Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.126

version 1.41.2.2, 2003/06/13 07:45:28 version 1.126, 2006/04/28 17:23:28
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.126  2006/04/28 17:23:28  brouard
      (Module): Yes the sum of survivors was wrong since
   This program computes Healthy Life Expectancies from    imach-114 because nhstepm was no more computed in the age
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    loop. Now we define nhstepma in the age loop.
   first survey ("cross") where individuals from different ages are    Version 0.98h
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.125  2006/04/04 15:20:31  lievre
   second wave of interviews ("longitudinal") which measure each change    Errors in calculation of health expectancies. Age was not initialized.
   (if any) in individual health status.  Health expectancies are    Forecasting file added.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.124  2006/03/22 17:13:53  lievre
   Maximum Likelihood of the parameters involved in the model.  The    Parameters are printed with %lf instead of %f (more numbers after the comma).
   simplest model is the multinomial logistic model where pij is the    The log-likelihood is printed in the log file
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.123  2006/03/20 10:52:43  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    * imach.c (Module): <title> changed, corresponds to .htm file
   'age' is age and 'sex' is a covariate. If you want to have a more    name. <head> headers where missing.
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    * imach.c (Module): Weights can have a decimal point as for
   you to do it.  More covariates you add, slower the    English (a comma might work with a correct LC_NUMERIC environment,
   convergence.    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
   The advantage of this computer programme, compared to a simple    1.
   multinomial logistic model, is clear when the delay between waves is not    Version 0.98g
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.122  2006/03/20 09:45:41  brouard
   account using an interpolation or extrapolation.      (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   hPijx is the probability to be observed in state i at age x+h    otherwise the weight is truncated).
   conditional to the observed state i at age x. The delay 'h' can be    Modification of warning when the covariates values are not 0 or
   split into an exact number (nh*stepm) of unobserved intermediate    1.
   states. This elementary transition (by month or quarter trimester,    Version 0.98g
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.121  2006/03/16 17:45:01  lievre
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Comments concerning covariates added
   hPijx.  
     * imach.c (Module): refinements in the computation of lli if
   Also this programme outputs the covariance matrix of the parameters but also    status=-2 in order to have more reliable computation if stepm is
   of the life expectancies. It also computes the prevalence limits.    not 1 month. Version 0.98f
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.120  2006/03/16 15:10:38  lievre
            Institut national d'études démographiques, Paris.    (Module): refinements in the computation of lli if
   This software have been partly granted by Euro-REVES, a concerted action    status=-2 in order to have more reliable computation if stepm is
   from the European Union.    not 1 month. Version 0.98f
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.119  2006/03/15 17:42:26  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Bug if status = -2, the loglikelihood was
   **********************************************************************/    computed as likelihood omitting the logarithm. Version O.98e
    
 #include <math.h>    Revision 1.118  2006/03/14 18:20:07  brouard
 #include <stdio.h>    (Module): varevsij Comments added explaining the second
 #include <stdlib.h>    table of variances if popbased=1 .
 #include <unistd.h>    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 #define MAXLINE 256    (Module): Version 0.98d
 #define GNUPLOTPROGRAM "wgnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FILENAMELENGTH 80    (Module): varevsij Comments added explaining the second
 /*#define DEBUG*/    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /*#define windows*/    (Module): Function pstamp added
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Version 0.98d
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.116  2006/03/06 10:29:27  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Variance-covariance wrong links and
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    varian-covariance of ej. is needed (Saito).
   
 #define NINTERVMAX 8    Revision 1.115  2006/02/27 12:17:45  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): One freematrix added in mlikeli! 0.98c
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.114  2006/02/26 12:57:58  brouard
 #define MAXN 20000    (Module): Some improvements in processing parameter
 #define YEARM 12. /* Number of months per year */    filename with strsep.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 int erreur; /* Error number */    allocation too.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.112  2006/01/30 09:55:26  brouard
 int npar=NPARMAX;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.111  2006/01/25 20:38:18  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Lots of cleaning and bugs added (Gompertz)
 int popbased=0;    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.110  2006/01/25 00:51:50  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Lots of cleaning and bugs added (Gompertz)
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.109  2006/01/24 19:37:15  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Comments (lines starting with a #) are allowed in data.
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.108  2006/01/19 18:05:42  lievre
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Gnuplot problem appeared...
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    To be fixed
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.107  2006/01/19 16:20:37  brouard
   char filerese[FILENAMELENGTH];    Test existence of gnuplot in imach path
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.106  2006/01/19 13:24:36  brouard
  FILE  *ficresvpl;    Some cleaning and links added in html output
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.105  2006/01/05 20:23:19  lievre
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define NRANSI    (Module): If the status is missing at the last wave but we know
 #define ITMAX 200    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 #define TOL 2.0e-4    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define CGOLD 0.3819660    the healthy state at last known wave). Version is 0.98
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.103  2005/09/30 15:54:49  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.102  2004/09/15 17:31:30  brouard
 #define TINY 1.0e-20    Add the possibility to read data file including tab characters.
   
 static double maxarg1,maxarg2;    Revision 1.101  2004/09/15 10:38:38  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Fix on curr_time
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.100  2004/07/12 18:29:06  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Add version for Mac OS X. Just define UNIX in Makefile
 #define rint(a) floor(a+0.5)  
     Revision 1.99  2004/06/05 08:57:40  brouard
 static double sqrarg;    *** empty log message ***
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 int imx;    directly from the data i.e. without the need of knowing the health
 int stepm;    state at each age, but using a Gompertz model: log u =a + b*age .
 /* Stepm, step in month: minimum step interpolation*/    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 int estepm;    cross-longitudinal survey is different from the mortality estimated
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    from other sources like vital statistic data.
   
