Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.138

version 1.41.2.1, 2003/06/12 10:43:20 version 1.138, 2010/04/30 18:19:40
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.138  2010/04/30 18:19:40  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.137  2010/04/29 18:11:38  brouard
   first survey ("cross") where individuals from different ages are    (Module): Checking covariates for more complex models
   interviewed on their health status or degree of disability (in the    than V1+V2. A lot of change to be done. Unstable.
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.136  2010/04/26 20:30:53  brouard
   (if any) in individual health status.  Health expectancies are    (Module): merging some libgsl code. Fixing computation
   computed from the time spent in each health state according to a    of likelione (using inter/intrapolation if mle = 0) in order to
   model. More health states you consider, more time is necessary to reach the    get same likelihood as if mle=1.
   Maximum Likelihood of the parameters involved in the model.  The    Some cleaning of code and comments added.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.134  2009/10/29 13:18:53  brouard
   complex model than "constant and age", you should modify the program    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.133  2009/07/06 10:21:25  brouard
   convergence.    just nforces
   
   The advantage of this computer programme, compared to a simple    Revision 1.132  2009/07/06 08:22:05  brouard
   multinomial logistic model, is clear when the delay between waves is not    Many tings
   identical for each individual. Also, if a individual missed an  
   intermediate interview, the information is lost, but taken into    Revision 1.131  2009/06/20 16:22:47  brouard
   account using an interpolation or extrapolation.      Some dimensions resccaled
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.130  2009/05/26 06:44:34  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Max Covariate is now set to 20 instead of 8. A
   split into an exact number (nh*stepm) of unobserved intermediate    lot of cleaning with variables initialized to 0. Trying to make
   states. This elementary transition (by month or quarter trimester,    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.129  2007/08/31 13:49:27  lievre
   and the contribution of each individual to the likelihood is simply    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   hPijx.  
     Revision 1.128  2006/06/30 13:02:05  brouard
   Also this programme outputs the covariance matrix of the parameters but also    (Module): Clarifications on computing e.j
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.127  2006/04/28 18:11:50  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Yes the sum of survivors was wrong since
            Institut national d'études démographiques, Paris.    imach-114 because nhstepm was no more computed in the age
   This software have been partly granted by Euro-REVES, a concerted action    loop. Now we define nhstepma in the age loop.
   from the European Union.    (Module): In order to speed up (in case of numerous covariates) we
   It is copyrighted identically to a GNU software product, ie programme and    compute health expectancies (without variances) in a first step
   software can be distributed freely for non commercial use. Latest version    and then all the health expectancies with variances or standard
   can be accessed at http://euroreves.ined.fr/imach .    deviation (needs data from the Hessian matrices) which slows the
   **********************************************************************/    computation.
      In the future we should be able to stop the program is only health
 #include <math.h>    expectancies and graph are needed without standard deviations.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.126  2006/04/28 17:23:28  brouard
 #include <unistd.h>    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define MAXLINE 256    loop. Now we define nhstepma in the age loop.
 #define GNUPLOTPROGRAM "wgnuplot"    Version 0.98h
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.125  2006/04/04 15:20:31  lievre
 /*#define DEBUG*/    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.124  2006/03/22 17:13:53  lievre
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define NINTERVMAX 8    name. <head> headers where missing.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Module): Weights can have a decimal point as for
 #define NCOVMAX 8 /* Maximum number of covariates */    English (a comma might work with a correct LC_NUMERIC environment,
 #define MAXN 20000    otherwise the weight is truncated).
 #define YEARM 12. /* Number of months per year */    Modification of warning when the covariates values are not 0 or
 #define AGESUP 130    1.
 #define AGEBASE 40    Version 0.98g
   
     Revision 1.122  2006/03/20 09:45:41  brouard
 int erreur; /* Error number */    (Module): Weights can have a decimal point as for
 int nvar;    English (a comma might work with a correct LC_NUMERIC environment,
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    otherwise the weight is truncated).
 int npar=NPARMAX;    Modification of warning when the covariates values are not 0 or
 int nlstate=2; /* Number of live states */    1.
 int ndeath=1; /* Number of dead states */    Version 0.98g
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.121  2006/03/16 17:45:01  lievre
     * imach.c (Module): Comments concerning covariates added
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    * imach.c (Module): refinements in the computation of lli if
 int jmin, jmax; /* min, max spacing between 2 waves */    status=-2 in order to have more reliable computation if stepm is
 int mle, weightopt;    not 1 month. Version 0.98f
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.120  2006/03/16 15:10:38  lievre
 double jmean; /* Mean space between 2 waves */    (Module): refinements in the computation of lli if
 double **oldm, **newm, **savm; /* Working pointers to matrices */    status=-2 in order to have more reliable computation if stepm is
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    not 1 month. Version 0.98f
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficgp,*ficresprob,*ficpop;    Revision 1.119  2006/03/15 17:42:26  brouard
 FILE *ficreseij;    (Module): Bug if status = -2, the loglikelihood was
   char filerese[FILENAMELENGTH];    computed as likelihood omitting the logarithm. Version O.98e
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.118  2006/03/14 18:20:07  brouard
  FILE  *ficresvpl;    (Module): varevsij Comments added explaining the second
   char fileresvpl[FILENAMELENGTH];    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define NR_END 1    (Module): Function pstamp added
 #define FREE_ARG char*    (Module): Version 0.98d
 #define FTOL 1.0e-10  
     Revision 1.117  2006/03/14 17:16:22  brouard
 #define NRANSI    (Module): varevsij Comments added explaining the second
 #define ITMAX 200    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define TOL 2.0e-4    (Module): Function pstamp added
     (Module): Version 0.98d
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.116  2006/03/06 10:29:27  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.115  2006/02/27 12:17:45  brouard
 #define TINY 1.0e-20    (Module): One freematrix added in mlikeli! 0.98c
   
 static double maxarg1,maxarg2;    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Some improvements in processing parameter
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    filename with strsep.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.113  2006/02/24 14:20:24  brouard
 #define rint(a) floor(a+0.5)    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 static double sqrarg;    allocation too.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int imx;  
 int stepm;    Revision 1.111  2006/01/25 20:38:18  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 int estepm;    can be a simple dot '.'.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.110  2006/01/25 00:51:50  brouard
 int m,nb;    (Module): Lots of cleaning and bugs added (Gompertz)
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.109  2006/01/24 19:37:15  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Comments (lines starting with a #) are allowed in data.
 double dateintmean=0;  
     Revision 1.108  2006/01/19 18:05:42  lievre
 double *weight;    Gnuplot problem appeared...
 int **s; /* Status */    To be fixed
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.105  2006/01/05 20:23:19  lievre
 {    *** empty log message ***
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
    l1 = strlen( path );                 /* length of path */    (Module): If the status is missing at the last wave but we know
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    that the person is alive, then we can code his/her status as -2
 #ifdef windows    (instead of missing=-1 in earlier versions) and his/her
    s = strrchr( path, '\\' );           /* find last / */    contributions to the likelihood is 1 - Prob of dying from last
 #else    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    s = strrchr( path, '/' );            /* find last / */    the healthy state at last known wave). Version is 0.98
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.103  2005/09/30 15:54:49  lievre
 #if     defined(__bsd__)                /* get current working directory */    (Module): sump fixed, loop imx fixed, and simplifications.
       extern char       *getwd( );  
     Revision 1.102  2004/09/15 17:31:30  brouard
       if ( getwd( dirc ) == NULL ) {    Add the possibility to read data file including tab characters.
