    fflush(fichier);
     puts(line);    return (1);
     fputs(line,ficparo);  }
     fputs(line,ficlog);  
   }  
   ungetc(c,ficpar);  /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  {
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    /* Wizard to print covariance matrix template */
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    char ca[32], cb[32], cc[32];
       if ((i1-i)*(j1-j)!=0){    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
         printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);    int numlinepar;
         exit(1);  
       }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("%1d%1d",i,j);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    for(i=1; i <=nlstate; i++){
       fprintf(ficlog,"%1d%1d",i1,j1);      jj=0;
       for(k=1; k<=ncovmodel;k++){      for(j=1; j <=nlstate+ndeath; j++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);        if(j==i) continue;
         printf(" %le",delti3[i][j][k]);        jj++;
         fprintf(ficparo," %le",delti3[i][j][k]);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
         fprintf(ficlog," %le",delti3[i][j][k]);        printf("%1d%1d",i,j);
       }        fprintf(ficparo,"%1d%1d",i,j);
       fscanf(ficpar,"\n");        for(k=1; k<=ncovmodel;k++){
       numlinepar++;          /*        printf(" %lf",param[i][j][k]); */
       printf("\n");          /*        fprintf(ficparo," %lf",param[i][j][k]); */
       fprintf(ficparo,"\n");          printf(" 0.");
       fprintf(ficlog,"\n");          fprintf(ficparo," 0.");
     }        }
   }        printf("\n");
   fflush(ficlog);        fprintf(ficparo,"\n");
       }
   delti=delti3[1][1];    }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       for(i=1; i <=nlstate; i++){
   /* Reads comments: lines beginning with '#' */      jj=0;
   while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j <=nlstate+ndeath; j++){
     ungetc(c,ficpar);        if(j==i) continue;
     fgets(line, MAXLINE, ficpar);        jj++;
     numlinepar++;        fprintf(ficparo,"%1d%1d",i,j);
     puts(line);        printf("%1d%1d",i,j);
     fputs(line,ficparo);        fflush(stdout);
     fputs(line,ficlog);        for(k=1; k<=ncovmodel;k++){
   }          /*      printf(" %le",delti3[i][j][k]); */
   ungetc(c,ficpar);          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
             printf(" 0.");
   matcov=matrix(1,npar,1,npar);          fprintf(ficparo," 0.");
   for(i=1; i <=npar; i++){        }
     fscanf(ficpar,"%s",&str);        numlinepar++;
     if(mle==1)        printf("\n");
       printf("%s",str);        fprintf(ficparo,"\n");
     fprintf(ficlog,"%s",str);      }
     fprintf(ficparo,"%s",str);    }
     for(j=1; j <=i; j++){    printf("# Covariance matrix\n");
       fscanf(ficpar," %le",&matcov[i][j]);  /* # 121 Var(a12)\n\ */
       if(mle==1){  /* # 122 Cov(b12,a12) Var(b12)\n\ */
         printf(" %.5le",matcov[i][j]);  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       }  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       fprintf(ficlog," %.5le",matcov[i][j]);  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       fprintf(ficparo," %.5le",matcov[i][j]);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
     }  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     fscanf(ficpar,"\n");  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     numlinepar++;    fflush(stdout);
     if(mle==1)    fprintf(ficparo,"# Covariance matrix\n");
       printf("\n");    /* # 121 Var(a12)\n\ */
     fprintf(ficlog,"\n");    /* # 122 Cov(b12,a12) Var(b12)\n\ */
     fprintf(ficparo,"\n");    /* #   ...\n\ */
   }    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   for(i=1; i <=npar; i++)   
     for(j=i+1;j<=npar;j++)    for(itimes=1;itimes<=2;itimes++){
       matcov[i][j]=matcov[j][i];      jj=0;
          for(i=1; i <=nlstate; i++){
   if(mle==1)        for(j=1; j <=nlstate+ndeath; j++){
     printf("\n");          if(j==i) continue;
   fprintf(ficlog,"\n");          for(k=1; k<=ncovmodel;k++){
             jj++;
   fflush(ficlog);            ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
   /*-------- Rewriting paramater file ----------*/              printf("#%1d%1d%d",i,j,k);
   strcpy(rfileres,"r");    /* "Rparameterfile */              fprintf(ficparo,"#%1d%1d%d",i,j,k);
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            }else{
   strcat(rfileres,".");    /* */              printf("%1d%1d%d",i,j,k);
   strcat(rfileres,optionfilext);    /* Other files have txt extension */              fprintf(ficparo,"%1d%1d%d",i,j,k);
   if((ficres =fopen(rfileres,"w"))==NULL) {              /*  printf(" %.5le",matcov[i][j]); */
     printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            ll=0;
   }            for(li=1;li <=nlstate; li++){
   fprintf(ficres,"#%s\n",version);              for(lj=1;lj <=nlstate+ndeath; lj++){
                     if(lj==li) continue;
   /*-------- data file ----------*/                for(lk=1;lk<=ncovmodel;lk++){
   if((fic=fopen(datafile,"r"))==NULL)    {                  ll++;
     printf("Problem with datafile: %s\n", datafile);goto end;                  if(ll<=jj){
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;                    cb[0]= lk +'a'-1;cb[1]='\0';
   }                    if(ll<jj){
                       if(itimes==1){
   n= lastobs;                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   severity = vector(1,maxwav);                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   outcome=imatrix(1,maxwav+1,1,n);                      }else{
   num=lvector(1,n);                        printf(" 0.");
   moisnais=vector(1,n);                        fprintf(ficparo," 0.");
   annais=vector(1,n);                      }
   moisdc=vector(1,n);                    }else{
   andc=vector(1,n);                      if(itimes==1){
   agedc=vector(1,n);                        printf(" Var(%s%1d%1d)",ca,i,j);
   cod=ivector(1,n);                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   weight=vector(1,n);                      }else{
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                        printf(" 0.");
   mint=matrix(1,maxwav,1,n);                        fprintf(ficparo," 0.");
   anint=matrix(1,maxwav,1,n);                      }
   s=imatrix(1,maxwav+1,1,n);                    }
   tab=ivector(1,NCOVMAX);                  }
   ncodemax=ivector(1,8);                } /* end lk */
               } /* end lj */
   i=1;            } /* end li */
   while (fgets(line, MAXLINE, fic) != NULL)    {            printf("\n");
     if ((i >= firstobs) && (i <=lastobs)) {            fprintf(ficparo,"\n");
                     numlinepar++;
       for (j=maxwav;j>=1;j--){          } /* end k*/
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);         } /*end j */
         strcpy(line,stra);      } /* end i */
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    } /* end itimes */
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
       }  } /* end of prwizard */