 int m,nb;    The same imach parameter file can be used but the option for mle should be -3.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Agnès, who wrote this part of the code, tried to keep most of the
 double **pmmij, ***probs, ***mobaverage;    former routines in order to include the new code within the former code.
 double dateintmean=0;  
     The output is very simple: only an estimate of the intercept and of
 double *weight;    the slope with 95% confident intervals.
 int **s; /* Status */  
 double *agedc, **covar, idx;    Current limitations:
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    B) There is no computation of Life Expectancy nor Life Table.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.97  2004/02/20 13:25:42  lievre
 /**************** split *************************/    Version 0.96d. Population forecasting command line is (temporarily)
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    suppressed.
 {  
    char *s;                             /* pointer */    Revision 1.96  2003/07/15 15:38:55  brouard
    int  l1, l2;                         /* length counters */    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.95  2003/07/08 07:54:34  brouard
 #ifdef windows    * imach.c (Repository):
    s = strrchr( path, '\\' );           /* find last / */    (Repository): Using imachwizard code to output a more meaningful covariance
 #else    matrix (cov(a12,c31) instead of numbers.
    s = strrchr( path, '/' );            /* find last / */  
 #endif    Revision 1.94  2003/06/27 13:00:02  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    Just cleaning
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
       if ( getwd( dirc ) == NULL ) {    exist so I changed back to asctime which exists.
 #else    (Module): Version 0.96b
       extern char       *getcwd( );  
     Revision 1.92  2003/06/25 16:30:45  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): On windows (cygwin) function asctime_r doesn't
 #endif    exist so I changed back to asctime which exists.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.91  2003/06/25 15:30:29  brouard
       strcpy( name, path );             /* we've got it */    * imach.c (Repository): Duplicated warning errors corrected.
    } else {                             /* strip direcotry from path */    (Repository): Elapsed time after each iteration is now output. It
       s++;                              /* after this, the filename */    helps to forecast when convergence will be reached. Elapsed time
       l2 = strlen( s );                 /* length of filename */    is stamped in powell.  We created a new html file for the graphs
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    concerning matrix of covariance. It has extension -cov.htm.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.90  2003/06/24 12:34:15  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Some bugs corrected for windows. Also, when
    }    mle=-1 a template is output in file "or"mypar.txt with the design
    l1 = strlen( dirc );                 /* length of directory */    of the covariance matrix to be input.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.89  2003/06/24 12:30:52  brouard
 #else    (Module): Some bugs corrected for windows. Also, when
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    mle=-1 a template is output in file "or"mypar.txt with the design
 #endif    of the covariance matrix to be input.
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.88  2003/06/23 17:54:56  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.87  2003/06/18 12:26:01  brouard
    strncpy( finame, name, l1-l2);    Version 0.96
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   
 /******************************************/    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 void replace(char *s, char*t)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   int i;    was wrong (infinity). We still send an "Error" but patch by
   int lg=20;    assuming that the date of death was just one stepm after the
   i=0;    interview.
   lg=strlen(t);    (Repository): Because some people have very long ID (first column)
   for(i=0; i<= lg; i++) {    we changed int to long in num[] and we added a new lvector for
     (s[i] = t[i]);    memory allocation. But we also truncated to 8 characters (left
     if (t[i]== '\\') s[i]='/';    truncation)
   }    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   int i,j=0;    many times. Probs is memory consuming and must be used with
   int lg=20;    parcimony.
   i=0;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.83  2003/06/10 13:39:11  lievre
   if  (s[i] == occ ) j++;    *** empty log message ***
   }  
   return j;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 void cutv(char *u,char *v, char*t, char occ)  */
 {  /*
   int i,lg,j,p=0;     Interpolated Markov Chain
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Short summary of the programme:
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    
   }    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   lg=strlen(t);    first survey ("cross") where individuals from different ages are
   for(j=0; j<p; j++) {    interviewed on their health status or degree of disability (in the
     (u[j] = t[j]);    case of a health survey which is our main interest) -2- at least a
   }    second wave of interviews ("longitudinal") which measure each change
      u[p]='\0';    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
    for(j=0; j<= lg; j++) {    model. More health states you consider, more time is necessary to reach the
     if (j>=(p+1))(v[j-p-1] = t[j]);    Maximum Likelihood of the parameters involved in the model.  The
   }    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /********************** nrerror ********************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 void nrerror(char error_text[])    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   fprintf(stderr,"ERREUR ...\n");    you to do it.  More covariates you add, slower the
   fprintf(stderr,"%s\n",error_text);    convergence.
   exit(1);  
 }    The advantage of this computer programme, compared to a simple
 /*********************** vector *******************/    multinomial logistic model, is clear when the delay between waves is not
 double *vector(int nl, int nh)    identical for each individual. Also, if a individual missed an
 {    intermediate interview, the information is lost, but taken into
   double *v;    account using an interpolation or extrapolation.  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    hPijx is the probability to be observed in state i at age x+h
   return v-nl+NR_END;    conditional to the observed state i at age x. The delay 'h' can be
 }    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 /************************ free vector ******************/    semester or year) is modelled as a multinomial logistic.  The hPx
 void free_vector(double*v, int nl, int nh)    matrix is simply the matrix product of nh*stepm elementary matrices
 {    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG)(v+nl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /************************ivector *******************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 int *ivector(long nl,long nh)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   int *v;             Institut national d'études démographiques, Paris.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    This software have been partly granted by Euro-REVES, a concerted action
   if (!v) nrerror("allocation failure in ivector");    from the European Union.
   return v-nl+NR_END;    It is copyrighted identically to a GNU software product, ie programme and
 }    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   free((FREE_ARG)(v+nl-NR_END));    
 }    **********************************************************************/
   /*
 /******************* imatrix *******************************/    main
 int **imatrix(long nrl, long nrh, long ncl, long nch)    read parameterfile
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    read datafile
 {    concatwav
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    freqsummary
   int **m;    if (mle >= 1)
        mlikeli
   /* allocate pointers to rows */    print results files
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    if mle==1 
   if (!m) nrerror("allocation failure 1 in matrix()");       computes hessian
   m += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m -= nrl;        begin-prev-date,...
      open gnuplot file
      open html file
   /* allocate rows and set pointers to them */    period (stable) prevalence
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));     for age prevalim()
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    h Pij x
   m[nrl] += NR_END;    variance of p varprob
   m[nrl] -= ncl;    forecasting if prevfcast==1 prevforecast call prevalence()
      health expectancies
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Variance-covariance of DFLE
      prevalence()
   /* return pointer to array of pointers to rows */     movingaverage()
   return m;    varevsij() 
 }    if popbased==1 varevsij(,popbased)
     total life expectancies
 /****************** free_imatrix *************************/    Variance of period (stable) prevalence
 void free_imatrix(m,nrl,nrh,ncl,nch)   end
       int **m;  */
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   
   free((FREE_ARG) (m+nrl-NR_END));  #include <math.h>
 }  #include <stdio.h>
   #include <stdlib.h>
 /******************* matrix *******************************/  #include <string.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <unistd.h>
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #include <limits.h>
   double **m;  #include <sys/types.h>
   #include <sys/stat.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include <errno.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  extern int errno;
   m += NR_END;  
   m -= nrl;  /* #include <sys/time.h> */
   #include <time.h>
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #include "timeval.h"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /* #include <libintl.h> */
   m[nrl] -= ncl;  /* #define _(String) gettext (String) */
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define MAXLINE 256
   return m;  
 }  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 /*************************free matrix ************************/  #define FILENAMELENGTH 132
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free((FREE_ARG)(m+nrl-NR_END));  
 }  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define NINTERVMAX 8
 {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   double ***m;  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define YEARM 12. /* Number of months per year */
   if (!m) nrerror("allocation failure 1 in matrix()");  #define AGESUP 130
   m += NR_END;  #define AGEBASE 40
   m -= nrl;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define DIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define CHARSEPARATOR "/"
   m[nrl] += NR_END;  #define ODIRSEPARATOR '\\'
   m[nrl] -= ncl;  #else
   #define DIRSEPARATOR '\\'
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #endif
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /* $Id$ */
   m[nrl][ncl] -= nll;  /* $State$ */
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  char version[]="Imach version 0.98h, April 2006, INED-EUROREVES-Institut de longevite ";
    char fullversion[]="$Revision$ $Date$"; 
   for (i=nrl+1; i<=nrh; i++) {  char strstart[80];
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     for (j=ncl+1; j<=nch; j++)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       m[i][j]=m[i][j-1]+nlay;  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   return m;  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /*************************free ma3x ************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int popbased=0;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int *wav; /* Number of waves for this individuual 0 is possible */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int maxwav; /* Maxim number of waves */
   free((FREE_ARG)(m+nrl-NR_END));  int jmin, jmax; /* min, max spacing between 2 waves */
 }  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
 /***************** f1dim *************************/                     to the likelihood and the sum of weights (done by funcone)*/
 extern int ncom;  int mle, weightopt;
 extern double *pcom,*xicom;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 extern double (*nrfunc)(double []);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double f1dim(double x)             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
   int j;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double f;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double *xt;  FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
   xt=vector(1,ncom);  int globpr; /* Global variable for printing or not */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  double fretone; /* Only one call to likelihood */
   f=(*nrfunc)(xt);  long ipmx; /* Number of contributions */
   free_vector(xt,1,ncom);  double sw; /* Sum of weights */
   return f;  char filerespow[FILENAMELENGTH];
 }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 /*****************brent *************************/  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  FILE *ficresprobmorprev;
 {  FILE *fichtm, *fichtmcov; /* Html File */
   int iter;  FILE *ficreseij;
   double a,b,d,etemp;  char filerese[FILENAMELENGTH];
   double fu,fv,fw,fx;  FILE *ficresstdeij;
   double ftemp;  char fileresstde[FILENAMELENGTH];
   double p,q,r,tol1,tol2,u,v,w,x,xm;  FILE *ficrescveij;
   double e=0.0;  char filerescve[FILENAMELENGTH];
    FILE  *ficresvij;
   a=(ax < cx ? ax : cx);  char fileresv[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  FILE  *ficresvpl;
   x=w=v=bx;  char fileresvpl[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  char title[MAXLINE];
   for (iter=1;iter<=ITMAX;iter++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     xm=0.5*(a+b);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char command[FILENAMELENGTH];
     printf(".");fflush(stdout);  int  outcmd=0;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  char filelog[FILENAMELENGTH]; /* Log file */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char filerest[FILENAMELENGTH];
       *xmin=x;  char fileregp[FILENAMELENGTH];
       return fx;  char popfile[FILENAMELENGTH];
     }  
     ftemp=fu;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       q=(x-v)*(fx-fw);  struct timezone tzp;
       p=(x-v)*q-(x-w)*r;  extern int gettimeofday();
       q=2.0*(q-r);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       if (q > 0.0) p = -p;  long time_value;
       q=fabs(q);  extern long time();
       etemp=e;  char strcurr[80], strfor[80];
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  char *endptr;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  long lval;
       else {  double dval;
         d=p/q;  
         u=x+d;  #define NR_END 1
         if (u-a < tol2 || b-u < tol2)  #define FREE_ARG char*
           d=SIGN(tol1,xm-x);  #define FTOL 1.0e-10
       }  
     } else {  #define NRANSI 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define ITMAX 200 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define TOL 2.0e-4 
     fu=(*f)(u);  
     if (fu <= fx) {  #define CGOLD 0.3819660 
       if (u >= x) a=x; else b=x;  #define ZEPS 1.0e-10 
       SHFT(v,w,x,u)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         SHFT(fv,fw,fx,fu)  
         } else {  #define GOLD 1.618034 
           if (u < x) a=u; else b=u;  #define GLIMIT 100.0 
           if (fu <= fw || w == x) {  #define TINY 1.0e-20 
             v=w;  
             w=u;  static double maxarg1,maxarg2;
             fv=fw;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
             fw=fu;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           } else if (fu <= fv || v == x || v == w) {    
             v=u;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             fv=fu;  #define rint(a) floor(a+0.5)
           }  
         }  static double sqrarg;
   }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   nrerror("Too many iterations in brent");  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   *xmin=x;  int agegomp= AGEGOMP;
   return fx;  
 }  int imx; 
   int stepm=1;
 /****************** mnbrak ***********************/  /* Stepm, step in month: minimum step interpolation*/
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int estepm;
             double (*func)(double))  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   double ulim,u,r,q, dum;  int m,nb;
   double fu;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   *fa=(*func)(*ax);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   *fb=(*func)(*bx);  double **pmmij, ***probs;
   if (*fb > *fa) {  double *ageexmed,*agecens;
     SHFT(dum,*ax,*bx,dum)  double dateintmean=0;
       SHFT(dum,*fb,*fa,dum)  
       }  double *weight;
   *cx=(*bx)+GOLD*(*bx-*ax);  int **s; /* Status */
   *fc=(*func)(*cx);  double *agedc, **covar, idx;
   while (*fb > *fc) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     r=(*bx-*ax)*(*fb-*fc);  double *lsurv, *lpop, *tpop;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  double ftolhess; /* Tolerance for computing hessian */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  /**************** split *************************/
       fu=(*func)(u);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     } else if ((*cx-u)*(u-ulim) > 0.0) {  {
       fu=(*func)(u);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       if (fu < *fc) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    */ 
           SHFT(*fb,*fc,fu,(*func)(u))    char  *ss;                            /* pointer */
           }    int   l1, l2;                         /* length counters */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    l1 = strlen(path );                   /* length of path */
       fu=(*func)(u);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     } else {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       u=(*cx)+GOLD*(*cx-*bx);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       fu=(*func)(u);      strcpy( name, path );               /* we got the fullname name because no directory */
     }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     SHFT(*ax,*bx,*cx,u)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       SHFT(*fa,*fb,*fc,fu)      /* get current working directory */
       }      /*    extern  char* getcwd ( char *buf , int len);*/
 }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
 /*************** linmin ************************/      }
       /* got dirc from getcwd*/
 int ncom;      printf(" DIRC = %s \n",dirc);
 double *pcom,*xicom;    } else {                              /* strip direcotry from path */
 double (*nrfunc)(double []);      ss++;                               /* after this, the filename */
        l2 = strlen( ss );                  /* length of filename */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 {      strcpy( name, ss );         /* save file name */
   double brent(double ax, double bx, double cx,      strncpy( dirc, path, l1 - l2 );     /* now the directory */
                double (*f)(double), double tol, double *xmin);      dirc[l1-l2] = 0;                    /* add zero */
   double f1dim(double x);      printf(" DIRC2 = %s \n",dirc);
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    }
               double *fc, double (*func)(double));    /* We add a separator at the end of dirc if not exists */
   int j;    l1 = strlen( dirc );                  /* length of directory */
   double xx,xmin,bx,ax;    if( dirc[l1-1] != DIRSEPARATOR ){
   double fx,fb,fa;      dirc[l1] =  DIRSEPARATOR;
        dirc[l1+1] = 0; 
   ncom=n;      printf(" DIRC3 = %s \n",dirc);
   pcom=vector(1,n);    }
   xicom=vector(1,n);    ss = strrchr( name, '.' );            /* find last / */
   nrfunc=func;    if (ss >0){
   for (j=1;j<=n;j++) {      ss++;
     pcom[j]=p[j];      strcpy(ext,ss);                     /* save extension */
     xicom[j]=xi[j];      l1= strlen( name);
   }      l2= strlen(ss)+1;
   ax=0.0;      strncpy( finame, name, l1-l2);
   xx=1.0;      finame[l1-l2]= 0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    return( 0 );                          /* we're done */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
 #endif  
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  /******************************************/
     p[j] += xi[j];  
   }  void replace_back_to_slash(char *s, char*t)
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    int i;
 }    int lg=0;
     i=0;
 /*************** powell ************************/    lg=strlen(t);
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for(i=0; i<= lg; i++) {
             double (*func)(double []))      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  int nbocc(char *s, char occ)
   double fp,fptt;  {
   double *xits;    int i,j=0;
   pt=vector(1,n);    int lg=20;
   ptt=vector(1,n);    i=0;
   xit=vector(1,n);    lg=strlen(s);
   xits=vector(1,n);    for(i=0; i<= lg; i++) {
   *fret=(*func)(p);    if  (s[i] == occ ) j++;
   for (j=1;j<=n;j++) pt[j]=p[j];    }
   for (*iter=1;;++(*iter)) {    return j;
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  void cutv(char *u,char *v, char*t, char occ)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
       printf(" %d %.12f",i, p[i]);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     printf("\n");       gives u="abcedf" and v="ghi2j" */
     for (i=1;i<=n;i++) {    int i,lg,j,p=0;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    i=0;
       fptt=(*fret);    for(j=0; j<=strlen(t)-1; j++) {
 #ifdef DEBUG      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       printf("fret=%lf \n",*fret);    }
 #endif  
       printf("%d",i);fflush(stdout);    lg=strlen(t);
       linmin(p,xit,n,fret,func);    for(j=0; j<p; j++) {
       if (fabs(fptt-(*fret)) > del) {      (u[j] = t[j]);
         del=fabs(fptt-(*fret));    }
         ibig=i;       u[p]='\0';
       }  
 #ifdef DEBUG     for(j=0; j<= lg; j++) {
       printf("%d %.12e",i,(*fret));      if (j>=(p+1))(v[j-p-1] = t[j]);
       for (j=1;j<=n;j++) {    }
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  }
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  /********************** nrerror ********************/
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);  void nrerror(char error_text[])
       printf("\n");  {
 #endif    fprintf(stderr,"ERREUR ...\n");
     }    fprintf(stderr,"%s\n",error_text);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    exit(EXIT_FAILURE);
 #ifdef DEBUG  }
       int k[2],l;  /*********************** vector *******************/
       k[0]=1;  double *vector(int nl, int nh)
       k[1]=-1;  {
       printf("Max: %.12e",(*func)(p));    double *v;
       for (j=1;j<=n;j++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         printf(" %.12e",p[j]);    if (!v) nrerror("allocation failure in vector");
       printf("\n");    return v-nl+NR_END;
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /************************ free vector ******************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void free_vector(double*v, int nl, int nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(v+nl-NR_END));
       }  }
 #endif  
   /************************ivector *******************************/
   int *ivector(long nl,long nh)
       free_vector(xit,1,n);  {
       free_vector(xits,1,n);    int *v;
       free_vector(ptt,1,n);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       free_vector(pt,1,n);    if (!v) nrerror("allocation failure in ivector");
       return;    return v-nl+NR_END;
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /******************free ivector **************************/
       ptt[j]=2.0*p[j]-pt[j];  void free_ivector(int *v, long nl, long nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    free((FREE_ARG)(v+nl-NR_END));
     }  }
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /************************lvector *******************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  long *lvector(long nl,long nh)
       if (t < 0.0) {  {
         linmin(p,xit,n,fret,func);    long *v;
         for (j=1;j<=n;j++) {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           xi[j][ibig]=xi[j][n];    if (!v) nrerror("allocation failure in ivector");
           xi[j][n]=xit[j];    return v-nl+NR_END;
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************free lvector **************************/
         for(j=1;j<=n;j++)  void free_lvector(long *v, long nl, long nh)
           printf(" %.12e",xit[j]);  {
         printf("\n");    free((FREE_ARG)(v+nl-NR_END));
 #endif  }
       }  
     }  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /**** Prevalence limit ****************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {    /* allocate pointers to rows */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      matrix by transitions matrix until convergence is reached */    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   int i, ii,j,k;    m -= nrl; 
   double min, max, maxmin, maxmax,sumnew=0.;    
   double **matprod2();    
   double **out, cov[NCOVMAX], **pmij();    /* allocate rows and set pointers to them */ 
   double **newm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl] -= ncl; 
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     /* return pointer to array of pointers to rows */ 
    cov[1]=1.;    return m; 
    } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /****************** free_imatrix *************************/
     newm=savm;  void free_imatrix(m,nrl,nrh,ncl,nch)
     /* Covariates have to be included here again */        int **m;
      cov[2]=agefin;        long nch,ncl,nrh,nrl; 
         /* free an int matrix allocated by imatrix() */ 
       for (k=1; k<=cptcovn;k++) {  { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /******************* matrix *******************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    double **m;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     savm=oldm;    m += NR_END;
     oldm=newm;    m -= nrl;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       min=1.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       max=0.;    m[nrl] += NR_END;
       for(i=1; i<=nlstate; i++) {    m[nrl] -= ncl;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         prlim[i][j]= newm[i][j]/(1-sumnew);    return m;
         max=FMAX(max,prlim[i][j]);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         min=FMIN(min,prlim[i][j]);     */
       }  }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  /*************************free matrix ************************/
     }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     if(maxmax < ftolpl){  {
       return prlim;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
 }  
   /******************* ma3x *******************************/
 /*************** transition probabilities ***************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   {
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 {    double ***m;
   double s1, s2;  
   /*double t34;*/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i,j,j1, nc, ii, jj;    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
     for(i=1; i<= nlstate; i++){    m -= nrl;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         /*s2 += param[i][j][nc]*cov[nc];*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl] += NR_END;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m[nrl] -= ncl;
       }  
       ps[i][j]=s2;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for(j=i+1; j<=nlstate+ndeath;j++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m[nrl][ncl] += NR_END;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m[nrl][ncl] -= nll;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for (j=ncl+1; j<=nch; j++) 
       }      m[nrl][j]=m[nrl][j-1]+nlay;
       ps[i][j]=s2;    
     }    for (i=nrl+1; i<=nrh; i++) {
   }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     /*ps[3][2]=1;*/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   for(i=1; i<= nlstate; i++){    }
      s1=0;    return m; 
     for(j=1; j<i; j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       s1+=exp(ps[i][j]);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     for(j=i+1; j<=nlstate+ndeath; j++)    */
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*************************free ma3x ************************/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     for(j=i+1; j<=nlstate+ndeath; j++)  {
       ps[i][j]= exp(ps[i][j])*ps[i][i];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   } /* end i */    free((FREE_ARG)(m+nrl-NR_END));
   }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf ***********/
       ps[ii][jj]=0;  char *subdirf(char fileres[])
       ps[ii][ii]=1;  {
     }    /* Caution optionfilefiname is hidden */
   }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return tmpout;
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /*************** function subdirf2 ***********/
     printf("\n ");  char *subdirf2(char fileres[], char *preop)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    
 /*    /* Caution optionfilefiname is hidden */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    strcpy(tmpout,optionfilefiname);
   goto end;*/    strcat(tmpout,"/");
     return ps;    strcat(tmpout,preop);
 }    strcat(tmpout,fileres);
     return tmpout;
 /**************** Product of 2 matrices ******************/  }
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*************** function subdirf3 ***********/
 {  char *subdirf3(char fileres[], char *preop, char *preop2)
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* Caution optionfilefiname is hidden */
      before: only the contents of out is modified. The function returns    strcpy(tmpout,optionfilefiname);
      a pointer to pointers identical to out */    strcat(tmpout,"/");
   long i, j, k;    strcat(tmpout,preop);
   for(i=nrl; i<= nrh; i++)    strcat(tmpout,preop2);
     for(k=ncolol; k<=ncoloh; k++)    strcat(tmpout,fileres);
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    return tmpout;
         out[i][k] +=in[i][j]*b[j][k];  }
   
   return out;  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /************* Higher Matrix Product ***************/   
   double f1dim(double x) 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  { 
 {    int j; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    double f;
      duration (i.e. until    double *xt; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.   
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    xt=vector(1,ncom); 
      (typically every 2 years instead of every month which is too big).    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      Model is determined by parameters x and covariates have to be    f=(*nrfunc)(xt); 
      included manually here.    free_vector(xt,1,ncom); 
     return f; 
      */  } 
   
   int i, j, d, h, k;  /*****************brent *************************/
   double **out, cov[NCOVMAX];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double **newm;  { 
     int iter; 
   /* Hstepm could be zero and should return the unit matrix */    double a,b,d,etemp;
   for (i=1;i<=nlstate+ndeath;i++)    double fu,fv,fw,fx;
     for (j=1;j<=nlstate+ndeath;j++){    double ftemp;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double e=0.0; 
     }   
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    a=(ax < cx ? ax : cx); 
   for(h=1; h <=nhstepm; h++){    b=(ax > cx ? ax : cx); 
     for(d=1; d <=hstepm; d++){    x=w=v=bx; 
       newm=savm;    fw=fv=fx=(*f)(x); 
       /* Covariates have to be included here again */    for (iter=1;iter<=ITMAX;iter++) { 
       cov[1]=1.;      xm=0.5*(a+b); 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (k=1; k<=cptcovage;k++)      printf(".");fflush(stdout);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      fprintf(ficlog,".");fflush(ficlog);
       for (k=1; k<=cptcovprod;k++)  #ifdef DEBUG
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #endif
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        *xmin=x; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        return fx; 
       savm=oldm;      } 
       oldm=newm;      ftemp=fu;
     }      if (fabs(e) > tol1) { 
     for(i=1; i<=nlstate+ndeath; i++)        r=(x-w)*(fx-fv); 
       for(j=1;j<=nlstate+ndeath;j++) {        q=(x-v)*(fx-fw); 
         po[i][j][h]=newm[i][j];        p=(x-v)*q-(x-w)*r; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        q=2.0*(q-r); 
          */        if (q > 0.0) p = -p; 
       }        q=fabs(q); 
   } /* end h */        etemp=e; 
   return po;        e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         else { 
 /*************** log-likelihood *************/          d=p/q; 
 double func( double *x)          u=x+d; 
 {          if (u-a < tol2 || b-u < tol2) 
   int i, ii, j, k, mi, d, kk;            d=SIGN(tol1,xm-x); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        } 
   double **out;      } else { 
   double sw; /* Sum of weights */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double lli; /* Individual log likelihood */      } 
   int s1, s2;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   long ipmx;      fu=(*f)(u); 
   /*extern weight */      if (fu <= fx) { 
   /* We are differentiating ll according to initial status */        if (u >= x) a=x; else b=x; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        SHFT(v,w,x,u) 
   /*for(i=1;i<imx;i++)          SHFT(fv,fw,fx,fu) 
     printf(" %d\n",s[4][i]);          } else { 
   */            if (u < x) a=u; else b=u; 
   cov[1]=1.;            if (fu <= fw || w == x) { 
               v=w; 
   for(k=1; k<=nlstate; k++) ll[k]=0.;              w=u; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){              fv=fw; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];              fw=fu; 
     for(mi=1; mi<= wav[i]-1; mi++){            } else if (fu <= fv || v == x || v == w) { 
       for (ii=1;ii<=nlstate+ndeath;ii++)              v=u; 
         for (j=1;j<=nlstate+ndeath;j++){              fv=fu; 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);            } 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          } 
         }    } 
       for(d=0; d<dh[mi][i]; d++){    nrerror("Too many iterations in brent"); 
         newm=savm;    *xmin=x; 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    return fx; 
         for (kk=1; kk<=cptcovage;kk++) {  } 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  /****************** mnbrak ***********************/
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              double (*func)(double)) 
         savm=oldm;  { 
         oldm=newm;    double ulim,u,r,q, dum;
            double fu; 
           