 #else  
       extern char       *getcwd( );    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.100  2004/07/12 18:29:06  brouard
          return( GLOCK_ERROR_GETCWD );    Add version for Mac OS X. Just define UNIX in Makefile
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.99  2004/06/05 08:57:40  brouard
    } else {                             /* strip direcotry from path */    *** empty log message ***
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.98  2004/05/16 15:05:56  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    New version 0.97 . First attempt to estimate force of mortality
       strcpy( name, s );                /* save file name */    directly from the data i.e. without the need of knowing the health
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    state at each age, but using a Gompertz model: log u =a + b*age .
       dirc[l1-l2] = 0;                  /* add zero */    This is the basic analysis of mortality and should be done before any
    }    other analysis, in order to test if the mortality estimated from the
    l1 = strlen( dirc );                 /* length of directory */    cross-longitudinal survey is different from the mortality estimated
 #ifdef windows    from other sources like vital statistic data.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    The same imach parameter file can be used but the option for mle should be -3.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Agnès, who wrote this part of the code, tried to keep most of the
    s = strrchr( name, '.' );            /* find last / */    former routines in order to include the new code within the former code.
    s++;  
    strcpy(ext,s);                       /* save extension */    The output is very simple: only an estimate of the intercept and of
    l1= strlen( name);    the slope with 95% confident intervals.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Current limitations:
    finame[l1-l2]= 0;    A) Even if you enter covariates, i.e. with the
    return( 0 );                         /* we're done */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
     Revision 1.97  2004/02/20 13:25:42  lievre
 /******************************************/    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 void replace(char *s, char*t)  
 {    Revision 1.96  2003/07/15 15:38:55  brouard
   int i;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   int lg=20;    rewritten within the same printf. Workaround: many printfs.
   i=0;  
   lg=strlen(t);    Revision 1.95  2003/07/08 07:54:34  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository):
     (s[i] = t[i]);    (Repository): Using imachwizard code to output a more meaningful covariance
     if (t[i]== '\\') s[i]='/';    matrix (cov(a12,c31) instead of numbers.
   }  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int nbocc(char *s, char occ)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   int i,j=0;    (Module): On windows (cygwin) function asctime_r doesn't
   int lg=20;    exist so I changed back to asctime which exists.
   i=0;    (Module): Version 0.96b
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.92  2003/06/25 16:30:45  brouard
   if  (s[i] == occ ) j++;    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
   return j;  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 void cutv(char *u,char *v, char*t, char occ)    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
   int i,lg,j,p=0;    is stamped in powell.  We created a new html file for the graphs
   i=0;    concerning matrix of covariance. It has extension -cov.htm.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.90  2003/06/24 12:34:15  brouard
   }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   lg=strlen(t);    of the covariance matrix to be input.
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.89  2003/06/24 12:30:52  brouard
   }    (Module): Some bugs corrected for windows. Also, when
      u[p]='\0';    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.88  2003/06/23 17:54:56  brouard
   }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 }  
     Revision 1.87  2003/06/18 12:26:01  brouard
 /********************** nrerror ********************/    Version 0.96
   
 void nrerror(char error_text[])    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   fprintf(stderr,"ERREUR ...\n");    routine fileappend.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
 /*********************** vector *******************/    current date of interview. It may happen when the death was just
 double *vector(int nl, int nh)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   double *v;    assuming that the date of death was just one stepm after the
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    interview.
   if (!v) nrerror("allocation failure in vector");    (Repository): Because some people have very long ID (first column)
   return v-nl+NR_END;    we changed int to long in num[] and we added a new lvector for
 }    memory allocation. But we also truncated to 8 characters (left
     truncation)
 /************************ free vector ******************/    (Repository): No more line truncation errors.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.84  2003/06/13 21:44:43  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository): Replace "freqsummary" at a correct
 }    place. It differs from routine "prevalence" which may be called
     many times. Probs is memory consuming and must be used with
 /************************ivector *******************************/    parcimony.
 int *ivector(long nl,long nh)    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 {  
   int *v;    Revision 1.83  2003/06/10 13:39:11  lievre
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    *** empty log message ***
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /******************free ivector **************************/  */
 void free_ivector(int *v, long nl, long nh)  /*
 {     Interpolated Markov Chain
   free((FREE_ARG)(v+nl-NR_END));  
 }    Short summary of the programme:
     
 /******************* imatrix *******************************/    This program computes Healthy Life Expectancies from
 int **imatrix(long nrl, long nrh, long ncl, long nch)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    case of a health survey which is our main interest) -2- at least a
   int **m;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   /* allocate pointers to rows */    computed from the time spent in each health state according to a
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    model. More health states you consider, more time is necessary to reach the
   if (!m) nrerror("allocation failure 1 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m += NR_END;    simplest model is the multinomial logistic model where pij is the
   m -= nrl;    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
      the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   /* allocate rows and set pointers to them */    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    complex model than "constant and age", you should modify the program
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    where the markup *Covariates have to be included here again* invites
   m[nrl] += NR_END;    you to do it.  More covariates you add, slower the
   m[nrl] -= ncl;    convergence.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
   /* return pointer to array of pointers to rows */    identical for each individual. Also, if a individual missed an
   return m;    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 /****************** free_imatrix *************************/    hPijx is the probability to be observed in state i at age x+h
 void free_imatrix(m,nrl,nrh,ncl,nch)    conditional to the observed state i at age x. The delay 'h' can be
       int **m;    split into an exact number (nh*stepm) of unobserved intermediate
       long nch,ncl,nrh,nrl;    states. This elementary transition (by month, quarter,
      /* free an int matrix allocated by imatrix() */    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    and the contribution of each individual to the likelihood is simply
   free((FREE_ARG) (m+nrl-NR_END));    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /******************* matrix *******************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 double **matrix(long nrl, long nrh, long ncl, long nch)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;             Institut national d'études démographiques, Paris.