           /******************* Gompertz Likelihood ******************************/
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  double gompertz(double x[])
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  {
     double A,B,L=0.0,sump=0.,num=0.;
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    int i,n=0; /* n is the size of the sample */
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     for (i=0;i<=imx-1 ; i++) {
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      sump=sump+weight[i];
       for (j=ncovcol;j>=1;j--){      /*    sump=sump+1;*/
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      num=num+1;
       }     }
       lstra=strlen(stra);   
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */   
         stratrunc = &(stra[lstra-9]);    /* for (i=0; i<=imx; i++)
         num[i]=atol(stratrunc);       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
       }  
       else    for (i=1;i<=imx ; i++)
         num[i]=atol(stra);      {
                 if (cens[i] == 1 && wav[i]>1)
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       
         if (cens[i] == 0 && wav[i]>1)
       i=i+1;          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
     }               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
   }       
   /* printf("ii=%d", ij);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
      scanf("%d",i);*/        if (wav[i] > 1 ) { /* ??? */
   imx=i-1; /* Number of individuals */          L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   /* for (i=1; i<=imx; i++){        }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     }*/   
    /*  for (i=1; i<=imx; i++){    return -2*L*num/sump;
      if (s[4][i]==9)  s[4][i]=-1;   }
      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
     /******************* Printing html file ***********/
  for (i=1; i<=imx; i++)  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                      int lastpass, int stepm, int weightopt, char model[],\
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;                    int imx,  double p[],double **matcov,double agemortsup){
      else weight[i]=1;*/    int i,k;
   
   /* Calculation of the number of parameter from char model*/    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   Tprod=ivector(1,15);     for (i=1;i<=2;i++)
   Tvaraff=ivector(1,15);       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   Tvard=imatrix(1,15,1,2);    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
   Tage=ivector(1,15);          fprintf(fichtm,"</ul>");
      
   if (strlen(model) >1){ /* If there is at least 1 covariate */  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+'); /* j=Number of '+' */   fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
     j1=nbocc(model,'*'); /* j1=Number of '*' */  
     cptcovn=j+1;    for (k=agegomp;k<(agemortsup-2);k++)
     cptcovprod=j1; /*Number of products */     fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
     strcpy(modelsav,model);    
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fflush(fichtm);
       printf("Error. Non available option model=%s ",model);  }
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;  /******************* Gnuplot file **************/
     }  void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       
     /* This loop fills the array Tvar from the string 'model'.*/    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     for(i=(j+1); i>=1;i--){    int ng;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /*#ifdef windows */
       /*scanf("%d",i);*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
       if (strchr(strb,'*')) {  /* Model includes a product */      /*#endif */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/  
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;    strcpy(dirfileres,optionfilefiname);
           cutv(strb,stre,strd,'V');    strcpy(optfileres,"vpl");
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    fprintf(ficgp,"set out \"graphmort.png\"\n ");
           cptcovage++;    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
             Tage[cptcovage]=i;    fprintf(ficgp, "set ter png small\n set log y\n");
             /*printf("stre=%s ", stre);*/    fprintf(ficgp, "set size 0.65,0.65\n");
         }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;  }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);  
           cptcovage++;  
           Tage[cptcovage]=i;  
         }  
         else {  /* Age is not in the model */  /***********************************************/
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  /**************** Main Program *****************/
           Tvar[i]=ncovcol+k1;  /***********************************************/
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  
           Tprod[k1]=i;  int main(int argc, char *argv[])
           Tvard[k1][1]=atoi(strc); /* m*/  {
           Tvard[k1][2]=atoi(stre); /* n */    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           Tvar[cptcovn+k2]=Tvard[k1][1];    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];     int linei, month, year,iout;
           for (k=1; k<=lastobs;k++)     int jj, ll, li, lj, lk, imk;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int numlinepar=0; /* Current linenumber of parameter file */
           k1++;    int itimes;
           k2=k2+2;    int NDIM=2;
         }  
       }    char ca[32], cb[32], cc[32];
       else { /* no more sum */    char dummy[]="                         ";
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /*  FILE *fichtm; *//* Html File */
        /*  scanf("%d",i);*/    /* FILE *ficgp;*/ /*Gnuplot File */
       cutv(strd,strc,strb,'V');    struct stat info;
       Tvar[i]=atoi(strc);    double agedeb, agefin,hf;
       }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double fret;
         scanf("%d",i);*/    double **xi,tmp,delta;
     } /* end of loop + */  
   } /* end model */    double dum; /* Dummy variable */
       double ***p3mat;
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.    double ***mobaverage;
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/    int *indx;
     char line[MAXLINE], linepar[MAXLINE];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   printf("cptcovprod=%d ", cptcovprod);    char pathr[MAXLINE], pathimach[MAXLINE];
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
   scanf("%d ",i);    int sdeb, sfin; /* Status at beginning and end */
   fclose(fic);*/    int c,  h , cpt,l;
     int ju,jl, mi;
     /*  if(mle==1){*/    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   if (weightopt != 1) { /* Maximisation without weights*/    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
     for(i=1;i<=n;i++) weight[i]=1.0;    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   }    int mobilav=0,popforecast=0;
     /*-calculation of age at interview from date of interview and age at death -*/    int hstepm, nhstepm;
   agev=matrix(1,maxwav,1,imx);    int agemortsup;
     float  sumlpop=0.;
   for (i=1; i<=imx; i++) {    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     for(m=2; (m<= maxwav); m++) {    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){  