       } /* end mult */    *fa=(*func)(*ax); 
          *fb=(*func)(*bx); 
       s1=s[mw[mi][i]][i];    if (*fb > *fa) { 
       s2=s[mw[mi+1][i]][i];      SHFT(dum,*ax,*bx,dum) 
       if( s2 > nlstate){        SHFT(dum,*fb,*fa,dum) 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution        } 
            to the likelihood is the probability to die between last step unit time and current    *cx=(*bx)+GOLD*(*bx-*ax); 
            step unit time, which is also the differences between probability to die before dh    *fc=(*func)(*cx); 
            and probability to die before dh-stepm .    while (*fb > *fc) { 
            In version up to 0.92 likelihood was computed      r=(*bx-*ax)*(*fb-*fc); 
            as if date of death was unknown. Death was treated as any other      q=(*bx-*cx)*(*fb-*fa); 
            health state: the date of the interview describes the actual state      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
            and not the date of a change in health state. The former idea was        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
            to consider that at each interview the state was recorded      ulim=(*bx)+GLIMIT*(*cx-*bx); 
            (healthy, disable or death) and IMaCh was corrected; but when we      if ((*bx-u)*(u-*cx) > 0.0) { 
            introduced the exact date of death then we should have modified        fu=(*func)(u); 
            the contribution of an exact death to the likelihood. This new      } else if ((*cx-u)*(u-ulim) > 0.0) { 
            contribution is smaller and very dependent of the step unit        fu=(*func)(u); 
            stepm. It is no more the probability to die between last interview        if (fu < *fc) { 
            and month of death but the probability to survive from last          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
            interview up to one month before death multiplied by the            SHFT(*fb,*fc,fu,(*func)(u)) 
            probability to die within a month. Thanks to Chris            } 
            Jackson for correcting this bug.  Former versions increased      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
            mortality artificially. The bad side is that we add another loop        u=ulim; 
            which slows down the processing. The difference can be up to 10%        fu=(*func)(u); 
            lower mortality.      } else { 
         */        u=(*cx)+GOLD*(*cx-*bx); 
         lli=log(out[s1][s2] - savm[s1][s2]);        fu=(*func)(u); 
       }else{      } 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */      SHFT(*ax,*bx,*cx,u) 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        SHFT(*fa,*fb,*fc,fu) 
       }        } 
       ipmx +=1;  } 
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*************** linmin ************************/
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  
     } /* end of wave */  int ncom; 
   } /* end of individual */  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];   
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  { 
   /*exit(0);*/    double brent(double ax, double bx, double cx, 
   return -l;                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                 double *fc, double (*func)(double)); 
 /*********** Maximum Likelihood Estimation ***************/    int j; 
     double xx,xmin,bx,ax; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    double fx,fb,fa;
 {   
   int i,j, iter;    ncom=n; 
   double **xi,*delti;    pcom=vector(1,n); 
   double fret;    xicom=vector(1,n); 
   xi=matrix(1,npar,1,npar);    nrfunc=func; 
   for (i=1;i<=npar;i++)    for (j=1;j<=n;j++) { 
     for (j=1;j<=npar;j++)      pcom[j]=p[j]; 
       xi[i][j]=(i==j ? 1.0 : 0.0);      xicom[j]=xi[j]; 
   printf("Powell\n");    } 
   powell(p,xi,npar,ftol,&iter,&fret,func);    ax=0.0; 
     xx=1.0; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
 }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /**** Computes Hessian and covariance matrix ***/  #endif
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    for (j=1;j<=n;j++) { 
 {      xi[j] *= xmin; 
   double  **a,**y,*x,pd;      p[j] += xi[j]; 
   double **hess;    } 
   int i, j,jk;    free_vector(xicom,1,n); 
   int *indx;    free_vector(pcom,1,n); 
   } 
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  char *asc_diff_time(long time_sec, char ascdiff[])
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   hess=matrix(1,npar,1,npar);    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
   printf("\nCalculation of the hessian matrix. Wait...\n");    sec_left = (sec_left) %(60*60);
   for (i=1;i<=npar;i++){    minutes = (sec_left) /60;
     printf("%d",i);fflush(stdout);    sec_left = (sec_left) % (60);
     hess[i][i]=hessii(p,ftolhess,i,delti);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     /*printf(" %f ",p[i]);*/    return ascdiff;
     /*printf(" %lf ",hess[i][i]);*/  }
   }  
    /*************** powell ************************/
   for (i=1;i<=npar;i++) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++)  {              double (*func)(double [])) 
       if (j>i) {  { 
         printf(".%d%d",i,j);fflush(stdout);    void linmin(double p[], double xi[], int n, double *fret, 
         hess[i][j]=hessij(p,delti,i,j);                double (*func)(double [])); 
         hess[j][i]=hess[i][j];        int i,ibig,j; 
         /*printf(" %lf ",hess[i][j]);*/    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
     }    double *xits;
   }    int niterf, itmp;
   printf("\n");  
     pt=vector(1,n); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    ptt=vector(1,n); 
      xit=vector(1,n); 
   a=matrix(1,npar,1,npar);    xits=vector(1,n); 
   y=matrix(1,npar,1,npar);    *fret=(*func)(p); 
   x=vector(1,npar);    for (j=1;j<=n;j++) pt[j]=p[j]; 
   indx=ivector(1,npar);    for (*iter=1;;++(*iter)) { 
   for (i=1;i<=npar;i++)      fp=(*fret); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      ibig=0; 
   ludcmp(a,npar,indx,&pd);      del=0.0; 
       last_time=curr_time;
   for (j=1;j<=npar;j++) {      (void) gettimeofday(&curr_time,&tzp);
     for (i=1;i<=npar;i++) x[i]=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     x[j]=1;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     lubksb(a,npar,indx,x);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     for (i=1;i<=npar;i++){     for (i=1;i<=n;i++) {
       matcov[i][j]=x[i];        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
       }
   printf("\n#Hessian matrix#\n");      printf("\n");
   for (i=1;i<=npar;i++) {      fprintf(ficlog,"\n");
     for (j=1;j<=npar;j++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
       printf("%.3e ",hess[i][j]);      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
     printf("\n");        strcpy(strcurr,asctime(&tm));
   }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
   /* Recompute Inverse */        itmp = strlen(strcurr);
   for (i=1;i<=npar;i++)        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          strcurr[itmp-1]='\0';
   ludcmp(a,npar,indx,&pd);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   /*  printf("\n#Hessian matrix recomputed#\n");        for(niterf=10;niterf<=30;niterf+=10){
           forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   for (j=1;j<=npar;j++) {          tmf = *localtime(&forecast_time.tv_sec);
     for (i=1;i<=npar;i++) x[i]=0;  /*      asctime_r(&tmf,strfor); */
     x[j]=1;          strcpy(strfor,asctime(&tmf));
     lubksb(a,npar,indx,x);          itmp = strlen(strfor);
     for (i=1;i<=npar;i++){          if(strfor[itmp-1]=='\n')
       y[i][j]=x[i];          strfor[itmp-1]='\0';
       printf("%.3e ",y[i][j]);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     printf("\n");        }
   }      }
   */      for (i=1;i<=n;i++) { 
         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   free_matrix(a,1,npar,1,npar);        fptt=(*fret); 
   free_matrix(y,1,npar,1,npar);  #ifdef DEBUG
   free_vector(x,1,npar);        printf("fret=%lf \n",*fret);
   free_ivector(indx,1,npar);        fprintf(ficlog,"fret=%lf \n",*fret);
   free_matrix(hess,1,npar,1,npar);  #endif
         printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 /*************** hessian matrix ****************/          del=fabs(fptt-(*fret)); 
 double hessii( double x[], double delta, int theta, double delti[])          ibig=i; 
 {        } 
   int i;  #ifdef DEBUG
   int l=1, lmax=20;        printf("%d %.12e",i,(*fret));
   double k1,k2;        fprintf(ficlog,"%d %.12e",i,(*fret));
   double p2[NPARMAX+1];        for (j=1;j<=n;j++) {
   double res;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          printf(" x(%d)=%.12e",j,xit[j]);
   double fx;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int k=0,kmax=10;        }
   double l1;        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
   fx=func(x);          fprintf(ficlog," p=%.12e",p[j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];        }
   for(l=0 ; l <=lmax; l++){        printf("\n");
     l1=pow(10,l);        fprintf(ficlog,"\n");
     delts=delt;  #endif
     for(k=1 ; k <kmax; k=k+1){      } 
       delt = delta*(l1*k);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       p2[theta]=x[theta] +delt;  #ifdef DEBUG
       k1=func(p2)-fx;        int k[2],l;
       p2[theta]=x[theta]-delt;        k[0]=1;
       k2=func(p2)-fx;        k[1]=-1;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        printf("Max: %.12e",(*func)(p));
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        fprintf(ficlog,"Max: %.12e",(*func)(p));
              for (j=1;j<=n;j++) {
 #ifdef DEBUG          printf(" %.12e",p[j]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          fprintf(ficlog," %.12e",p[j]);
 #endif        }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        printf("\n");
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        fprintf(ficlog,"\n");
         k=kmax;        for(l=0;l<=1;l++) {
       }          for (j=1;j<=n;j++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         k=kmax; l=lmax*10.;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          }
         delts=delt;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     }        }
   }  #endif
   delti[theta]=delts;  
   return res;  
          free_vector(xit,1,n); 
 }        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 double hessij( double x[], double delti[], int thetai,int thetaj)        free_vector(pt,1,n); 
 {        return; 
   int i;      } 
   int l=1, l1, lmax=20;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double k1,k2,k3,k4,res,fx;      for (j=1;j<=n;j++) { 
   double p2[NPARMAX+1];        ptt[j]=2.0*p[j]-pt[j]; 
   int k;        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   fx=func(x);      } 
   for (k=1; k<=2; k++) {      fptt=(*func)(ptt); 
     for (i=1;i<=npar;i++) p2[i]=x[i];      if (fptt < fp) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        if (t < 0.0) { 
     k1=func(p2)-fx;          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;            xi[j][ibig]=xi[j][n]; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            xi[j][n]=xit[j]; 
     k2=func(p2)-fx;          }
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     k3=func(p2)-fx;          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
     p2[thetai]=x[thetai]-delti[thetai]/k;            fprintf(ficlog," %.12e",xit[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          }
     k4=func(p2)-fx;          printf("\n");
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          fprintf(ficlog,"\n");
 #ifdef DEBUG  #endif
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
 #endif      } 
   }    } 
   return res;  } 
 }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int i,imax,j,k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double big,dum,sum,temp;       matrix by transitions matrix until convergence is reached */
   double *vv;  
      int i, ii,j,k;
   vv=vector(1,n);    double min, max, maxmin, maxmax,sumnew=0.;
   *d=1.0;    double **matprod2();
   for (i=1;i<=n;i++) {    double **out, cov[NCOVMAX], **pmij();
     big=0.0;    double **newm;
     for (j=1;j<=n;j++)    double agefin, delaymax=50 ; /* Max number of years to converge */
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for (ii=1;ii<=nlstate+ndeath;ii++)
     vv[i]=1.0/big;      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {  
       sum=a[i][j];     cov[1]=1.;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     big=0.0;      newm=savm;
     for (i=j;i<=n;i++) {      /* Covariates have to be included here again */
       sum=a[i][j];       cov[2]=agefin;
       for (k=1;k<j;k++)    
         sum -= a[i][k]*a[k][j];        for (k=1; k<=cptcovn;k++) {
       a[i][j]=sum;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       if ( (dum=vv[i]*fabs(sum)) >= big) {          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         big=dum;        }
         imax=i;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       }        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     if (j != imax) {  
       for (k=1;k<=n;k++) {        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         dum=a[imax][k];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         a[imax][k]=a[j][k];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         a[j][k]=dum;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       }  
       *d = -(*d);      savm=oldm;
       vv[imax]=vv[j];      oldm=newm;
     }      maxmax=0.;
     indx[j]=imax;      for(j=1;j<=nlstate;j++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        min=1.;
     if (j != n) {        max=0.;
       dum=1.0/(a[j][j]);        for(i=1; i<=nlstate; i++) {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   free_vector(vv,1,n);  /* Doesn't work */          max=FMAX(max,prlim[i][j]);
 ;          min=FMIN(min,prlim[i][j]);
 }        }
         maxmin=max-min;
 void lubksb(double **a, int n, int *indx, double b[])        maxmax=FMAX(maxmax,maxmin);
 {      }
   int i,ii=0,ip,j;      if(maxmax < ftolpl){
   double sum;        return prlim;
        }
   for (i=1;i<=n;i++) {    }
     ip=indx[i];  }
     sum=b[ip];  
     b[ip]=b[i];  /*************** transition probabilities ***************/ 
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     else if (sum) ii=i;  {
     b[i]=sum;    double s1, s2;
   }    /*double t34;*/
   for (i=n;i>=1;i--) {    int i,j,j1, nc, ii, jj;
     sum=b[i];  
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for(i=1; i<= nlstate; i++){
     b[i]=sum/a[i][i];        for(j=1; j<i;j++){
   }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }            /*s2 += param[i][j][nc]*cov[nc];*/
             s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /************ Frequencies ********************/  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          }
 {  /* Some frequencies */          ps[i][j]=s2;
    /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   double ***freq; /* Frequencies */        for(j=i+1; j<=nlstate+ndeath;j++){
   double *pp;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double pos, k2, dateintsum=0,k2cpt=0;            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   FILE *ficresp;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   char fileresp[FILENAMELENGTH];          }
            ps[i][j]=s2;
   pp=vector(1,nlstate);        }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   strcpy(fileresp,"p");      /*ps[3][2]=1;*/
   strcat(fileresp,fileres);      
   if((ficresp=fopen(fileresp,"w"))==NULL) {      for(i=1; i<= nlstate; i++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);        s1=0;
     exit(0);        for(j=1; j<i; j++)
   }          s1+=exp(ps[i][j]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(j=i+1; j<=nlstate+ndeath; j++)
   j1=0;          s1+=exp(ps[i][j]);
          ps[i][i]=1./(s1+1.);
   j=cptcoveff;        for(j=1; j<i; j++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(j=i+1; j<=nlstate+ndeath; j++)
   for(k1=1; k1<=j;k1++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       j1++;      } /* end i */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      
         scanf("%d", i);*/      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       for (i=-1; i<=nlstate+ndeath; i++)          for(jj=1; jj<= nlstate+ndeath; jj++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            ps[ii][jj]=0;
           for(m=agemin; m <= agemax+3; m++)          ps[ii][ii]=1;
             freq[i][jk][m]=0;        }
            }
       dateintsum=0;      
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         bool=1;  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
         if  (cptcovn>0) {  /*         printf("ddd %lf ",ps[ii][jj]); */
           for (z1=1; z1<=cptcoveff; z1++)  /*       } */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*       printf("\n "); */
               bool=0;  /*        } */
         }  /*        printf("\n ");printf("%lf ",cov[2]); */
         if (bool==1) {         /*
           for(m=firstpass; m<=lastpass; m++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
             k2=anint[m][i]+(mint[m][i]/12.);        goto end;*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      return ps;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  }
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  /**************** Product of 2 matrices ******************/
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
               }  {
                  /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                 dateintsum=dateintsum+k2;    /* in, b, out are matrice of pointers which should have been initialized 
                 k2cpt++;       before: only the contents of out is modified. The function returns
               }       a pointer to pointers identical to out */
             }    long i, j, k;
           }    for(i=nrl; i<= nrh; i++)
         }      for(k=ncolol; k<=ncoloh; k++)
       }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
                  out[i][k] +=in[i][j]*b[j][k];
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     return out;
       if  (cptcovn>0) {  }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");  /************* Higher Matrix Product ***************/
       }  
       for(i=1; i<=nlstate;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  {
       fprintf(ficresp, "\n");    /* Computes the transition matrix starting at age 'age' over 
             'nhstepm*hstepm*stepm' months (i.e. until
       for(i=(int)agemin; i <= (int)agemax+3; i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         if(i==(int)agemax+3)       nhstepm*hstepm matrices. 
           printf("Total");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         else       (typically every 2 years instead of every month which is too big 
           printf("Age %d", i);       for the memory).
         for(jk=1; jk <=nlstate ; jk++){       Model is determined by parameters x and covariates have to be 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       included manually here. 
             pp[jk] += freq[jk][m][i];  
         }       */
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    int i, j, d, h, k;
             pos += freq[jk][m][i];    double **out, cov[NCOVMAX];
           if(pp[jk]>=1.e-10)    double **newm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           else    /* Hstepm could be zero and should return the unit matrix */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
         for(jk=1; jk <=nlstate ; jk++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      }
             pp[jk] += freq[jk][m][i];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)        newm=savm;
           pos += pp[jk];        /* Covariates have to be included here again */
         for(jk=1; jk <=nlstate ; jk++){        cov[1]=1.;
           if(pos>=1.e-5)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           else        for (k=1; k<=cptcovage;k++)
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           if( i <= (int) agemax){        for (k=1; k<=cptcovprod;k++)
             if(pos>=1.e-5){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
             }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
             else        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           }        savm=oldm;
         }        oldm=newm;
              }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for(i=1; i<=nlstate+ndeath; i++)
           for(m=-1; m <=nlstate+ndeath; m++)        for(j=1;j<=nlstate+ndeath;j++) {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          po[i][j][h]=newm[i][j];
         if(i <= (int) agemax)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           fprintf(ficresp,"\n");           */
         printf("\n");        }
       }    } /* end h */
     }    return po;
   }  }
   dateintmean=dateintsum/k2cpt;  
    
