Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.137

version 1.41.2.2, 2003/06/13 07:45:28 version 1.137, 2010/04/29 18:11:38
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.137  2010/04/29 18:11:38  brouard
      (Module): Checking covariates for more complex models
   This program computes Healthy Life Expectancies from    than V1+V2. A lot of change to be done. Unstable.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.136  2010/04/26 20:30:53  brouard
   interviewed on their health status or degree of disability (in the    (Module): merging some libgsl code. Fixing computation
   case of a health survey which is our main interest) -2- at least a    of likelione (using inter/intrapolation if mle = 0) in order to
   second wave of interviews ("longitudinal") which measure each change    get same likelihood as if mle=1.
   (if any) in individual health status.  Health expectancies are    Some cleaning of code and comments added.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.135  2009/10/29 15:33:14  brouard
   Maximum Likelihood of the parameters involved in the model.  The    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.134  2009/10/29 13:18:53  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.133  2009/07/06 10:21:25  brouard
   complex model than "constant and age", you should modify the program    just nforces
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.132  2009/07/06 08:22:05  brouard
   convergence.    Many tings
   
   The advantage of this computer programme, compared to a simple    Revision 1.131  2009/06/20 16:22:47  brouard
   multinomial logistic model, is clear when the delay between waves is not    Some dimensions resccaled
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.130  2009/05/26 06:44:34  brouard
   account using an interpolation or extrapolation.      (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
   hPijx is the probability to be observed in state i at age x+h    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.129  2007/08/31 13:49:27  lievre
   states. This elementary transition (by month or quarter trimester,    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.128  2006/06/30 13:02:05  brouard
   and the contribution of each individual to the likelihood is simply    (Module): Clarifications on computing e.j
   hPijx.  
     Revision 1.127  2006/04/28 18:11:50  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Yes the sum of survivors was wrong since
   of the life expectancies. It also computes the prevalence limits.    imach-114 because nhstepm was no more computed in the age
      loop. Now we define nhstepma in the age loop.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): In order to speed up (in case of numerous covariates) we
            Institut national d'études démographiques, Paris.    compute health expectancies (without variances) in a first step
   This software have been partly granted by Euro-REVES, a concerted action    and then all the health expectancies with variances or standard
   from the European Union.    deviation (needs data from the Hessian matrices) which slows the
   It is copyrighted identically to a GNU software product, ie programme and    computation.
   software can be distributed freely for non commercial use. Latest version    In the future we should be able to stop the program is only health
   can be accessed at http://euroreves.ined.fr/imach .    expectancies and graph are needed without standard deviations.
   **********************************************************************/  
      Revision 1.126  2006/04/28 17:23:28  brouard
 #include <math.h>    (Module): Yes the sum of survivors was wrong since
 #include <stdio.h>    imach-114 because nhstepm was no more computed in the age
 #include <stdlib.h>    loop. Now we define nhstepma in the age loop.
 #include <unistd.h>    Version 0.98h
   
 #define MAXLINE 256    Revision 1.125  2006/04/04 15:20:31  lievre
 #define GNUPLOTPROGRAM "wgnuplot"    Errors in calculation of health expectancies. Age was not initialized.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Forecasting file added.
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.124  2006/03/22 17:13:53  lievre
     Parameters are printed with %lf instead of %f (more numbers after the comma).
 /*#define windows*/    The log-likelihood is printed in the log file
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    name. <head> headers where missing.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     * imach.c (Module): Weights can have a decimal point as for
 #define NINTERVMAX 8    English (a comma might work with a correct LC_NUMERIC environment,
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    otherwise the weight is truncated).
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Modification of warning when the covariates values are not 0 or
 #define NCOVMAX 8 /* Maximum number of covariates */    1.
 #define MAXN 20000    Version 0.98g
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.122  2006/03/20 09:45:41  brouard
 #define AGEBASE 40    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 int erreur; /* Error number */    Modification of warning when the covariates values are not 0 or
 int nvar;    1.
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Version 0.98g
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.121  2006/03/16 17:45:01  lievre
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Comments concerning covariates added
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int *wav; /* Number of waves for this individuual 0 is possible */    not 1 month. Version 0.98f
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.120  2006/03/16 15:10:38  lievre
 int mle, weightopt;    (Module): refinements in the computation of lli if
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    status=-2 in order to have more reliable computation if stepm is
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    not 1 month. Version 0.98f
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.119  2006/03/15 17:42:26  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Bug if status = -2, the loglikelihood was
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    computed as likelihood omitting the logarithm. Version O.98e
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.118  2006/03/14 18:20:07  brouard
   char filerese[FILENAMELENGTH];    (Module): varevsij Comments added explaining the second
  FILE  *ficresvij;    table of variances if popbased=1 .
   char fileresv[FILENAMELENGTH];    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
  FILE  *ficresvpl;    (Module): Function pstamp added
   char fileresvpl[FILENAMELENGTH];    (Module): Version 0.98d
   
 #define NR_END 1    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FREE_ARG char*    (Module): varevsij Comments added explaining the second
 #define FTOL 1.0e-10    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NRANSI    (Module): Function pstamp added
 #define ITMAX 200    (Module): Version 0.98d
   
 #define TOL 2.0e-4    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 #define CGOLD 0.3819660    varian-covariance of ej. is needed (Saito).
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.115  2006/02/27 12:17:45  brouard
     (Module): One freematrix added in mlikeli! 0.98c
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.114  2006/02/26 12:57:58  brouard
 #define TINY 1.0e-20    (Module): Some improvements in processing parameter
     filename with strsep.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.113  2006/02/24 14:20:24  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Memory leaks checks with valgrind and:
      datafile was not closed, some imatrix were not freed and on matrix
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    allocation too.
 #define rint(a) floor(a+0.5)  
     Revision 1.112  2006/01/30 09:55:26  brouard
 static double sqrarg;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 int imx;    (Module): Comments can be added in data file. Missing date values
 int stepm;    can be a simple dot '.'.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.110  2006/01/25 00:51:50  brouard
 int estepm;    (Module): Lots of cleaning and bugs added (Gompertz)
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.109  2006/01/24 19:37:15  brouard
 int m,nb;    (Module): Comments (lines starting with a #) are allowed in data.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.108  2006/01/19 18:05:42  lievre
 double **pmmij, ***probs, ***mobaverage;    Gnuplot problem appeared...
 double dateintmean=0;    To be fixed
   
 double *weight;    Revision 1.107  2006/01/19 16:20:37  brouard
 int **s; /* Status */    Test existence of gnuplot in imach path
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.104  2005/09/30 16:11:43  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
    char *s;                             /* pointer */    (Module): If the status is missing at the last wave but we know
    int  l1, l2;                         /* length counters */    that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
    l1 = strlen( path );                 /* length of path */    contributions to the likelihood is 1 - Prob of dying from last
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #ifdef windows    the healthy state at last known wave). Version is 0.98
    s = strrchr( path, '\\' );           /* find last / */  
 #else    Revision 1.103  2005/09/30 15:54:49  lievre
    s = strrchr( path, '/' );            /* find last / */    (Module): sump fixed, loop imx fixed, and simplifications.
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.102  2004/09/15 17:31:30  brouard
 #if     defined(__bsd__)                /* get current working directory */    Add the possibility to read data file including tab characters.
       extern char       *getwd( );  
     Revision 1.101  2004/09/15 10:38:38  brouard
       if ( getwd( dirc ) == NULL ) {    Fix on curr_time
 #else  
       extern char       *getcwd( );    Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.99  2004/06/05 08:57:40  brouard
          return( GLOCK_ERROR_GETCWD );    *** empty log message ***
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.98  2004/05/16 15:05:56  brouard
    } else {                             /* strip direcotry from path */    New version 0.97 . First attempt to estimate force of mortality
       s++;                              /* after this, the filename */    directly from the data i.e. without the need of knowing the health
       l2 = strlen( s );                 /* length of filename */    state at each age, but using a Gompertz model: log u =a + b*age .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    This is the basic analysis of mortality and should be done before any
       strcpy( name, s );                /* save file name */    other analysis, in order to test if the mortality estimated from the
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    cross-longitudinal survey is different from the mortality estimated
       dirc[l1-l2] = 0;                  /* add zero */    from other sources like vital statistic data.
    }  
    l1 = strlen( dirc );                 /* length of directory */    The same imach parameter file can be used but the option for mle should be -3.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Agnès, who wrote this part of the code, tried to keep most of the
 #else    former routines in order to include the new code within the former code.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    The output is very simple: only an estimate of the intercept and of
    s = strrchr( name, '.' );            /* find last / */    the slope with 95% confident intervals.
    s++;  
    strcpy(ext,s);                       /* save extension */    Current limitations:
    l1= strlen( name);    A) Even if you enter covariates, i.e. with the
    l2= strlen( s)+1;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
    strncpy( finame, name, l1-l2);    B) There is no computation of Life Expectancy nor Life Table.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.97  2004/02/20 13:25:42  lievre
 }    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   
 /******************************************/    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void replace(char *s, char*t)    rewritten within the same printf. Workaround: many printfs.
 {  
   int i;    Revision 1.95  2003/07/08 07:54:34  brouard
   int lg=20;    * imach.c (Repository):
   i=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   lg=strlen(t);    matrix (cov(a12,c31) instead of numbers.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.94  2003/06/27 13:00:02  brouard
     if (t[i]== '\\') s[i]='/';    Just cleaning
   }  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 int nbocc(char *s, char occ)    exist so I changed back to asctime which exists.
 {    (Module): Version 0.96b
   int i,j=0;  
   int lg=20;    Revision 1.92  2003/06/25 16:30:45  brouard
   i=0;    (Module): On windows (cygwin) function asctime_r doesn't
   lg=strlen(s);    exist so I changed back to asctime which exists.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.91  2003/06/25 15:30:29  brouard
   }    * imach.c (Repository): Duplicated warning errors corrected.
   return j;    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 void cutv(char *u,char *v, char*t, char occ)    concerning matrix of covariance. It has extension -cov.htm.
 {  
   int i,lg,j,p=0;    Revision 1.90  2003/06/24 12:34:15  brouard
   i=0;    (Module): Some bugs corrected for windows. Also, when
   for(j=0; j<=strlen(t)-1; j++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    of the covariance matrix to be input.
   }  
     Revision 1.89  2003/06/24 12:30:52  brouard
   lg=strlen(t);    (Module): Some bugs corrected for windows. Also, when
   for(j=0; j<p; j++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     (u[j] = t[j]);    of the covariance matrix to be input.
   }  
      u[p]='\0';    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.87  2003/06/18 12:26:01  brouard
   }    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 /********************** nrerror ********************/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 void nrerror(char error_text[])  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   fprintf(stderr,"ERREUR ...\n");    * imach.c (Repository): Check when date of death was earlier that
   fprintf(stderr,"%s\n",error_text);    current date of interview. It may happen when the death was just
   exit(1);    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
 /*********************** vector *******************/    assuming that the date of death was just one stepm after the
 double *vector(int nl, int nh)    interview.
 {    (Repository): Because some people have very long ID (first column)
   double *v;    we changed int to long in num[] and we added a new lvector for
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    memory allocation. But we also truncated to 8 characters (left
   if (!v) nrerror("allocation failure in vector");    truncation)
   return v-nl+NR_END;    (Repository): No more line truncation errors.
 }  
     Revision 1.84  2003/06/13 21:44:43  brouard
 /************************ free vector ******************/    * imach.c (Repository): Replace "freqsummary" at a correct
 void free_vector(double*v, int nl, int nh)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   free((FREE_ARG)(v+nl-NR_END));    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /************************ivector *******************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 int *ivector(long nl,long nh)    *** empty log message ***
 {  
   int *v;    Revision 1.82  2003/06/05 15:57:20  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Add log in  imach.c and  fullversion number is now printed.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  */
 }  /*
      Interpolated Markov Chain
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Short summary of the programme:
 {    
   free((FREE_ARG)(v+nl-NR_END));    This program computes Healthy Life Expectancies from
 }    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 /******************* imatrix *******************************/    interviewed on their health status or degree of disability (in the
 int **imatrix(long nrl, long nrh, long ncl, long nch)    case of a health survey which is our main interest) -2- at least a
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    second wave of interviews ("longitudinal") which measure each change
 {    (if any) in individual health status.  Health expectancies are
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    computed from the time spent in each health state according to a
   int **m;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
   /* allocate pointers to rows */    simplest model is the multinomial logistic model where pij is the
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    probability to be observed in state j at the second wave
   if (!m) nrerror("allocation failure 1 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m -= nrl;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
      where the markup *Covariates have to be included here again* invites
   /* allocate rows and set pointers to them */    you to do it.  More covariates you add, slower the
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    convergence.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    The advantage of this computer programme, compared to a simple
   m[nrl] -= ncl;    multinomial logistic model, is clear when the delay between waves is not
      identical for each individual. Also, if a individual missed an
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    intermediate interview, the information is lost, but taken into
      account using an interpolation or extrapolation.  
   /* return pointer to array of pointers to rows */  
   return m;    hPijx is the probability to be observed in state i at age x+h
 }    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 /****************** free_imatrix *************************/    states. This elementary transition (by month, quarter,
 void free_imatrix(m,nrl,nrh,ncl,nch)    semester or year) is modelled as a multinomial logistic.  The hPx
       int **m;    matrix is simply the matrix product of nh*stepm elementary matrices
       long nch,ncl,nrh,nrl;    and the contribution of each individual to the likelihood is simply
      /* free an int matrix allocated by imatrix() */    hPijx.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Also this programme outputs the covariance matrix of the parameters but also
   free((FREE_ARG) (m+nrl-NR_END));    of the life expectancies. It also computes the period (stable) prevalence. 
 }    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 /******************* matrix *******************************/             Institut national d'études démographiques, Paris.
 double **matrix(long nrl, long nrh, long ncl, long nch)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    It is copyrighted identically to a GNU software product, ie programme and
   double **m;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m += NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m -= nrl;    
     **********************************************************************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    main
   m[nrl] += NR_END;    read parameterfile
   m[nrl] -= ncl;    read datafile
     concatwav
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    freqsummary
   return m;    if (mle >= 1)
 }      mlikeli
     print results files
 /*************************free matrix ************************/    if mle==1 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)       computes hessian
 {    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        begin-prev-date,...
   free((FREE_ARG)(m+nrl-NR_END));    open gnuplot file
 }    open html file
     period (stable) prevalence
 /******************* ma3x *******************************/     for age prevalim()
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    h Pij x
 {    variance of p varprob
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    forecasting if prevfcast==1 prevforecast call prevalence()
   double ***m;    health expectancies
     Variance-covariance of DFLE
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    prevalence()
   if (!m) nrerror("allocation failure 1 in matrix()");     movingaverage()
   m += NR_END;    varevsij() 
   m -= nrl;    if popbased==1 varevsij(,popbased)
     total life expectancies
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Variance of period (stable) prevalence
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   end
   m[nrl] += NR_END;  */
   m[nrl] -= ncl;  
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
    