         anint[m][i]=9999;    double bage, fage, age, agelim, agebase;
         s[m][i]=-1;    double ftolpl=FTOL;
       }    double **prlim;
       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){    double *severity;
         nberr++;    double ***param; /* Matrix of parameters */
         printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    double  *p;
         fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);    double **matcov; /* Matrix of covariance */
         s[m][i]=-1;    double ***delti3; /* Scale */
       }    double *delti; /* Scale */
       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){    double ***eij, ***vareij;
         nberr++;    double **varpl; /* Variances of prevalence limits by age */
         printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);     double *epj, vepp;
         fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);     double kk1, kk2;
         s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       }    double **ximort;
     }    char *alph[]={"a","a","b","c","d","e"}, str[4];
   }    int *dcwave;
   
   for (i=1; i<=imx; i++)  {    char z[1]="c", occ;
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
     for(m=firstpass; (m<= lastpass); m++){    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       if(s[m][i] >0){    char  *strt, strtend[80];
         if (s[m][i] >= nlstate+1) {    char *stratrunc;
           if(agedc[i]>0)    int lstra;
             if((int)moisdc[i]!=99 && (int)andc[i]!=9999)  
               agev[m][i]=agedc[i];    long total_usecs;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/   
             else {  /*   setlocale (LC_ALL, ""); */
               if ((int)andc[i]!=9999){  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                 nbwarn++;  /*   textdomain (PACKAGE); */
                 printf("Warning negative age at death: %ld line:%d\n",num[i],i);  /*   setlocale (LC_CTYPE, ""); */
                 fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);  /*   setlocale (LC_MESSAGES, ""); */
                 agev[m][i]=-1;  
               }    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
             }    (void) gettimeofday(&start_time,&tzp);
         }    curr_time=start_time;
         else if(s[m][i] !=9){ /* Standard case, age in fractional    tm = *localtime(&start_time.tv_sec);
                                  years but with the precision of a    tmg = *gmtime(&start_time.tv_sec);
                                  month */    strcpy(strstart,asctime(&tm));
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
           if((int)mint[m][i]==99 || (int)anint[m][i]==9999)  /*  printf("Localtime (at start)=%s",strstart); */
             agev[m][i]=1;  /*  tp.tv_sec = tp.tv_sec +86400; */
           else if(agev[m][i] <agemin){   /*  tm = *localtime(&start_time.tv_sec); */
             agemin=agev[m][i];  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
           }  /*   tmg.tm_hour=tmg.tm_hour + 1; */
           else if(agev[m][i] >agemax){  /*   tp.tv_sec = mktime(&tmg); */
             agemax=agev[m][i];  /*   strt=asctime(&tmg); */
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  /*   printf("Time(after) =%s",strstart);  */
           }  /*  (void) time (&time_value);
           /*agev[m][i]=anint[m][i]-annais[i];*/  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
           /*     agev[m][i] = age[i]+2*m;*/  *  tm = *localtime(&time_value);
         }  *  strstart=asctime(&tm);
         else { /* =9 */  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
           agev[m][i]=1;  */
           s[m][i]=-1;  
         }    nberr=0; /* Number of errors and warnings */
       }    nbwarn=0;
       else /*= 0 Unknown */    getcwd(pathcd, size);
         agev[m][i]=1;  
     }    printf("\n%s\n%s",version,fullversion);
         if(argc <=1){
   }      printf("\nEnter the parameter file name: ");
   for (i=1; i<=imx; i++)  {      fgets(pathr,FILENAMELENGTH,stdin);
     for(m=firstpass; (m<=lastpass); m++){      i=strlen(pathr);
       if (s[m][i] > (nlstate+ndeath)) {      if(pathr[i-1]=='\n')
         nberr++;        pathr[i-1]='\0';
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          for (tok = pathr; tok != NULL; ){
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             printf("Pathr |%s|\n",pathr);
         goto end;        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
       }        printf("val= |%s| pathr=%s\n",val,pathr);
     }        strcpy (pathtot, val);
   }        if(pathr[0] == '\0') break; /* Dirty */
       }
   /*for (i=1; i<=imx; i++){    }
   for (m=firstpass; (m<lastpass); m++){    else{
      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);      strcpy(pathtot,argv[1]);
 }    }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
 }*/    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    /* cutv(path,optionfile,pathtot,'\\');*/
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   
     /* Split argv[0], imach program to get pathimach */
   free_vector(severity,1,maxwav);    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
   free_imatrix(outcome,1,maxwav+1,1,n);    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_vector(moisnais,1,n);    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
   free_vector(annais,1,n);   /*   strcpy(pathimach,argv[0]); */
   /* free_matrix(mint,1,maxwav,1,n);    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
      free_matrix(anint,1,maxwav,1,n);*/    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_vector(moisdc,1,n);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   free_vector(andc,1,n);    chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
          printf("Current directory %s!\n",pathcd);
   wav=ivector(1,imx);    strcpy(command,"mkdir ");
   dh=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(command,optionfilefiname);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);    if((outcmd=system(command)) != 0){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
          /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
   /* Concatenates waves */      /* fclose(ficlog); */
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  /*     exit(1); */
     }
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */  /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   Tcode=ivector(1,100);  /*   } */
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);   
   ncodemax[1]=1;    /*-------- arguments in the command line --------*/
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
           /* Log file */
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     strcat(filelog, optionfilefiname);
                                  the estimations*/    strcat(filelog,".log");    /* */
   h=0;    if((ficlog=fopen(filelog,"w"))==NULL)    {
   m=pow(2,cptcoveff);      printf("Problem with logfile %s\n",filelog);
        goto end;
   for(k=1;k<=cptcoveff; k++){    }
     for(i=1; i <=(m/pow(2,k));i++){    fprintf(ficlog,"Log filename:%s\n",filelog);