   fclose(ficresp);  /*************** log-likelihood *************/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  double func( double *x)
   free_vector(pp,1,nlstate);  {
      int i, ii, j, k, mi, d, kk;
   /* End of Freq */    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 }    double **out;
     double sw; /* Sum of weights */
 /************ Prevalence ********************/    double lli; /* Individual log likelihood */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    int s1, s2;
 {  /* Some frequencies */    double bbh, survp;
      long ipmx;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /*extern weight */
   double ***freq; /* Frequencies */    /* We are differentiating ll according to initial status */
   double *pp;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double pos, k2;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   pp=vector(1,nlstate);    */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    cov[1]=1.;
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   j1=0;  
      if(mle==1){
   j=cptcoveff;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
  for(k1=1; k1<=j;k1++){          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i1=1; i1<=ncodemax[k1];i1++){            for (j=1;j<=nlstate+ndeath;j++){
       j1++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)              }
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for(d=0; d<dh[mi][i]; d++){
           for(m=agemin; m <= agemax+3; m++)            newm=savm;
             freq[i][jk][m]=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                  for (kk=1; kk<=cptcovage;kk++) {
       for (i=1; i<=imx; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         bool=1;            }
         if  (cptcovn>0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for (z1=1; z1<=cptcoveff; z1++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            savm=oldm;
               bool=0;            oldm=newm;
         }          } /* end mult */
         if (bool==1) {        
           for(m=firstpass; m<=lastpass; m++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
             k2=anint[m][i]+(mint[m][i]/12.);          /* But now since version 0.9 we anticipate for bias at large stepm.
             if ((k2>=dateprev1) && (k2<=dateprev2)) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
               if(agev[m][i]==0) agev[m][i]=agemax+1;           * (in months) between two waves is not a multiple of stepm, we rounded to 
               if(agev[m][i]==1) agev[m][i]=agemax+2;           * the nearest (and in case of equal distance, to the lowest) interval but now
               if (m<lastpass)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
               else           * probability in order to take into account the bias as a fraction of the way
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];           * -stepm/2 to stepm/2 .
             }           * For stepm=1 the results are the same as for previous versions of Imach.
           }           * For stepm > 1 the results are less biased than in previous versions. 
         }           */
       }          s1=s[mw[mi][i]][i];
         for(i=(int)agemin; i <= (int)agemax+3; i++){          s2=s[mw[mi+1][i]][i];
           for(jk=1; jk <=nlstate ; jk++){          bbh=(double)bh[mi][i]/(double)stepm; 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /* bias bh is positive if real duration
               pp[jk] += freq[jk][m][i];           * is higher than the multiple of stepm and negative otherwise.
           }           */
           for(jk=1; jk <=nlstate ; jk++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
             for(m=-1, pos=0; m <=0 ; m++)          if( s2 > nlstate){ 
             pos += freq[jk][m][i];            /* i.e. if s2 is a death state and if the date of death is known 
         }               then the contribution to the likelihood is the probability to 
                       die between last step unit time and current  step unit time, 
          for(jk=1; jk <=nlstate ; jk++){               which is also equal to probability to die before dh 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)               minus probability to die before dh-stepm . 
              pp[jk] += freq[jk][m][i];               In version up to 0.92 likelihood was computed
          }          as if date of death was unknown. Death was treated as any other
                    health state: the date of the interview describes the actual state
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
          for(jk=1; jk <=nlstate ; jk++){                    (healthy, disable or death) and IMaCh was corrected; but when we
            if( i <= (int) agemax){          introduced the exact date of death then we should have modified
              if(pos>=1.e-5){          the contribution of an exact death to the likelihood. This new
                probs[i][jk][j1]= pp[jk]/pos;          contribution is smaller and very dependent of the step unit
              }          stepm. It is no more the probability to die between last interview
            }          and month of death but the probability to survive from last
          }          interview up to one month before death multiplied by the
                    probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
     }          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
           lower mortality.
              */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(pp,1,nlstate);  
    
 }  /* End of Freq */          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
 /************* Waves Concatenation ***************/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            lli= log(survp);
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          
      Death is a valid wave (if date is known).          else if  (s2==-4) { 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            for (j=3,survp=0. ; j<=nlstate; j++)  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and mw[mi+1][i]. dh depends on stepm.            lli= log(survp); 
      */          } 
   
   int i, mi, m;          else if  (s2==-5) { 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (j=1,survp=0. ; j<=2; j++)  
      double sum=0., jmean=0.;*/              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   int j, k=0,jk, ju, jl;          } 
   double sum=0.;          
   jmin=1e+5;          else{
   jmax=-1;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   jmean=0.;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   for(i=1; i<=imx; i++){          } 
     mi=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     m=firstpass;          /*if(lli ==000.0)*/
     while(s[m][i] <= nlstate){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       if(s[m][i]>=1)          ipmx +=1;
         mw[++mi][i]=m;          sw += weight[i];
       if(m >=lastpass)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         break;        } /* end of wave */
       else      } /* end of individual */
         m++;    }  else if(mle==2){
     }/* end while */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (s[m][i] > nlstate){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       mi++;     /* Death is another wave */        for(mi=1; mi<= wav[i]-1; mi++){
       /* if(mi==0)  never been interviewed correctly before death */          for (ii=1;ii<=nlstate+ndeath;ii++)
          /* Only death is a correct wave */            for (j=1;j<=nlstate+ndeath;j++){
       mw[mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     wav[i]=mi;          for(d=0; d<=dh[mi][i]; d++){
     if(mi==0)            newm=savm;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(i=1; i<=imx; i++){            }
     for(mi=1; mi<wav[i];mi++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (stepm <=0)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dh[mi][i]=1;            savm=oldm;
       else{            oldm=newm;
         if (s[mw[mi+1][i]][i] > nlstate) {          } /* end mult */
           if (agedc[i] < 2*AGESUP) {        
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          s1=s[mw[mi][i]][i];
           if(j==0) j=1;  /* Survives at least one month after exam */          s2=s[mw[mi+1][i]][i];
           k=k+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           if (j >= jmax) jmax=j;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if (j <= jmin) jmin=j;          ipmx +=1;
           sum=sum+j;          sw += weight[i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         }      } /* end of individual */
         else{    }  else if(mle==3){  /* exponential inter-extrapolation */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           k=k+1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if (j >= jmax) jmax=j;        for(mi=1; mi<= wav[i]-1; mi++){
           else if (j <= jmin)jmin=j;          for (ii=1;ii<=nlstate+ndeath;ii++)
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            for (j=1;j<=nlstate+ndeath;j++){
           sum=sum+j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         jk= j/stepm;            }
         jl= j -jk*stepm;          for(d=0; d<dh[mi][i]; d++){
         ju= j -(jk+1)*stepm;            newm=savm;
         if(jl <= -ju)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=jk;            for (kk=1; kk<=cptcovage;kk++) {
         else              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           dh[mi][i]=jk+1;            }
         if(dh[mi][i]==0)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=1; /* At least one step */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
   }          } /* end mult */
   jmean=sum/k;        
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          s1=s[mw[mi][i]][i];
  }          s2=s[mw[mi+1][i]][i];
 /*********** Tricode ****************************/          bbh=(double)bh[mi][i]/(double)stepm; 
 void tricode(int *Tvar, int **nbcode, int imx)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 {          ipmx +=1;
   int Ndum[20],ij=1, k, j, i;          sw += weight[i];
   int cptcode=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   cptcoveff=0;        } /* end of wave */
        } /* end of individual */
   for (k=0; k<19; k++) Ndum[k]=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<=imx; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       ij=(int)(covar[Tvar[j]][i]);            for (j=1;j<=nlstate+ndeath;j++){
       Ndum[ij]++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;            }
     }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for (i=0; i<=cptcode; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;            for (kk=1; kk<=cptcovage;kk++) {
     }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     ij=1;            }
           
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=19; k++) {            savm=oldm;
         if (Ndum[k] != 0) {            oldm=newm;
           nbcode[Tvar[j]][ij]=k;          } /* end mult */
                  
           ij++;          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
         if (ij > ncodemax[j]) break;          if( s2 > nlstate){ 
       }              lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
   }              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }
  for (k=0; k<19; k++) Ndum[k]=0;          ipmx +=1;
           sw += weight[i];
  for (i=1; i<=ncovmodel-2; i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       ij=Tvar[i];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       Ndum[ij]++;        } /* end of wave */
     }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
  ij=1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (i=1; i<=10; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    if((Ndum[i]!=0) && (i<=ncovcol)){        for(mi=1; mi<= wav[i]-1; mi++){
      Tvaraff[ij]=i;          for (ii=1;ii<=nlstate+ndeath;ii++)
      ij++;            for (j=1;j<=nlstate+ndeath;j++){
    }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     cptcoveff=ij-1;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Health Expectancies ****************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            }
           
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            savm=oldm;
   double age, agelim, hf;            oldm=newm;
   double ***p3mat,***varhe;          } /* end mult */
   double **dnewm,**doldm;        
   double *xp;          s1=s[mw[mi][i]][i];
   double **gp, **gm;          s2=s[mw[mi+1][i]][i];
   double ***gradg, ***trgradg;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int theta;          ipmx +=1;
           sw += weight[i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   xp=vector(1,npar);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   dnewm=matrix(1,nlstate*2,1,npar);        } /* end of wave */
   doldm=matrix(1,nlstate*2,1,nlstate*2);      } /* end of individual */
      } /* End of if */
   fprintf(ficreseij,"# Health expectancies\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficreseij,"# Age");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(i=1; i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(j=1; j<=nlstate;j++)    return -l;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  }
   fprintf(ficreseij,"\n");  
   /*************** log-likelihood *************/
   if(estepm < stepm){  double funcone( double *x)
     printf ("Problem %d lower than %d\n",estepm, stepm);  {
   }    /* Same as likeli but slower because of a lot of printf and if */
   else  hstepm=estepm;      int i, ii, j, k, mi, d, kk;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double l, ll[NLSTATEMAX], cov[NCOVMAX];
    * This is mainly to measure the difference between two models: for example    double **out;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double lli; /* Individual log likelihood */
    * we are calculating an estimate of the Life Expectancy assuming a linear    double llt;
    * progression inbetween and thus overestimating or underestimating according    int s1, s2;
    * to the curvature of the survival function. If, for the same date, we    double bbh, survp;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    /*extern weight */
    * to compare the new estimate of Life expectancy with the same linear    /* We are differentiating ll according to initial status */
    * hypothesis. A more precise result, taking into account a more precise    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
    * curvature will be obtained if estepm is as small as stepm. */    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   /* For example we decided to compute the life expectancy with the smallest unit */    */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    cov[1]=1.;
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.    for(k=1; k<=nlstate; k++) ll[k]=0.;
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      survival function given by stepm (the optimization length). Unfortunately it      for(mi=1; mi<= wav[i]-1; mi++){
      means that if the survival funtion is printed only each two years of age and if        for (ii=1;ii<=nlstate+ndeath;ii++)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for (j=1;j<=nlstate+ndeath;j++){
      results. So we changed our mind and took the option of the best precision.            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
         for(d=0; d<dh[mi][i]; d++){
   agelim=AGESUP;          newm=savm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* nhstepm age range expressed in number of stepm */          for (kk=1; kk<=cptcovage;kk++) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          }
     /* if (stepm >= YEARM) hstepm=1;*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          savm=oldm;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          oldm=newm;
     gp=matrix(0,nhstepm,1,nlstate*2);        } /* end mult */
     gm=matrix(0,nhstepm,1,nlstate*2);        
         s1=s[mw[mi][i]][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        s2=s[mw[mi+1][i]][i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        bbh=(double)bh[mi][i]/(double)stepm; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
          */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     /* Computing Variances of health expectancies */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
      for(theta=1; theta <=npar; theta++){            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(i=1; i<=npar; i++){          lli= log(survp);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } else if(mle==2){
            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       cptj=0;        } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<= nlstate; j++){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1; i<=nlstate; i++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           cptj=cptj+1;          lli=log(out[s1][s2]); /* Original formula */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          lli=log(out[s1][s2]); /* Original formula */
           }        } /* End of if */
         }        ipmx +=1;
       }        sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++)        if(globpr){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     %11.6f %11.6f %11.6f ", \
                        num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       cptj=0;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(j=1; j<= nlstate; j++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(i=1;i<=nlstate;i++){            llt +=ll[k]*gipmx/gsw;
           cptj=cptj+1;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          fprintf(ficresilk," %10.6f\n", -llt);
           }        }
         }      } /* end of wave */
       }    } /* end of individual */
          for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(j=1; j<= nlstate*2; j++)    if(globpr==0){ /* First time we count the contributions and weights */
         for(h=0; h<=nhstepm-1; h++){      gipmx=ipmx;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      gsw=sw;
         }    }
     return -l;
      }  }
      