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  #include <math.h>
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  #include <stdio.h>
   m[nrl][ncl] += NR_END;  #include <stdlib.h>
   m[nrl][ncl] -= nll;  #include <string.h>
   for (j=ncl+1; j<=nch; j++)  #include <unistd.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  
    #include <limits.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <sys/types.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  #include <sys/stat.h>
     for (j=ncl+1; j<=nch; j++)  #include <errno.h>
       m[i][j]=m[i][j-1]+nlay;  extern int errno;
   }  
   return m;  /* #include <sys/time.h> */
 }  #include <time.h>
   #include "timeval.h"
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #ifdef GSL
 {  #include <gsl/gsl_errno.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #include <gsl/gsl_multimin.h>
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #endif
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /* #include <libintl.h> */
   /* #define _(String) gettext (String) */
 /***************** f1dim *************************/  
 extern int ncom;  #define MAXLINE 256
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 double f1dim(double x)  #define FILENAMELENGTH 132
 {  
   int j;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double f;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double *xt;  
    #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   xt=vector(1,ncom);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define NINTERVMAX 8
   free_vector(xt,1,ncom);  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   return f;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 20 /* Maximum number of covariates */
   #define MAXN 20000
 /*****************brent *************************/  #define YEARM 12. /* Number of months per year */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define AGESUP 130
 {  #define AGEBASE 40
   int iter;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double a,b,d,etemp;  #ifdef UNIX
   double fu,fv,fw,fx;  #define DIRSEPARATOR '/'
   double ftemp;  #define CHARSEPARATOR "/"
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define ODIRSEPARATOR '\\'
   double e=0.0;  #else
    #define DIRSEPARATOR '\\'
   a=(ax < cx ? ax : cx);  #define CHARSEPARATOR "\\"
   b=(ax > cx ? ax : cx);  #define ODIRSEPARATOR '/'
   x=w=v=bx;  #endif
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /* $Id$ */
     xm=0.5*(a+b);  /* $State$ */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
     printf(".");fflush(stdout);  char fullversion[]="$Revision$ $Date$"; 
 #ifdef DEBUG  char strstart[80];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 #endif  int nvar=0, nforce=0; /* Number of variables, number of forces */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
       *xmin=x;  int npar=NPARMAX;
       return fx;  int nlstate=2; /* Number of live states */
     }  int ndeath=1; /* Number of dead states */
     ftemp=fu;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     if (fabs(e) > tol1) {  int popbased=0;
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  int *wav; /* Number of waves for this individuual 0 is possible */
       p=(x-v)*q-(x-w)*r;  int maxwav=0; /* Maxim number of waves */
       q=2.0*(q-r);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       if (q > 0.0) p = -p;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       q=fabs(q);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       etemp=e;                     to the likelihood and the sum of weights (done by funcone)*/
       e=d;  int mle=1, weightopt=0;
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       else {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         d=p/q;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         u=x+d;  double jmean=1; /* Mean space between 2 waves */
         if (u-a < tol2 || b-u < tol2)  double **oldm, **newm, **savm; /* Working pointers to matrices */
           d=SIGN(tol1,xm-x);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       }  /*FILE *fic ; */ /* Used in readdata only */
     } else {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  FILE *ficlog, *ficrespow;
     }  int globpr=0; /* Global variable for printing or not */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double fretone; /* Only one call to likelihood */
     fu=(*f)(u);  long ipmx=0; /* Number of contributions */
     if (fu <= fx) {  double sw; /* Sum of weights */
       if (u >= x) a=x; else b=x;  char filerespow[FILENAMELENGTH];
       SHFT(v,w,x,u)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         SHFT(fv,fw,fx,fu)  FILE *ficresilk;
         } else {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
           if (u < x) a=u; else b=u;  FILE *ficresprobmorprev;
           if (fu <= fw || w == x) {  FILE *fichtm, *fichtmcov; /* Html File */
             v=w;  FILE *ficreseij;
             w=u;  char filerese[FILENAMELENGTH];
             fv=fw;  FILE *ficresstdeij;
             fw=fu;  char fileresstde[FILENAMELENGTH];
           } else if (fu <= fv || v == x || v == w) {  FILE *ficrescveij;
             v=u;  char filerescve[FILENAMELENGTH];
             fv=fu;  FILE  *ficresvij;
           }  char fileresv[FILENAMELENGTH];
         }  FILE  *ficresvpl;
   }  char fileresvpl[FILENAMELENGTH];
   nrerror("Too many iterations in brent");  char title[MAXLINE];
   *xmin=x;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   return fx;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   char command[FILENAMELENGTH];
 /****************** mnbrak ***********************/  int  outcmd=0;
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
             double (*func)(double))  
 {  char filelog[FILENAMELENGTH]; /* Log file */
   double ulim,u,r,q, dum;  char filerest[FILENAMELENGTH];
   double fu;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       SHFT(dum,*fb,*fa,dum)  struct timezone tzp;
       }  extern int gettimeofday();
   *cx=(*bx)+GOLD*(*bx-*ax);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   *fc=(*func)(*cx);  long time_value;
   while (*fb > *fc) {  extern long time();
     r=(*bx-*ax)*(*fb-*fc);  char strcurr[80], strfor[80];
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char *endptr;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  long lval;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double dval;
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  #define NR_END 1
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define FREE_ARG char*
       fu=(*func)(u);  #define FTOL 1.0e-10
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define NRANSI 
           SHFT(*fb,*fc,fu,(*func)(u))  #define ITMAX 200 
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define TOL 2.0e-4 
       u=ulim;  
       fu=(*func)(u);  #define CGOLD 0.3819660 
     } else {  #define ZEPS 1.0e-10 
       u=(*cx)+GOLD*(*cx-*bx);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       fu=(*func)(u);  
     }  #define GOLD 1.618034 
     SHFT(*ax,*bx,*cx,u)  #define GLIMIT 100.0 
       SHFT(*fa,*fb,*fc,fu)  #define TINY 1.0e-20 
       }  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*************** linmin ************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
 int ncom;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double *pcom,*xicom;  #define rint(a) floor(a+0.5)
 double (*nrfunc)(double []);  
    static double sqrarg;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double brent(double ax, double bx, double cx,  int agegomp= AGEGOMP;
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  int imx; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int stepm=1;
               double *fc, double (*func)(double));  /* Stepm, step in month: minimum step interpolation*/
   int j;  
   double xx,xmin,bx,ax;  int estepm;
   double fx,fb,fa;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    
   ncom=n;  int m,nb;
   pcom=vector(1,n);  long *num;
   xicom=vector(1,n);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   nrfunc=func;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for (j=1;j<=n;j++) {  double **pmmij, ***probs;
     pcom[j]=p[j];  double *ageexmed,*agecens;
     xicom[j]=xi[j];  double dateintmean=0;
   }  
   ax=0.0;  double *weight;
   xx=1.0;  int **s; /* Status */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double *agedc, **covar, idx;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #ifdef DEBUG  double *lsurv, *lpop, *tpop;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (j=1;j<=n;j++) {  double ftolhess; /* Tolerance for computing hessian */
     xi[j] *= xmin;  
     p[j] += xi[j];  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   free_vector(xicom,1,n);  {
   free_vector(pcom,1,n);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     */ 
 /*************** powell ************************/    char  *ss;                            /* pointer */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    int   l1, l2;                         /* length counters */
             double (*func)(double []))  
 {    l1 = strlen(path );                   /* length of path */
   void linmin(double p[], double xi[], int n, double *fret,    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
               double (*func)(double []));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i,ibig,j;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double del,t,*pt,*ptt,*xit;      strcpy( name, path );               /* we got the fullname name because no directory */
   double fp,fptt;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   double *xits;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   pt=vector(1,n);      /* get current working directory */
   ptt=vector(1,n);      /*    extern  char* getcwd ( char *buf , int len);*/
   xit=vector(1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   xits=vector(1,n);        return( GLOCK_ERROR_GETCWD );
   *fret=(*func)(p);      }
   for (j=1;j<=n;j++) pt[j]=p[j];      /* got dirc from getcwd*/
   for (*iter=1;;++(*iter)) {      printf(" DIRC = %s \n",dirc);
     fp=(*fret);    } else {                              /* strip direcotry from path */
     ibig=0;      ss++;                               /* after this, the filename */
     del=0.0;      l2 = strlen( ss );                  /* length of filename */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (i=1;i<=n;i++)      strcpy( name, ss );         /* save file name */
       printf(" %d %.12f",i, p[i]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     printf("\n");      dirc[l1-l2] = 0;                    /* add zero */
     for (i=1;i<=n;i++) {      printf(" DIRC2 = %s \n",dirc);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    }
       fptt=(*fret);    /* We add a separator at the end of dirc if not exists */
 #ifdef DEBUG    l1 = strlen( dirc );                  /* length of directory */
       printf("fret=%lf \n",*fret);    if( dirc[l1-1] != DIRSEPARATOR ){
 #endif      dirc[l1] =  DIRSEPARATOR;
       printf("%d",i);fflush(stdout);      dirc[l1+1] = 0; 
       linmin(p,xit,n,fret,func);      printf(" DIRC3 = %s \n",dirc);
       if (fabs(fptt-(*fret)) > del) {    }
         del=fabs(fptt-(*fret));    ss = strrchr( name, '.' );            /* find last / */
         ibig=i;    if (ss >0){
       }      ss++;
 #ifdef DEBUG      strcpy(ext,ss);                     /* save extension */
       printf("%d %.12e",i,(*fret));      l1= strlen( name);
       for (j=1;j<=n;j++) {      l2= strlen(ss)+1;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      strncpy( finame, name, l1-l2);
         printf(" x(%d)=%.12e",j,xit[j]);      finame[l1-l2]= 0;
       }    }
       for(j=1;j<=n;j++)  
         printf(" p=%.12e",p[j]);    return( 0 );                          /* we're done */
       printf("\n");  }
 #endif  
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /******************************************/
 #ifdef DEBUG  
       int k[2],l;  void replace_back_to_slash(char *s, char*t)
       k[0]=1;  {
       k[1]=-1;    int i;
       printf("Max: %.12e",(*func)(p));    int lg=0;
       for (j=1;j<=n;j++)    i=0;
         printf(" %.12e",p[j]);    lg=strlen(t);
       printf("\n");    for(i=0; i<= lg; i++) {
       for(l=0;l<=1;l++) {      (s[i] = t[i]);
         for (j=1;j<=n;j++) {      if (t[i]== '\\') s[i]='/';
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  }
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char *trimbb(char *out, char *in)
       }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
 #endif    char *s;
     s=out;
     while (*in != '\0'){
       free_vector(xit,1,n);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       free_vector(xits,1,n);        in++;
       free_vector(ptt,1,n);      }
       free_vector(pt,1,n);      *out++ = *in++;
       return;    }
     }    *out='\0';
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    return s;
     for (j=1;j<=n;j++) {  }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  char *cutv(char *blocc, char *alocc, char *in, char occ)
       pt[j]=p[j];  {
     }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     fptt=(*func)(ptt);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     if (fptt < fp) {       gives blocc="abcdef2ghi" and alocc="j".
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       if (t < 0.0) {    */
         linmin(p,xit,n,fret,func);    char *s, *t;
         for (j=1;j<=n;j++) {    t=in;s=in;
           xi[j][ibig]=xi[j][n];    while (*in != '\0'){
           xi[j][n]=xit[j];      while( *in == occ){
         }        *blocc++ = *in++;
 #ifdef DEBUG        s=in;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      }
         for(j=1;j<=n;j++)      *blocc++ = *in++;
           printf(" %.12e",xit[j]);    }
         printf("\n");    if (s == t) /* occ not found */
 #endif      *(blocc-(in-s))='\0';
       }    else
     }      *(blocc-(in-s)-1)='\0';
   }    in=s;
 }    while ( *in != '\0'){
       *alocc++ = *in++;
 /**** Prevalence limit ****************/    }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    *alocc='\0';
 {    return s;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  }
      matrix by transitions matrix until convergence is reached */  
   int nbocc(char *s, char occ)
   int i, ii,j,k;  {
   double min, max, maxmin, maxmax,sumnew=0.;    int i,j=0;
   double **matprod2();    int lg=20;
   double **out, cov[NCOVMAX], **pmij();    i=0;
   double **newm;    lg=strlen(s);
   double agefin, delaymax=50 ; /* Max number of years to converge */    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
   for (ii=1;ii<=nlstate+ndeath;ii++)    }
     for (j=1;j<=nlstate+ndeath;j++){    return j;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /* void cutv(char *u,char *v, char*t, char occ) */
    cov[1]=1.;  /* { */
    /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /*      gives u="abcdef2ghi" and v="j" *\/ */
     newm=savm;  /*   int i,lg,j,p=0; */
     /* Covariates have to be included here again */  /*   i=0; */
      cov[2]=agefin;  /*   lg=strlen(t); */
    /*   for(j=0; j<=lg-1; j++) { */
       for (k=1; k<=cptcovn;k++) {  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*   } */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  /*   for(j=0; j<p; j++) { */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*     (u[j] = t[j]); */
       for (k=1; k<=cptcovprod;k++)  /*   } */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*      u[p]='\0'; */
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*    for(j=0; j<= lg; j++) { */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /*   } */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /* } */
   
     savm=oldm;  /********************** nrerror ********************/
     oldm=newm;  
     maxmax=0.;  void nrerror(char error_text[])
     for(j=1;j<=nlstate;j++){  {
       min=1.;    fprintf(stderr,"ERREUR ...\n");
       max=0.;    fprintf(stderr,"%s\n",error_text);
       for(i=1; i<=nlstate; i++) {    exit(EXIT_FAILURE);
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*********************** vector *******************/
         prlim[i][j]= newm[i][j]/(1-sumnew);  double *vector(int nl, int nh)
         max=FMAX(max,prlim[i][j]);  {
         min=FMIN(min,prlim[i][j]);    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       maxmin=max-min;    if (!v) nrerror("allocation failure in vector");
       maxmax=FMAX(maxmax,maxmin);    return v-nl+NR_END;
     }  }
     if(maxmax < ftolpl){  
       return prlim;  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
   }  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*************** transition probabilities ***************/  
   /************************ivector *******************************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int *ivector(long nl,long nh)
 {  {
   double s1, s2;    int *v;
   /*double t34;*/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   int i,j,j1, nc, ii, jj;    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
     for(i=1; i<= nlstate; i++){  }
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /******************free ivector **************************/
         /*s2 += param[i][j][nc]*cov[nc];*/  void free_ivector(int *v, long nl, long nh)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(v+nl-NR_END));
       }  }
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    long *v;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if (!v) nrerror("allocation failure in ivector");
       }    return v-nl+NR_END;
       ps[i][j]=s2;  }
     }  
   }  /******************free lvector **************************/
     /*ps[3][2]=1;*/  void free_lvector(long *v, long nl, long nh)
   {
   for(i=1; i<= nlstate; i++){    free((FREE_ARG)(v+nl-NR_END));
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /******************* imatrix *******************************/
     for(j=i+1; j<=nlstate+ndeath; j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       s1+=exp(ps[i][j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     ps[i][i]=1./(s1+1.);  { 
     for(j=1; j<i; j++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    int **m; 
     for(j=i+1; j<=nlstate+ndeath; j++)    
       ps[i][j]= exp(ps[i][j])*ps[i][i];    /* allocate pointers to rows */ 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   } /* end i */    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m -= nrl; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    
       ps[ii][jj]=0;    
       ps[ii][ii]=1;    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    
     for(jj=1; jj<= nlstate+ndeath; jj++){    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
      printf("%lf ",ps[ii][jj]);    
    }    /* return pointer to array of pointers to rows */ 
     printf("\n ");    return m; 
     }  } 
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /****************** free_imatrix *************************/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void free_imatrix(m,nrl,nrh,ncl,nch)
   goto end;*/        int **m;
     return ps;        long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /**************** Product of 2 matrices ******************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  } 
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /******************* matrix *******************************/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  double **matrix(long nrl, long nrh, long ncl, long nch)
   /* in, b, out are matrice of pointers which should have been initialized  {
      before: only the contents of out is modified. The function returns    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
      a pointer to pointers identical to out */    double **m;
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for(k=ncolol; k<=ncoloh; k++)    if (!m) nrerror("allocation failure 1 in matrix()");
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    m += NR_END;
         out[i][k] +=in[i][j]*b[j][k];    m -= nrl;
   
   return out;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
     m[nrl] -= ncl;
 /************* Higher Matrix Product ***************/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    return m;
 {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month     */
      duration (i.e. until  }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*************************free matrix ************************/
      (typically every 2 years instead of every month which is too big).  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
      Model is determined by parameters x and covariates have to be  {
      included manually here.    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
      */  }
   