       for(j=1; j <= ncodemax[k]; j++){    fprintf(ficlog,"\n%s\n%s",version,fullversion);
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficlog,"\nEnter the parameter file name: \n");
           h++;    fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   path=%s \n\
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   optionfile=%s\n\
         }    optionfilext=%s\n\
       }   optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
     }  
   }     printf("Local time (at start):%s",strstart);
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     fprintf(ficlog,"Local time (at start): %s",strstart);
      codtab[1][2]=1;codtab[2][2]=2; */    fflush(ficlog);
   /* for(i=1; i <=m ;i++){   /*   (void) gettimeofday(&curr_time,&tzp); */
      for(k=1; k <=cptcovn; k++){  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
      }    /* */
      printf("\n");    strcpy(fileres,"r");
      }    strcat(fileres, optionfilefiname);
      scanf("%d",i);*/    strcat(fileres,".txt");    /* Other files have txt extension */
       
   /*------------ gnuplot -------------*/    /*---------arguments file --------*/
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp");    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      printf("Problem with optionfile %s\n",optionfile);
     printf("Problem with file %s",optionfilegnuplot);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
   }      fflush(ficlog);
   else{      goto end;
     fprintf(ficgp,"\n# %s\n", version);     }
     fprintf(ficgp,"# %s\n", optionfilegnuplot);   
     fprintf(ficgp,"set missing 'NaNq'\n");  
   }  
   /*  fclose(ficgp);*/    strcpy(filereso,"o");
   /*--------- index.htm --------*/    strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
   strcpy(optionfilehtm,optionfilefiname); /* Main html file */      printf("Problem with Output resultfile: %s\n", filereso);
   strcat(optionfilehtm,".htm");      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      fflush(ficlog);
     printf("Problem with %s \n",optionfilehtm), exit(0);      goto end;
   }    }
   
   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */    /* Reads comments: lines beginning with '#' */
   strcat(optionfilehtmcov,"-cov.htm");    numlinepar=0;
   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {    while((c=getc(ficpar))=='#' && c!= EOF){
     printf("Problem with %s \n",optionfilehtmcov), exit(0);      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
   else{      numlinepar++;
   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \      puts(line);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\      fputs(line,ficparo);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\      fputs(line,ficlog);
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);    }
   }    ungetc(c,ficpar);
   
   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
 <hr size=\"2\" color=\"#EC5E5E\"> \n\    numlinepar++;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
 \n\    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
 <hr  size=\"2\" color=\"#EC5E5E\">\    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
  <ul><li><h4>Parameter files</h4>\n\    fflush(ficlog);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\    while((c=getc(ficpar))=='#' && c!= EOF){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n\      ungetc(c,ficpar);
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\      fgets(line, MAXLINE, ficpar);
  - Date and time at start: %s</ul>\n",\      numlinepar++;
           fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\      puts(line);
           fileres,fileres,\      fputs(line,ficparo);
           filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);      fputs(line,ficlog);
   fflush(fichtm);    }
     ungetc(c,ficpar);
   strcpy(pathr,path);  
   strcat(pathr,optionfilefiname);     
   chdir(optionfilefiname); /* Move to directory named optionfile */    covar=matrix(0,NCOVMAX,1,n);
   strcpy(lfileres,fileres);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   strcat(lfileres,"/");    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   strcat(lfileres,optionfilefiname);  
       ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   /* Calculates basic frequencies. Computes observed prevalence at single age    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
      and prints on file fileres'p'. */    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);  
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   fprintf(fichtm,"\n");    delti=delti3[1][1];
   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\    /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
 Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
           imx,agemin,agemax,jmin,jmax,jmean);      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fclose (ficparo);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fclose (ficlog);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      goto end;
           exit(0);
        }
   /* For Powell, parameters are in a vector p[] starting at p[1]    else if(mle==-3) {
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */      printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */      matcov=matrix(1,npar,1,npar);
   printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);    }
   for (k=1; k<=npar;k++)    else{
     printf(" %d %8.5f",k,p[k]);      /* Read guess parameters */
   printf("\n");      /* Reads comments: lines beginning with '#' */
   globpr=1; /* to print the contributions */      while((c=getc(ficpar))=='#' && c!= EOF){
   likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */        ungetc(c,ficpar);
   printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);        fgets(line, MAXLINE, ficpar);
   for (k=1; k<=npar;k++)        numlinepar++;
     printf(" %d %8.5f",k,p[k]);        puts(line);
   printf("\n");        fputs(line,ficparo);
   if(mle>=1){ /* Could be 1 or 2 */        fputs(line,ficlog);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      }
   }      ungetc(c,ficpar);
          
   /*--------- results files --------------*/      param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(i=1; i <=nlstate; i++){
           j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
   jk=1;          if(jj==i) continue;
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          j++;
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fscanf(ficpar,"%1d%1d",&i1,&j1);
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          if ((i1 != i) && (j1 != j)){
   for(i=1,jk=1; i <=nlstate; i++){            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
     for(k=1; k <=(nlstate+ndeath); k++){  It might be a problem of design; if ncovcol and the model are correct\n \
       if (k != i)   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
         {            exit(1);
           printf("%d%d ",i,k);          }
           fprintf(ficlog,"%d%d ",i,k);          fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficres,"%1d%1d ",i,k);          if(mle==1)
           for(j=1; j <=ncovmodel; j++){            printf("%1d%1d",i,j);