   double **m;    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    It is copyrighted identically to a GNU software product, ie programme and
   if (!m) nrerror("allocation failure 1 in matrix()");    software can be distributed freely for non commercial use. Latest version
   m += NR_END;    can be accessed at http://euroreves.ined.fr/imach .
   m -= nrl;  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    **********************************************************************/
   m[nrl] -= ncl;  /*
     main
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    read parameterfile
   return m;    read datafile
 }    concatwav
     freqsummary
 /*************************free matrix ************************/    if (mle >= 1)
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      mlikeli
 {    print results files
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if mle==1 
   free((FREE_ARG)(m+nrl-NR_END));       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /******************* ma3x *******************************/    open gnuplot file
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    open html file
 {    period (stable) prevalence
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;     for age prevalim()
   double ***m;    h Pij x
     variance of p varprob
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    forecasting if prevfcast==1 prevforecast call prevalence()
   if (!m) nrerror("allocation failure 1 in matrix()");    health expectancies
   m += NR_END;    Variance-covariance of DFLE
   m -= nrl;    prevalence()
      movingaverage()
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    varevsij() 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if popbased==1 varevsij(,popbased)
   m[nrl] += NR_END;    total life expectancies
   m[nrl] -= ncl;    Variance of period (stable) prevalence
    end
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;   
   m[nrl][ncl] -= nll;  #include <math.h>
   for (j=ncl+1; j<=nch; j++)  #include <stdio.h>
     m[nrl][j]=m[nrl][j-1]+nlay;  #include <stdlib.h>
    #include <string.h>
   for (i=nrl+1; i<=nrh; i++) {  #include <unistd.h>
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  #include <limits.h>
       m[i][j]=m[i][j-1]+nlay;  #include <sys/types.h>
   }  #include <sys/stat.h>
   return m;  #include <errno.h>
 }  extern int errno;
   
 /*************************free ma3x ************************/  /* #include <sys/time.h> */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <time.h>
 {  #include "timeval.h"
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #ifdef GSL
   free((FREE_ARG)(m+nrl-NR_END));  #include <gsl/gsl_errno.h>
 }  #include <gsl/gsl_multimin.h>
   #endif
 /***************** f1dim *************************/  
 extern int ncom;  /* #include <libintl.h> */
 extern double *pcom,*xicom;  /* #define _(String) gettext (String) */
 extern double (*nrfunc)(double []);  
    #define MAXLINE 256
 double f1dim(double x)  
 {  #define GNUPLOTPROGRAM "gnuplot"
   int j;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double f;  #define FILENAMELENGTH 132
   double *xt;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   xt=vector(1,ncom);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
   free_vector(xt,1,ncom);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   return f;  
 }  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 /*****************brent *************************/  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define NCOVMAX 20 /* Maximum number of covariates */
 {  #define MAXN 20000
   int iter;  #define YEARM 12. /* Number of months per year */
   double a,b,d,etemp;  #define AGESUP 130
   double fu,fv,fw,fx;  #define AGEBASE 40
   double ftemp;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #ifdef UNIX
   double e=0.0;  #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   a=(ax < cx ? ax : cx);  #define ODIRSEPARATOR '\\'
   b=(ax > cx ? ax : cx);  #else
   x=w=v=bx;  #define DIRSEPARATOR '\\'
   fw=fv=fx=(*f)(x);  #define CHARSEPARATOR "\\"
   for (iter=1;iter<=ITMAX;iter++) {  #define ODIRSEPARATOR '/'
     xm=0.5*(a+b);  #endif
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /* $Id$ */
     printf(".");fflush(stdout);  /* $State$ */
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char version[]="Imach version 0.98m, April 2010, INED-EUROREVES-Institut de longevite ";
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  char fullversion[]="$Revision$ $Date$"; 
 #endif  char strstart[80];
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       *xmin=x;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       return fx;  int nvar=0, nforce=0; /* Number of variables, number of forces */
     }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
     ftemp=fu;  int npar=NPARMAX;
     if (fabs(e) > tol1) {  int nlstate=2; /* Number of live states */
       r=(x-w)*(fx-fv);  int ndeath=1; /* Number of dead states */
       q=(x-v)*(fx-fw);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       p=(x-v)*q-(x-w)*r;  int popbased=0;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  int *wav; /* Number of waves for this individuual 0 is possible */
       q=fabs(q);  int maxwav=0; /* Maxim number of waves */
       etemp=e;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       e=d;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));                     to the likelihood and the sum of weights (done by funcone)*/
       else {  int mle=1, weightopt=0;
         d=p/q;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         u=x+d;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         if (u-a < tol2 || b-u < tol2)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           d=SIGN(tol1,xm-x);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       }  double jmean=1; /* Mean space between 2 waves */
     } else {  double **oldm, **newm, **savm; /* Working pointers to matrices */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
     fu=(*f)(u);  FILE *ficlog, *ficrespow;
     if (fu <= fx) {  int globpr=0; /* Global variable for printing or not */
       if (u >= x) a=x; else b=x;  double fretone; /* Only one call to likelihood */
       SHFT(v,w,x,u)  long ipmx=0; /* Number of contributions */
         SHFT(fv,fw,fx,fu)  double sw; /* Sum of weights */
         } else {  char filerespow[FILENAMELENGTH];
           if (u < x) a=u; else b=u;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
           if (fu <= fw || w == x) {  FILE *ficresilk;
             v=w;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
             w=u;  FILE *ficresprobmorprev;
             fv=fw;  FILE *fichtm, *fichtmcov; /* Html File */
             fw=fu;  FILE *ficreseij;
           } else if (fu <= fv || v == x || v == w) {  char filerese[FILENAMELENGTH];
             v=u;  FILE *ficresstdeij;
             fv=fu;  char fileresstde[FILENAMELENGTH];
           }  FILE *ficrescveij;
         }  char filerescve[FILENAMELENGTH];
   }  FILE  *ficresvij;
   nrerror("Too many iterations in brent");  char fileresv[FILENAMELENGTH];
   *xmin=x;  FILE  *ficresvpl;
   return fx;  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /****************** mnbrak ***********************/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char command[FILENAMELENGTH];
             double (*func)(double))  int  outcmd=0;
 {  
   double ulim,u,r,q, dum;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double fu;  
    char filelog[FILENAMELENGTH]; /* Log file */
   *fa=(*func)(*ax);  char filerest[FILENAMELENGTH];
   *fb=(*func)(*bx);  char fileregp[FILENAMELENGTH];