   int i, j, d, h, k;  /******************* ma3x *******************************/
   double **out, cov[NCOVMAX];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **newm;  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   /* Hstepm could be zero and should return the unit matrix */    double ***m;
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       oldm[i][j]=(i==j ? 1.0 : 0.0);    if (!m) nrerror("allocation failure 1 in matrix()");
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m += NR_END;
     }    m -= nrl;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for(d=1; d <=hstepm; d++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       newm=savm;    m[nrl] += NR_END;
       /* Covariates have to be included here again */    m[nrl] -= ncl;
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       for (k=1; k<=cptcovprod;k++)    m[nrl][ncl] += NR_END;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl][ncl] -= nll;
     for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (i=nrl+1; i<=nrh; i++) {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for (j=ncl+1; j<=nch; j++) 
       savm=oldm;        m[i][j]=m[i][j-1]+nlay;
       oldm=newm;    }
     }    return m; 
     for(i=1; i<=nlstate+ndeath; i++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for(j=1;j<=nlstate+ndeath;j++) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         po[i][j][h]=newm[i][j];    */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  }
          */  
       }  /*************************free ma3x ************************/
   } /* end h */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   return po;  {
 }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /*************** function subdirf ***********/
   int i, ii, j, k, mi, d, kk;  char *subdirf(char fileres[])
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    /* Caution optionfilefiname is hidden */
   double sw; /* Sum of weights */    strcpy(tmpout,optionfilefiname);
   double lli; /* Individual log likelihood */    strcat(tmpout,"/"); /* Add to the right */
   int s1, s2;    strcat(tmpout,fileres);
   long ipmx;    return tmpout;
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*************** function subdirf2 ***********/
   /*for(i=1;i<imx;i++)  char *subdirf2(char fileres[], char *preop)
     printf(" %d\n",s[4][i]);  {
   */    
   cov[1]=1.;    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
   for(k=1; k<=nlstate; k++) ll[k]=0.;    strcat(tmpout,"/");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    strcat(tmpout,preop);
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    strcat(tmpout,fileres);
     for(mi=1; mi<= wav[i]-1; mi++){    return tmpout;
       for (ii=1;ii<=nlstate+ndeath;ii++)  }
         for (j=1;j<=nlstate+ndeath;j++){  
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*************** function subdirf3 ***********/
           savm[ii][j]=(ii==j ? 1.0 : 0.0);  char *subdirf3(char fileres[], char *preop, char *preop2)
         }  {
       for(d=0; d<dh[mi][i]; d++){    
         newm=savm;    /* Caution optionfilefiname is hidden */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    strcpy(tmpout,optionfilefiname);
         for (kk=1; kk<=cptcovage;kk++) {    strcat(tmpout,"/");
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    strcat(tmpout,preop);
         }    strcat(tmpout,preop2);
            strcat(tmpout,fileres);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    return tmpout;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
         savm=oldm;  
         oldm=newm;  /***************** f1dim *************************/
          extern int ncom; 
          extern double *pcom,*xicom;
       } /* end mult */  extern double (*nrfunc)(double []); 
         
       s1=s[mw[mi][i]][i];  double f1dim(double x) 
       s2=s[mw[mi+1][i]][i];  { 
       if( s2 > nlstate){    int j; 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution    double f;
            to the likelihood is the probability to die between last step unit time and current    double *xt; 
            step unit time, which is also the differences between probability to die before dh   
            and probability to die before dh-stepm .    xt=vector(1,ncom); 
            In version up to 0.92 likelihood was computed    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
            as if date of death was unknown. Death was treated as any other    f=(*nrfunc)(xt); 
            health state: the date of the interview describes the actual state    free_vector(xt,1,ncom); 
            and not the date of a change in health state. The former idea was    return f; 
            to consider that at each interview the state was recorded  } 
            (healthy, disable or death) and IMaCh was corrected; but when we  
            introduced the exact date of death then we should have modified  /*****************brent *************************/
            the contribution of an exact death to the likelihood. This new  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
            contribution is smaller and very dependent of the step unit  { 
            stepm. It is no more the probability to die between last interview    int iter; 
            and month of death but the probability to survive from last    double a,b,d,etemp;
            interview up to one month before death multiplied by the    double fu,fv,fw,fx;
            probability to die within a month. Thanks to Chris    double ftemp;
            Jackson for correcting this bug.  Former versions increased    double p,q,r,tol1,tol2,u,v,w,x,xm; 
            mortality artificially. The bad side is that we add another loop    double e=0.0; 
            which slows down the processing. The difference can be up to 10%   
            lower mortality.    a=(ax < cx ? ax : cx); 
         */    b=(ax > cx ? ax : cx); 
         lli=log(out[s1][s2] - savm[s1][s2]);    x=w=v=bx; 
       }else{    fw=fv=fx=(*f)(x); 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    for (iter=1;iter<=ITMAX;iter++) { 
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       ipmx +=1;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       sw += weight[i];      printf(".");fflush(stdout);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      fprintf(ficlog,".");fflush(ficlog);
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/  #ifdef DEBUG
     } /* end of wave */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   } /* end of individual */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  #endif
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        *xmin=x; 
   /*exit(0);*/        return fx; 
   return -l;      } 
 }      ftemp=fu;
       if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
 /*********** Maximum Likelihood Estimation ***************/        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        q=2.0*(q-r); 
 {        if (q > 0.0) p = -p; 
   int i,j, iter;        q=fabs(q); 
   double **xi,*delti;        etemp=e; 
   double fret;        e=d; 
   xi=matrix(1,npar,1,npar);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (i=1;i<=npar;i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (j=1;j<=npar;j++)        else { 
       xi[i][j]=(i==j ? 1.0 : 0.0);          d=p/q; 
   printf("Powell\n");          u=x+d; 
   powell(p,xi,npar,ftol,&iter,&fret,func);          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        } 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /**** Computes Hessian and covariance matrix ***/      fu=(*f)(u); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   double  **a,**y,*x,pd;        SHFT(v,w,x,u) 
   double **hess;          SHFT(fv,fw,fx,fu) 
   int i, j,jk;          } else { 
   int *indx;            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   double hessii(double p[], double delta, int theta, double delti[]);              v=w; 
   double hessij(double p[], double delti[], int i, int j);              w=u; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;              fv=fw; 
   void ludcmp(double **a, int npar, int *indx, double *d) ;              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   hess=matrix(1,npar,1,npar);              v=u; 
               fv=fu; 
   printf("\nCalculation of the hessian matrix. Wait...\n");            } 
   for (i=1;i<=npar;i++){          } 
     printf("%d",i);fflush(stdout);    } 
     hess[i][i]=hessii(p,ftolhess,i,delti);    nrerror("Too many iterations in brent"); 
     /*printf(" %f ",p[i]);*/    *xmin=x; 
     /*printf(" %lf ",hess[i][i]);*/    return fx; 
   }  } 
    
   for (i=1;i<=npar;i++) {  /****************** mnbrak ***********************/
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         printf(".%d%d",i,j);fflush(stdout);              double (*func)(double)) 
         hess[i][j]=hessij(p,delti,i,j);  { 
         hess[j][i]=hess[i][j];        double ulim,u,r,q, dum;
         /*printf(" %lf ",hess[i][j]);*/    double fu; 
       }   
     }    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
   printf("\n");    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        SHFT(dum,*fb,*fa,dum) 
          } 
   a=matrix(1,npar,1,npar);    *cx=(*bx)+GOLD*(*bx-*ax); 
   y=matrix(1,npar,1,npar);    *fc=(*func)(*cx); 
   x=vector(1,npar);    while (*fb > *fc) { 
   indx=ivector(1,npar);      r=(*bx-*ax)*(*fb-*fc); 
   for (i=1;i<=npar;i++)      q=(*bx-*cx)*(*fb-*fa); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   ludcmp(a,npar,indx,&pd);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for (j=1;j<=npar;j++) {      if ((*bx-u)*(u-*cx) > 0.0) { 
     for (i=1;i<=npar;i++) x[i]=0;        fu=(*func)(u); 
     x[j]=1;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     lubksb(a,npar,indx,x);        fu=(*func)(u); 
     for (i=1;i<=npar;i++){        if (fu < *fc) { 
       matcov[i][j]=x[i];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     }            SHFT(*fb,*fc,fu,(*func)(u)) 
   }            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   printf("\n#Hessian matrix#\n");        u=ulim; 
   for (i=1;i<=npar;i++) {        fu=(*func)(u); 
     for (j=1;j<=npar;j++) {      } else { 
       printf("%.3e ",hess[i][j]);        u=(*cx)+GOLD*(*cx-*bx); 
     }        fu=(*func)(u); 
     printf("\n");      } 
   }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   /* Recompute Inverse */        } 
   for (i=1;i<=npar;i++)  } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** linmin ************************/
   
   /*  printf("\n#Hessian matrix recomputed#\n");  int ncom; 
   double *pcom,*xicom;
   for (j=1;j<=npar;j++) {  double (*nrfunc)(double []); 
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    double brent(double ax, double bx, double cx, 
       y[i][j]=x[i];                 double (*f)(double), double tol, double *xmin); 
       printf("%.3e ",y[i][j]);    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     printf("\n");                double *fc, double (*func)(double)); 
   }    int j; 
   */    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   free_matrix(a,1,npar,1,npar);   
   free_matrix(y,1,npar,1,npar);    ncom=n; 
   free_vector(x,1,npar);    pcom=vector(1,n); 
   free_ivector(indx,1,npar);    xicom=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    nrfunc=func; 
     for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
 }      xicom[j]=xi[j]; 
     } 
 /*************** hessian matrix ****************/    ax=0.0; 
 double hessii( double x[], double delta, int theta, double delti[])    xx=1.0; 
 {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   int i;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   int l=1, lmax=20;  #ifdef DEBUG
   double k1,k2;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double p2[NPARMAX+1];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (j=1;j<=n;j++) { 
   double fx;      xi[j] *= xmin; 
   int k=0,kmax=10;      p[j] += xi[j]; 
   double l1;    } 
     free_vector(xicom,1,n); 
   fx=func(x);    free_vector(pcom,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];  } 
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  char *asc_diff_time(long time_sec, char ascdiff[])
     delts=delt;  {
     for(k=1 ; k <kmax; k=k+1){    long sec_left, days, hours, minutes;
       delt = delta*(l1*k);    days = (time_sec) / (60*60*24);
       p2[theta]=x[theta] +delt;    sec_left = (time_sec) % (60*60*24);
       k1=func(p2)-fx;    hours = (sec_left) / (60*60) ;
       p2[theta]=x[theta]-delt;    sec_left = (sec_left) %(60*60);
       k2=func(p2)-fx;    minutes = (sec_left) /60;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    sec_left = (sec_left) % (60);
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
          return ascdiff;
 #ifdef DEBUG  }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /*************** powell ************************/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              double (*func)(double [])) 
         k=kmax;  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */                double (*func)(double [])); 
         k=kmax; l=lmax*10.;    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double fp,fptt;
         delts=delt;    double *xits;
       }    int niterf, itmp;
     }  
   }    pt=vector(1,n); 
   delti[theta]=delts;    ptt=vector(1,n); 
   return res;    xit=vector(1,n); 
      xits=vector(1,n); 
 }    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
 double hessij( double x[], double delti[], int thetai,int thetaj)    for (*iter=1;;++(*iter)) { 
 {      fp=(*fret); 
   int i;      ibig=0; 
   int l=1, l1, lmax=20;      del=0.0; 
   double k1,k2,k3,k4,res,fx;      last_time=curr_time;
   double p2[NPARMAX+1];      (void) gettimeofday(&curr_time,&tzp);
   int k;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   fx=func(x);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
   for (k=1; k<=2; k++) {     for (i=1;i<=n;i++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];        printf(" %d %.12f",i, p[i]);
     p2[thetai]=x[thetai]+delti[thetai]/k;        fprintf(ficlog," %d %.12lf",i, p[i]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fprintf(ficrespow," %.12lf", p[i]);
     k1=func(p2)-fx;      }
        printf("\n");
     p2[thetai]=x[thetai]+delti[thetai]/k;      fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      fprintf(ficrespow,"\n");fflush(ficrespow);
     k2=func(p2)-fx;      if(*iter <=3){
          tm = *localtime(&curr_time.tv_sec);
     p2[thetai]=x[thetai]-delti[thetai]/k;        strcpy(strcurr,asctime(&tm));
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  /*       asctime_r(&tm,strcurr); */
     k3=func(p2)-fx;        forecast_time=curr_time; 
          itmp = strlen(strcurr);
     p2[thetai]=x[thetai]-delti[thetai]/k;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          strcurr[itmp-1]='\0';
     k4=func(p2)-fx;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG        for(niterf=10;niterf<=30;niterf+=10){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 #endif          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
   return res;          strcpy(strfor,asctime(&tmf));
 }          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
 /************** Inverse of matrix **************/          strfor[itmp-1]='\0';
 void ludcmp(double **a, int n, int *indx, double *d)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i,imax,j,k;        }
   double big,dum,sum,temp;      }
   double *vv;      for (i=1;i<=n;i++) { 
          for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   vv=vector(1,n);        fptt=(*fret); 
   *d=1.0;  #ifdef DEBUG
   for (i=1;i<=n;i++) {        printf("fret=%lf \n",*fret);
     big=0.0;        fprintf(ficlog,"fret=%lf \n",*fret);
     for (j=1;j<=n;j++)  #endif
       if ((temp=fabs(a[i][j])) > big) big=temp;        printf("%d",i);fflush(stdout);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        fprintf(ficlog,"%d",i);fflush(ficlog);
     vv[i]=1.0/big;        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
   for (j=1;j<=n;j++) {          del=fabs(fptt-(*fret)); 
     for (i=1;i<j;i++) {          ibig=i; 
       sum=a[i][j];        } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  #ifdef DEBUG
       a[i][j]=sum;        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
     big=0.0;        for (j=1;j<=n;j++) {
     for (i=j;i<=n;i++) {          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       sum=a[i][j];          printf(" x(%d)=%.12e",j,xit[j]);
       for (k=1;k<j;k++)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         sum -= a[i][k]*a[k][j];        }
       a[i][j]=sum;        for(j=1;j<=n;j++) {
       if ( (dum=vv[i]*fabs(sum)) >= big) {          printf(" p=%.12e",p[j]);
         big=dum;          fprintf(ficlog," p=%.12e",p[j]);
         imax=i;        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
     if (j != imax) {  #endif
       for (k=1;k<=n;k++) {      } 
         dum=a[imax][k];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         a[imax][k]=a[j][k];  #ifdef DEBUG
         a[j][k]=dum;        int k[2],l;
       }        k[0]=1;
       *d = -(*d);        k[1]=-1;
       vv[imax]=vv[j];        printf("Max: %.12e",(*func)(p));
     }        fprintf(ficlog,"Max: %.12e",(*func)(p));
     indx[j]=imax;        for (j=1;j<=n;j++) {
     if (a[j][j] == 0.0) a[j][j]=TINY;          printf(" %.12e",p[j]);
     if (j != n) {          fprintf(ficlog," %.12e",p[j]);
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
   free_vector(vv,1,n);  /* Doesn't work */          for (j=1;j<=n;j++) {
 ;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 void lubksb(double **a, int n, int *indx, double b[])          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   int i,ii=0,ip,j;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double sum;        }
    #endif
   for (i=1;i<=n;i++) {  
     ip=indx[i];  
     sum=b[ip];        free_vector(xit,1,n); 
     b[ip]=b[i];        free_vector(xits,1,n); 
     if (ii)        free_vector(ptt,1,n); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        free_vector(pt,1,n); 
     else if (sum) ii=i;        return; 
     b[i]=sum;      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for (i=n;i>=1;i--) {      for (j=1;j<=n;j++) { 
     sum=b[i];        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        xit[j]=p[j]-pt[j]; 
     b[i]=sum/a[i][i];        pt[j]=p[j]; 
   }      } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
 /************ Frequencies ********************/        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        if (t < 0.0) { 
 {  /* Some frequencies */          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            xi[j][ibig]=xi[j][n]; 
   double ***freq; /* Frequencies */            xi[j][n]=xit[j]; 
   double *pp;          }
   double pos, k2, dateintsum=0,k2cpt=0;  #ifdef DEBUG
   FILE *ficresp;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   char fileresp[FILENAMELENGTH];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
            for(j=1;j<=n;j++){
   pp=vector(1,nlstate);            printf(" %.12e",xit[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog," %.12e",xit[j]);
   strcpy(fileresp,"p");          }
   strcat(fileresp,fileres);          printf("\n");
   if((ficresp=fopen(fileresp,"w"))==NULL) {          fprintf(ficlog,"\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);  #endif
     exit(0);        }
   }      } 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    } 
   j1=0;  } 
    