             printf("%f ",p[jk]);          fprintf(ficlog,"%1d%1d",i,j);
             fprintf(ficlog,"%f ",p[jk]);          for(k=1; k<=ncovmodel;k++){
             fprintf(ficres,"%f ",p[jk]);            fscanf(ficpar," %lf",&param[i][j][k]);
             jk++;             if(mle==1){
           }              printf(" %lf",param[i][j][k]);
           printf("\n");              fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficlog,"\n");            }
           fprintf(ficres,"\n");            else
         }              fprintf(ficlog," %lf",param[i][j][k]);
     }            fprintf(ficparo," %lf",param[i][j][k]);
   }          }
   if(mle!=0){          fscanf(ficpar,"\n");
     /* Computing hessian and covariance matrix */          numlinepar++;
     ftolhess=ftol; /* Usually correct */          if(mle==1)
     hesscov(matcov, p, npar, delti, ftolhess, func);            printf("\n");
   }          fprintf(ficlog,"\n");
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          fprintf(ficparo,"\n");
   printf("# Scales (for hessian or gradient estimation)\n");        }
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      }  
   for(i=1,jk=1; i <=nlstate; i++){      fflush(ficlog);
     for(j=1; j <=nlstate+ndeath; j++){  
       if (j!=i) {      p=param[1][1];
         fprintf(ficres,"%1d%1d",i,j);     
         printf("%1d%1d",i,j);      /* Reads comments: lines beginning with '#' */
         fprintf(ficlog,"%1d%1d",i,j);      while((c=getc(ficpar))=='#' && c!= EOF){
         for(k=1; k<=ncovmodel;k++){        ungetc(c,ficpar);
           printf(" %.5e",delti[jk]);        fgets(line, MAXLINE, ficpar);
           fprintf(ficlog," %.5e",delti[jk]);        numlinepar++;
           fprintf(ficres," %.5e",delti[jk]);        puts(line);
           jk++;        fputs(line,ficparo);
         }        fputs(line,ficlog);
         printf("\n");      }
         fprintf(ficlog,"\n");      ungetc(c,ficpar);
         fprintf(ficres,"\n");  
       }      for(i=1; i <=nlstate; i++){
     }        for(j=1; j <=nlstate+ndeath-1; j++){
   }          fscanf(ficpar,"%1d%1d",&i1,&j1);
              if ((i1-i)*(j1-j)!=0){
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
   if(mle==1)            exit(1);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          }
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          printf("%1d%1d",i,j);
   for(i=1,k=1;i<=npar;i++){          fprintf(ficparo,"%1d%1d",i1,j1);
     /*  if (k>nlstate) k=1;          fprintf(ficlog,"%1d%1d",i1,j1);
         i1=(i-1)/(ncovmodel*nlstate)+1;           for(k=1; k<=ncovmodel;k++){
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            fscanf(ficpar,"%le",&delti3[i][j][k]);
         printf("%s%d%d",alph[k],i1,tab[i]);            printf(" %le",delti3[i][j][k]);
     */            fprintf(ficparo," %le",delti3[i][j][k]);
     fprintf(ficres,"%3d",i);            fprintf(ficlog," %le",delti3[i][j][k]);
     if(mle==1)          }
       printf("%3d",i);          fscanf(ficpar,"\n");
     fprintf(ficlog,"%3d",i);          numlinepar++;
     for(j=1; j<=i;j++){          printf("\n");
       fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficparo,"\n");
       if(mle==1)          fprintf(ficlog,"\n");
         printf(" %.5e",matcov[i][j]);        }
       fprintf(ficlog," %.5e",matcov[i][j]);      }
     }      fflush(ficlog);
     fprintf(ficres,"\n");  
     if(mle==1)      delti=delti3[1][1];
       printf("\n");  
     fprintf(ficlog,"\n");  
     k++;      /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
   }   
          /* Reads comments: lines beginning with '#' */
   while((c=getc(ficpar))=='#' && c!= EOF){      while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);        ungetc(c,ficpar);
     fgets(line, MAXLINE, ficpar);        fgets(line, MAXLINE, ficpar);
     puts(line);        numlinepar++;
     fputs(line,ficparo);        puts(line);
   }        fputs(line,ficparo);
   ungetc(c,ficpar);        fputs(line,ficlog);
       }
   estepm=0;      ungetc(c,ficpar);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   
   if (estepm==0 || estepm < stepm) estepm=stepm;      matcov=matrix(1,npar,1,npar);
   if (fage <= 2) {      for(i=1; i <=npar; i++){
     bage = ageminpar;        fscanf(ficpar,"%s",&str);
     fage = agemaxpar;        if(mle==1)
   }          printf("%s",str);
            fprintf(ficlog,"%s",str);
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        fprintf(ficparo,"%s",str);
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(j=1; j <=i; j++){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fscanf(ficpar," %le",&matcov[i][j]);
              if(mle==1){
   while((c=getc(ficpar))=='#' && c!= EOF){            printf(" %.5le",matcov[i][j]);
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog," %.5le",matcov[i][j]);
     puts(line);          fprintf(ficparo," %.5le",matcov[i][j]);
     fputs(line,ficparo);        }
   }        fscanf(ficpar,"\n");
   ungetc(c,ficpar);        numlinepar++;
           if(mle==1)
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);          printf("\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fprintf(ficlog,"\n");
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        fprintf(ficparo,"\n");
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      }
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);      for(i=1; i <=npar; i++)
            for(j=i+1;j<=npar;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){          matcov[i][j]=matcov[j][i];
     ungetc(c,ficpar);     
     fgets(line, MAXLINE, ficpar);      if(mle==1)
     puts(line);        printf("\n");
     fputs(line,ficparo);      fprintf(ficlog,"\n");
   }     
   ungetc(c,ficpar);      fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;      strcpy(rfileres,"r");    /* "Rparameterfile */
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      strcat(rfileres,optionfilext);    /* Other files have txt extension */
   fprintf(ficparo,"pop_based=%d\n",popbased);         if((ficres =fopen(rfileres,"w"))==NULL) {
   fprintf(ficres,"pop_based=%d\n",popbased);           printf("Problem writing new parameter file: %s\n", fileres);goto end;
           fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      fprintf(ficres,"#%s\n",version);
     fgets(line, MAXLINE, ficpar);    }    /* End of mle != -3 */
     puts(line);  
     fputs(line,ficparo);    /*-------- data file ----------*/
   }    if((fic=fopen(datafile,"r"))==NULL)    {
   ungetc(c,ficpar);      printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);    }
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);  
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    n= lastobs;
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    severity = vector(1,maxwav);
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);    outcome=imatrix(1,maxwav+1,1,n);
   /* day and month of proj2 are not used but only year anproj2.*/    num=lvector(1,n);
     moisnais=vector(1,n);
   while((c=getc(ficpar))=='#' && c!= EOF){    annais=vector(1,n);
     ungetc(c,ficpar);    moisdc=vector(1,n);