 /* End theta */  
   /*************** function likelione ***********/
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   {
      for(h=0; h<=nhstepm-1; h++)    /* This routine should help understanding what is done with 
       for(j=1; j<=nlstate*2;j++)       the selection of individuals/waves and
         for(theta=1; theta <=npar; theta++)       to check the exact contribution to the likelihood.
         trgradg[h][j][theta]=gradg[h][theta][j];       Plotting could be done.
      */
     int k;
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         varhe[i][j][(int)age] =0.;      strcpy(fileresilk,"ilk"); 
       strcat(fileresilk,fileres);
     for(h=0;h<=nhstepm-1;h++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(k=0;k<=nhstepm-1;k++){        printf("Problem with resultfile: %s\n", fileresilk);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      }
         for(i=1;i<=nlstate*2;i++)      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           for(j=1;j<=nlstate*2;j++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
          }
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    *fretone=(*funcone)(p);
       for(j=1; j<=nlstate;j++)    if(*globpri !=0){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      fclose(ficresilk);
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                fflush(fichtm); 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    } 
     return;
         }  }
   
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;  /*********** Maximum Likelihood Estimation ***************/
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         cptj++;  {
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    int i,j, iter;
       }    double **xi;
     fprintf(ficreseij,"\n");    double fret;
        double fretone; /* Only one call to likelihood */
     free_matrix(gm,0,nhstepm,1,nlstate*2);    /*  char filerespow[FILENAMELENGTH];*/
     free_matrix(gp,0,nhstepm,1,nlstate*2);    xi=matrix(1,npar,1,npar);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    for (i=1;i<=npar;i++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (j=1;j<=npar;j++)
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   free_vector(xp,1,npar);    strcpy(filerespow,"pow"); 
   free_matrix(dnewm,1,nlstate*2,1,npar);    strcat(filerespow,fileres);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      printf("Problem with resultfile: %s\n", filerespow);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
 /************ Variance ******************/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)    for (i=1;i<=nlstate;i++)
 {      for(j=1;j<=nlstate+ndeath;j++)
   /* Variance of health expectancies */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficrespow,"\n");
   double **newm;  
   double **dnewm,**doldm;    powell(p,xi,npar,ftol,&iter,&fret,func);
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    free_matrix(xi,1,npar,1,npar);
   double *xp;    fclose(ficrespow);
   double **gp, **gm;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   double ***gradg, ***trgradg;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double ***p3mat;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double age,agelim, hf;  
   int theta;  }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");  /**** Computes Hessian and covariance matrix ***/
   fprintf(ficresvij,"# Age");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    double  **a,**y,*x,pd;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    double **hess;
   fprintf(ficresvij,"\n");    int i, j,jk;
     int *indx;
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   doldm=matrix(1,nlstate,1,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   if(estepm < stepm){    void ludcmp(double **a, int npar, int *indx, double *d) ;
     printf ("Problem %d lower than %d\n",estepm, stepm);    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   else  hstepm=estepm;    
   /* For example we decided to compute the life expectancy with the smallest unit */    printf("\nCalculation of the hessian matrix. Wait...\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
      nhstepm is the number of hstepm from age to agelim    for (i=1;i<=npar;i++){
      nstepm is the number of stepm from age to agelin.      printf("%d",i);fflush(stdout);
      Look at hpijx to understand the reason of that which relies in memory size      fprintf(ficlog,"%d",i);fflush(ficlog);
      and note for a fixed period like k years */     
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
      survival function given by stepm (the optimization length). Unfortunately it      
      means that if the survival funtion is printed only each two years of age and if      /*  printf(" %f ",p[i]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      results. So we changed our mind and took the option of the best precision.    }
   */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=npar;i++) {
   agelim = AGESUP;      for (j=1;j<=npar;j++)  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if (j>i) { 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          printf(".%d%d",i,j);fflush(stdout);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          
     gp=matrix(0,nhstepm,1,nlstate);          hess[j][i]=hess[i][j];    
     gm=matrix(0,nhstepm,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
         }
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n");
       }    fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       if (popbased==1) {    
         for(i=1; i<=nlstate;i++)    a=matrix(1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    y=matrix(1,npar,1,npar);
       }    x=vector(1,npar);
      indx=ivector(1,npar);
       for(j=1; j<= nlstate; j++){    for (i=1;i<=npar;i++)
         for(h=0; h<=nhstepm; h++){      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    for (j=1;j<=npar;j++) {
       }      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
       for(i=1; i<=npar; i++) /* Computes gradient */      lubksb(a,npar,indx,x);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          matcov[i][j]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
      }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    printf("\n#Hessian matrix#\n");
           prlim[i][i]=probs[(int)age][i][ij];    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
       for(j=1; j<= nlstate; j++){        printf("%.3e ",hess[i][j]);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"%.3e ",hess[i][j]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
   
       for(j=1; j<= nlstate; j++)    /* Recompute Inverse */
         for(h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
     } /* End theta */  
     /*  printf("\n#Hessian matrix recomputed#\n");
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     for (j=1;j<=npar;j++) {
     for(h=0; h<=nhstepm; h++)      for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<=nlstate;j++)      x[j]=1;
         for(theta=1; theta <=npar; theta++)      lubksb(a,npar,indx,x);
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1;i<=npar;i++){ 
         y[i][j]=x[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        printf("%.3e ",y[i][j]);
     for(i=1;i<=nlstate;i++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(j=1;j<=nlstate;j++)      }
         vareij[i][j][(int)age] =0.;      printf("\n");
       fprintf(ficlog,"\n");
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){    */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    free_matrix(a,1,npar,1,npar);
         for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
           for(j=1;j<=nlstate;j++)    free_vector(x,1,npar);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
     }  
   
     fprintf(ficresvij,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  /*************** hessian matrix ****************/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       }  {
     fprintf(ficresvij,"\n");    int i;
     free_matrix(gp,0,nhstepm,1,nlstate);    int l=1, lmax=20;
     free_matrix(gm,0,nhstepm,1,nlstate);    double k1,k2;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double p2[NPARMAX+1];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double res;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   } /* End age */    double fx;
      int k=0,kmax=10;
   free_vector(xp,1,npar);    double l1;
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
 }    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
 /************ Variance of prevlim ******************/      delts=delt;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(k=1 ; k <kmax; k=k+1){
 {        delt = delta*(l1*k);
   /* Variance of prevalence limit */        p2[theta]=x[theta] +delt;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        k1=func(p2)-fx;
   double **newm;        p2[theta]=x[theta]-delt;
   double **dnewm,**doldm;        k2=func(p2)-fx;
   int i, j, nhstepm, hstepm;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   int k, cptcode;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   double *xp;        
   double *gp, *gm;  #ifdef DEBUG
   double **gradg, **trgradg;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double age,agelim;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int theta;  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficresvpl,"# Age");          k=kmax;
   for(i=1; i<=nlstate;i++)        }
       fprintf(ficresvpl," %1d-%1d",i,i);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   fprintf(ficresvpl,"\n");          k=kmax; l=lmax*10.;
         }
   xp=vector(1,npar);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   dnewm=matrix(1,nlstate,1,npar);          delts=delt;
   doldm=matrix(1,nlstate,1,nlstate);        }
        }
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    delti[theta]=delts;
   agelim = AGESUP;    return res; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     gradg=matrix(1,npar,1,nlstate);  {
     gp=vector(1,nlstate);    int i;
     gm=vector(1,nlstate);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
     for(theta=1; theta <=npar; theta++){    double p2[NPARMAX+1];
       for(i=1; i<=npar; i++){ /* Computes gradient */    int k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    fx=func(x);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (k=1; k<=2; k++) {
       for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++) p2[i]=x[i];
         gp[i] = prlim[i][i];      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<=npar; i++) /* Computes gradient */      k1=func(p2)-fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1;i<=nlstate;i++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         gm[i] = prlim[i][i];      k2=func(p2)-fx;
     
       for(i=1;i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     } /* End theta */      k3=func(p2)-fx;
     
     trgradg =matrix(1,nlstate,1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(j=1; j<=nlstate;j++)      k4=func(p2)-fx;
       for(theta=1; theta <=npar; theta++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         trgradg[j][theta]=gradg[theta][j];  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       varpl[i][(int)age] =0.;  #endif
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    return res;
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   /************** Inverse of matrix **************/
     fprintf(ficresvpl,"%.0f ",age );  void ludcmp(double **a, int n, int *indx, double *d) 
     for(i=1; i<=nlstate;i++)  { 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int i,imax,j,k; 
     fprintf(ficresvpl,"\n");    double big,dum,sum,temp; 
     free_vector(gp,1,nlstate);    double *vv; 
     free_vector(gm,1,nlstate);   
     free_matrix(gradg,1,npar,1,nlstate);    vv=vector(1,n); 
     free_matrix(trgradg,1,nlstate,1,npar);    *d=1.0; 
   } /* End age */    for (i=1;i<=n;i++) { 
       big=0.0; 
   free_vector(xp,1,npar);      for (j=1;j<=n;j++) 
   free_matrix(doldm,1,nlstate,1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   free_matrix(dnewm,1,nlstate,1,nlstate);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
 }    } 
     for (j=1;j<=n;j++) { 
 /************ Variance of one-step probabilities  ******************/      for (i=1;i<j;i++) { 
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        sum=a[i][j]; 
 {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int i, j, i1, k1, j1, z1;        a[i][j]=sum; 
   int k=0, cptcode;      } 
   double **dnewm,**doldm;      big=0.0; 
   double *xp;      for (i=j;i<=n;i++) { 
   double *gp, *gm;        sum=a[i][j]; 
   double **gradg, **trgradg;        for (k=1;k<j;k++) 
   double age,agelim, cov[NCOVMAX];          sum -= a[i][k]*a[k][j]; 
   int theta;        a[i][j]=sum; 
   char fileresprob[FILENAMELENGTH];        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
   strcpy(fileresprob,"prob");          imax=i; 
   strcat(fileresprob,fileres);        } 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      } 
     printf("Problem with resultfile: %s\n", fileresprob);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");          a[j][k]=dum; 
   fprintf(ficresprob,"# Age");        } 
   for(i=1; i<=nlstate;i++)        *d = -(*d); 
     for(j=1; j<=(nlstate+ndeath);j++)        vv[imax]=vv[j]; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      } 
       indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   fprintf(ficresprob,"\n");      if (j != n) { 
         dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   xp=vector(1,npar);      } 
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    } 
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    free_vector(vv,1,n);  /* Doesn't work */
    ;
   cov[1]=1;  } 
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  void lubksb(double **a, int n, int *indx, double b[]) 
   j1=0;  { 
   for(k1=1; k1<=1;k1++){    int i,ii=0,ip,j; 
     for(i1=1; i1<=ncodemax[k1];i1++){    double sum; 
     j1++;   
     for (i=1;i<=n;i++) { 
     if  (cptcovn>0) {      ip=indx[i]; 
       fprintf(ficresprob, "\n#********** Variable ");      sum=b[ip]; 
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      b[ip]=b[i]; 
       fprintf(ficresprob, "**********\n#");      if (ii) 
     }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          else if (sum) ii=i; 
       for (age=bage; age<=fage; age ++){      b[i]=sum; 
         cov[2]=age;    } 
         for (k=1; k<=cptcovn;k++) {    for (i=n;i>=1;i--) { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      sum=b[i]; 
                for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         }      b[i]=sum/a[i][i]; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    } 
         for (k=1; k<=cptcovprod;k++)  } 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
          void pstamp(FILE *fichier)
         gradg=matrix(1,npar,1,9);  {
         trgradg=matrix(1,9,1,npar);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  }
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
      /************ Frequencies ********************/
         for(theta=1; theta <=npar; theta++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
           for(i=1; i<=npar; i++)  {  /* Some frequencies */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    
              int i, m, jk, k1,i1, j1, bool, z1,z2,j;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int first;
              double ***freq; /* Frequencies */
           k=0;    double *pp, **prop;
           for(i=1; i<= (nlstate+ndeath); i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             for(j=1; j<=(nlstate+ndeath);j++){    char fileresp[FILENAMELENGTH];
               k=k+1;    
               gp[k]=pmmij[i][j];    pp=vector(1,nlstate);
             }    prop=matrix(1,nlstate,iagemin,iagemax+3);
           }    strcpy(fileresp,"p");
              strcat(fileresp,fileres);
           for(i=1; i<=npar; i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      exit(0);
           k=0;    }
           for(i=1; i<=(nlstate+ndeath); i++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
             for(j=1; j<=(nlstate+ndeath);j++){    j1=0;
               k=k+1;    
               gm[k]=pmmij[i][j];    j=cptcoveff;
             }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           }  
          first=1;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      for(k1=1; k1<=j;k1++){
         }      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for(theta=1; theta <=npar; theta++)          scanf("%d", i);*/
             trgradg[j][theta]=gradg[theta][j];        for (i=-5; i<=nlstate+ndeath; i++)  
                  for (jk=-5; jk<=nlstate+ndeath; jk++)  
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            for(m=iagemin; m <= iagemax+3; m++)
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);              freq[i][jk][m]=0;
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);      for (i=1; i<=nlstate; i++)  
                for(m=iagemin; m <= iagemax+3; m++)
         k=0;          prop[i][m]=0;
         for(i=1; i<=(nlstate+ndeath); i++){        
           for(j=1; j<=(nlstate+ndeath);j++){        dateintsum=0;
             k=k+1;        k2cpt=0;
             gm[k]=pmmij[i][j];        for (i=1; i<=imx; i++) {
           }          bool=1;
         }          if  (cptcovn>0) {
                  for (z1=1; z1<=cptcoveff; z1++) 
      /*printf("\n%d ",(int)age);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                bool=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          }
      }*/          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
         fprintf(ficresprob,"\n%d ",(int)age);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
     }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   }                  dateintsum=dateintsum+k2;
   free_vector(xp,1,npar);                  k2cpt++;
   fclose(ficresprob);                }
                  /*}*/
 }            }
           }
 /******************* Printing html file ***********/        }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \         
  int lastpass, int stepm, int weightopt, char model[],\        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        pstamp(ficresp);
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        if  (cptcovn>0) {
  char version[], int popforecast, int estepm ){          fprintf(ficresp, "\n#********** Variable "); 
   int jj1, k1, i1, cpt;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   FILE *fichtm;          fprintf(ficresp, "**********\n#");
   /*char optionfilehtm[FILENAMELENGTH];*/        }
         for(i=1; i<=nlstate;i++) 
   strcpy(optionfilehtm,optionfile);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   strcat(optionfilehtm,".htm");        fprintf(ficresp, "\n");
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        
     printf("Problem with %s \n",optionfilehtm), exit(0);        for(i=iagemin; i <= iagemax+3; i++){
   }          if(i==iagemax+3){
             fprintf(ficlog,"Total");
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          }else{
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            if(first==1){
 \n              first=0;
 Total number of observations=%d <br>\n              printf("See log file for details...\n");
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            }
 <hr  size=\"2\" color=\"#EC5E5E\">            fprintf(ficlog,"Age %d", i);
  <ul><li>Outputs files<br>\n          }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          for(jk=1; jk <=nlstate ; jk++){
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              pp[jk] += freq[jk][m][i]; 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n          }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n          for(jk=1; jk <=nlstate ; jk++){
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
  fprintf(fichtm,"\n            if(pp[jk]>=1.e-10){
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n              if(first==1){
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              }
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            }else{
               if(first==1)
  if(popforecast==1) fprintf(fichtm,"\n                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            }
         <br>",fileres,fileres,fileres,fileres);          }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          for(jk=1; jk <=nlstate ; jk++){
 fprintf(fichtm," <li>Graphs</li><p>");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
  m=cptcoveff;          }       
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
  jj1=0;            posprop += prop[jk][i];
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){          for(jk=1; jk <=nlstate ; jk++){
        jj1++;            if(pos>=1.e-5){
        if (cptcovn > 0) {              if(first==1)
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
          for (cpt=1; cpt<=cptcoveff;cpt++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            }else{
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              if(first==1)
        }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                }
        for(cpt=1; cpt<nlstate;cpt++){            if( i <= iagemax){
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              if(pos>=1.e-5){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
        }                /*probs[i][jk][j1]= pp[jk]/pos;*/
     for(cpt=1; cpt<=nlstate;cpt++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              }
 interval) in state (%d): v%s%d%d.gif <br>              else
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      }            }
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
      }            for(m=-1; m <=nlstate+ndeath; m++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              if(freq[jk][m][i] !=0 ) {
 health expectancies in states (1) and (2): e%s%d.gif<br>              if(first==1)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 fprintf(fichtm,"\n</body>");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    }              }
    }          if(i <= iagemax)
 fclose(fichtm);            fprintf(ficresp,"\n");
 }          if(first==1)
             printf("Others in log...\n");
 /******************* Gnuplot file **************/          fprintf(ficlog,"\n");
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
       }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
     dateintmean=dateintsum/k2cpt; 
   strcpy(optionfilegnuplot,optionfilefiname);   
   strcat(optionfilegnuplot,".gp.txt");    fclose(ficresp);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     printf("Problem with file %s",optionfilegnuplot);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
 #ifdef windows  }
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  /************ Prevalence ********************/
 m=pow(2,cptcoveff);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
  /* 1eme*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   for (cpt=1; cpt<= nlstate ; cpt ++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
    for (k1=1; k1<= m ; k1 ++) {       We still use firstpass and lastpass as another selection.
     */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 for (i=1; i<= nlstate ; i ++) {    double ***freq; /* Frequencies */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *pp, **prop;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double pos,posprop; 
 }    double  y2; /* in fractional years */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int iagemin, iagemax;
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    iagemin= (int) agemin;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    iagemax= (int) agemax;
 }    /*pp=vector(1,nlstate);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      for (i=1; i<= nlstate ; i ++) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    j1=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      j=cptcoveff;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for(k1=1; k1<=j;k1++){
    }      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   /*2 eme*/        
         for (i=1; i<=nlstate; i++)  
   for (k1=1; k1<= m ; k1 ++) {          for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);            prop[i][m]=0.0;
           