   j=cptcoveff;  /**** Prevalence limit (stable or period prevalence)  ****************/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       j1++;       matrix by transitions matrix until convergence is reached */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    int i, ii,j,k;
       for (i=-1; i<=nlstate+ndeath; i++)      double min, max, maxmin, maxmax,sumnew=0.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **matprod2();
           for(m=agemin; m <= agemax+3; m++)    double **out, cov[NCOVMAX+1], **pmij();
             freq[i][jk][m]=0;    double **newm;
          double agefin, delaymax=50 ; /* Max number of years to converge */
       dateintsum=0;  
       k2cpt=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {      for (j=1;j<=nlstate+ndeath;j++){
         bool=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     cov[1]=1.;
               bool=0;   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if (bool==1) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           for(m=firstpass; m<=lastpass; m++){      newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);      /* Covariates have to be included here again */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       cov[2]=agefin;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for (k=1; k<=cptcovn;k++) {
               if (m<lastpass) {          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        }
               }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                      for (k=1; k<=cptcovprod;k++)
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                 dateintsum=dateintsum+k2;  
                 k2cpt++;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
               }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
             }        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         }  
       }      savm=oldm;
              oldm=newm;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      maxmax=0.;
       for(j=1;j<=nlstate;j++){
       if  (cptcovn>0) {        min=1.;
         fprintf(ficresp, "\n#********** Variable ");        max=0.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(i=1; i<=nlstate; i++) {
         fprintf(ficresp, "**********\n#");          sumnew=0;
       }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(i=1; i<=nlstate;i++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          max=FMAX(max,prlim[i][j]);
       fprintf(ficresp, "\n");          min=FMIN(min,prlim[i][j]);
              }
       for(i=(int)agemin; i <= (int)agemax+3; i++){        maxmin=max-min;
         if(i==(int)agemax+3)        maxmax=FMAX(maxmax,maxmin);
           printf("Total");      }
         else      if(maxmax < ftolpl){
           printf("Age %d", i);        return prlim;
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    }
             pp[jk] += freq[jk][m][i];  }
         }  
         for(jk=1; jk <=nlstate ; jk++){  /*************** transition probabilities ***************/ 
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           if(pp[jk]>=1.e-10)  {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double s1, s2;
           else    /*double t34;*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i,j,j1, nc, ii, jj;
         }  
       for(i=1; i<= nlstate; i++){
         for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             pp[jk] += freq[jk][m][i];            /*s2 += param[i][j][nc]*cov[nc];*/
         }            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)          }
           pos += pp[jk];          ps[i][j]=s2;
         for(jk=1; jk <=nlstate ; jk++){  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
           if(pos>=1.e-5)        }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for(j=i+1; j<=nlstate+ndeath;j++){
           else          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           if( i <= (int) agemax){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
             if(pos>=1.e-5){          }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          ps[i][j]=s2;
               probs[i][jk][j1]= pp[jk]/pos;        }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      }
             }      /*ps[3][2]=1;*/
             else      
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      for(i=1; i<= nlstate; i++){
           }        s1=0;
         }        for(j=1; j<i; j++){
                  s1+=exp(ps[i][j]);
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           for(m=-1; m <=nlstate+ndeath; m++)        }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(j=i+1; j<=nlstate+ndeath; j++){
         if(i <= (int) agemax)          s1+=exp(ps[i][j]);
           fprintf(ficresp,"\n");          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         printf("\n");        }
       }        ps[i][i]=1./(s1+1.);
     }        for(j=1; j<i; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   dateintmean=dateintsum/k2cpt;        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
   fclose(ficresp);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end i */
   free_vector(pp,1,nlstate);      
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   /* End of Freq */        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************ Prevalence ********************/        }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      }
 {  /* Some frequencies */      
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double ***freq; /* Frequencies */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double *pp;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double pos, k2;  /*       } */
   /*       printf("\n "); */
   pp=vector(1,nlstate);  /*        } */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*        printf("\n ");printf("%lf ",cov[2]); */
           /*
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   j1=0;        goto end;*/
        return ps;
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /**************** Product of 2 matrices ******************/
  for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       j1++;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (i=-1; i<=nlstate+ndeath; i++)         b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      /* in, b, out are matrice of pointers which should have been initialized 
           for(m=agemin; m <= agemax+3; m++)       before: only the contents of out is modified. The function returns
             freq[i][jk][m]=0;       a pointer to pointers identical to out */
          long i, j, k;
       for (i=1; i<=imx; i++) {    for(i=nrl; i<= nrh; i++)
         bool=1;      for(k=ncolol; k<=ncoloh; k++)
         if  (cptcovn>0) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           for (z1=1; z1<=cptcoveff; z1++)          out[i][k] +=in[i][j]*b[j][k];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;    return out;
         }  }
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /************* Higher Matrix Product ***************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               if (m<lastpass)    /* Computes the transition matrix starting at age 'age' over 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];       'nhstepm*hstepm*stepm' months (i.e. until
               else       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];       nhstepm*hstepm matrices. 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
             }       (typically every 2 years instead of every month which is too big 
           }       for the memory).
         }       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
         for(i=(int)agemin; i <= (int)agemax+3; i++){  
           for(jk=1; jk <=nlstate ; jk++){       */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
               pp[jk] += freq[jk][m][i];    int i, j, d, h, k;
           }    double **out, cov[NCOVMAX+1];
           for(jk=1; jk <=nlstate ; jk++){    double **newm;
             for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
              for (j=1;j<=nlstate+ndeath;j++){
          for(jk=1; jk <=nlstate ; jk++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
              pp[jk] += freq[jk][m][i];      }
          }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
              for(h=1; h <=nhstepm; h++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for(d=1; d <=hstepm; d++){
         newm=savm;
          for(jk=1; jk <=nlstate ; jk++){                  /* Covariates have to be included here again */
            if( i <= (int) agemax){        cov[1]=1.;
              if(pos>=1.e-5){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                probs[i][jk][j1]= pp[jk]/pos;        for (k=1; k<=cptcovn;k++) 
              }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
            }        for (k=1; k<=cptcovage;k++)
          }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                  for (k=1; k<=cptcovprod;k++)
         }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   }  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
          /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   free_vector(pp,1,nlstate);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
          savm=oldm;
 }  /* End of Freq */        oldm=newm;
       }
 /************* Waves Concatenation ***************/      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          po[i][j][h]=newm[i][j];
 {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        }
      Death is a valid wave (if date is known).      /*printf("h=%d ",h);*/
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    } /* end h */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  /*     printf("\n H=%d \n",h); */
      and mw[mi+1][i]. dh depends on stepm.    return po;
      */  }
   
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*************** log-likelihood *************/
      double sum=0., jmean=0.;*/  double func( double *x)
   {
   int j, k=0,jk, ju, jl;    int i, ii, j, k, mi, d, kk;
   double sum=0.;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   jmin=1e+5;    double **out;
   jmax=-1;    double sw; /* Sum of weights */
   jmean=0.;    double lli; /* Individual log likelihood */
   for(i=1; i<=imx; i++){    int s1, s2;
     mi=0;    double bbh, survp;
     m=firstpass;    long ipmx;
     while(s[m][i] <= nlstate){    /*extern weight */
       if(s[m][i]>=1)    /* We are differentiating ll according to initial status */
         mw[++mi][i]=m;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if(m >=lastpass)    /*for(i=1;i<imx;i++) 
         break;      printf(" %d\n",s[4][i]);
       else    */
         m++;    cov[1]=1.;
     }/* end while */  
     if (s[m][i] > nlstate){    for(k=1; k<=nlstate; k++) ll[k]=0.;
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    if(mle==1){
          /* Only death is a correct wave */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       mw[mi][i]=m;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not been computed because of age Tvar[4=V3*V2] 
     wav[i]=mi;           has been calculated etc */
     if(mi==0)        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=imx; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(mi=1; mi<wav[i];mi++){            }
       if (stepm <=0)          for(d=0; d<dh[mi][i]; d++){
         dh[mi][i]=1;            newm=savm;
       else{            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {            for (kk=1; kk<=cptcovage;kk++) {
           if (agedc[i] < 2*AGESUP) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            }
           if(j==0) j=1;  /* Survives at least one month after exam */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           k=k+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (j >= jmax) jmax=j;            savm=oldm;
           if (j <= jmin) jmin=j;            oldm=newm;
           sum=sum+j;          } /* end mult */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        
           }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
         else{           * If stepm is larger than one month (smallest stepm) and if the exact delay 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));           * (in months) between two waves is not a multiple of stepm, we rounded to 
           k=k+1;           * the nearest (and in case of equal distance, to the lowest) interval but now
           if (j >= jmax) jmax=j;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
           else if (j <= jmin)jmin=j;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */           * probability in order to take into account the bias as a fraction of the way
           sum=sum+j;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         }           * -stepm/2 to stepm/2 .
         jk= j/stepm;           * For stepm=1 the results are the same as for previous versions of Imach.
         jl= j -jk*stepm;           * For stepm > 1 the results are less biased than in previous versions. 
         ju= j -(jk+1)*stepm;           */
         if(jl <= -ju)          s1=s[mw[mi][i]][i];
           dh[mi][i]=jk;          s2=s[mw[mi+1][i]][i];
         else          bbh=(double)bh[mi][i]/(double)stepm; 
           dh[mi][i]=jk+1;          /* bias bh is positive if real duration
         if(dh[mi][i]==0)           * is higher than the multiple of stepm and negative otherwise.
           dh[mi][i]=1; /* At least one step */           */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
   jmean=sum/k;               then the contribution to the likelihood is the probability to 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);               die between last step unit time and current  step unit time, 
  }               which is also equal to probability to die before dh 
 /*********** Tricode ****************************/               minus probability to die before dh-stepm . 
 void tricode(int *Tvar, int **nbcode, int imx)               In version up to 0.92 likelihood was computed
 {          as if date of death was unknown. Death was treated as any other
   int Ndum[20],ij=1, k, j, i;          health state: the date of the interview describes the actual state
   int cptcode=0;          and not the date of a change in health state. The former idea was
   cptcoveff=0;          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
   for (k=0; k<19; k++) Ndum[k]=0;          introduced the exact date of death then we should have modified
   for (k=1; k<=7; k++) ncodemax[k]=0;          the contribution of an exact death to the likelihood. This new
           contribution is smaller and very dependent of the step unit
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          stepm. It is no more the probability to die between last interview
     for (i=1; i<=imx; i++) {          and month of death but the probability to survive from last
       ij=(int)(covar[Tvar[j]][i]);          interview up to one month before death multiplied by the
       Ndum[ij]++;          probability to die within a month. Thanks to Chris
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          Jackson for correcting this bug.  Former versions increased
       if (ij > cptcode) cptcode=ij;          mortality artificially. The bad side is that we add another loop
     }          which slows down the processing. The difference can be up to 10%
           lower mortality.
     for (i=0; i<=cptcode; i++) {            */
       if(Ndum[i]!=0) ncodemax[j]++;            lli=log(out[s1][s2] - savm[s1][s2]);
     }  
     ij=1;  
           } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
     for (i=1; i<=ncodemax[j]; i++) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for (k=0; k<=19; k++) {            /*survp += out[s1][j]; */
         if (Ndum[k] != 0) {            lli= log(survp);
           nbcode[Tvar[j]][ij]=k;          }
                    
           ij++;          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
         if (ij > ncodemax[j]) break;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }              lli= log(survp); 
     }          } 
   }    
           else if  (s2==-5) { 
  for (k=0; k<19; k++) Ndum[k]=0;            for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
  for (i=1; i<=ncovmodel-2; i++) {            lli= log(survp); 
       ij=Tvar[i];          } 
       Ndum[ij]++;          
     }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  ij=1;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
  for (i=1; i<=10; i++) {          } 
    if((Ndum[i]!=0) && (i<=ncovcol)){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      Tvaraff[ij]=i;          /*if(lli ==000.0)*/
      ij++;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
    }          ipmx +=1;
  }          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     cptcoveff=ij-1;        } /* end of wave */
 }      } /* end of individual */
     }  else if(mle==2){
 /*********** Health Expectancies ****************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim, hf;            }
   double ***p3mat,***varhe;          for(d=0; d<=dh[mi][i]; d++){
   double **dnewm,**doldm;            newm=savm;
   double *xp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gp, **gm;            for (kk=1; kk<=cptcovage;kk++) {
   double ***gradg, ***trgradg;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int theta;            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   xp=vector(1,npar);            savm=oldm;
   dnewm=matrix(1,nlstate*2,1,npar);            oldm=newm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);          } /* end mult */
          
   fprintf(ficreseij,"# Health expectancies\n");          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"# Age");          s2=s[mw[mi+1][i]][i];
   for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
     for(j=1; j<=nlstate;j++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          ipmx +=1;
   fprintf(ficreseij,"\n");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(estepm < stepm){        } /* end of wave */
     printf ("Problem %d lower than %d\n",estepm, stepm);      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   else  hstepm=estepm;        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We compute the life expectancy from trapezoids spaced every estepm months        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    * This is mainly to measure the difference between two models: for example        for(mi=1; mi<= wav[i]-1; mi++){
    * if stepm=24 months pijx are given only every 2 years and by summing them          for (ii=1;ii<=nlstate+ndeath;ii++)
    * we are calculating an estimate of the Life Expectancy assuming a linear            for (j=1;j<=nlstate+ndeath;j++){
    * progression inbetween and thus overestimating or underestimating according              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * to the curvature of the survival function. If, for the same date, we              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            }
    * to compare the new estimate of Life expectancy with the same linear          for(d=0; d<dh[mi][i]; d++){
    * hypothesis. A more precise result, taking into account a more precise            newm=savm;
    * curvature will be obtained if estepm is as small as stepm. */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   /* For example we decided to compute the life expectancy with the smallest unit */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            }
      nhstepm is the number of hstepm from age to agelim            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      nstepm is the number of stepm from age to agelin.                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      Look at hpijx to understand the reason of that which relies in memory size            savm=oldm;
      and note for a fixed period like estepm months */            oldm=newm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          } /* end mult */
      survival function given by stepm (the optimization length). Unfortunately it        
      means that if the survival funtion is printed only each two years of age and if          s1=s[mw[mi][i]][i];
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          s2=s[mw[mi+1][i]][i];
      results. So we changed our mind and took the option of the best precision.          bbh=(double)bh[mi][i]/(double)stepm; 
   */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          ipmx +=1;
           sw += weight[i];
   agelim=AGESUP;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } /* end of wave */
     /* nhstepm age range expressed in number of stepm */      } /* end of individual */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* if (stepm >= YEARM) hstepm=1;*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for(mi=1; mi<= wav[i]-1; mi++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            for (j=1;j<=nlstate+ndeath;j++){
     gp=matrix(0,nhstepm,1,nlstate*2);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate*2);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for(d=0; d<dh[mi][i]; d++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            newm=savm;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }
           
     /* Computing Variances of health expectancies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      for(theta=1; theta <=npar; theta++){            savm=oldm;
       for(i=1; i<=npar; i++){            oldm=newm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          } /* end mult */
       }        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
       cptj=0;          if( s2 > nlstate){ 
       for(j=1; j<= nlstate; j++){            lli=log(out[s1][s2] - savm[s1][s2]);
         for(i=1; i<=nlstate; i++){          }else{
           cptj=cptj+1;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              } /* end of wave */
            } /* end of individual */
       for(i=1; i<=npar; i++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
       cptj=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){            for (j=1;j<=nlstate+ndeath;j++){
         for(i=1;i<=nlstate;i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          for(d=0; d<dh[mi][i]; d++){
           }            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
           
       for(j=1; j<= nlstate*2; j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm-1; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            savm=oldm;
         }            oldm=newm;
           } /* end mult */
      }        
              s1=s[mw[mi][i]][i];
 /* End theta */          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          ipmx +=1;
           sw += weight[i];
      for(h=0; h<=nhstepm-1; h++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate*2;j++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(theta=1; theta <=npar; theta++)        } /* end of wave */
         trgradg[h][j][theta]=gradg[h][theta][j];      } /* end of individual */
     } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      for(i=1;i<=nlstate*2;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1;j<=nlstate*2;j++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         varhe[i][j][(int)age] =0.;    return -l;
   }
     for(h=0;h<=nhstepm-1;h++){  
       for(k=0;k<=nhstepm-1;k++){  /*************** log-likelihood *************/
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  double funcone( double *x)
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);  {
         for(i=1;i<=nlstate*2;i++)    /* Same as likeli but slower because of a lot of printf and if */
           for(j=1;j<=nlstate*2;j++)    int i, ii, j, k, mi, d, kk;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
     }    double lli; /* Individual log likelihood */
     double llt;
          int s1, s2;
     /* Computing expectancies */    double bbh, survp;
     for(i=1; i<=nlstate;i++)    /*extern weight */
       for(j=1; j<=nlstate;j++)    /* We are differentiating ll according to initial status */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /*for(i=1;i<imx;i++) 
                printf(" %d\n",s[4][i]);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    */
     cov[1]=1.;
         }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficreseij,"%3.0f",age );  
     cptj=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(j=1; j<=nlstate;j++){      for(mi=1; mi<= wav[i]-1; mi++){
         cptj++;        for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     free_matrix(gm,0,nhstepm,1,nlstate*2);        for(d=0; d<dh[mi][i]; d++){
     free_matrix(gp,0,nhstepm,1,nlstate*2);          newm=savm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }          }
   free_vector(xp,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(dnewm,1,nlstate*2,1,npar);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          savm=oldm;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          oldm=newm;
 }        } /* end mult */
         