     fgets(line, MAXLINE, ficpar);    andc=vector(1,n);
     puts(line);    agedc=vector(1,n);
     fputs(line,ficparo);    cod=ivector(1,n);
   }    weight=vector(1,n);
   ungetc(c,ficpar);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    anint=matrix(1,maxwav,1,n);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    s=imatrix(1,maxwav+1,1,n);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/  
   /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/    i=1;
     linei=0;
   replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */    while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
   printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);      linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\        if(line[j] == '\t')
                model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\          line[j] = ' ';
                jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      }
        for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
   /*------------ free_vector  -------------*/        ;
   /*  chdir(path); */      };
        line[j+1]=0;  /* Trims blanks at end of line */
   free_ivector(wav,1,imx);      if(line[0]=='#'){
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        fprintf(ficlog,"Comment line\n%s\n",line);
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);        printf("Comment line\n%s\n",line);
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);           continue;
   free_lvector(num,1,n);      }
   free_vector(agedc,1,n);  
   /*free_matrix(covar,0,NCOVMAX,1,n);*/      for (j=maxwav;j>=1;j--){
   /*free_matrix(covar,1,NCOVMAX,1,n);*/        cutv(stra, strb,line,' ');
   fclose(ficparo);        errno=0;
   fclose(ficres);        lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
   /*--------------- Prevalence limit  (stable prevalence) --------------*/          printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             exit(1);
   strcpy(filerespl,"pl");        }
   strcat(filerespl,fileres);        s[j][i]=lval;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        strcpy(line,stra);
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;        cutv(stra, strb,line,' ');
   }        if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);        }
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);        else  if(iout=sscanf(strb,"%s.") != 0){
   fprintf(ficrespl,"#Stable prevalence \n");          month=99;
   fprintf(ficrespl,"#Age ");          year=9999;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        }else{
   fprintf(ficrespl,"\n");          printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
             exit(1);
   prlim=matrix(1,nlstate,1,nlstate);        }
         anint[j][i]= (double) year;
   agebase=ageminpar;        mint[j][i]= (double)month;
   agelim=agemaxpar;        strcpy(line,stra);
   ftolpl=1.e-10;      } /* ENd Waves */
   i1=cptcoveff;     
   if (cptcovn < 1){i1=1;}      cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      else  if(iout=sscanf(strb,"%s.",dummy) != 0){
       k=k+1;        month=99;
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        year=9999;
       fprintf(ficrespl,"\n#******");      }else{
       printf("\n#******");        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
       fprintf(ficlog,"\n#******");        exit(1);
       for(j=1;j<=cptcoveff;j++) {      }
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      andc[i]=(double) year;
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      moisdc[i]=(double) month;
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      strcpy(line,stra);
       }     
       fprintf(ficrespl,"******\n");      cutv(stra, strb,line,' ');
       printf("******\n");      if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       fprintf(ficlog,"******\n");      }
               else  if(iout=sscanf(strb,"%s.") != 0){
       for (age=agebase; age<=agelim; age++){        month=99;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        year=9999;
         fprintf(ficrespl,"%.0f ",age );      }else{
         for(j=1;j<=cptcoveff;j++)        printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        exit(1);
         for(i=1; i<=nlstate;i++)      }
           fprintf(ficrespl," %.5f", prlim[i][i]);      annais[i]=(double)(year);
         fprintf(ficrespl,"\n");      moisnais[i]=(double)(month);
       }      strcpy(line,stra);
     }     
   }      cutv(stra, strb,line,' ');
   fclose(ficrespl);      errno=0;
       dval=strtod(strb,&endptr);
   /*------------- h Pij x at various ages ------------*/      if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        exit(1);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      weight[i]=dval;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;      strcpy(line,stra);
   }     
   printf("Computing pij: result on file '%s' \n", filerespij);      for (j=ncovcol;j>=1;j--){
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        cutv(stra, strb,line,' ');
           errno=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        lval=strtol(strb,&endptr,10);
   /*if (stepm<=24) stepsize=2;*/        if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
   agelim=AGESUP;          exit(1);
   hstepm=stepsize*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
   /* hstepm=1;   aff par mois*/   Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");   For example, for multinomial values like 1, 2 and 3,\n \
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){   build V1=0 V2=0 for the reference value (1),\n \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          V1=1 V2=0 for (2) \n \
       k=k+1;   and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
       fprintf(ficrespij,"\n#****** ");   output of IMaCh is often meaningless.\n \
       for(j=1;j<=cptcoveff;j++)    Exiting.\n",lval,linei, i,line,j);
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          exit(1);
       fprintf(ficrespij,"******\n");        }
                 covar[j][i]=(double)(lval);
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        strcpy(line,stra);
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       }
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      lstra=strlen(stra);
      
         /*        nhstepm=nhstepm*YEARM; aff par mois*/      if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        num[i]=atol(stratrunc);
         oldm=oldms;savm=savms;      }
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        else
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");        num[i]=atol(stra);
         for(i=1; i<=nlstate;i++)      /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           for(j=1; j<=nlstate+ndeath;j++)        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
             fprintf(ficrespij," %1d-%1d",i,j);     
         fprintf(ficrespij,"\n");      i=i+1;
         for (h=0; h<=nhstepm; h++){    } /* End loop reading  data */
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fclose(fic);
           for(i=1; i<=nlstate;i++)    /* printf("ii=%d", ij);