     for (i=1; i<= nlstate+1 ; i ++) {        for (i=1; i<=imx; i++) { /* Each individual */
       k=2*i;          bool=1;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          if  (cptcovn>0) {
       for (j=1; j<= nlstate+1 ; j ++) {            for (z1=1; z1<=cptcoveff; z1++) 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                bool=0;
 }            } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          if (bool==1) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       for (j=1; j<= nlstate+1 ; j ++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       fprintf(ficgp,"\" t\"\" w l 0,");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for (j=1; j<= nlstate+1 ; j ++) {                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                } 
 }                }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            } /* end selection of waves */
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }        }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        for(i=iagemin; i <= iagemax+3; i++){  
   }          
            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   /*3eme*/            posprop += prop[jk][i]; 
           } 
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(jk=1; jk <=nlstate ; jk++){     
       k=2+nlstate*(2*cpt-2);            if( i <=  iagemax){ 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              if(posprop>=1.e-5){ 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                probs[i][jk][j1]= prop[jk][i]/posprop;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              } 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            } 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }/* end jk */ 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }/* end i */ 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } /* end i1 */
     } /* end k1 */
 */    
       for (i=1; i< nlstate ; i ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       }  }  /* End of prevalence */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
     }  /************* Waves Concatenation ***************/
     }  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   /* CV preval stat */  {
     for (k1=1; k1<= m ; k1 ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     for (cpt=1; cpt<nlstate ; cpt ++) {       Death is a valid wave (if date is known).
       k=3;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
       for (i=1; i< nlstate ; i ++)       */
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int i, mi, m;
          /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       l=3+(nlstate+ndeath)*cpt;       double sum=0., jmean=0.;*/
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    int first;
       for (i=1; i< nlstate ; i ++) {    int j, k=0,jk, ju, jl;
         l=3+(nlstate+ndeath)*cpt;    double sum=0.;
         fprintf(ficgp,"+$%d",l+i+1);    first=0;
       }    jmin=1e+5;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      jmax=-1;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    jmean=0.;
     }    for(i=1; i<=imx; i++){
   }        mi=0;
        m=firstpass;
   /* proba elementaires */      while(s[m][i] <= nlstate){
    for(i=1,jk=1; i <=nlstate; i++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     for(k=1; k <=(nlstate+ndeath); k++){          mw[++mi][i]=m;
       if (k != i) {        if(m >=lastpass)
         for(j=1; j <=ncovmodel; j++){          break;
                else
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          m++;
           jk++;      }/* end while */
           fprintf(ficgp,"\n");      if (s[m][i] > nlstate){
         }        mi++;     /* Death is another wave */
       }        /* if(mi==0)  never been interviewed correctly before death */
     }           /* Only death is a correct wave */
     }        mw[mi][i]=m;
       }
     for(jk=1; jk <=m; jk++) {  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      wav[i]=mi;
    i=1;      if(mi==0){
    for(k2=1; k2<=nlstate; k2++) {        nbwarn++;
      k3=i;        if(first==0){
      for(k=1; k<=(nlstate+ndeath); k++) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
        if (k != k2){          first=1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }
 ij=1;        if(first==1){
         for(j=3; j <=ncovmodel; j++) {          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      } /* end mi==0 */
             ij++;    } /* End individuals */
           }  
           else    for(i=1; i<=imx; i++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(mi=1; mi<wav[i];mi++){
         }        if (stepm <=0)
           fprintf(ficgp,")/(1");          dh[mi][i]=1;
                else{
         for(k1=1; k1 <=nlstate; k1++){            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            if (agedc[i] < 2*AGESUP) {
 ij=1;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           for(j=3; j <=ncovmodel; j++){              if(j==0) j=1;  /* Survives at least one month after exam */
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              else if(j<0){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                nberr++;
             ij++;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                j=1; /* Temporary Dangerous patch */
           else                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           fprintf(ficgp,")");              }
         }              k=k+1;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              if (j >= jmax){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                jmax=j;
         i=i+ncovmodel;                ijmax=i;
        }              }
      }              if (j <= jmin){
    }                jmin=j;
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                ijmin=i;
    }              }
                  sum=sum+j;
   fclose(ficgp);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }  /* end gnuplot */              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
 /*************** Moving average **************/          else{
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            k=k+1;
       for (i=1; i<=nlstate;i++)            if (j >= jmax) {
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              jmax=j;
           mobaverage[(int)agedeb][i][cptcod]=0.;              ijmax=i;
                }
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            else if (j <= jmin){
       for (i=1; i<=nlstate;i++){              jmin=j;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              ijmin=i;
           for (cpt=0;cpt<=4;cpt++){            }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            if(j<0){
         }              nberr++;
       }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                }
 }            sum=sum+j;
           }
           jk= j/stepm;
 /************** Forecasting ******************/          jl= j -jk*stepm;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            if(jl==0){
   int *popage;              dh[mi][i]=jk;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              bh[mi][i]=0;
   double *popeffectif,*popcount;            }else{ /* We want a negative bias in order to only have interpolation ie
   double ***p3mat;                    * at the price of an extra matrix product in likelihood */
   char fileresf[FILENAMELENGTH];              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
  agelim=AGESUP;            }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          }else{
             if(jl <= -ju){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   strcpy(fileresf,"f");                                   */
   strcat(fileresf,fileres);            }
   if((ficresf=fopen(fileresf,"w"))==NULL) {            else{
     printf("Problem with forecast resultfile: %s\n", fileresf);              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
   printf("Computing forecasting: result on file '%s' \n", fileresf);            }
             if(dh[mi][i]==0){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
   if (mobilav==1) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
     movingaverage(agedeb, fage, ageminpar, mobaverage);          } /* end if mle */
   }        }
       } /* end wave */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   agelim=AGESUP;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
   hstepm=1;  
   hstepm=hstepm/stepm;  /*********** Tricode ****************************/
   yp1=modf(dateintmean,&yp);  void tricode(int *Tvar, int **nbcode, int imx)
   anprojmean=yp;  {
   yp2=modf((yp1*12),&yp);    
   mprojmean=yp;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   yp1=modf((yp2*30.5),&yp);    int cptcode=0;
   jprojmean=yp;    cptcoveff=0; 
   if(jprojmean==0) jprojmean=1;   
   if(mprojmean==0) jprojmean=1;    for (k=0; k<maxncov; k++) Ndum[k]=0;
      for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   for(cptcov=1;cptcov<=i2;cptcov++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                 modality*/ 
       k=k+1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficresf,"\n#******");        Ndum[ij]++; /*store the modality */
       for(j=1;j<=cptcoveff;j++) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
       }                                         Tvar[j]. If V=sex and male is 0 and 
       fprintf(ficresf,"******\n");                                         female is 1, then  cptcode=1.*/
       fprintf(ficresf,"# StartingAge FinalAge");      }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  
            for (i=0; i<=cptcode; i++) {
              if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      }
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for (k=0; k<= maxncov; k++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if (Ndum[k] != 0) {
           nhstepm = nhstepm/hstepm;            nbcode[Tvar[j]][ij]=k; 
                      /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            
           oldm=oldms;savm=savms;            ij++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
                  if (ij > ncodemax[j]) break; 
           for (h=0; h<=nhstepm; h++){        }  
             if (h==(int) (calagedate+YEARM*cpt)) {      } 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    }  
             }  
             for(j=1; j<=nlstate+ndeath;j++) {   for (k=0; k< maxncov; k++) Ndum[k]=0;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                 for (i=1; i<=ncovmodel-2; i++) { 
                 if (mobilav==1)     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     ij=Tvar[i];
                 else {     Ndum[ij]++;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   }
                 }  
                   ij=1;
               }   for (i=1; i<= maxncov; i++) {
               if (h==(int)(calagedate+12*cpt)){     if((Ndum[i]!=0) && (i<=ncovcol)){
                 fprintf(ficresf," %.3f", kk1);       Tvaraff[ij]=i; /*For printing */
                               ij++;
               }     }
             }   }
           }   
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   cptcoveff=ij-1; /*Number of simple covariates*/
         }  }
       }  
     }  /*********** Health Expectancies ****************/
   }  
          void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   {
   fclose(ficresf);    /* Health expectancies, no variances */
 }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 /************** Forecasting ******************/    int nhstepma, nstepma; /* Decreasing with age */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    double age, agelim, hf;
      double ***p3mat;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    double eip;
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    pstamp(ficreseij);
   double *popeffectif,*popcount;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(ficreseij,"# Age");
   char filerespop[FILENAMELENGTH];    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficreseij," e%1d%1d ",i,j);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   agelim=AGESUP;      fprintf(ficreseij," e%1d. ",i);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }
      fprintf(ficreseij,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      
      if(estepm < stepm){
   strcpy(filerespop,"pop");      printf ("Problem %d lower than %d\n",estepm, stepm);
   strcat(filerespop,fileres);    }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    else  hstepm=estepm;   
     printf("Problem with forecast resultfile: %s\n", filerespop);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
   printf("Computing forecasting: result on file '%s' \n", filerespop);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   if (mobilav==1) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * to compare the new estimate of Life expectancy with the same linear 
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* For example we decided to compute the life expectancy with the smallest unit */
   if (stepm<=12) stepsize=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   agelim=AGESUP;       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   hstepm=1;       and note for a fixed period like estepm months */
   hstepm=hstepm/stepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   if (popforecast==1) {       means that if the survival funtion is printed only each two years of age and if
     if((ficpop=fopen(popfile,"r"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       printf("Problem with population file : %s\n",popfile);exit(0);       results. So we changed our mind and took the option of the best precision.
     }    */
     popage=ivector(0,AGESUP);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     popeffectif=vector(0,AGESUP);  
     popcount=vector(0,AGESUP);    agelim=AGESUP;
        /* If stepm=6 months */
     i=1;        /* Computed by stepm unit matrices, product of hstepm matrices, stored
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
          
     imx=i;  /* nhstepm age range expressed in number of stepm */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   for(cptcov=1;cptcov<=i2;cptcov++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;  
       fprintf(ficrespop,"\n#******");    for (age=bage; age<=fage; age ++){ 
       for(j=1;j<=cptcoveff;j++) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficrespop,"******\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* If stepm=6 months */
       if (popforecast==1)  fprintf(ficrespop," [Population]");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
               in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       for (cpt=0; cpt<=0;cpt++) {      
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;      printf("%d|",(int)age);fflush(stdout);
                fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
           oldm=oldms;savm=savms;      /* Computing expectancies */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(i=1; i<=nlstate;i++)
                for(j=1; j<=nlstate;j++)
           for (h=0; h<=nhstepm; h++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             if (h==(int) (calagedate+YEARM*cpt)) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            
             }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)      fprintf(ficreseij,"%3.0f",age );
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(i=1; i<=nlstate;i++){
                 else {        eip=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        for(j=1; j<=nlstate;j++){
                 }          eip +=eij[i][j][(int)age];
               }          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
               if (h==(int)(calagedate+12*cpt)){        }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        fprintf(ficreseij,"%9.4f", eip );
                   /*fprintf(ficrespop," %.3f", kk1);      }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      fprintf(ficreseij,"\n");
               }      
             }    }
             for(i=1; i<=nlstate;i++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               kk1=0.;    printf("\n");
                 for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\n");
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }  }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)  {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /* Covariances of health expectancies eij and of total life expectancies according
           }     to initial status i, ei. .
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       }    int nhstepma, nstepma; /* Decreasing with age */
      double age, agelim, hf;
   /******/    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    double *xp, *xm;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double **gp, **gm;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double ***gradg, ***trgradg;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int theta;
           nhstepm = nhstepm/hstepm;  
              double eip, vip;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      xp=vector(1,npar);
           for (h=0; h<=nhstepm; h++){    xm=vector(1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    pstamp(ficresstdeij);
               kk1=0.;kk2=0;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresstdeij,"# Age");
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        for(i=1; i<=nlstate;i++){
               }      for(j=1; j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
             }      fprintf(ficresstdeij," e%1d. ",i);
           }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficresstdeij,"\n");
         }  
       }    pstamp(ficrescveij);
    }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   }    fprintf(ficrescveij,"# Age");
      for(i=1; i<=nlstate;i++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   if (popforecast==1) {        for(i2=1; i2<=nlstate;i2++)
     free_ivector(popage,0,AGESUP);          for(j2=1; j2<=nlstate;j2++){
     free_vector(popeffectif,0,AGESUP);            cptj2= (j2-1)*nlstate+i2;
     free_vector(popcount,0,AGESUP);            if(cptj2 <= cptj)
   }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
   fclose(ficrespop);    fprintf(ficrescveij,"\n");
 }    
     if(estepm < stepm){
 /***********************************************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 /**************** Main Program *****************/    }
 /***********************************************/    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
 int main(int argc, char *argv[])     * This is mainly to measure the difference between two models: for example
 {     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;     * progression in between and thus overestimating or underestimating according
   double agedeb, agefin,hf;     * to the curvature of the survival function. If, for the same date, we 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   double fret;     * hypothesis. A more precise result, taking into account a more precise
   double **xi,tmp,delta;     * curvature will be obtained if estepm is as small as stepm. */
   
   double dum; /* Dummy variable */    /* For example we decided to compute the life expectancy with the smallest unit */
   double ***p3mat;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   int *indx;       nhstepm is the number of hstepm from age to agelim 
   char line[MAXLINE], linepar[MAXLINE];       nstepm is the number of stepm from age to agelin. 
   char title[MAXLINE];       Look at hpijx to understand the reason of that which relies in memory size
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];       and note for a fixed period like estepm months */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char filerest[FILENAMELENGTH];       results. So we changed our mind and took the option of the best precision.
   char fileregp[FILENAMELENGTH];    */
   char popfile[FILENAMELENGTH];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;    /* If stepm=6 months */
   int sdeb, sfin; /* Status at beginning and end */    /* nhstepm age range expressed in number of stepm */
   int c,  h , cpt,l;    agelim=AGESUP;
   int ju,jl, mi;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    /* if (stepm >= YEARM) hstepm=1;*/
   int mobilav=0,popforecast=0;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   int hstepm, nhstepm;    
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double bage, fage, age, agelim, agebase;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   double ftolpl=FTOL;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double **prlim;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double *severity;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   double ***param; /* Matrix of parameters */  
   double  *p;    for (age=bage; age<=fage; age ++){ 
   double **matcov; /* Matrix of covariance */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   double ***delti3; /* Scale */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double *delti; /* Scale */      /* if (stepm >= YEARM) hstepm=1;*/
   double ***eij, ***vareij;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      /* If stepm=6 months */
   double kk1, kk2;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
   char z[1]="c", occ;      for(theta=1; theta <=npar; theta++){
 #include <sys/time.h>        for(i=1; i<=npar; i++){ 
 #include <time.h>          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          xm[i] = x[i] - (i==theta ?delti[theta]:0);
          }
   /* long total_usecs;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   struct timeval start_time, end_time;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        for(j=1; j<= nlstate; j++){
   getcwd(pathcd, size);          for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
   printf("\n%s",version);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   if(argc <=1){              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     printf("\nEnter the parameter file name: ");            }
     scanf("%s",pathtot);          }
   }        }
   else{       
     strcpy(pathtot,argv[1]);        for(ij=1; ij<= nlstate*nlstate; ij++)
   }          for(h=0; h<=nhstepm-1; h++){
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   /*cygwin_split_path(pathtot,path,optionfile);          }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      }/* End theta */
   /* cutv(path,optionfile,pathtot,'\\');*/      
       