 /************ Variance ******************/        s1=s[mw[mi][i]][i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        s2=s[mw[mi+1][i]][i];
 {        bbh=(double)bh[mi][i]/(double)stepm; 
   /* Variance of health expectancies */        /* bias is positive if real duration
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/         * is higher than the multiple of stepm and negative otherwise.
   double **newm;         */
   double **dnewm,**doldm;        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int i, j, nhstepm, hstepm, h, nstepm ;          lli=log(out[s1][s2] - savm[s1][s2]);
   int k, cptcode;        } else if  (s2==-2) {
   double *xp;          for (j=1,survp=0. ; j<=nlstate; j++) 
   double **gp, **gm;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***gradg, ***trgradg;          lli= log(survp);
   double ***p3mat;        }else if (mle==1){
   double age,agelim, hf;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int theta;        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
    fprintf(ficresvij,"# Covariances of life expectancies\n");        } else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficresvij,"# Age");          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for(i=1; i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     for(j=1; j<=nlstate;j++)          lli=log(out[s1][s2]); /* Original formula */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        } else{  /* mle=0 back to 1 */
   fprintf(ficresvij,"\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           /*lli=log(out[s1][s2]); */ /* Original formula */
   xp=vector(1,npar);        } /* End of if */
   dnewm=matrix(1,nlstate,1,npar);        ipmx +=1;
   doldm=matrix(1,nlstate,1,nlstate);        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(estepm < stepm){        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     printf ("Problem %d lower than %d\n",estepm, stepm);        if(globpr){
   }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   else  hstepm=estepm;     %11.6f %11.6f %11.6f ", \
   /* For example we decided to compute the life expectancy with the smallest unit */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
      nhstepm is the number of hstepm from age to agelim          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
      nstepm is the number of stepm from age to agelin.            llt +=ll[k]*gipmx/gsw;
      Look at hpijx to understand the reason of that which relies in memory size            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
      and note for a fixed period like k years */          }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          fprintf(ficresilk," %10.6f\n", -llt);
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if      } /* end of wave */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    } /* end of individual */
      results. So we changed our mind and took the option of the best precision.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   agelim = AGESUP;    if(globpr==0){ /* First time we count the contributions and weights */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      gipmx=ipmx;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      gsw=sw;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return -l;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  }
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);  
   /*************** function likelione ***********/
     for(theta=1; theta <=npar; theta++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(i=1; i<=npar; i++){ /* Computes gradient */  {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    /* This routine should help understanding what is done with 
       }       the selection of individuals/waves and
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         to check the exact contribution to the likelihood.
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       Plotting could be done.
      */
       if (popbased==1) {    int k;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    if(*globpri !=0){ /* Just counts and sums, no printings */
       }      strcpy(fileresilk,"ilk"); 
        strcat(fileresilk,fileres);
       for(j=1; j<= nlstate; j++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         for(h=0; h<=nhstepm; h++){        printf("Problem with resultfile: %s\n", fileresilk);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      }
         }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
          /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(i=1; i<=npar; i++) /* Computes gradient */      for(k=1; k<=nlstate; k++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
    
       if (popbased==1) {    *fretone=(*funcone)(p);
         for(i=1; i<=nlstate;i++)    if(*globpri !=0){
           prlim[i][i]=probs[(int)age][i][ij];      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
       for(j=1; j<= nlstate; j++){    } 
         for(h=0; h<=nhstepm; h++){    return;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  
       }  /*********** Maximum Likelihood Estimation ***************/
   
       for(j=1; j<= nlstate; j++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(h=0; h<=nhstepm; h++){  {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i,j, iter;
         }    double **xi;
     } /* End theta */    double fret;
     double fretone; /* Only one call to likelihood */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    /*  char filerespow[FILENAMELENGTH];*/
     xi=matrix(1,npar,1,npar);
     for(h=0; h<=nhstepm; h++)    for (i=1;i<=npar;i++)
       for(j=1; j<=nlstate;j++)      for (j=1;j<=npar;j++)
         for(theta=1; theta <=npar; theta++)        xi[i][j]=(i==j ? 1.0 : 0.0);
           trgradg[h][j][theta]=gradg[h][theta][j];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    strcat(filerespow,fileres);
     for(i=1;i<=nlstate;i++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(j=1;j<=nlstate;j++)      printf("Problem with resultfile: %s\n", filerespow);
         vareij[i][j][(int)age] =0.;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     for(h=0;h<=nhstepm;h++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       for(k=0;k<=nhstepm;k++){    for (i=1;i<=nlstate;i++)
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      for(j=1;j<=nlstate+ndeath;j++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"\n");
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    powell(p,xi,npar,ftol,&iter,&fret,func);
       }  
     }    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
     fprintf(ficresvij,"%.0f ",age );    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(j=1; j<=nlstate;j++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }  }
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
     free_matrix(gm,0,nhstepm,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  {
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double  **a,**y,*x,pd;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **hess;
   } /* End age */    int i, j,jk;
      int *indx;
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
 }    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
 /************ Variance of prevlim ******************/    hess=matrix(1,npar,1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    printf("\nCalculation of the hessian matrix. Wait...\n");
   /* Variance of prevalence limit */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (i=1;i<=npar;i++){
   double **newm;      printf("%d",i);fflush(stdout);
   double **dnewm,**doldm;      fprintf(ficlog,"%d",i);fflush(ficlog);
   int i, j, nhstepm, hstepm;     
   int k, cptcode;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double *xp;      
   double *gp, *gm;      /*  printf(" %f ",p[i]);
   double **gradg, **trgradg;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double age,agelim;    }
   int theta;    
        for (i=1;i<=npar;i++) {
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (j=1;j<=npar;j++)  {
   fprintf(ficresvpl,"# Age");        if (j>i) { 
   for(i=1; i<=nlstate;i++)          printf(".%d%d",i,j);fflush(stdout);
       fprintf(ficresvpl," %1d-%1d",i,i);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fprintf(ficresvpl,"\n");          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
   xp=vector(1,npar);          hess[j][i]=hess[i][j];    
   dnewm=matrix(1,nlstate,1,npar);          /*printf(" %lf ",hess[i][j]);*/
   doldm=matrix(1,nlstate,1,nlstate);        }
        }
   hstepm=1*YEARM; /* Every year of age */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    printf("\n");
   agelim = AGESUP;    fprintf(ficlog,"\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     if (stepm >= YEARM) hstepm=1;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    
     gradg=matrix(1,npar,1,nlstate);    a=matrix(1,npar,1,npar);
     gp=vector(1,nlstate);    y=matrix(1,npar,1,npar);
     gm=vector(1,nlstate);    x=vector(1,npar);
     indx=ivector(1,npar);
     for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++){ /* Computes gradient */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=npar;j++) {
       for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
         gp[i] = prlim[i][i];      x[j]=1;
          lubksb(a,npar,indx,x);
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<=npar;i++){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        matcov[i][j]=x[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)    }
         gm[i] = prlim[i][i];  
     printf("\n#Hessian matrix#\n");
       for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\n#Hessian matrix#\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for (i=1;i<=npar;i++) { 
     } /* End theta */      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     trgradg =matrix(1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
     for(j=1; j<=nlstate;j++)      printf("\n");
       for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"\n");
         trgradg[j][theta]=gradg[theta][j];    }
   
     for(i=1;i<=nlstate;i++)    /* Recompute Inverse */
       varpl[i][(int)age] =0.;    for (i=1;i<=npar;i++)
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    ludcmp(a,npar,indx,&pd);
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /*  printf("\n#Hessian matrix recomputed#\n");
   
     fprintf(ficresvpl,"%.0f ",age );    for (j=1;j<=npar;j++) {
     for(i=1; i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      x[j]=1;
     fprintf(ficresvpl,"\n");      lubksb(a,npar,indx,x);
     free_vector(gp,1,nlstate);      for (i=1;i<=npar;i++){ 
     free_vector(gm,1,nlstate);        y[i][j]=x[i];
     free_matrix(gradg,1,npar,1,nlstate);        printf("%.3e ",y[i][j]);
     free_matrix(trgradg,1,nlstate,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   } /* End age */      }
       printf("\n");
   free_vector(xp,1,npar);      fprintf(ficlog,"\n");
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);    */
   
 }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
 /************ Variance of one-step probabilities  ******************/    free_vector(x,1,npar);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    free_ivector(indx,1,npar);
 {    free_matrix(hess,1,npar,1,npar);
   int i, j, i1, k1, j1, z1;  
   int k=0, cptcode;  
   double **dnewm,**doldm;  }
   double *xp;  
   double *gp, *gm;  /*************** hessian matrix ****************/
   double **gradg, **trgradg;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double age,agelim, cov[NCOVMAX];  {
   int theta;    int i;
   char fileresprob[FILENAMELENGTH];    int l=1, lmax=20;
     double k1,k2;
   strcpy(fileresprob,"prob");    double p2[MAXPARM+1]; /* identical to x */
   strcat(fileresprob,fileres);    double res;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     printf("Problem with resultfile: %s\n", fileresprob);    double fx;
   }    int k=0,kmax=10;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double l1;
    
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    fx=func(x);
   fprintf(ficresprob,"# Age");    for (i=1;i<=npar;i++) p2[i]=x[i];
   for(i=1; i<=nlstate;i++)    for(l=0 ; l <=lmax; l++){
     for(j=1; j<=(nlstate+ndeath);j++)      l1=pow(10,l);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   fprintf(ficresprob,"\n");        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
   xp=vector(1,npar);        k2=func(p2)-fx;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
          
   cov[1]=1;  #ifdef DEBUGHESS
   j=cptcoveff;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   j1=0;  #endif
   for(k1=1; k1<=1;k1++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(i1=1; i1<=ncodemax[k1];i1++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     j1++;          k=kmax;
         }
     if  (cptcovn>0) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       fprintf(ficresprob, "\n#********** Variable ");          k=kmax; l=lmax*10.;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
       fprintf(ficresprob, "**********\n#");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     }          delts=delt;
            }
       for (age=bage; age<=fage; age ++){      }
         cov[2]=age;    }
         for (k=1; k<=cptcovn;k++) {    delti[theta]=delts;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    return res; 
              
         }  }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  {
            int i;
         gradg=matrix(1,npar,1,9);    int l=1, l1, lmax=20;
         trgradg=matrix(1,9,1,npar);    double k1,k2,k3,k4,res,fx;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double p2[MAXPARM+1];
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    int k;
      
         for(theta=1; theta <=npar; theta++){    fx=func(x);
           for(i=1; i<=npar; i++)    for (k=1; k<=2; k++) {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) p2[i]=x[i];
                p2[thetai]=x[thetai]+delti[thetai]/k;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                k1=func(p2)-fx;
           k=0;    
           for(i=1; i<= (nlstate+ndeath); i++){      p2[thetai]=x[thetai]+delti[thetai]/k;
             for(j=1; j<=(nlstate+ndeath);j++){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               k=k+1;      k2=func(p2)-fx;
               gp[k]=pmmij[i][j];    
             }      p2[thetai]=x[thetai]-delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                k3=func(p2)-fx;
           for(i=1; i<=npar; i++)    
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      k4=func(p2)-fx;
           k=0;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           for(i=1; i<=(nlstate+ndeath); i++){  #ifdef DEBUG
             for(j=1; j<=(nlstate+ndeath);j++){      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               k=k+1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               gm[k]=pmmij[i][j];  #endif
             }    }
           }    return res;
        }
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    int i,imax,j,k; 
           for(theta=1; theta <=npar; theta++)    double big,dum,sum,temp; 
             trgradg[j][theta]=gradg[theta][j];    double *vv; 
           
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    vv=vector(1,n); 
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    *d=1.0; 
            for (i=1;i<=n;i++) { 
         pmij(pmmij,cov,ncovmodel,x,nlstate);      big=0.0; 
              for (j=1;j<=n;j++) 
         k=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(i=1; i<=(nlstate+ndeath); i++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           for(j=1; j<=(nlstate+ndeath);j++){      vv[i]=1.0/big; 
             k=k+1;    } 
             gm[k]=pmmij[i][j];    for (j=1;j<=n;j++) { 
           }      for (i=1;i<j;i++) { 
         }        sum=a[i][j]; 
              for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      /*printf("\n%d ",(int)age);        a[i][j]=sum; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      } 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      big=0.0; 
      }*/      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
         fprintf(ficresprob,"\n%d ",(int)age);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        a[i][j]=sum; 
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
       }          imax=i; 
     }        } 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      } 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      if (j != imax) { 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for (k=1;k<=n;k++) { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
   free_vector(xp,1,npar);          a[j][k]=dum; 
   fclose(ficresprob);        } 
          *d = -(*d); 
 }        vv[imax]=vv[j]; 
       } 
 /******************* Printing html file ***********/      indx[j]=imax; 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      if (a[j][j] == 0.0) a[j][j]=TINY; 
  int lastpass, int stepm, int weightopt, char model[],\      if (j != n) { 
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \        dum=1.0/(a[j][j]); 
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  char version[], int popforecast, int estepm ){      } 
   int jj1, k1, i1, cpt;    } 
   FILE *fichtm;    free_vector(vv,1,n);  /* Doesn't work */
   /*char optionfilehtm[FILENAMELENGTH];*/  ;
   } 
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");  void lubksb(double **a, int n, int *indx, double b[]) 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  { 
     printf("Problem with %s \n",optionfilehtm), exit(0);    int i,ii=0,ip,j; 
   }    double sum; 
    