   if (*fb > *fa) {  char popfile[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   *fc=(*func)(*cx);  struct timezone tzp;
   while (*fb > *fc) {  extern int gettimeofday();
     r=(*bx-*ax)*(*fb-*fc);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     q=(*bx-*cx)*(*fb-*fa);  long time_value;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  extern long time();
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char strcurr[80], strfor[80];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  char *endptr;
       fu=(*func)(u);  long lval;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double dval;
       fu=(*func)(u);  
       if (fu < *fc) {  #define NR_END 1
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define FREE_ARG char*
           SHFT(*fb,*fc,fu,(*func)(u))  #define FTOL 1.0e-10
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define NRANSI 
       u=ulim;  #define ITMAX 200 
       fu=(*func)(u);  
     } else {  #define TOL 2.0e-4 
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  #define CGOLD 0.3819660 
     }  #define ZEPS 1.0e-10 
     SHFT(*ax,*bx,*cx,u)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       SHFT(*fa,*fb,*fc,fu)  
       }  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /*************** linmin ************************/  
   static double maxarg1,maxarg2;
 int ncom;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double *pcom,*xicom;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double (*nrfunc)(double []);    
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define rint(a) floor(a+0.5)
 {  
   double brent(double ax, double bx, double cx,  static double sqrarg;
                double (*f)(double), double tol, double *xmin);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double f1dim(double x);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int agegomp= AGEGOMP;
               double *fc, double (*func)(double));  
   int j;  int imx; 
   double xx,xmin,bx,ax;  int stepm=1;
   double fx,fb,fa;  /* Stepm, step in month: minimum step interpolation*/
    
   ncom=n;  int estepm;
   pcom=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   xicom=vector(1,n);  
   nrfunc=func;  int m,nb;
   for (j=1;j<=n;j++) {  long *num;
     pcom[j]=p[j];  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     xicom[j]=xi[j];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
   ax=0.0;  double *ageexmed,*agecens;
   xx=1.0;  double dateintmean=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double *weight;
 #ifdef DEBUG  int **s; /* Status */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double *agedc, **covar, idx;
 #endif  int **nbcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   for (j=1;j<=n;j++) {  double *lsurv, *lpop, *tpop;
     xi[j] *= xmin;  
     p[j] += xi[j];  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   }  double ftolhess; /* Tolerance for computing hessian */
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /**************** split *************************/
 }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
 /*************** powell ************************/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             double (*func)(double []))    */ 
 {    char  *ss;                            /* pointer */
   void linmin(double p[], double xi[], int n, double *fret,    int   l1, l2;                         /* length counters */
               double (*func)(double []));  
   int i,ibig,j;    l1 = strlen(path );                   /* length of path */
   double del,t,*pt,*ptt,*xit;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double fp,fptt;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double *xits;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   pt=vector(1,n);      strcpy( name, path );               /* we got the fullname name because no directory */
   ptt=vector(1,n);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xit=vector(1,n);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   xits=vector(1,n);      /* get current working directory */
   *fret=(*func)(p);      /*    extern  char* getcwd ( char *buf , int len);*/
   for (j=1;j<=n;j++) pt[j]=p[j];      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   for (*iter=1;;++(*iter)) {        return( GLOCK_ERROR_GETCWD );
     fp=(*fret);      }
     ibig=0;      /* got dirc from getcwd*/
     del=0.0;      printf(" DIRC = %s \n",dirc);
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    } else {                              /* strip direcotry from path */
     for (i=1;i<=n;i++)      ss++;                               /* after this, the filename */
       printf(" %d %.12f",i, p[i]);      l2 = strlen( ss );                  /* length of filename */
     printf("\n");      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for (i=1;i<=n;i++) {      strcpy( name, ss );         /* save file name */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       fptt=(*fret);      dirc[l1-l2] = 0;                    /* add zero */
 #ifdef DEBUG      printf(" DIRC2 = %s \n",dirc);
       printf("fret=%lf \n",*fret);    }
 #endif    /* We add a separator at the end of dirc if not exists */
       printf("%d",i);fflush(stdout);    l1 = strlen( dirc );                  /* length of directory */
       linmin(p,xit,n,fret,func);    if( dirc[l1-1] != DIRSEPARATOR ){
       if (fabs(fptt-(*fret)) > del) {      dirc[l1] =  DIRSEPARATOR;
         del=fabs(fptt-(*fret));      dirc[l1+1] = 0; 
         ibig=i;      printf(" DIRC3 = %s \n",dirc);
       }    }
 #ifdef DEBUG    ss = strrchr( name, '.' );            /* find last / */
       printf("%d %.12e",i,(*fret));    if (ss >0){
       for (j=1;j<=n;j++) {      ss++;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      strcpy(ext,ss);                     /* save extension */
         printf(" x(%d)=%.12e",j,xit[j]);      l1= strlen( name);
       }      l2= strlen(ss)+1;
       for(j=1;j<=n;j++)      strncpy( finame, name, l1-l2);
         printf(" p=%.12e",p[j]);      finame[l1-l2]= 0;
       printf("\n");    }
 #endif  
     }    return( 0 );                          /* we're done */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  }
 #ifdef DEBUG  
       int k[2],l;  
       k[0]=1;  /******************************************/
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  void replace_back_to_slash(char *s, char*t)
       for (j=1;j<=n;j++)  {
         printf(" %.12e",p[j]);    int i;
       printf("\n");    int lg=0;
       for(l=0;l<=1;l++) {    i=0;
         for (j=1;j<=n;j++) {    lg=strlen(t);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for(i=0; i<= lg; i++) {
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      (s[i] = t[i]);
         }      if (t[i]== '\\') s[i]='/';
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
       }  }
 #endif  
   char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       free_vector(xit,1,n);    char *s;
       free_vector(xits,1,n);    s=out;
       free_vector(ptt,1,n);    while (*in != '\0'){
       free_vector(pt,1,n);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       return;        in++;
     }      }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      *out++ = *in++;
     for (j=1;j<=n;j++) {    }
       ptt[j]=2.0*p[j]-pt[j];    *out='\0';
       xit[j]=p[j]-pt[j];    return s;
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  char *cutv(char *blocc, char *alocc, char *in, char occ)
     if (fptt < fp) {  {
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       if (t < 0.0) {       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         linmin(p,xit,n,fret,func);       gives blocc="abcdef2ghi" and alocc="j".