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      for(h=0; h<=nhstepm-1; h++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        for(j=1; j<=nlstate*nlstate;j++)
   chdir(path);          for(theta=1; theta <=npar; theta++)
   replace(pathc,path);            trgradg[h][j][theta]=gradg[h][theta][j];
       
 /*-------- arguments in the command line --------*/  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   strcpy(fileres,"r");        for(ji=1;ji<=nlstate*nlstate;ji++)
   strcat(fileres, optionfilefiname);          varhe[ij][ji][(int)age] =0.;
   strcat(fileres,".txt");    /* Other files have txt extension */  
        printf("%d|",(int)age);fflush(stdout);
   /*---------arguments file --------*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(k=0;k<=nhstepm-1;k++){
     printf("Problem with optionfile %s\n",optionfile);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     goto end;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   strcpy(filereso,"o");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   strcat(filereso,fileres);        }
   if((ficparo=fopen(filereso,"w"))==NULL) {      }
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /* Reads comments: lines beginning with '#' */      for(i=1; i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fgets(line, MAXLINE, ficpar);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     puts(line);            
     fputs(line,ficparo);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   }  
   ungetc(c,ficpar);          }
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficresstdeij,"%3.0f",age );
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(i=1; i<=nlstate;i++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        eip=0.;
 while((c=getc(ficpar))=='#' && c!= EOF){        vip=0.;
     ungetc(c,ficpar);        for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);          eip += eij[i][j][(int)age];
     puts(line);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     fputs(line,ficparo);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   ungetc(c,ficpar);        }
          fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
          }
   covar=matrix(0,NCOVMAX,1,n);      fprintf(ficresstdeij,"\n");
   cptcovn=0;  
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
   ncovmodel=2+cptcovn;        for(j=1; j<=nlstate;j++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          cptj= (j-1)*nlstate+i;
            for(i2=1; i2<=nlstate;i2++)
   /* Read guess parameters */            for(j2=1; j2<=nlstate;j2++){
   /* Reads comments: lines beginning with '#' */              cptj2= (j2-1)*nlstate+i2;
   while((c=getc(ficpar))=='#' && c!= EOF){              if(cptj2 <= cptj)
     ungetc(c,ficpar);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);        }
     fputs(line,ficparo);      fprintf(ficrescveij,"\n");
   }     
   ungetc(c,ficpar);    }
      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for(i=1; i <=nlstate; i++)    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for(j=1; j <=nlstate+ndeath-1; j++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"%1d%1d",i1,j1);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       printf("%1d%1d",i,j);    printf("\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficlog,"\n");
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);    free_vector(xm,1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);    free_vector(xp,1,npar);
       }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       fscanf(ficpar,"\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       printf("\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficparo,"\n");  }
     }  
    /************ Variance ******************/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   p=param[1][1];    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* Reads comments: lines beginning with '#' */    /* double **newm;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double *gpp, *gmp; /* for var p point j */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   for(i=1; i <=nlstate; i++){    double ***p3mat;
     for(j=1; j <=nlstate+ndeath-1; j++){    double age,agelim, hf;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double ***mobaverage;
       printf("%1d%1d",i,j);    int theta;
       fprintf(ficparo,"%1d%1d",i1,j1);    char digit[4];
       for(k=1; k<=ncovmodel;k++){    char digitp[25];
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    if(popbased==1){
       fscanf(ficpar,"\n");      if(mobilav!=0)
       printf("\n");        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficparo,"\n");      else strcpy(digitp,"-populbased-nomobil-");
     }    }
   }    else 
   delti=delti3[1][1];      strcpy(digitp,"-stablbased-");
    
   /* Reads comments: lines beginning with '#' */    if (mobilav!=0) {
   while((c=getc(ficpar))=='#' && c!= EOF){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);  
      strcpy(fileresprobmorprev,"prmorprev"); 
   matcov=matrix(1,npar,1,npar);    sprintf(digit,"%-d",ij);
   for(i=1; i <=npar; i++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fscanf(ficpar,"%s",&str);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     printf("%s",str);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficparo,"%s",str);    strcat(fileresprobmorprev,fileres);
     for(j=1; j <=i; j++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fscanf(ficpar," %le",&matcov[i][j]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       printf(" %.5le",matcov[i][j]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fscanf(ficpar,"\n");   
     printf("\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficparo,"\n");    pstamp(ficresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   for(i=1; i <=npar; i++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=i+1;j<=npar;j++)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       matcov[i][j]=matcov[j][i];      fprintf(ficresprobmorprev," p.%-d SE",j);
          for(i=1; i<=nlstate;i++)
   printf("\n");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     /*-------- Rewriting paramater file ----------*/    fprintf(ficgp,"\n# Routine varevsij");
      strcpy(rfileres,"r");    /* "Rparameterfile */    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      strcat(rfileres,".");    /* */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  /*   } */
     if((ficres =fopen(rfileres,"w"))==NULL) {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    pstamp(ficresvij);
     }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     fprintf(ficres,"#%s\n",version);    if(popbased==1)
          fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     /*-------- data file ----------*/    else
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       printf("Problem with datafile: %s\n", datafile);goto end;    fprintf(ficresvij,"# Age");
     }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
     n= lastobs;        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     severity = vector(1,maxwav);    fprintf(ficresvij,"\n");
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);    xp=vector(1,npar);
     moisnais=vector(1,n);    dnewm=matrix(1,nlstate,1,npar);
     annais=vector(1,n);    doldm=matrix(1,nlstate,1,nlstate);
     moisdc=vector(1,n);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     andc=vector(1,n);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     agedc=vector(1,n);  
     cod=ivector(1,n);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     weight=vector(1,n);    gpp=vector(nlstate+1,nlstate+ndeath);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    gmp=vector(nlstate+1,nlstate+ndeath);
     mint=matrix(1,maxwav,1,n);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     anint=matrix(1,maxwav,1,n);    
     s=imatrix(1,maxwav+1,1,n);    if(estepm < stepm){
     adl=imatrix(1,maxwav+1,1,n);          printf ("Problem %d lower than %d\n",estepm, stepm);
     tab=ivector(1,NCOVMAX);    }
     ncodemax=ivector(1,8);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     i=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     while (fgets(line, MAXLINE, fic) != NULL)    {       nhstepm is the number of hstepm from age to agelim 
       if ((i >= firstobs) && (i <=lastobs)) {       nstepm is the number of stepm from age to agelin. 
               Look at hpijx to understand the reason of that which relies in memory size
         for (j=maxwav;j>=1;j--){       and note for a fixed period like k years */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           strcpy(line,stra);       survival function given by stepm (the optimization length). Unfortunately it
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       means that if the survival funtion is printed every two years of age and if
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
            */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for (j=ncovcol;j>=1;j--){      gp=matrix(0,nhstepm,1,nlstate);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      gm=matrix(0,nhstepm,1,nlstate);
         }  
         num[i]=atol(stra);  
              for(theta=1; theta <=npar; theta++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         i=i+1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }  
     /* printf("ii=%d", ij);        if (popbased==1) {
        scanf("%d",i);*/          if(mobilav ==0){
   imx=i-1; /* Number of individuals */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /* for (i=1; i<=imx; i++){          }else{ /* mobilav */ 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            for(i=1; i<=nlstate;i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              prlim[i][i]=mobaverage[(int)age][i][ij];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/        }
    /*  for (i=1; i<=imx; i++){    
      if (s[4][i]==9)  s[4][i]=-1;        for(j=1; j<= nlstate; j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   /* Calculation of the number of parameter from char model*/          }
   Tvar=ivector(1,15);        }
   Tprod=ivector(1,15);        /* This for computing probability of death (h=1 means
   Tvaraff=ivector(1,15);           computed over hstepm matrices product = hstepm*stepm months) 
   Tvard=imatrix(1,15,1,2);           as a weighted average of prlim.
   Tage=ivector(1,15);              */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
   if (strlen(model) >1){          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     j=0, j1=0, k1=1, k2=1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     j=nbocc(model,'+');        }    
     j1=nbocc(model,'*');        /* end probability of death */
     cptcovn=j+1;  
     cptcovprod=j1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     strcpy(modelsav,model);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       printf("Error. Non available option model=%s ",model);   
       goto end;        if (popbased==1) {
     }          if(mobilav ==0){
                for(i=1; i<=nlstate;i++)
     for(i=(j+1); i>=1;i--){              prlim[i][i]=probs[(int)age][i][ij];
       cutv(stra,strb,modelsav,'+');          }else{ /* mobilav */ 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            for(i=1; i<=nlstate;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/              prlim[i][i]=mobaverage[(int)age][i][ij];
       /*scanf("%d",i);*/          }
       if (strchr(strb,'*')) {        }
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {        for(j=1; j<= nlstate; j++){
           cptcovprod--;          for(h=0; h<=nhstepm; h++){
           cutv(strb,stre,strd,'V');            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
           Tvar[i]=atoi(stre);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           cptcovage++;          }
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/        /* This for computing probability of death (h=1 means
         }           computed over hstepm matrices product = hstepm*stepm months) 
         else if (strcmp(strd,"age")==0) {           as a weighted average of prlim.
           cptcovprod--;        */
           cutv(strb,stre,strc,'V');        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvar[i]=atoi(stre);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           cptcovage++;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           Tage[cptcovage]=i;        }    
         }        /* end probability of death */
         else {  
           cutv(strb,stre,strc,'V');        for(j=1; j<= nlstate; j++) /* vareij */
           Tvar[i]=ncovcol+k1;          for(h=0; h<=nhstepm; h++){
           cutv(strb,strc,strd,'V');            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           Tprod[k1]=i;          }
           Tvard[k1][1]=atoi(strc);  
           Tvard[k1][2]=atoi(stre);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           Tvar[cptcovn+k2]=Tvard[k1][1];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        }
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      } /* End theta */
           k1++;  
           k2=k2+2;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
       }      for(h=0; h<=nhstepm; h++) /* veij */
       else {        for(j=1; j<=nlstate;j++)
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          for(theta=1; theta <=npar; theta++)
        /*  scanf("%d",i);*/            trgradg[h][j][theta]=gradg[h][theta][j];
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       }        for(theta=1; theta <=npar; theta++)
       strcpy(modelsav,stra);            trgradgp[j][theta]=gradgp[theta][j];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    
         scanf("%d",i);*/  
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 }      for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);          vareij[i][j][(int)age] =0.;
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/      for(h=0;h<=nhstepm;h++){
     fclose(fic);        for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     /*  if(mle==1){*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     if (weightopt != 1) { /* Maximisation without weights*/          for(i=1;i<=nlstate;i++)
       for(i=1;i<=n;i++) weight[i]=1.0;            for(j=1;j<=nlstate;j++)
     }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     /*-calculation of age at interview from date of interview and age at death -*/        }
     agev=matrix(1,maxwav,1,imx);      }
     
     for (i=1; i<=imx; i++) {      /* pptj */
       for(m=2; (m<= maxwav); m++) {      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          anint[m][i]=9999;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          s[m][i]=-1;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
        }          varppt[j][i]=doldmp[j][i];
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      /* end ppptj */
       }      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     for (i=1; i<=imx; i++)  {   
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      if (popbased==1) {
       for(m=1; (m<= maxwav); m++){        if(mobilav ==0){
         if(s[m][i] >0){          for(i=1; i<=nlstate;i++)
           if (s[m][i] >= nlstate+1) {            prlim[i][i]=probs[(int)age][i][ij];
             if(agedc[i]>0)        }else{ /* mobilav */ 
               if(moisdc[i]!=99 && andc[i]!=9999)          for(i=1; i<=nlstate;i++)
                 agev[m][i]=agedc[i];            prlim[i][i]=mobaverage[(int)age][i][ij];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {      }
               if (andc[i]!=9999){               
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      /* This for computing probability of death (h=1 means
               agev[m][i]=-1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
               }         as a weighted average of prlim.
             }      */
           }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           else if(s[m][i] !=9){ /* Should no more exist */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             if(mint[m][i]==99 || anint[m][i]==9999)      }    
               agev[m][i]=1;      /* end probability of death */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             else if(agev[m][i] >agemax){        for(i=1; i<=nlstate;i++){
               agemax=agev[m][i];          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }      } 
             /*agev[m][i]=anint[m][i]-annais[i];*/      fprintf(ficresprobmorprev,"\n");
             /*   agev[m][i] = age[i]+2*m;*/  
           }      fprintf(ficresvij,"%.0f ",age );
           else { /* =9 */      for(i=1; i<=nlstate;i++)
             agev[m][i]=1;        for(j=1; j<=nlstate;j++){
             s[m][i]=-1;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           }        }
         }      fprintf(ficresvij,"\n");
         else /*= 0 Unknown */      free_matrix(gp,0,nhstepm,1,nlstate);
           agev[m][i]=1;      free_matrix(gm,0,nhstepm,1,nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<=imx; i++)  {    } /* End age */
       for(m=1; (m<= maxwav); m++){    free_vector(gpp,nlstate+1,nlstate+ndeath);
         if (s[m][i] > (nlstate+ndeath)) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
           printf("Error: Wrong value in nlstate or ndeath\n");      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           goto end;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     free_vector(severity,1,maxwav);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     free_imatrix(outcome,1,maxwav+1,1,n);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     free_vector(moisnais,1,n);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     free_vector(annais,1,n);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        free_matrix(anint,1,maxwav,1,n);*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     free_vector(moisdc,1,n);  */
     free_vector(andc,1,n);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      
     wav=ivector(1,imx);    free_vector(xp,1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(doldm,1,nlstate,1,nlstate);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    free_matrix(dnewm,1,nlstate,1,npar);
        free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     /* Concatenates waves */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
       Tcode=ivector(1,100);    fflush(ficgp);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fflush(fichtm); 
       ncodemax[1]=1;  }  /* end varevsij */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
        /************ Variance of prevlim ******************/
    codtab=imatrix(1,100,1,10);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    h=0;  {
    m=pow(2,cptcoveff);    /* Variance of prevalence limit */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    for(k=1;k<=cptcoveff; k++){    double **newm;
      for(i=1; i <=(m/pow(2,k));i++){    double **dnewm,**doldm;
        for(j=1; j <= ncodemax[k]; j++){    int i, j, nhstepm, hstepm;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    int k, cptcode;
            h++;    double *xp;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    double *gp, *gm;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    double **gradg, **trgradg;
          }    double age,agelim;
        }    int theta;
      }    
    }    pstamp(ficresvpl);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       codtab[1][2]=1;codtab[2][2]=2; */    fprintf(ficresvpl,"# Age");
    /* for(i=1; i <=m ;i++){    for(i=1; i<=nlstate;i++)
       for(k=1; k <=cptcovn; k++){        fprintf(ficresvpl," %1d-%1d",i,i);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(ficresvpl,"\n");
       }  
       printf("\n");    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       scanf("%d",i);*/    doldm=matrix(1,nlstate,1,nlstate);
        