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    for (i=1;i<=n;i++) { 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      ip=indx[i]; 
 \n      sum=b[ip]; 
 Total number of observations=%d <br>\n      b[ip]=b[i]; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      if (ii) 
 <hr  size=\"2\" color=\"#EC5E5E\">        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  <ul><li>Outputs files<br>\n      else if (sum) ii=i; 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      b[i]=sum; 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    } 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    for (i=n;i>=1;i--) { 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      sum=b[i]; 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      b[i]=sum/a[i][i]; 
     } 
  fprintf(fichtm,"\n  } 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  void pstamp(FILE *fichier)
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  {
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  }
   
  if(popforecast==1) fprintf(fichtm,"\n  /************ Frequencies ********************/
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  {  /* Some frequencies */
         <br>",fileres,fileres,fileres,fileres);    
  else    int i, m, jk, k1,i1, j1, bool, z1,j;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    int first;
 fprintf(fichtm," <li>Graphs</li><p>");    double ***freq; /* Frequencies */
     double *pp, **prop;
  m=cptcoveff;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    char fileresp[FILENAMELENGTH];
     
  jj1=0;    pp=vector(1,nlstate);
  for(k1=1; k1<=m;k1++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
    for(i1=1; i1<=ncodemax[k1];i1++){    strcpy(fileresp,"p");
        jj1++;    strcat(fileresp,fileres);
        if (cptcovn > 0) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      printf("Problem with prevalence resultfile: %s\n", fileresp);
          for (cpt=1; cpt<=cptcoveff;cpt++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      exit(0);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    }
        }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    j1=0;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        
        for(cpt=1; cpt<nlstate;cpt++){    j=cptcoveff;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }    first=1;
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for(k1=1; k1<=j;k1++){
 interval) in state (%d): v%s%d%d.gif <br>      for(i1=1; i1<=ncodemax[k1];i1++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          j1++;
      }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      for(cpt=1; cpt<=nlstate;cpt++) {          scanf("%d", i);*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        for (i=-5; i<=nlstate+ndeath; i++)  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      }            for(m=iagemin; m <= iagemax+3; m++)
      fprintf(fichtm,"\n<br>- Total life expectancy by age and              freq[i][jk][m]=0;
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      for (i=1; i<=nlstate; i++)  
 fprintf(fichtm,"\n</body>");        for(m=iagemin; m <= iagemax+3; m++)
    }          prop[i][m]=0;
    }        
 fclose(fichtm);        dateintsum=0;
 }        k2cpt=0;
         for (i=1; i<=imx; i++) {
 /******************* Gnuplot file **************/          bool=1;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
   strcpy(optionfilegnuplot,optionfilefiname);          }
   strcat(optionfilegnuplot,".gp.txt");          if (bool==1){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
     printf("Problem with file %s",optionfilegnuplot);              k2=anint[m][i]+(mint[m][i]/12.);
   }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 #ifdef windows                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"cd \"%s\" \n",pathc);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #endif                if (m<lastpass) {
 m=pow(2,cptcoveff);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                    freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
  /* 1eme*/                }
   for (cpt=1; cpt<= nlstate ; cpt ++) {                
    for (k1=1; k1<= m ; k1 ++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   dateintsum=dateintsum+k2;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                  k2cpt++;
                 }
 for (i=1; i<= nlstate ; i ++) {                /*}*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }        }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);         
     for (i=1; i<= nlstate ; i ++) {        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        pstamp(ficresp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if  (cptcovn>0) {
 }          fprintf(ficresp, "\n#********** Variable "); 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for (i=1; i<= nlstate ; i ++) {          fprintf(ficresp, "**********\n#");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=nlstate;i++) 
 }            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        fprintf(ficresp, "\n");
         
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        for(i=iagemin; i <= iagemax+3; i++){
    }          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
   /*2 eme*/          }else{
             if(first==1){
   for (k1=1; k1<= m ; k1 ++) {              first=0;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              printf("See log file for details...\n");
                }
     for (i=1; i<= nlstate+1 ; i ++) {            fprintf(ficlog,"Age %d", i);
       k=2*i;          }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              pp[jk] += freq[jk][m][i]; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }            for(jk=1; jk <=nlstate ; jk++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            for(m=-1, pos=0; m <=0 ; m++)
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              pos += freq[jk][m][i];
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(pp[jk]>=1.e-10){
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficgp,"\" t\"\" w l 0,");            }else{
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
       for (j=1; j<= nlstate+1 ; j ++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);              pp[jk] += freq[jk][m][i];
   }          }       
            for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   /*3eme*/            pos += pp[jk];
             posprop += prop[jk][i];
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          for(jk=1; jk <=nlstate ; jk++){
       k=2+nlstate*(2*cpt-2);            if(pos>=1.e-5){
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              if(first==1)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }else{
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              if(first==1)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 */            if( i <= iagemax){
       for (i=1; i< nlstate ; i ++) {              if(pos>=1.e-5){
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              }
     }              else
     }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
              }
   /* CV preval stat */          }
     for (k1=1; k1<= m ; k1 ++) {          
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
       k=3;            for(m=-1; m <=nlstate+ndeath; m++)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              if(freq[jk][m][i] !=0 ) {
               if(first==1)
       for (i=1; i< nlstate ; i ++)                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         fprintf(ficgp,"+$%d",k+i+1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              }
                if(i <= iagemax)
       l=3+(nlstate+ndeath)*cpt;            fprintf(ficresp,"\n");
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          if(first==1)
       for (i=1; i< nlstate ; i ++) {            printf("Others in log...\n");
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficlog,"\n");
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      }
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    dateintmean=dateintsum/k2cpt; 
     }   
   }      fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   /* proba elementaires */    free_vector(pp,1,nlstate);
    for(i=1,jk=1; i <=nlstate; i++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     for(k=1; k <=(nlstate+ndeath); k++){    /* End of Freq */
       if (k != i) {  }
         for(j=1; j <=ncovmodel; j++){  
          /************ Prevalence ********************/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           jk++;  {  
           fprintf(ficgp,"\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         }       in each health status at the date of interview (if between dateprev1 and dateprev2).
       }       We still use firstpass and lastpass as another selection.
     }    */
     }   
     int i, m, jk, k1, i1, j1, bool, z1,j;
     for(jk=1; jk <=m; jk++) {    double ***freq; /* Frequencies */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    double *pp, **prop;
    i=1;    double pos,posprop; 
    for(k2=1; k2<=nlstate; k2++) {    double  y2; /* in fractional years */
      k3=i;    int iagemin, iagemax;
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){    iagemin= (int) agemin;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    iagemax= (int) agemax;
 ij=1;    /*pp=vector(1,nlstate);*/
         for(j=3; j <=ncovmodel; j++) {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    j1=0;
             ij++;    
           }    j=cptcoveff;
           else    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
         }    for(k1=1; k1<=j;k1++){
           fprintf(ficgp,")/(1");      for(i1=1; i1<=ncodemax[k1];i1++){
                j1++;
         for(k1=1; k1 <=nlstate; k1++){          
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        for (i=1; i<=nlstate; i++)  
 ij=1;          for(m=iagemin; m <= iagemax+3; m++)
           for(j=3; j <=ncovmodel; j++){            prop[i][m]=0.0;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {       
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (i=1; i<=imx; i++) { /* Each individual */
             ij++;          bool=1;
           }          if  (cptcovn>0) {
           else            for (z1=1; z1<=cptcoveff; z1++) 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           }                bool=0;
           fprintf(ficgp,")");          } 
         }          if (bool==1) { 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         i=i+ncovmodel;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
    }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fclose(ficgp);                  prop[s[m][i]][iagemax+3] += weight[i]; 
 }  /* end gnuplot */                } 
               }
             } /* end selection of waves */
 /*************** Moving average **************/          }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        }
         for(i=iagemin; i <= iagemax+3; i++){  
   int i, cpt, cptcod;          
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       for (i=1; i<=nlstate;i++)            posprop += prop[jk][i]; 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          } 
           mobaverage[(int)agedeb][i][cptcod]=0.;  
              for(jk=1; jk <=nlstate ; jk++){     
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            if( i <=  iagemax){ 
       for (i=1; i<=nlstate;i++){              if(posprop>=1.e-5){ 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                probs[i][jk][j1]= prop[jk][i]/posprop;
           for (cpt=0;cpt<=4;cpt++){              } else
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
           }            } 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          }/* end jk */ 
         }        }/* end i */ 
       }      } /* end i1 */
     }    } /* end k1 */
        
 }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 /************** Forecasting ******************/  }  /* End of prevalence */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
    /************* Waves Concatenation ***************/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  {
   double *popeffectif,*popcount;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double ***p3mat;       Death is a valid wave (if date is known).
   char fileresf[FILENAMELENGTH];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  agelim=AGESUP;       and mw[mi+1][i]. dh depends on stepm.
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       */
   
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   strcpy(fileresf,"f");    int first;
   strcat(fileresf,fileres);    int j, k=0,jk, ju, jl;
   if((ficresf=fopen(fileresf,"w"))==NULL) {    double sum=0.;
     printf("Problem with forecast resultfile: %s\n", fileresf);    first=0;
   }    jmin=1e+5;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    jmax=-1;
     jmean=0.;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for(i=1; i<=imx; i++){
       mi=0;
   if (mobilav==1) {      m=firstpass;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      while(s[m][i] <= nlstate){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   }          mw[++mi][i]=m;
         if(m >=lastpass)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          break;
   if (stepm<=12) stepsize=1;        else
            m++;
   agelim=AGESUP;      }/* end while */
        if (s[m][i] > nlstate){
   hstepm=1;        mi++;     /* Death is another wave */
   hstepm=hstepm/stepm;        /* if(mi==0)  never been interviewed correctly before death */
   yp1=modf(dateintmean,&yp);           /* Only death is a correct wave */
   anprojmean=yp;        mw[mi][i]=m;
   yp2=modf((yp1*12),&yp);      }
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);      wav[i]=mi;
   jprojmean=yp;      if(mi==0){
   if(jprojmean==0) jprojmean=1;        nbwarn++;
   if(mprojmean==0) jprojmean=1;        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          first=1;
          }
   for(cptcov=1;cptcov<=i2;cptcov++){        if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       k=k+1;        }
       fprintf(ficresf,"\n#******");      } /* end mi==0 */
       for(j=1;j<=cptcoveff;j++) {    } /* End individuals */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    for(i=1; i<=imx; i++){
       fprintf(ficresf,"******\n");      for(mi=1; mi<wav[i];mi++){
       fprintf(ficresf,"# StartingAge FinalAge");        if (stepm <=0)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          dh[mi][i]=1;
              else{
                if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            if (agedc[i] < 2*AGESUP) {
         fprintf(ficresf,"\n");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                nberr++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           nhstepm = nhstepm/hstepm;                j=1; /* Temporary Dangerous patch */
                          printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           oldm=oldms;savm=savms;                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                }
                      k=k+1;
           for (h=0; h<=nhstepm; h++){              if (j >= jmax){
             if (h==(int) (calagedate+YEARM*cpt)) {                jmax=j;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                ijmax=i;
             }              }
             for(j=1; j<=nlstate+ndeath;j++) {              if (j <= jmin){
               kk1=0.;kk2=0;                jmin=j;
               for(i=1; i<=nlstate;i++) {                              ijmin=i;
                 if (mobilav==1)              }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              sum=sum+j;
                 else {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                 }            }
                          }
               }          else{
               if (h==(int)(calagedate+12*cpt)){            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                 fprintf(ficresf," %.3f", kk1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                          
               }            k=k+1;
             }            if (j >= jmax) {
           }              jmax=j;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              ijmax=i;
         }            }
       }            else if (j <= jmin){
     }              jmin=j;
   }              ijmin=i;
                    }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   fclose(ficresf);            if(j<0){
 }              nberr++;
 /************** Forecasting ******************/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            sum=sum+j;
   int *popage;          }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          jk= j/stepm;
   double *popeffectif,*popcount;          jl= j -jk*stepm;
   double ***p3mat,***tabpop,***tabpopprev;          ju= j -(jk+1)*stepm;
   char filerespop[FILENAMELENGTH];          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              dh[mi][i]=jk;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=0;
   agelim=AGESUP;            }else{ /* We want a negative bias in order to only have interpolation ie
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;                    * to avoid the price of an extra matrix product in likelihood */
                dh[mi][i]=jk+1;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              bh[mi][i]=ju;
              }
            }else{
   strcpy(filerespop,"pop");            if(jl <= -ju){
   strcat(filerespop,fileres);              dh[mi][i]=jk;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              bh[mi][i]=jl;       /* bias is positive if real duration
     printf("Problem with forecast resultfile: %s\n", filerespop);                                   * is higher than the multiple of stepm and negative otherwise.
   }                                   */
   printf("Computing forecasting: result on file '%s' \n", filerespop);            }
             else{
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   if (mobilav==1) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(dh[mi][i]==0){
     movingaverage(agedeb, fage, ageminpar, mobaverage);              dh[mi][i]=1; /* At least one step */
   }              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          } /* end if mle */
          }
   agelim=AGESUP;      } /* end wave */
      }
   hstepm=1;    jmean=sum/k;
   hstepm=hstepm/stepm;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   if (popforecast==1) {   }
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);  /*********** Tricode ****************************/
     }  void tricode(int *Tvar, int **nbcode, int imx)
     popage=ivector(0,AGESUP);  {
     popeffectif=vector(0,AGESUP);    /* Uses cptcovn+2*cptcovprod as the number of covariates */
     popcount=vector(0,AGESUP);    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
      
     i=1;      int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int modmaxcovj=0; /* Modality max of covariates j */
        cptcoveff=0; 
     imx=i;   
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for (k=0; k<maxncov; k++) Ndum[k]=0;
   }    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   
   for(cptcov=1;cptcov<=i2;cptcov++){    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
       k=k+1;                                 modality of this covariate Vj*/ 
       fprintf(ficrespop,"\n#******");        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
       for(j=1;j<=cptcoveff;j++) {                                        modality of the nth covariate of individual i. */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       fprintf(ficrespop,"******\n");        if (ij > modmaxcovj) modmaxcovj=ij; 
       fprintf(ficrespop,"# Age");        /* getting the maximum value of the modality of the covariate
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
       if (popforecast==1)  fprintf(ficrespop," [Population]");           female is 1, then modmaxcovj=1.*/
            }
       for (cpt=0; cpt<=0;cpt++) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
                if( Ndum[i] != 0 )
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          ncodemax[j]++; 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /* Number of modalities of the j th covariate. In fact
           nhstepm = nhstepm/hstepm;           ncodemax[j]=2 (dichotom. variables only) but it could be more for
                     historical reasons */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* Ndum[-1] number of undefined modalities */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
              ij=1; 
           for (h=0; h<=nhstepm; h++){      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
             if (h==(int) (calagedate+YEARM*cpt)) {        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
             for(j=1; j<=nlstate+ndeath;j++) {                                       k is a modality. If we have model=V1+V1*sex 
               kk1=0.;kk2=0;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
               for(i=1; i<=nlstate;i++) {                          ij++;
                 if (mobilav==1)          }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          if (ij > ncodemax[j]) break; 
                 else {        }  /* end of loop on */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      } /* end of loop on modality */ 
                 }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
               }    
               if (h==(int)(calagedate+12*cpt)){    for (k=0; k< maxncov; k++) Ndum[k]=0;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    
                   /*fprintf(ficrespop," %.3f", kk1);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
             }     Ndum[ij]++;
             for(i=1; i<=nlstate;i++){   }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){   ij=1;
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
                 }     if((Ndum[i]!=0) && (i<=ncovcol)){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];       Tvaraff[ij]=i; /*For printing */
             }       ij++;
      }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)   }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   ij--;
           }   cptcoveff=ij; /*Number of simple covariates*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
         }  
       }  /*********** Health Expectancies ****************/
    