         for (j=1;j<=n;j++) {       If occ is not found blocc is null and alocc is equal to in. Returns alocc
           xi[j][ibig]=xi[j][n];    */
           xi[j][n]=xit[j];    char *s, *t;
         }    t=in;s=in;
 #ifdef DEBUG    while (*in != '\0'){
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      while( *in == occ){
         for(j=1;j<=n;j++)        *blocc++ = *in++;
           printf(" %.12e",xit[j]);        s=in;
         printf("\n");      }
 #endif      *blocc++ = *in++;
       }    }
     }    if (s == t) /* occ not found */
   }      *(blocc-(in-s))='\0';
 }    else
       *(blocc-(in-s)-1)='\0';
 /**** Prevalence limit ****************/    in=s;
     while ( *in != '\0'){
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      *alocc++ = *in++;
 {    }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */    *alocc='\0';
     return s;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  int nbocc(char *s, char occ)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    int i,j=0;
   double agefin, delaymax=50 ; /* Max number of years to converge */    int lg=20;
     i=0;
   for (ii=1;ii<=nlstate+ndeath;ii++)    lg=strlen(s);
     for (j=1;j<=nlstate+ndeath;j++){    for(i=0; i<= lg; i++) {
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if  (s[i] == occ ) j++;
     }    }
     return j;
    cov[1]=1.;  }
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* void cutv(char *u,char *v, char*t, char occ) */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* { */
     newm=savm;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     /* Covariates have to be included here again */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
      cov[2]=agefin;  /*      gives u="abcdef2ghi" and v="j" *\/ */
    /*   int i,lg,j,p=0; */
       for (k=1; k<=cptcovn;k++) {  /*   i=0; */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*   lg=strlen(t); */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  /*   for(j=0; j<=lg-1; j++) { */
       }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*   } */
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /*   } */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /*      u[p]='\0'; */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     savm=oldm;  /*   } */
     oldm=newm;  /* } */
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){  /********************** nrerror ********************/
       min=1.;  
       max=0.;  void nrerror(char error_text[])
       for(i=1; i<=nlstate; i++) {  {
         sumnew=0;    fprintf(stderr,"ERREUR ...\n");
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    fprintf(stderr,"%s\n",error_text);
         prlim[i][j]= newm[i][j]/(1-sumnew);    exit(EXIT_FAILURE);
         max=FMAX(max,prlim[i][j]);  }
         min=FMIN(min,prlim[i][j]);  /*********************** vector *******************/
       }  double *vector(int nl, int nh)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if(maxmax < ftolpl){    if (!v) nrerror("allocation failure in vector");
       return prlim;    return v-nl+NR_END;
     }  }
   }  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /*************** transition probabilities ***************/  {
     free((FREE_ARG)(v+nl-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /************************ivector *******************************/
   /*double t34;*/  int *ivector(long nl,long nh)
   int i,j,j1, nc, ii, jj;  {
     int *v;
     for(i=1; i<= nlstate; i++){    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for(j=1; j<i;j++){    if (!v) nrerror("allocation failure in ivector");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return v-nl+NR_END;
         /*s2 += param[i][j][nc]*cov[nc];*/  }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /******************free ivector **************************/
       }  void free_ivector(int *v, long nl, long nh)
       ps[i][j]=s2;  {
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    free((FREE_ARG)(v+nl-NR_END));
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /************************lvector *******************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  long *lvector(long nl,long nh)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    long *v;
       ps[i][j]=s2;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     }    if (!v) nrerror("allocation failure in ivector");
   }    return v-nl+NR_END;
     /*ps[3][2]=1;*/  }
   
   for(i=1; i<= nlstate; i++){  /******************free lvector **************************/
      s1=0;  void free_lvector(long *v, long nl, long nh)
     for(j=1; j<i; j++)  {
       s1+=exp(ps[i][j]);    free((FREE_ARG)(v+nl-NR_END));
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /******************* imatrix *******************************/
     for(j=1; j<i; j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(j=i+1; j<=nlstate+ndeath; j++)  { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    int **m; 
   } /* end i */    
     /* allocate pointers to rows */ 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!m) nrerror("allocation failure 1 in matrix()"); 
       ps[ii][jj]=0;    m += NR_END; 
       ps[ii][ii]=1;    m -= nrl; 
     }    
   }    
     /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     for(jj=1; jj<= nlstate+ndeath; jj++){    m[nrl] += NR_END; 
      printf("%lf ",ps[ii][jj]);    m[nrl] -= ncl; 
    }    
     printf("\n ");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
     printf("\n ");printf("%lf ",cov[2]);*/    /* return pointer to array of pointers to rows */ 
 /*    return m; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  } 
   goto end;*/  
     return ps;  /****************** free_imatrix *************************/
 }  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /**************** Product of 2 matrices ******************/        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    free((FREE_ARG) (m+nrl-NR_END)); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  } 
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /******************* matrix *******************************/
      a pointer to pointers identical to out */  double **matrix(long nrl, long nrh, long ncl, long nch)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for(k=ncolol; k<=ncoloh; k++)    double **m;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   return out;    m += NR_END;
 }    m -= nrl;
   
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /************* Higher Matrix Product ***************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    m[nrl] -= ncl;
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      duration (i.e. until    return m;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step     */
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
      */  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i, j, d, h, k;    free((FREE_ARG)(m+nrl-NR_END));
   double **out, cov[NCOVMAX];  }
   double **newm;  
   /******************* ma3x *******************************/
   /* Hstepm could be zero and should return the unit matrix */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for (i=1;i<=nlstate+ndeath;i++)  {
     for (j=1;j<=nlstate+ndeath;j++){    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    double ***m;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!m) nrerror("allocation failure 1 in matrix()");
   for(h=1; h <=nhstepm; h++){    m += NR_END;
     for(d=1; d <=hstepm; d++){    m -= nrl;
       newm=savm;  
       /* Covariates have to be included here again */    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       cov[1]=1.;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    m[nrl] += NR_END;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl] -= ncl;
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     m[nrl][ncl] += NR_END;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    m[nrl][ncl] -= nll;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    for (j=ncl+1; j<=nch; j++) 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      m[nrl][j]=m[nrl][j-1]+nlay;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    