    /* Calculates basic frequencies. Computes observed prevalence at single age    hstepm=1*YEARM; /* Every year of age */
        and prints on file fileres'p'. */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (stepm >= YEARM) hstepm=1;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gradg=matrix(1,npar,1,nlstate);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      gp=vector(1,nlstate);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      gm=vector(1,nlstate);
        
     /* For Powell, parameters are in a vector p[] starting at p[1]      for(theta=1; theta <=npar; theta++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        for(i=1; i<=npar; i++){ /* Computes gradient */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     if(mle==1){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for(i=1;i<=nlstate;i++)
     }          gp[i] = prlim[i][i];
          
     /*--------- results files --------------*/        for(i=1; i<=npar; i++) /* Computes gradient */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
    jk=1;          gm[i] = prlim[i][i];
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(i=1;i<=nlstate;i++)
    for(i=1,jk=1; i <=nlstate; i++){          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      for(k=1; k <=(nlstate+ndeath); k++){      } /* End theta */
        if (k != i)  
          {      trgradg =matrix(1,nlstate,1,npar);
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);      for(j=1; j<=nlstate;j++)
            for(j=1; j <=ncovmodel; j++){        for(theta=1; theta <=npar; theta++)
              printf("%f ",p[jk]);          trgradg[j][theta]=gradg[theta][j];
              fprintf(ficres,"%f ",p[jk]);  
              jk++;      for(i=1;i<=nlstate;i++)
            }        varpl[i][(int)age] =0.;
            printf("\n");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
            fprintf(ficres,"\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
          }      for(i=1;i<=nlstate;i++)
      }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    }  
  if(mle==1){      fprintf(ficresvpl,"%.0f ",age );
     /* Computing hessian and covariance matrix */      for(i=1; i<=nlstate;i++)
     ftolhess=ftol; /* Usually correct */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
     hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficresvpl,"\n");
  }      free_vector(gp,1,nlstate);
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      free_vector(gm,1,nlstate);
     printf("# Scales (for hessian or gradient estimation)\n");      free_matrix(gradg,1,npar,1,nlstate);
      for(i=1,jk=1; i <=nlstate; i++){      free_matrix(trgradg,1,nlstate,1,npar);
       for(j=1; j <=nlstate+ndeath; j++){    } /* End age */
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);    free_vector(xp,1,npar);
           printf("%1d%1d",i,j);    free_matrix(doldm,1,nlstate,1,npar);
           for(k=1; k<=ncovmodel;k++){    free_matrix(dnewm,1,nlstate,1,nlstate);
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);  }
             jk++;  
           }  /************ Variance of one-step probabilities  ******************/
           printf("\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           fprintf(ficres,"\n");  {
         }    int i, j=0,  i1, k1, l1, t, tj;
       }    int k2, l2, j1,  z1;
      }    int k=0,l, cptcode;
        int first=1, first1;
     k=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double **dnewm,**doldm;
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double *xp;
     for(i=1;i<=npar;i++){    double *gp, *gm;
       /*  if (k>nlstate) k=1;    double **gradg, **trgradg;
       i1=(i-1)/(ncovmodel*nlstate)+1;    double **mu;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    double age,agelim, cov[NCOVMAX];
       printf("%s%d%d",alph[k],i1,tab[i]);*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       fprintf(ficres,"%3d",i);    int theta;
       printf("%3d",i);    char fileresprob[FILENAMELENGTH];
       for(j=1; j<=i;j++){    char fileresprobcov[FILENAMELENGTH];
         fprintf(ficres," %.5e",matcov[i][j]);    char fileresprobcor[FILENAMELENGTH];
         printf(" %.5e",matcov[i][j]);  
       }    double ***varpij;
       fprintf(ficres,"\n");  
       printf("\n");    strcpy(fileresprob,"prob"); 
       k++;    strcat(fileresprob,fileres);
     }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprob);
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       ungetc(c,ficpar);    }
       fgets(line, MAXLINE, ficpar);    strcpy(fileresprobcov,"probcov"); 
       puts(line);    strcat(fileresprobcov,fileres);
       fputs(line,ficparo);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     }      printf("Problem with resultfile: %s\n", fileresprobcov);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     estepm=0;    }
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    strcpy(fileresprobcor,"probcor"); 
     if (estepm==0 || estepm < stepm) estepm=stepm;    strcat(fileresprobcor,fileres);
     if (fage <= 2) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       bage = ageminpar;      printf("Problem with resultfile: %s\n", fileresprobcor);
       fage = agemaxpar;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }    }
        printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     ungetc(c,ficpar);    pstamp(ficresprob);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     puts(line);    fprintf(ficresprob,"# Age");
     fputs(line,ficparo);    pstamp(ficresprobcov);
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   ungetc(c,ficpar);    fprintf(ficresprobcov,"# Age");
      pstamp(ficresprobcor);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresprobcor,"# Age");
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
        
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);      for(j=1; j<=(nlstate+ndeath);j++){
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     puts(line);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     fputs(line,ficparo);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   }      }  
   ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    dateprev1=anprev1+mprev1/12.+jprev1/365.;   */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fprintf(ficparo,"pop_based=%d\n",popbased);      mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   fprintf(ficres,"pop_based=%d\n",popbased);      varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
      first=1;
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n# Routine varprob");
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n");
     puts(line);  
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   ungetc(c,ficpar);    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);  and drawn. It helps understanding how is the covariance between two incidences.\
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
 while((c=getc(ficpar))=='#' && c!= EOF){  standard deviations wide on each axis. <br>\
     ungetc(c,ficpar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     fgets(line, MAXLINE, ficpar);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     puts(line);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     fputs(line,ficparo);  
   }    cov[1]=1;
   ungetc(c,ficpar);    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    j1=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    for(t=1; t<=tj;t++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
 /*------------ gnuplot -------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
 /*------------ free_vector  -------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  chdir(path);          fprintf(ficresprobcov, "**********\n#\n");
            
  free_ivector(wav,1,imx);          fprintf(ficgp, "\n#********** Variable "); 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficgp, "**********\n#\n");
  free_ivector(num,1,n);          
  free_vector(agedc,1,n);          
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
  fclose(ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
  fclose(ficres);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
 /*--------- index.htm --------*/          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          fprintf(ficresprobcor, "**********\n#");    
         }
          
   /*--------------- Prevalence limit --------------*/        for (age=bage; age<=fage; age ++){ 
            cov[2]=age;
   strcpy(filerespl,"pl");          for (k=1; k<=cptcovn;k++) {
   strcat(filerespl,fileres);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }          for (k=1; k<=cptcovprod;k++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficrespl,"#Prevalence limit\n");          
   fprintf(ficrespl,"#Age ");          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fprintf(ficrespl,"\n");          gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
   prlim=matrix(1,nlstate,1,nlstate);      
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(theta=1; theta <=npar; theta++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(i=1; i<=npar; i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   k=0;            
   agebase=ageminpar;            k=0;
   agelim=agemaxpar;            for(i=1; i<= (nlstate); i++){
   ftolpl=1.e-10;              for(j=1; j<=(nlstate+ndeath);j++){
   i1=cptcoveff;                k=k+1;
   if (cptcovn < 1){i1=1;}                gp[k]=pmmij[i][j];
               }
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            
         k=k+1;            for(i=1; i<=npar; i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         fprintf(ficrespl,"\n#******");      
         for(j=1;j<=cptcoveff;j++)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            k=0;
         fprintf(ficrespl,"******\n");            for(i=1; i<=(nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
         for (age=agebase; age<=agelim; age++){                k=k+1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                gm[k]=pmmij[i][j];
           fprintf(ficrespl,"%.0f",age );              }
           for(i=1; i<=nlstate;i++)            }
           fprintf(ficrespl," %.5f", prlim[i][i]);       
           fprintf(ficrespl,"\n");            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       }          }
     }  
   fclose(ficrespl);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
   /*------------- h Pij x at various ages ------------*/              trgradg[j][theta]=gradg[theta][j];
            
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   printf("Computing pij: result on file '%s' \n", filerespij);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
   agelim=AGESUP;          k=0;
   hstepm=stepsize*YEARM; /* Every year of age */          for(i=1; i<=(nlstate); i++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            for(j=1; j<=(nlstate+ndeath);j++){
                k=k+1;
   k=0;              mu[k][(int) age]=pmmij[i][j];
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          }
       k=k+1;          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficrespij,"\n#****** ");            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         for(j=1;j<=cptcoveff;j++)              varpij[i][j][(int)age] = doldm[i][j];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");          /*printf("\n%d ",(int)age);
                    for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            }*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;          fprintf(ficresprob,"\n%d ",(int)age);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficrespij,"# Age");          fprintf(ficresprobcor,"\n%d ",(int)age);
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
               fprintf(ficrespij," %1d-%1d",i,j);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           fprintf(ficrespij,"\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
            for (h=0; h<=nhstepm; h++){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             for(i=1; i<=nlstate;i++)          }
               for(j=1; j<=nlstate+ndeath;j++)          i=0;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for (k=1; k<=(nlstate);k++){
             fprintf(ficrespij,"\n");            for (l=1; l<=(nlstate+ndeath);l++){ 
              }              i=i++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           fprintf(ficrespij,"\n");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         }              for (j=1; j<=i;j++){
     }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            }
           }/* end of loop for state */
   fclose(ficrespij);        } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
   /*---------- Forecasting ------------------*/        /*
   if((stepm == 1) && (strcmp(model,".")==0)){          fprintf(ficgp,"\nset noparametric;unset label");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   else{          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     erreur=108;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   }        */
    
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   /*---------- Health expectancies and variances ------------*/        first1=1;
         for (k2=1; k2<=(nlstate);k2++){
   strcpy(filerest,"t");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   strcat(filerest,fileres);            if(l2==k2) continue;
   if((ficrest=fopen(filerest,"w"))==NULL) {            j=(k2-1)*(nlstate+ndeath)+l2;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;            for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   strcpy(filerese,"e");                for (age=bage; age<=fage; age ++){ 
   strcat(filerese,fileres);                  if ((int)age %5==0){
   if((ficreseij=fopen(filerese,"w"))==NULL) {                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
  strcpy(fileresv,"v");                    c12=cv12/sqrt(v1*v2);
   strcat(fileresv,fileres);                    /* Computing eigen value of matrix of covariance */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    /* Eigen vectors */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   calagedate=-1;                    /*v21=sqrt(1.-v11*v11); *//* error */
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
   k=0;                    v22=v11;
   for(cptcov=1;cptcov<=i1;cptcov++){                    tnalp=v21/v11;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    if(first1==1){
       k=k+1;                      first1=0;
       fprintf(ficrest,"\n#****** ");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       for(j=1;j<=cptcoveff;j++)                    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       fprintf(ficrest,"******\n");                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       fprintf(ficreseij,"\n#****** ");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
       for(j=1;j<=cptcoveff;j++)                    if(first==1){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      first=0;
       fprintf(ficreseij,"******\n");                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       fprintf(ficresvij,"\n#****** ");                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       for(j=1;j<=cptcoveff;j++)                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
       fprintf(ficresvij,"******\n");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       oldm=oldms;savm=savms;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       oldm=oldms;savm=savms;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                  mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }else{
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");                      first=0;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       fprintf(ficrest,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       epj=vector(1,nlstate+1);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       for(age=bage; age <=fage ;age++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         if (popbased==1) {                    }/* if first */
           for(i=1; i<=nlstate;i++)                  } /* age mod 5 */
             prlim[i][i]=probs[(int)age][i][k];                } /* end loop age */
         }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        first=1;
         fprintf(ficrest," %4.0f",age);              } /*l12 */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            } /* k12 */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          } /*l1 */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        }/* k1 */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      } /* loop covariates */
           }    }
           epj[nlstate+1] +=epj[j];    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
         }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for(i=1, vepp=0.;i <=nlstate;i++)    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           for(j=1;j <=nlstate;j++)    free_vector(xp,1,npar);
             vepp += vareij[i][j][(int)age];    fclose(ficresprob);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    fclose(ficresprobcov);
         for(j=1;j <=nlstate;j++){    fclose(ficresprobcor);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    fflush(ficgp);
         }    fflush(fichtmcov);
         fprintf(ficrest,"\n");  }
       }  
     }  
   }  /******************* Printing html file ***********/
 free_matrix(mint,1,maxwav,1,n);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    int lastpass, int stepm, int weightopt, char model[],\
     free_vector(weight,1,n);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   fclose(ficreseij);                    int popforecast, int estepm ,\
   fclose(ficresvij);                    double jprev1, double mprev1,double anprev1, \
   fclose(ficrest);                    double jprev2, double mprev2,double anprev2){
   fclose(ficpar);    int jj1, k1, i1, cpt;
   free_vector(epj,1,nlstate+1);  
       fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   /*------- Variance limit prevalence------*/       <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
   strcpy(fileresvpl,"vpl");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   strcat(fileresvpl,fileres);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);     fprintf(fichtm,"\
     exit(0);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   k=0;             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   for(cptcov=1;cptcov<=i1;cptcov++){     fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
       k=k+1;     <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvpl,"\n#****** ");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Population projections by age and states: \
       fprintf(ficresvpl,"******\n");     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
  }  
    jj1=0;
   fclose(ficresvpl);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   /*---------- End : free ----------------*/       jj1++;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       if (cptcovn > 0) {
           fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       /* Pij */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);       /* Quasi-incidences */
         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   free_matrix(matcov,1,npar,1,npar);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   free_vector(delti,1,npar);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   free_matrix(agev,1,maxwav,1,imx);         /* Period (stable) prevalence in each health state */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   if(erreur >0)  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     printf("End of Imach with error or warning %d\n",erreur);         }
   else   printf("End of Imach\n");       for(cpt=1; cpt<=nlstate;cpt++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
    <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       }
   /*printf("Total time was %d uSec.\n", total_usecs);*/     } /* end i1 */
   /*------ End -----------*/   }/* End k1 */
    fprintf(fichtm,"</ul>");
   
  end:  
   /* chdir(pathcd);*/   fprintf(fichtm,"\
  /*system("wgnuplot graph.plt");*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
  /*system("../gp37mgw/wgnuplot graph.plt");*/   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
  /*system("cd ../gp37mgw");*/  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  strcpy(plotcmd,GNUPLOTPROGRAM);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
  strcat(plotcmd," ");   fprintf(fichtm,"\
  strcat(plotcmd,optionfilegnuplot);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
  system(plotcmd);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
  /*#ifdef windows*/   fprintf(fichtm,"\
   while (z[0] != 'q') {   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     /* chdir(path); */           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");   fprintf(fichtm,"\
     scanf("%s",z);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
     if (z[0] == 'c') system("./imach");     <a href=\"%s\">%s</a> <br>\n</li>",
     else if (z[0] == 'e') system(optionfilehtm);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     else if (z[0] == 'g') system(plotcmd);   fprintf(fichtm,"\
     else if (z[0] == 'q') exit(0);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   /*#endif */             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
 }   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.126


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>