             for(j=1; j<=nlstate+ndeath;j++)       scanf("%d",i);*/
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);    imx=i-1; /* Number of individuals */
           fprintf(ficrespij,"\n");  
         }    /* for (i=1; i<=imx; i++){
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
         fprintf(ficrespij,"\n");      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       }      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     }      }*/
   }     /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
   fclose(ficrespij);    /* for (i=1; i<=imx; i++) */
    
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   /*---------- Forecasting ------------------*/  
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/    /* Calculation of the number of parameters from char model */
   if(prevfcast==1){    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     /*    if(stepm ==1){*/    Tprod=ivector(1,15);
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);    Tvaraff=ivector(1,15);
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/    Tvard=imatrix(1,15,1,2);
 /*      }  */    Tage=ivector(1,15);      
 /*      else{ */     
 /*        erreur=108; */    if (strlen(model) >1){ /* If there is at least 1 covariate */
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      j=0, j1=0, k1=1, k2=1;
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */      j=nbocc(model,'+'); /* j=Number of '+' */
 /*      } */      j1=nbocc(model,'*'); /* j1=Number of '*' */
   }      cptcovn=j+1;
         cptcovprod=j1; /*Number of products */
      
   /*---------- Health expectancies and variances ------------*/      strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
   strcpy(filerest,"t");        printf("Error. Non available option model=%s ",model);
   strcat(filerest,fileres);        fprintf(ficlog,"Error. Non available option model=%s ",model);
   if((ficrest=fopen(filerest,"w"))==NULL) {        goto end;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;     
   }      /* This loop fills the array Tvar from the string 'model'.*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);   
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
   strcpy(filerese,"e");        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   strcat(filerese,fileres);        /*scanf("%d",i);*/
   if((ficreseij=fopen(filerese,"w"))==NULL) {        if (strchr(strb,'*')) {  /* Model includes a product */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          if (strcmp(strc,"age")==0) { /* Vn*age */
   }            cptcovprod--;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            cutv(strb,stre,strd,'V');
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
   strcpy(fileresv,"v");              Tage[cptcovage]=i;
   strcat(fileresv,fileres);              /*printf("stre=%s ", stre);*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);            cptcovprod--;
   }            cutv(strb,stre,strc,'V');
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            Tvar[i]=atoi(stre);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            cptcovage++;
             Tage[cptcovage]=i;
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */          }
   prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);          else {  /* Age is not in the model */
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);            Tvar[i]=ncovcol+k1;
   */            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
   if (mobilav!=0) {            Tvard[k1][1]=atoi(strc); /* m*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            Tvard[k1][2]=atoi(stre); /* n */
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            Tvar[cptcovn+k2]=Tvard[k1][1];
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);            Tvar[cptcovn+k2+1]=Tvard[k1][2];
       printf(" Error in movingaverage mobilav=%d\n",mobilav);            for (k=1; k<=lastobs;k++)
     }              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
   }            k1++;
             k2=k2+2;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;         else { /* no more sum */
       fprintf(ficrest,"\n#****** ");          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
       for(j=1;j<=cptcoveff;j++)          /*  scanf("%d",i);*/
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        cutv(strd,strc,strb,'V');
       fprintf(ficrest,"******\n");        Tvar[i]=atoi(strc);
         }
       fprintf(ficreseij,"\n#****** ");        strcpy(modelsav,stra);  
       for(j=1;j<=cptcoveff;j++)         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          scanf("%d",i);*/
       fprintf(ficreseij,"******\n");      } /* end of loop + */
     } /* end model */
       fprintf(ficresvij,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
       fprintf(ficresvij,"******\n");  
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    printf("cptcovprod=%d ", cptcovprod);
       oldm=oldms;savm=savms;    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      scanf("%d ",i);*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;      /*  if(mle==1){*/
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    if (weightopt != 1) { /* Maximisation without weights*/
       if(popbased==1){      for(i=1;i<=n;i++) weight[i]=1.0;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);    }
       }      /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
    
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    for (i=1; i<=imx; i++) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(m=2; (m<= maxwav); m++) {
       fprintf(ficrest,"\n");        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
       epj=vector(1,nlstate+1);          s[m][i]=-1;
       for(age=bage; age <=fage ;age++){        }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
         if (popbased==1) {          nberr++;
           if(mobilav ==0){          printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
             for(i=1; i<=nlstate;i++)          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
               prlim[i][i]=probs[(int)age][i][k];          s[m][i]=-1;
           }else{ /* mobilav */         }
             for(i=1; i<=nlstate;i++)        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
               prlim[i][i]=mobaverage[(int)age][i][k];          nberr++;
           }          printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
         }          fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
                   s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         fprintf(ficrest," %4.0f",age);        }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    for (i=1; i<=imx; i++)  {
           }      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           epj[nlstate+1] +=epj[j];      for(m=firstpass; (m<= lastpass); m++){
         }        if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
         for(i=1, vepp=0.;i <=nlstate;i++)            if(agedc[i]>0)
           for(j=1;j <=nlstate;j++)              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