       savm=oldm;    for (i=nrl+1; i<=nrh; i++) {
       oldm=newm;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     for(i=1; i<=nlstate+ndeath; i++)        m[i][j]=m[i][j-1]+nlay;
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];    return m; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
          */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       }    */
   } /* end h */  }
   return po;  
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /*************** log-likelihood *************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double func( double *x)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /*************** function subdirf ***********/
   double sw; /* Sum of weights */  char *subdirf(char fileres[])
   double lli; /* Individual log likelihood */  {
   long ipmx;    /* Caution optionfilefiname is hidden */
   /*extern weight */    strcpy(tmpout,optionfilefiname);
   /* We are differentiating ll according to initial status */    strcat(tmpout,"/"); /* Add to the right */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    strcat(tmpout,fileres);
   /*for(i=1;i<imx;i++)    return tmpout;
     printf(" %d\n",s[4][i]);  }
   */  
   cov[1]=1.;  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   for(k=1; k<=nlstate; k++) ll[k]=0.;  {
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* Caution optionfilefiname is hidden */
     for(mi=1; mi<= wav[i]-1; mi++){    strcpy(tmpout,optionfilefiname);
       for (ii=1;ii<=nlstate+ndeath;ii++)    strcat(tmpout,"/");
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    strcat(tmpout,preop);
       for(d=0; d<dh[mi][i]; d++){    strcat(tmpout,fileres);
         newm=savm;    return tmpout;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** function subdirf3 ***********/
         }  char *subdirf3(char fileres[], char *preop, char *preop2)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* Caution optionfilefiname is hidden */
         savm=oldm;    strcpy(tmpout,optionfilefiname);
         oldm=newm;    strcat(tmpout,"/");
            strcat(tmpout,preop);
            strcat(tmpout,preop2);
       } /* end mult */    strcat(tmpout,fileres);
          return tmpout;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /***************** f1dim *************************/
       sw += weight[i];  extern int ncom; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  extern double *pcom,*xicom;
     } /* end of wave */  extern double (*nrfunc)(double []); 
   } /* end of individual */   
   double f1dim(double x) 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  { 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int j; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double f;
   return -l;    double *xt; 
 }   
     xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /*********** Maximum Likelihood Estimation ***************/    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    return f; 
 {  } 
   int i,j, iter;  
   double **xi,*delti;  /*****************brent *************************/
   double fret;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   xi=matrix(1,npar,1,npar);  { 
   for (i=1;i<=npar;i++)    int iter; 
     for (j=1;j<=npar;j++)    double a,b,d,etemp;
       xi[i][j]=(i==j ? 1.0 : 0.0);    double fu,fv,fw,fx;
   printf("Powell\n");    double ftemp;
   powell(p,xi,npar,ftol,&iter,&fret,func);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));   
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
 }    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
 /**** Computes Hessian and covariance matrix ***/    for (iter=1;iter<=ITMAX;iter++) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      xm=0.5*(a+b); 
 {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double  **a,**y,*x,pd;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   double **hess;      printf(".");fflush(stdout);
   int i, j,jk;      fprintf(ficlog,".");fflush(ficlog);
   int *indx;  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double hessii(double p[], double delta, int theta, double delti[]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double hessij(double p[], double delti[], int i, int j);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   void lubksb(double **a, int npar, int *indx, double b[]) ;  #endif
   void ludcmp(double **a, int npar, int *indx, double *d) ;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
   hess=matrix(1,npar,1,npar);        return fx; 
       } 
   printf("\nCalculation of the hessian matrix. Wait...\n");      ftemp=fu;
   for (i=1;i<=npar;i++){      if (fabs(e) > tol1) { 
     printf("%d",i);fflush(stdout);        r=(x-w)*(fx-fv); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        q=(x-v)*(fx-fw); 
     /*printf(" %f ",p[i]);*/        p=(x-v)*q-(x-w)*r; 
     /*printf(" %lf ",hess[i][i]);*/        q=2.0*(q-r); 
   }        if (q > 0.0) p = -p; 
          q=fabs(q); 
   for (i=1;i<=npar;i++) {        etemp=e; 
     for (j=1;j<=npar;j++)  {        e=d; 
       if (j>i) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         printf(".%d%d",i,j);fflush(stdout);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
         hess[i][j]=hessij(p,delti,i,j);        else { 
         hess[j][i]=hess[i][j];              d=p/q; 
         /*printf(" %lf ",hess[i][j]);*/          u=x+d; 
       }          if (u-a < tol2 || b-u < tol2) 
     }            d=SIGN(tol1,xm-x); 
   }        } 
   printf("\n");      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      } 
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   a=matrix(1,npar,1,npar);      fu=(*f)(u); 
   y=matrix(1,npar,1,npar);      if (fu <= fx) { 
   x=vector(1,npar);        if (u >= x) a=x; else b=x; 
   indx=ivector(1,npar);        SHFT(v,w,x,u) 
   for (i=1;i<=npar;i++)          SHFT(fv,fw,fx,fu) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          } else { 
   ludcmp(a,npar,indx,&pd);            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
   for (j=1;j<=npar;j++) {              v=w; 
     for (i=1;i<=npar;i++) x[i]=0;              w=u; 
     x[j]=1;              fv=fw; 
     lubksb(a,npar,indx,x);              fw=fu; 
     for (i=1;i<=npar;i++){            } else if (fu <= fv || v == x || v == w) { 
       matcov[i][j]=x[i];              v=u; 
     }              fv=fu; 
   }            } 
           } 
   printf("\n#Hessian matrix#\n");    } 
   for (i=1;i<=npar;i++) {    nrerror("Too many iterations in brent"); 
     for (j=1;j<=npar;j++) {    *xmin=x; 
       printf("%.3e ",hess[i][j]);    return fx; 
     }  } 
     printf("\n");  
   }  /****************** mnbrak ***********************/
   
   /* Recompute Inverse */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (i=1;i<=npar;i++)              double (*func)(double)) 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  { 
   ludcmp(a,npar,indx,&pd);    double ulim,u,r,q, dum;
     double fu; 
   /*  printf("\n#Hessian matrix recomputed#\n");   
     *fa=(*func)(*ax); 
   for (j=1;j<=npar;j++) {    *fb=(*func)(*bx); 
     for (i=1;i<=npar;i++) x[i]=0;    if (*fb > *fa) { 
     x[j]=1;      SHFT(dum,*ax,*bx,dum) 
     lubksb(a,npar,indx,x);        SHFT(dum,*fb,*fa,dum) 
     for (i=1;i<=npar;i++){        } 
       y[i][j]=x[i];    *cx=(*bx)+GOLD*(*bx-*ax); 
       printf("%.3e ",y[i][j]);    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
     printf("\n");      r=(*bx-*ax)*(*fb-*fc); 
   }      q=(*bx-*cx)*(*fb-*fa); 
   */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   free_matrix(a,1,npar,1,npar);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   free_matrix(y,1,npar,1,npar);      if ((*bx-u)*(u-*cx) > 0.0) { 
   free_vector(x,1,npar);        fu=(*func)(u); 
   free_ivector(indx,1,npar);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   free_matrix(hess,1,npar,1,npar);        fu=(*func)(u); 
         if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 /*************** hessian matrix ****************/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 double hessii( double x[], double delta, int theta, double delti[])        u=ulim; 