   /******/  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  {
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* Health expectancies, no variances */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int nhstepma, nstepma; /* Decreasing with age */
           nhstepm = nhstepm/hstepm;    double age, agelim, hf;
              double ***p3mat;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double eip;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      pstamp(ficreseij);
           for (h=0; h<=nhstepm; h++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficreseij,"# Age");
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for(i=1; i<=nlstate;i++){
             }      for(j=1; j<=nlstate;j++){
             for(j=1; j<=nlstate+ndeath;j++) {        fprintf(ficreseij," e%1d%1d ",i,j);
               kk1=0.;kk2=0;      }
               for(i=1; i<=nlstate;i++) {                    fprintf(ficreseij," e%1d. ",i);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        }
               }    fprintf(ficreseij,"\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }    
           }    if(estepm < stepm){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;   
    }    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   if (popforecast==1) {     * to the curvature of the survival function. If, for the same date, we 
     free_ivector(popage,0,AGESUP);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     free_vector(popeffectif,0,AGESUP);     * to compare the new estimate of Life expectancy with the same linear 
     free_vector(popcount,0,AGESUP);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* For example we decided to compute the life expectancy with the smallest unit */
   fclose(ficrespop);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
 /***********************************************/       Look at hpijx to understand the reason of that which relies in memory size
 /**************** Main Program *****************/       and note for a fixed period like estepm months */
 /***********************************************/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 int main(int argc, char *argv[])       means that if the survival funtion is printed only each two years of age and if
 {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    */
   double agedeb, agefin,hf;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
     agelim=AGESUP;
   double fret;    /* If stepm=6 months */
   double **xi,tmp,delta;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   double dum; /* Dummy variable */      
   double ***p3mat;  /* nhstepm age range expressed in number of stepm */
   int *indx;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   char line[MAXLINE], linepar[MAXLINE];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   char title[MAXLINE];    /* if (stepm >= YEARM) hstepm=1;*/
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   char filerest[FILENAMELENGTH];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   char fileregp[FILENAMELENGTH];      /* if (stepm >= YEARM) hstepm=1;*/
   char popfile[FILENAMELENGTH];      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      /* If stepm=6 months */
   int sdeb, sfin; /* Status at beginning and end */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   int c,  h , cpt,l;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   int ju,jl, mi;      
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      
   int mobilav=0,popforecast=0;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int hstepm, nhstepm;      
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double bage, fage, age, agelim, agebase;      
   double ftolpl=FTOL;      /* Computing expectancies */
   double **prlim;      for(i=1; i<=nlstate;i++)
   double *severity;        for(j=1; j<=nlstate;j++)
   double ***param; /* Matrix of parameters */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double  *p;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double **matcov; /* Matrix of covariance */            
   double ***delti3; /* Scale */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *delti; /* Scale */  
   double ***eij, ***vareij;          }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;      fprintf(ficreseij,"%3.0f",age );
   double kk1, kk2;      for(i=1; i<=nlstate;i++){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        eip=0;
          for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
         fprintf(ficreseij,"%9.4f", eip );
       }
   char z[1]="c", occ;      fprintf(ficreseij,"\n");
 #include <sys/time.h>      
 #include <time.h>    }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   /* long total_usecs;    fprintf(ficlog,"\n");
   struct timeval start_time, end_time;    
    }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   printf("\n%s",version);  {
   if(argc <=1){    /* Covariances of health expectancies eij and of total life expectancies according
     printf("\nEnter the parameter file name: ");     to initial status i, ei. .
     scanf("%s",pathtot);    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   else{    int nhstepma, nstepma; /* Decreasing with age */
     strcpy(pathtot,argv[1]);    double age, agelim, hf;
   }    double ***p3matp, ***p3matm, ***varhe;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double **dnewm,**doldm;
   /*cygwin_split_path(pathtot,path,optionfile);    double *xp, *xm;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double **gp, **gm;
   /* cutv(path,optionfile,pathtot,'\\');*/    double ***gradg, ***trgradg;
     int theta;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double eip, vip;
   chdir(path);  
   replace(pathc,path);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
 /*-------- arguments in the command line --------*/    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   strcpy(fileres,"r");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   strcat(fileres, optionfilefiname);    
   strcat(fileres,".txt");    /* Other files have txt extension */    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   /*---------arguments file --------*/    fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      for(j=1; j<=nlstate;j++)
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     goto end;      fprintf(ficresstdeij," e%1d. ",i);
   }    }
     fprintf(ficresstdeij,"\n");
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    pstamp(ficrescveij);
   if((ficparo=fopen(filereso,"w"))==NULL) {    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    fprintf(ficrescveij,"# Age");
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   /* Reads comments: lines beginning with '#' */        cptj= (j-1)*nlstate+i;
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i2=1; i2<=nlstate;i2++)
     ungetc(c,ficpar);          for(j2=1; j2<=nlstate;j2++){
     fgets(line, MAXLINE, ficpar);            cptj2= (j2-1)*nlstate+i2;
     puts(line);            if(cptj2 <= cptj)
     fputs(line,ficparo);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   }          }
   ungetc(c,ficpar);      }
     fprintf(ficrescveij,"\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    if(estepm < stepm){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      printf ("Problem %d lower than %d\n",estepm, stepm);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    else  hstepm=estepm;   
     fgets(line, MAXLINE, ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
     puts(line);     * This is mainly to measure the difference between two models: for example
     fputs(line,ficparo);     * if stepm=24 months pijx are given only every 2 years and by summing them
   }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   ungetc(c,ficpar);     * progression in between and thus overestimating or underestimating according
       * to the curvature of the survival function. If, for the same date, we 
         * estimate the model with stepm=1 month, we can keep estepm to 24 months
   covar=matrix(0,NCOVMAX,1,n);     * to compare the new estimate of Life expectancy with the same linear 
   cptcovn=0;     * hypothesis. A more precise result, taking into account a more precise
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;     * curvature will be obtained if estepm is as small as stepm. */
   
   ncovmodel=2+cptcovn;    /* For example we decided to compute the life expectancy with the smallest unit */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   /* Read guess parameters */       nstepm is the number of stepm from age to agelin. 
   /* Reads comments: lines beginning with '#' */       Look at hpijx to understand the reason of that which relies in memory size
   while((c=getc(ficpar))=='#' && c!= EOF){       and note for a fixed period like estepm months */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fgets(line, MAXLINE, ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     puts(line);       means that if the survival funtion is printed only each two years of age and if
     fputs(line,ficparo);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   ungetc(c,ficpar);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    /* If stepm=6 months */
     for(j=1; j <=nlstate+ndeath-1; j++){    /* nhstepm age range expressed in number of stepm */
       fscanf(ficpar,"%1d%1d",&i1,&j1);    agelim=AGESUP;
       fprintf(ficparo,"%1d%1d",i1,j1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       printf("%1d%1d",i,j);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(k=1; k<=ncovmodel;k++){    /* if (stepm >= YEARM) hstepm=1;*/
         fscanf(ficpar," %lf",&param[i][j][k]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         printf(" %lf",param[i][j][k]);    
         fprintf(ficparo," %lf",param[i][j][k]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"\n");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       printf("\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fprintf(ficparo,"\n");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   p=param[1][1];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   /* Reads comments: lines beginning with '#' */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      /* If stepm=6 months */
     fgets(line, MAXLINE, ficpar);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     puts(line);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fputs(line,ficparo);      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   ungetc(c,ficpar);  
       /* Computing  Variances of health expectancies */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */         decrease memory allocation */
   for(i=1; i <=nlstate; i++){      for(theta=1; theta <=npar; theta++){
     for(j=1; j <=nlstate+ndeath-1; j++){        for(i=1; i<=npar; i++){ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       printf("%1d%1d",i,j);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       for(k=1; k<=ncovmodel;k++){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fscanf(ficpar,"%le",&delti3[i][j][k]);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         printf(" %le",delti3[i][j][k]);    
         fprintf(ficparo," %le",delti3[i][j][k]);        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
       fscanf(ficpar,"\n");            for(h=0; h<=nhstepm-1; h++){
       printf("\n");              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       fprintf(ficparo,"\n");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     }            }
   }          }
   delti=delti3[1][1];        }
         
   /* Reads comments: lines beginning with '#' */        for(ij=1; ij<= nlstate*nlstate; ij++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for(h=0; h<=nhstepm-1; h++){
     ungetc(c,ficpar);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);      }/* End theta */
     fputs(line,ficparo);      
   }      
   ungetc(c,ficpar);      for(h=0; h<=nhstepm-1; h++)
          for(j=1; j<=nlstate*nlstate;j++)
   matcov=matrix(1,npar,1,npar);          for(theta=1; theta <=npar; theta++)
   for(i=1; i <=npar; i++){            trgradg[h][j][theta]=gradg[h][theta][j];
     fscanf(ficpar,"%s",&str);      
     printf("%s",str);  
     fprintf(ficparo,"%s",str);       for(ij=1;ij<=nlstate*nlstate;ij++)
     for(j=1; j <=i; j++){        for(ji=1;ji<=nlstate*nlstate;ji++)
       fscanf(ficpar," %le",&matcov[i][j]);          varhe[ij][ji][(int)age] =0.;
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);       printf("%d|",(int)age);fflush(stdout);
     }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     fscanf(ficpar,"\n");       for(h=0;h<=nhstepm-1;h++){
     printf("\n");        for(k=0;k<=nhstepm-1;k++){
     fprintf(ficparo,"\n");          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   for(i=1; i <=npar; i++)          for(ij=1;ij<=nlstate*nlstate;ij++)
     for(j=i+1;j<=npar;j++)            for(ji=1;ji<=nlstate*nlstate;ji++)
       matcov[i][j]=matcov[j][i];              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
            }
   printf("\n");      }
   
       /* Computing expectancies */
     /*-------- Rewriting paramater file ----------*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      strcpy(rfileres,"r");    /* "Rparameterfile */      for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for(j=1; j<=nlstate;j++)
      strcat(rfileres,".");    /* */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     if((ficres =fopen(rfileres,"w"))==NULL) {            
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     }  
     fprintf(ficres,"#%s\n",version);          }
      
     /*-------- data file ----------*/      fprintf(ficresstdeij,"%3.0f",age );
     if((fic=fopen(datafile,"r"))==NULL)    {      for(i=1; i<=nlstate;i++){
       printf("Problem with datafile: %s\n", datafile);goto end;        eip=0.;
     }        vip=0.;
         for(j=1; j<=nlstate;j++){
     n= lastobs;          eip += eij[i][j][(int)age];
     severity = vector(1,maxwav);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     outcome=imatrix(1,maxwav+1,1,n);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     num=ivector(1,n);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     moisnais=vector(1,n);        }
     annais=vector(1,n);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     moisdc=vector(1,n);      }
     andc=vector(1,n);      fprintf(ficresstdeij,"\n");
     agedc=vector(1,n);  
     cod=ivector(1,n);      fprintf(ficrescveij,"%3.0f",age );
     weight=vector(1,n);      for(i=1; i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(j=1; j<=nlstate;j++){
     mint=matrix(1,maxwav,1,n);          cptj= (j-1)*nlstate+i;
     anint=matrix(1,maxwav,1,n);          for(i2=1; i2<=nlstate;i2++)
     s=imatrix(1,maxwav+1,1,n);            for(j2=1; j2<=nlstate;j2++){
     adl=imatrix(1,maxwav+1,1,n);                  cptj2= (j2-1)*nlstate+i2;
     tab=ivector(1,NCOVMAX);              if(cptj2 <= cptj)
     ncodemax=ivector(1,8);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
     i=1;        }
     while (fgets(line, MAXLINE, fic) != NULL)    {      fprintf(ficrescveij,"\n");
       if ((i >= firstobs) && (i <=lastobs)) {     
            }
         for (j=maxwav;j>=1;j--){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           strcpy(line,stra);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     free_vector(xm,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(xp,1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         for (j=ncovcol;j>=1;j--){  }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  /************ Variance ******************/
         num[i]=atol(stra);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
          {
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    /* Variance of health expectancies */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
         i=i+1;    double **dnewm,**doldm;
       }    double **dnewmp,**doldmp;
     }    int i, j, nhstepm, hstepm, h, nstepm ;
     /* printf("ii=%d", ij);    int k, cptcode;
        scanf("%d",i);*/    double *xp;
   imx=i-1; /* Number of individuals */    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   /* for (i=1; i<=imx; i++){    double **gradgp, **trgradgp; /* for var p point j */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double *gpp, *gmp; /* for var p point j */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double ***p3mat;
     }*/    double age,agelim, hf;
    /*  for (i=1; i<=imx; i++){    double ***mobaverage;
      if (s[4][i]==9)  s[4][i]=-1;    int theta;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    char digit[4];
      char digitp[25];
    
   /* Calculation of the number of parameter from char model*/    char fileresprobmorprev[FILENAMELENGTH];
   Tvar=ivector(1,15);  
   Tprod=ivector(1,15);    if(popbased==1){
   Tvaraff=ivector(1,15);      if(mobilav!=0)
   Tvard=imatrix(1,15,1,2);        strcpy(digitp,"-populbased-mobilav-");
   Tage=ivector(1,15);            else strcpy(digitp,"-populbased-nomobil-");
        }
   if (strlen(model) >1){    else 
     j=0, j1=0, k1=1, k2=1;      strcpy(digitp,"-stablbased-");
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');    if (mobilav!=0) {
     cptcovn=j+1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     cptcovprod=j1;      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
            fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     strcpy(modelsav,model);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      }
       printf("Error. Non available option model=%s ",model);    }
       goto end;  
     }    strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
     for(i=(j+1); i>=1;i--){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       cutv(stra,strb,modelsav,'+');    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    strcat(fileresprobmorprev,fileres);
       /*scanf("%d",i);*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       if (strchr(strb,'*')) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         cutv(strd,strc,strb,'*');      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         if (strcmp(strc,"age")==0) {    }
           cptcovprod--;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           cutv(strb,stre,strd,'V');   
           Tvar[i]=atoi(stre);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           cptcovage++;    pstamp(ficresprobmorprev);
             Tage[cptcovage]=i;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             /*printf("stre=%s ", stre);*/    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         else if (strcmp(strd,"age")==0) {      fprintf(ficresprobmorprev," p.%-d SE",j);
           cptcovprod--;      for(i=1; i<=nlstate;i++)
           cutv(strb,stre,strc,'V');        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           Tvar[i]=atoi(stre);    }  
           cptcovage++;    fprintf(ficresprobmorprev,"\n");
           Tage[cptcovage]=i;    fprintf(ficgp,"\n# Routine varevsij");
         }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         else {    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           cutv(strb,stre,strc,'V');    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           Tvar[i]=ncovcol+k1;  /*   } */
           cutv(strb,strc,strd,'V');    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tprod[k1]=i;    pstamp(ficresvij);
           Tvard[k1][1]=atoi(strc);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           Tvard[k1][2]=atoi(stre);    if(popbased==1)
           Tvar[cptcovn+k2]=Tvard[k1][1];      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    else
           for (k=1; k<=lastobs;k++)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(ficresvij,"# Age");
           k1++;    for(i=1; i<=nlstate;i++)
           k2=k2+2;      for(j=1; j<=nlstate;j++)
         }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       }    fprintf(ficresvij,"\n");
       else {  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    xp=vector(1,npar);
        /*  scanf("%d",i);*/    dnewm=matrix(1,nlstate,1,npar);
       cutv(strd,strc,strb,'V');    doldm=matrix(1,nlstate,1,nlstate);
       Tvar[i]=atoi(strc);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/    gpp=vector(nlstate+1,nlstate+ndeath);
     }    gmp=vector(nlstate+1,nlstate+ndeath);
 }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    if(estepm < stepm){
   printf("cptcovprod=%d ", cptcovprod);      printf ("Problem %d lower than %d\n",estepm, stepm);
   scanf("%d ",i);*/    }
     fclose(fic);    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /*  if(mle==1){*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     if (weightopt != 1) { /* Maximisation without weights*/       nhstepm is the number of hstepm from age to agelim 
       for(i=1;i<=n;i++) weight[i]=1.0;       nstepm is the number of stepm from age to agelin. 
     }       Look at function hpijx to understand why (it is linked to memory size questions) */
     /*-calculation of age at interview from date of interview and age at death -*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     agev=matrix(1,maxwav,1,imx);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
     for (i=1; i<=imx; i++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for(m=2; (m<= maxwav); m++) {       results. So we changed our mind and took the option of the best precision.
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    */
          anint[m][i]=9999;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          s[m][i]=-1;    agelim = AGESUP;
        }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     for (i=1; i<=imx; i++)  {      gp=matrix(0,nhstepm,1,nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      gm=matrix(0,nhstepm,1,nlstate);
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {      for(theta=1; theta <=npar; theta++){
             if(agedc[i]>0)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               if(moisdc[i]!=99 && andc[i]!=9999)          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                 agev[m][i]=agedc[i];        }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            else {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        if (popbased==1) {
               agev[m][i]=-1;          if(mobilav ==0){
               }            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */ 
           else if(s[m][i] !=9){ /* Should no more exist */            for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              prlim[i][i]=mobaverage[(int)age][i][ij];
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;        }
             else if(agev[m][i] <agemin){    
               agemin=agev[m][i];        for(j=1; j<= nlstate; j++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for(h=0; h<=nhstepm; h++){
             }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             else if(agev[m][i] >agemax){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }        /* This for computing probability of death (h=1 means
             /*agev[m][i]=anint[m][i]-annais[i];*/           computed over hstepm matrices product = hstepm*stepm months) 
             /*   agev[m][i] = age[i]+2*m;*/           as a weighted average of prlim.
           }        */
           else { /* =9 */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             agev[m][i]=1;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             s[m][i]=-1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
         }        /* end probability of death */
         else /*= 0 Unknown */  
           agev[m][i]=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (i=1; i<=imx; i++)  {   
       for(m=1; (m<= maxwav); m++){        if (popbased==1) {
         if (s[m][i] > (nlstate+ndeath)) {          if(mobilav ==0){
           printf("Error: Wrong value in nlstate or ndeath\n");              for(i=1; i<=nlstate;i++)
           goto end;              prlim[i][i]=probs[(int)age][i][ij];
         }          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        }
   