             vepp += vareij[i][j][(int)age];                agev[m][i]=agedc[i];
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
         for(j=1;j <=nlstate;j++){              else {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                if ((int)andc[i]!=9999){
         }                  nbwarn++;
         fprintf(ficrest,"\n");                  printf("Warning negative age at death: %ld line:%d\n",num[i],i);
       }                  fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  agev[m][i]=-1;
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                }
       free_vector(epj,1,nlstate+1);              }
     }          }
   }          else if(s[m][i] !=9){ /* Standard case, age in fractional
   free_vector(weight,1,n);                                   years but with the precision of a month */
   free_imatrix(Tvard,1,15,1,2);            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   free_imatrix(s,1,maxwav+1,1,n);            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
   free_matrix(anint,1,maxwav,1,n);               agev[m][i]=1;
   free_matrix(mint,1,maxwav,1,n);            else if(agev[m][i] <agemin){
   free_ivector(cod,1,n);              agemin=agev[m][i];
   free_ivector(tab,1,NCOVMAX);              /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
   fclose(ficreseij);            }
   fclose(ficresvij);            else if(agev[m][i] >agemax){
   fclose(ficrest);              agemax=agev[m][i];
   fclose(ficpar);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
               }
   /*------- Variance of stable prevalence------*/               /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
   strcpy(fileresvpl,"vpl");          }
   strcat(fileresvpl,fileres);          else { /* =9 */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            agev[m][i]=1;
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);            s[m][i]=-1;
     exit(0);          }
   }        }
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);        else /*= 0 Unknown */
           agev[m][i]=1;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){      }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     
       k=k+1;    }
       fprintf(ficresvpl,"\n#****** ");    for (i=1; i<=imx; i++)  {
       for(j=1;j<=cptcoveff;j++)       for(m=firstpass; (m<=lastpass); m++){
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (s[m][i] > (nlstate+ndeath)) {
       fprintf(ficresvpl,"******\n");          nberr++;
                 printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
       oldm=oldms;savm=savms;          goto end;
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      }
     }    }
   }  
     /*for (i=1; i<=imx; i++){
   fclose(ficresvpl);    for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   /*---------- End : free ----------------*/  }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  }*/
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  
       printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   free_matrix(covar,0,NCOVMAX,1,n);    fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   free_matrix(matcov,1,npar,1,npar);  
   /*free_vector(delti,1,npar);*/    agegomp=(int)agemin;
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     free_vector(severity,1,maxwav);
   free_matrix(agev,1,maxwav,1,imx);    free_imatrix(outcome,1,maxwav+1,1,n);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_vector(moisnais,1,n);
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(annais,1,n);
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
   free_ivector(ncodemax,1,8);    free_vector(moisdc,1,n);
   free_ivector(Tvar,1,15);    free_vector(andc,1,n);
   free_ivector(Tprod,1,15);  
   free_ivector(Tvaraff,1,15);     
   free_ivector(Tage,1,15);    wav=ivector(1,imx);
   free_ivector(Tcode,1,100);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
   fflush(fichtm);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   fflush(ficgp);     
       /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   if((nberr >0) || (nbwarn>0)){  
     printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);  
   }else{    Tcode=ivector(1,100);
     printf("End of Imach\n");    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     fprintf(ficlog,"End of Imach\n");    ncodemax[1]=1;
   }    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   printf("See log file on %s\n",filelog);       
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
   (void) gettimeofday(&end_time,&tzp);                                   the estimations*/
   tm = *localtime(&end_time.tv_sec);    h=0;
   tmg = *gmtime(&end_time.tv_sec);    m=pow(2,cptcoveff);
   strcpy(strtend,asctime(&tm));   
   printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend);     for(k=1;k<=cptcoveff; k++){
   fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend);       for(i=1; i <=(m/pow(2,k));i++){
   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));        for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);            h++;
   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   /*  printf("Total time was %d uSec.\n", total_usecs);*/          }
 /*   if(fileappend(fichtm,optionfilehtm)){ */        }
   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);      }
   fclose(fichtm);    }
   fclose(fichtmcov);    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
   fclose(ficgp);       codtab[1][2]=1;codtab[2][2]=2; */
   fclose(ficlog);    /* for(i=1; i <=m ;i++){
   /*------ End -----------*/       for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
   chdir(path);       }
   strcpy(plotcmd,GNUPLOTPROGRAM);       printf("\n");
   strcat(plotcmd," ");       }
   strcat(plotcmd,optionfilegnuplot);       scanf("%d",i);*/
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);     
   if((outcmd=system(plotcmd)) != 0){    /*------------ gnuplot -------------*/
     printf(" Problem with gnuplot\n");    strcpy(optionfilegnuplot,optionfilefiname);
   }    if(mle==-3)
   printf(" Wait...");      strcat(optionfilegnuplot,"-mort");
   while (z[0] != 'q') {    strcat(optionfilegnuplot,".gp");
     /* chdir(path); */  
     printf("\nType e to edit output files, g to graph again and q for exiting: ");    if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
     scanf("%s",z);      printf("Problem with file %s",optionfilegnuplot);
 /*     if (z[0] == 'c') system("./imach"); */    }
     if (z[0] == 'e') system(optionfilehtm);    else{
     else if (z[0] == 'g') system(plotcmd);      fprintf(ficgp,"\n# %s\n", version);
     else if (z[0] == 'q') exit(0);      fprintf(ficgp,"# %s\n", optionfilegnuplot);
   }      fprintf(ficgp,"set missing 'NaNq'\n");
   end:    }
   while (z[0] != 'q') {    /*  fclose(ficgp);*/
     printf("\nType  q for exiting: ");    /*--------- index.htm --------*/
     scanf("%s",z);  
   }    strcpy(optionfilehtm,optionfilefiname); /* Main html file */
 }    if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.91  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>