 {        fu=(*func)(u); 
   int i;      } else { 
   int l=1, lmax=20;        u=(*cx)+GOLD*(*cx-*bx); 
   double k1,k2;        fu=(*func)(u); 
   double p2[NPARMAX+1];      } 
   double res;      SHFT(*ax,*bx,*cx,u) 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        SHFT(*fa,*fb,*fc,fu) 
   double fx;        } 
   int k=0,kmax=10;  } 
   double l1;  
   /*************** linmin ************************/
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  int ncom; 
   for(l=0 ; l <=lmax; l++){  double *pcom,*xicom;
     l1=pow(10,l);  double (*nrfunc)(double []); 
     delts=delt;   
     for(k=1 ; k <kmax; k=k+1){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       delt = delta*(l1*k);  { 
       p2[theta]=x[theta] +delt;    double brent(double ax, double bx, double cx, 
       k1=func(p2)-fx;                 double (*f)(double), double tol, double *xmin); 
       p2[theta]=x[theta]-delt;    double f1dim(double x); 
       k2=func(p2)-fx;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       /*res= (k1-2.0*fx+k2)/delt/delt; */                double *fc, double (*func)(double)); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    int j; 
          double xx,xmin,bx,ax; 
 #ifdef DEBUG    double fx,fb,fa;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);   
 #endif    ncom=n; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    pcom=vector(1,n); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    xicom=vector(1,n); 
         k=kmax;    nrfunc=func; 
       }    for (j=1;j<=n;j++) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      pcom[j]=p[j]; 
         k=kmax; l=lmax*10.;      xicom[j]=xi[j]; 
       }    } 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    ax=0.0; 
         delts=delt;    xx=1.0; 
       }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     }    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
   delti[theta]=delts;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   return res;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
 }    for (j=1;j<=n;j++) { 
       xi[j] *= xmin; 
 double hessij( double x[], double delti[], int thetai,int thetaj)      p[j] += xi[j]; 
 {    } 
   int i;    free_vector(xicom,1,n); 
   int l=1, l1, lmax=20;    free_vector(pcom,1,n); 
   double k1,k2,k3,k4,res,fx;  } 
   double p2[NPARMAX+1];  
   int k;  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   fx=func(x);    long sec_left, days, hours, minutes;
   for (k=1; k<=2; k++) {    days = (time_sec) / (60*60*24);
     for (i=1;i<=npar;i++) p2[i]=x[i];    sec_left = (time_sec) % (60*60*24);
     p2[thetai]=x[thetai]+delti[thetai]/k;    hours = (sec_left) / (60*60) ;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    sec_left = (sec_left) %(60*60);
     k1=func(p2)-fx;    minutes = (sec_left) /60;
      sec_left = (sec_left) % (60);
     p2[thetai]=x[thetai]+delti[thetai]/k;    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return ascdiff;
     k2=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** powell ************************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     k3=func(p2)-fx;              double (*func)(double [])) 
    { 
     p2[thetai]=x[thetai]-delti[thetai]/k;    void linmin(double p[], double xi[], int n, double *fret, 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                double (*func)(double [])); 
     k4=func(p2)-fx;    int i,ibig,j; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    double del,t,*pt,*ptt,*xit;
 #ifdef DEBUG    double fp,fptt;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double *xits;
 #endif    int niterf, itmp;
   }  
   return res;    pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
 /************** Inverse of matrix **************/    xits=vector(1,n); 
 void ludcmp(double **a, int n, int *indx, double *d)    *fret=(*func)(p); 
 {    for (j=1;j<=n;j++) pt[j]=p[j]; 
   int i,imax,j,k;    for (*iter=1;;++(*iter)) { 
   double big,dum,sum,temp;      fp=(*fret); 
   double *vv;      ibig=0; 
        del=0.0; 
   vv=vector(1,n);      last_time=curr_time;
   *d=1.0;      (void) gettimeofday(&curr_time,&tzp);
   for (i=1;i<=n;i++) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     big=0.0;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     for (j=1;j<=n;j++)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       if ((temp=fabs(a[i][j])) > big) big=temp;     for (i=1;i<=n;i++) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        printf(" %d %.12f",i, p[i]);
     vv[i]=1.0/big;        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {      printf("\n");
       sum=a[i][j];      fprintf(ficlog,"\n");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      fprintf(ficrespow,"\n");fflush(ficrespow);
       a[i][j]=sum;      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
     big=0.0;        strcpy(strcurr,asctime(&tm));
     for (i=j;i<=n;i++) {  /*       asctime_r(&tm,strcurr); */
       sum=a[i][j];        forecast_time=curr_time; 
       for (k=1;k<j;k++)        itmp = strlen(strcurr);
         sum -= a[i][k]*a[k][j];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       a[i][j]=sum;          strcurr[itmp-1]='\0';
       if ( (dum=vv[i]*fabs(sum)) >= big) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         big=dum;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         imax=i;        for(niterf=10;niterf<=30;niterf+=10){
       }          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
     if (j != imax) {  /*      asctime_r(&tmf,strfor); */
       for (k=1;k<=n;k++) {          strcpy(strfor,asctime(&tmf));
         dum=a[imax][k];          itmp = strlen(strfor);
         a[imax][k]=a[j][k];          if(strfor[itmp-1]=='\n')
         a[j][k]=dum;          strfor[itmp-1]='\0';
       }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       *d = -(*d);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       vv[imax]=vv[j];        }
     }      }
     indx[j]=imax;      for (i=1;i<=n;i++) { 
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     if (j != n) {        fptt=(*fret); 
       dum=1.0/(a[j][j]);  #ifdef DEBUG
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
   free_vector(vv,1,n);  /* Doesn't work */        printf("%d",i);fflush(stdout);
 ;        fprintf(ficlog,"%d",i);fflush(ficlog);
 }        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
 void lubksb(double **a, int n, int *indx, double b[])          del=fabs(fptt-(*fret)); 
 {          ibig=i; 
   int i,ii=0,ip,j;        } 
   double sum;  #ifdef DEBUG
          printf("%d %.12e",i,(*fret));
   for (i=1;i<=n;i++) {        fprintf(ficlog,"%d %.12e",i,(*fret));
     ip=indx[i];        for (j=1;j<=n;j++) {
     sum=b[ip];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     b[ip]=b[i];          printf(" x(%d)=%.12e",j,xit[j]);
     if (ii)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        }
     else if (sum) ii=i;        for(j=1;j<=n;j++) {
     b[i]=sum;          printf(" p=%.12e",p[j]);
   }          fprintf(ficlog," p=%.12e",p[j]);
   for (i=n;i>=1;i--) {        }
     sum=b[i];        printf("\n");
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"\n");
     b[i]=sum/a[i][i];  #endif
   }      } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 /************ Frequencies ********************/        int k[2],l;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        k[0]=1;
 {  /* Some frequencies */        k[1]=-1;
          printf("Max: %.12e",(*func)(p));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fprintf(ficlog,"Max: %.12e",(*func)(p));
   double ***freq; /* Frequencies */        for (j=1;j<=n;j++) {
   double *pp;          printf(" %.12e",p[j]);
   double pos, k2, dateintsum=0,k2cpt=0;          fprintf(ficlog," %.12e",p[j]);
   FILE *ficresp;        }
   char fileresp[FILENAMELENGTH];        printf("\n");
          fprintf(ficlog,"\n");
   pp=vector(1,nlstate);        for(l=0;l<=1;l++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (j=1;j<=n;j++) {