     free_vector(severity,1,maxwav);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     free_imatrix(outcome,1,maxwav+1,1,n);          for(h=0; h<=nhstepm; h++){
     free_vector(moisnais,1,n);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     free_vector(annais,1,n);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     /* free_matrix(mint,1,maxwav,1,n);          }
        free_matrix(anint,1,maxwav,1,n);*/        }
     free_vector(moisdc,1,n);        /* This for computing probability of death (h=1 means
     free_vector(andc,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
            */
     wav=ivector(1,imx);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
            }    
     /* Concatenates waves */        /* end probability of death */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
       Tcode=ivector(1,100);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    codtab=imatrix(1,100,1,10);        }
    h=0;  
    m=pow(2,cptcoveff);      } /* End theta */
    
    for(k=1;k<=cptcoveff; k++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){      for(h=0; h<=nhstepm; h++) /* veij */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1; j<=nlstate;j++)
            h++;          for(theta=1; theta <=npar; theta++)
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            trgradg[h][j][theta]=gradg[h][theta][j];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  
          }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
        }        for(theta=1; theta <=npar; theta++)
      }          trgradgp[j][theta]=gradgp[theta][j];
    }    
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    /* for(i=1; i <=m ;i++){      for(i=1;i<=nlstate;i++)
       for(k=1; k <=cptcovn; k++){        for(j=1;j<=nlstate;j++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          vareij[i][j][(int)age] =0.;
       }  
       printf("\n");      for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
       scanf("%d",i);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
    /* Calculates basic frequencies. Computes observed prevalence at single age          for(i=1;i<=nlstate;i++)
        and prints on file fileres'p'. */            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
            }
          }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* pptj */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
              for(i=nlstate+1;i<=nlstate+ndeath;i++)
     /* For Powell, parameters are in a vector p[] starting at p[1]          varppt[j][i]=doldmp[j][i];
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* end ppptj */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     if(mle==1){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   
     }      if (popbased==1) {
            if(mobilav ==0){
     /*--------- results files --------------*/          for(i=1; i<=nlstate;i++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
    jk=1;            prlim[i][i]=mobaverage[(int)age][i][ij];
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }
    for(i=1,jk=1; i <=nlstate; i++){               
      for(k=1; k <=(nlstate+ndeath); k++){      /* This for computing probability of death (h=1 means
        if (k != i)         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          {         as a weighted average of prlim.
            printf("%d%d ",i,k);      */
            fprintf(ficres,"%1d%1d ",i,k);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(j=1; j <=ncovmodel; j++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
              printf("%f ",p[jk]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
              fprintf(ficres,"%f ",p[jk]);      }    
              jk++;      /* end probability of death */
            }  
            printf("\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
            fprintf(ficres,"\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      }        for(i=1; i<=nlstate;i++){
    }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  if(mle==1){        }
     /* Computing hessian and covariance matrix */      } 
     ftolhess=ftol; /* Usually correct */      fprintf(ficresprobmorprev,"\n");
     hesscov(matcov, p, npar, delti, ftolhess, func);  
  }      fprintf(ficresvij,"%.0f ",age );
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      for(i=1; i<=nlstate;i++)
     printf("# Scales (for hessian or gradient estimation)\n");        for(j=1; j<=nlstate;j++){
      for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       for(j=1; j <=nlstate+ndeath; j++){        }
         if (j!=i) {      fprintf(ficresvij,"\n");
           fprintf(ficres,"%1d%1d",i,j);      free_matrix(gp,0,nhstepm,1,nlstate);
           printf("%1d%1d",i,j);      free_matrix(gm,0,nhstepm,1,nlstate);
           for(k=1; k<=ncovmodel;k++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
             printf(" %.5e",delti[jk]);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             fprintf(ficres," %.5e",delti[jk]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             jk++;    } /* End age */
           }    free_vector(gpp,nlstate+1,nlstate+ndeath);
           printf("\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
           fprintf(ficres,"\n");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
         }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
      }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     k=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for(i=1;i<=npar;i++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       /*  if (k>nlstate) k=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
       i1=(i-1)/(ncovmodel*nlstate)+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       fprintf(ficres,"%3d",i);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       printf("%3d",i);  */
       for(j=1; j<=i;j++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         fprintf(ficres," %.5e",matcov[i][j]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         printf(" %.5e",matcov[i][j]);  
       }    free_vector(xp,1,npar);
       fprintf(ficres,"\n");    free_matrix(doldm,1,nlstate,1,nlstate);
       printf("\n");    free_matrix(dnewm,1,nlstate,1,npar);
       k++;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
        free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       ungetc(c,ficpar);    fclose(ficresprobmorprev);
       fgets(line, MAXLINE, ficpar);    fflush(ficgp);
       puts(line);    fflush(fichtm); 
       fputs(line,ficparo);  }  /* end varevsij */
     }  
     ungetc(c,ficpar);  /************ Variance of prevlim ******************/
     estepm=0;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  {
     if (estepm==0 || estepm < stepm) estepm=stepm;    /* Variance of prevalence limit */
     if (fage <= 2) {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       bage = ageminpar;    double **newm;
       fage = agemaxpar;    double **dnewm,**doldm;
     }    int i, j, nhstepm, hstepm;
        int k, cptcode;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double *xp;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double *gp, *gm;
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double **gradg, **trgradg;
      double age,agelim;
     while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    pstamp(ficresvpl);
     puts(line);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fputs(line,ficparo);    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    xp=vector(1,npar);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    dnewm=matrix(1,nlstate,1,npar);
          doldm=matrix(1,nlstate,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    hstepm=1*YEARM; /* Every year of age */
     fgets(line, MAXLINE, ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     puts(line);    agelim = AGESUP;
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   ungetc(c,ficpar);      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      gp=vector(1,nlstate);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      gm=vector(1,nlstate);
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);      for(theta=1; theta <=npar; theta++){
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(ficres,"pop_based=%d\n",popbased);            xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   while((c=getc(ficpar))=='#' && c!= EOF){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);          gp[i] = prlim[i][i];
     puts(line);      
     fputs(line,ficparo);        for(i=1; i<=npar; i++) /* Computes gradient */
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          gm[i] = prlim[i][i];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      trgradg =matrix(1,nlstate,1,npar);
     fgets(line, MAXLINE, ficpar);  
     puts(line);      for(j=1; j<=nlstate;j++)
     fputs(line,ficparo);        for(theta=1; theta <=npar; theta++)
   }          trgradg[j][theta]=gradg[theta][j];
   ungetc(c,ficpar);  
       for(i=1;i<=nlstate;i++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        varpl[i][(int)age] =0.;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
 /*------------ gnuplot -------------*/      fprintf(ficresvpl,"%.0f ",age );
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);      for(i=1; i<=nlstate;i++)
          fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 /*------------ free_vector  -------------*/      fprintf(ficresvpl,"\n");
  chdir(path);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
  free_ivector(wav,1,imx);      free_matrix(gradg,1,npar,1,nlstate);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      free_matrix(trgradg,1,nlstate,1,npar);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      } /* End age */
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);    free_vector(xp,1,npar);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    free_matrix(doldm,1,nlstate,1,npar);
  fclose(ficparo);    free_matrix(dnewm,1,nlstate,1,nlstate);
  fclose(ficres);  
   }
 /*--------- index.htm --------*/  
   /************ Variance of one-step probabilities  ******************/
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
      int i, j=0,  i1, k1, l1, t, tj;
   /*--------------- Prevalence limit --------------*/    int k2, l2, j1,  z1;
      int k=0,l, cptcode;
   strcpy(filerespl,"pl");    int first=1, first1;
   strcat(filerespl,fileres);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double **dnewm,**doldm;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double *xp;
   }    double *gp, *gm;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double **gradg, **trgradg;
   fprintf(ficrespl,"#Prevalence limit\n");    double **mu;
   fprintf(ficrespl,"#Age ");    double age,agelim, cov[NCOVMAX];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   fprintf(ficrespl,"\n");    int theta;
      char fileresprob[FILENAMELENGTH];
   prlim=matrix(1,nlstate,1,nlstate);    char fileresprobcov[FILENAMELENGTH];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobcor[FILENAMELENGTH];
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***varpij;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcpy(fileresprob,"prob"); 
   k=0;    strcat(fileresprob,fileres);
   agebase=ageminpar;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   agelim=agemaxpar;      printf("Problem with resultfile: %s\n", fileresprob);
   ftolpl=1.e-10;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   i1=cptcoveff;    }
   if (cptcovn < 1){i1=1;}    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
   for(cptcov=1;cptcov<=i1;cptcov++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("Problem with resultfile: %s\n", fileresprobcov);
         k=k+1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    }
         fprintf(ficrespl,"\n#******");    strcpy(fileresprobcor,"probcor"); 
         for(j=1;j<=cptcoveff;j++)    strcat(fileresprobcor,fileres);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         fprintf(ficrespl,"******\n");      printf("Problem with resultfile: %s\n", fileresprobcor);
              fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         for (age=agebase; age<=agelim; age++){    }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           fprintf(ficrespl,"%.0f",age );    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           for(i=1; i<=nlstate;i++)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           fprintf(ficrespl,"\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    pstamp(ficresprob);
     }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   fclose(ficrespl);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
      fprintf(ficresprobcov,"# Age");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    pstamp(ficresprobcor);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(ficresprobcor,"# Age");
   }  
   printf("Computing pij: result on file '%s' \n", filerespij);  
      for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(j=1; j<=(nlstate+ndeath);j++){
   /*if (stepm<=24) stepsize=2;*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   agelim=AGESUP;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   hstepm=stepsize*YEARM; /* Every year of age */      }  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   k=0;    fprintf(ficresprobcor,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){   */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    xp=vector(1,npar);
       k=k+1;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficrespij,"\n#****** ");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for(j=1;j<=cptcoveff;j++)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficrespij,"******\n");    first=1;
            fprintf(ficgp,"\n# Routine varprob");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(fichtm,"\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           oldm=oldms;savm=savms;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      file %s<br>\n",optionfilehtmcov);
           fprintf(ficrespij,"# Age");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           for(i=1; i<=nlstate;i++)  and drawn. It helps understanding how is the covariance between two incidences.\
             for(j=1; j<=nlstate+ndeath;j++)   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
               fprintf(ficrespij," %1d-%1d",i,j);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           fprintf(ficrespij,"\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
            for (h=0; h<=nhstepm; h++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  standard deviations wide on each axis. <br>\
             for(i=1; i<=nlstate;i++)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
               for(j=1; j<=nlstate+ndeath;j++)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
             fprintf(ficrespij,"\n");  
              }    cov[1]=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    tj=cptcoveff;
           fprintf(ficrespij,"\n");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         }    j1=0;
     }    for(t=1; t<=tj;t++){
   }      for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
   fclose(ficrespij);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
   /*---------- Forecasting ------------------*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((stepm == 1) && (strcmp(model,".")==0)){          fprintf(ficresprobcov, "**********\n#\n");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);          
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   else{          fprintf(ficgp, "**********\n#\n");
     erreur=108;          
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*---------- Health expectancies and variances ------------*/          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   strcpy(filerest,"t");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(filerest,fileres);          fprintf(ficresprobcor, "**********\n#");    
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        
   }        for (age=bage; age<=fage; age ++){ 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   strcpy(filerese,"e");          }
   strcat(filerese,fileres);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   if((ficreseij=fopen(filerese,"w"))==NULL) {          for (k=1; k<=cptcovprod;k++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  strcpy(fileresv,"v");          gp=vector(1,(nlstate)*(nlstate+ndeath));
   strcat(fileresv,fileres);          gm=vector(1,(nlstate)*(nlstate+ndeath));
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   calagedate=-1;            
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   k=0;            k=0;
   for(cptcov=1;cptcov<=i1;cptcov++){            for(i=1; i<= (nlstate); i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              for(j=1; j<=(nlstate+ndeath);j++){
       k=k+1;                k=k+1;
       fprintf(ficrest,"\n#****** ");                gp[k]=pmmij[i][j];
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficrest,"******\n");            
             for(i=1; i<=npar; i++)
       fprintf(ficreseij,"\n#****** ");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       for(j=1;j<=cptcoveff;j++)      
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficreseij,"******\n");            k=0;
             for(i=1; i<=(nlstate); i++){
       fprintf(ficresvij,"\n#****** ");              for(j=1; j<=(nlstate+ndeath);j++){
       for(j=1;j<=cptcoveff;j++)                k=k+1;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                gm[k]=pmmij[i][j];
       fprintf(ficresvij,"******\n");              }
             }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       
       oldm=oldms;savm=savms;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);            for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
           
            matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficrest,"\n");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       epj=vector(1,nlstate+1);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          pmij(pmmij,cov,ncovmodel,x,nlstate);
         if (popbased==1) {          
           for(i=1; i<=nlstate;i++)          k=0;
             prlim[i][i]=probs[(int)age][i][k];          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
         fprintf(ficrest," %4.0f",age);              mu[k][(int) age]=pmmij[i][j];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){            }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           }              varpij[i][j][(int)age] = doldm[i][j];
           epj[nlstate+1] +=epj[j];  
         }          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for(i=1, vepp=0.;i <=nlstate;i++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           for(j=1;j <=nlstate;j++)            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             vepp += vareij[i][j][(int)age];            }*/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficresprobcov,"\n%d ",(int)age);
         }          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficrest,"\n");  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 free_matrix(mint,1,maxwav,1,n);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     free_vector(weight,1,n);          }
   fclose(ficreseij);          i=0;
   fclose(ficresvij);          for (k=1; k<=(nlstate);k++){
   fclose(ficrest);            for (l=1; l<=(nlstate+ndeath);l++){ 
   fclose(ficpar);              i=i++;
   free_vector(epj,1,nlstate+1);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   /*------- Variance limit prevalence------*/                for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   strcpy(fileresvpl,"vpl");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   strcat(fileresvpl,fileres);              }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }/* end of loop for state */
     exit(0);        } /* end of loop for age */
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        /* Confidence intervalle of pij  */
         /*
   k=0;          fprintf(ficgp,"\nunset parametric;unset label");
   for(cptcov=1;cptcov<=i1;cptcov++){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       k=k+1;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       fprintf(ficresvpl,"\n#****** ");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       for(j=1;j<=cptcoveff;j++)          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
       fprintf(ficresvpl,"******\n");        */
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       oldm=oldms;savm=savms;        first1=1;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for (k2=1; k2<=(nlstate);k2++){
     }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
  }            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   fclose(ficresvpl);            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   /*---------- End : free ----------------*/                if(l1==k1) continue;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                i=(k1-1)*(nlstate+ndeath)+l1;
                  if(i<=j) continue;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                for (age=bage; age<=fage; age ++){ 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                  if ((int)age %5==0){
                      v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    mu1=mu[i][(int) age]/stepm*YEARM ;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    mu2=mu[j][(int) age]/stepm*YEARM;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    c12=cv12/sqrt(v1*v2);
                      /* Computing eigen value of matrix of covariance */
   free_matrix(matcov,1,npar,1,npar);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_vector(delti,1,npar);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   free_matrix(agev,1,maxwav,1,imx);                    if ((lc2 <0) || (lc1 <0) ){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                      printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
   if(erreur >0)                      lc1=fabs(lc1);
     printf("End of Imach with error or warning %d\n",erreur);                      lc2=fabs(lc2);
   else   printf("End of Imach\n");                    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
                      /* Eigen vectors */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
   /*------ End -----------*/                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
  end:                    tnalp=v21/v11;
   /* chdir(pathcd);*/                    if(first1==1){
  /*system("wgnuplot graph.plt");*/                      first1=0;
  /*system("../gp37mgw/wgnuplot graph.plt");*/                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  /*system("cd ../gp37mgw");*/                    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  strcpy(plotcmd,GNUPLOTPROGRAM);                    /*printf(fignu*/
  strcat(plotcmd," ");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
  strcat(plotcmd,optionfilegnuplot);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  system(plotcmd);                    if(first==1){
                       first=0;
  /*#ifdef windows*/                      fprintf(ficgp,"\nset parametric;unset label");
   while (z[0] != 'q') {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     /* chdir(path); */                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     scanf("%s",z);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     if (z[0] == 'c') system("./imach");  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
     else if (z[0] == 'e') system(optionfilehtm);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
     else if (z[0] == 'g') system(plotcmd);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     else if (z[0] == 'q') exit(0);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /*#endif */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.137


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>