   strcpy(fileresp,"p");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   strcat(fileresp,fileres);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          }
     exit(0);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        }
   j1=0;  #endif
    
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        free_vector(xit,1,n); 
          free_vector(xits,1,n); 
   for(k1=1; k1<=j;k1++){        free_vector(ptt,1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){        free_vector(pt,1,n); 
       j1++;        return; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      } 
         scanf("%d", i);*/      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (i=-1; i<=nlstate+ndeath; i++)        for (j=1;j<=n;j++) { 
         for (jk=-1; jk<=nlstate+ndeath; jk++)          ptt[j]=2.0*p[j]-pt[j]; 
           for(m=agemin; m <= agemax+3; m++)        xit[j]=p[j]-pt[j]; 
             freq[i][jk][m]=0;        pt[j]=p[j]; 
            } 
       dateintsum=0;      fptt=(*func)(ptt); 
       k2cpt=0;      if (fptt < fp) { 
       for (i=1; i<=imx; i++) {        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         bool=1;        if (t < 0.0) { 
         if  (cptcovn>0) {          linmin(p,xit,n,fret,func); 
           for (z1=1; z1<=cptcoveff; z1++)          for (j=1;j<=n;j++) { 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            xi[j][ibig]=xi[j][n]; 
               bool=0;            xi[j][n]=xit[j]; 
         }          }
         if (bool==1) {  #ifdef DEBUG
           for(m=firstpass; m<=lastpass; m++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(j=1;j<=n;j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;            printf(" %.12e",xit[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            fprintf(ficlog," %.12e",xit[j]);
               if (m<lastpass) {          }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          printf("\n");
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          fprintf(ficlog,"\n");
               }  #endif
                      }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } 
                 dateintsum=dateintsum+k2;    } 
                 k2cpt++;  } 
               }  
             }  /**** Prevalence limit (stable or period prevalence)  ****************/
           }  
         }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       }  {
            /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);       matrix by transitions matrix until convergence is reached */
   
       if  (cptcovn>0) {    int i, ii,j,k;
         fprintf(ficresp, "\n#********** Variable ");    double min, max, maxmin, maxmax,sumnew=0.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double **matprod2();
         fprintf(ficresp, "**********\n#");    double **out, cov[NCOVMAX+1], **pmij();
       }    double **newm;
       for(i=1; i<=nlstate;i++)    double agefin, delaymax=50 ; /* Max number of years to converge */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i==(int)agemax+3)      }
           printf("Total");  
         else     cov[1]=1.;
           printf("Age %d", i);   
         for(jk=1; jk <=nlstate ; jk++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
             pp[jk] += freq[jk][m][i];      newm=savm;
         }      /* Covariates have to be included here again */
         for(jk=1; jk <=nlstate ; jk++){      cov[2]=agefin;
           for(m=-1, pos=0; m <=0 ; m++)      
             pos += freq[jk][m][i];      for (k=1; k<=cptcovn;k++) {
           if(pp[jk]>=1.e-10)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           else      }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }      for (k=1; k<=cptcovprod;k++)
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         for(jk=1; jk <=nlstate ; jk++){      
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
             pp[jk] += freq[jk][m][i];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         for(jk=1,pos=0; jk <=nlstate ; jk++)      
           pos += pp[jk];      savm=oldm;
         for(jk=1; jk <=nlstate ; jk++){      oldm=newm;
           if(pos>=1.e-5)      maxmax=0.;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for(j=1;j<=nlstate;j++){
           else        min=1.;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        max=0.;
           if( i <= (int) agemax){        for(i=1; i<=nlstate; i++) {
             if(pos>=1.e-5){          sumnew=0;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
               probs[i][jk][j1]= pp[jk]/pos;          prlim[i][j]= newm[i][j]/(1-sumnew);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          max=FMAX(max,prlim[i][j]);
             }          min=FMIN(min,prlim[i][j]);
             else        }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        maxmin=max-min;
           }        maxmax=FMAX(maxmax,maxmin);
         }      }
              if(maxmax < ftolpl){
         for(jk=-1; jk <=nlstate+ndeath; jk++)        return prlim;
           for(m=-1; m <=nlstate+ndeath; m++)      }
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    }
         if(i <= (int) agemax)  }
           fprintf(ficresp,"\n");  
         printf("\n");  /*************** transition probabilities ***************/ 
       }  
     }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   }  {
   dateintmean=dateintsum/k2cpt;    /* According to parameters values stored in x and the covariate's values stored in cov,
         computes the probability to be observed in state j being in state i by appying the
   fclose(ficresp);       model to the ncovmodel covariates (including constant and age).
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   free_vector(pp,1,nlstate);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         ncth covariate in the global vector x is given by the formula:
   /* End of Freq */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 /************ Prevalence ********************/       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)       Outputs ps[i][j] the probability to be observed in j being in j according to
 {  /* Some frequencies */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    double s1, lnpijopii;
   double ***freq; /* Frequencies */    /*double t34;*/
   double *pp;    int i,j,j1, nc, ii, jj;
   double pos, k2;  
       for(i=1; i<= nlstate; i++){
   pp=vector(1,nlstate);        for(j=1; j<i;j++){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
              /*lnpijopii += param[i][j][nc]*cov[nc];*/
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   j1=0;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
            }
   j=cptcoveff;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
          }
  for(k1=1; k1<=j;k1++){        for(j=i+1; j<=nlstate+ndeath;j++){
     for(i1=1; i1<=ncodemax[k1];i1++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       j1++;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
              lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       for (i=-1; i<=nlstate+ndeath; i++)    /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         for (jk=-1; jk<=nlstate+ndeath; jk++)            }
           for(m=agemin; m <= agemax+3; m++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             freq[i][jk][m]=0;        }
            }
       for (i=1; i<=imx; i++) {      
         bool=1;      for(i=1; i<= nlstate; i++){
         if  (cptcovn>0) {        s1=0;
           for (z1=1; z1<=cptcoveff; z1++)        for(j=1; j<i; j++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
               bool=0;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }        }
         if (bool==1) {        for(j=i+1; j<=nlstate+ndeath; j++){
           for(m=firstpass; m<=lastpass; m++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             k2=anint[m][i]+(mint[m][i]/12.);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        ps[i][i]=1./(s1+1.);
               if (m<lastpass)        /* Computing other pijs */
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(j=1; j<i; j++)
               else          ps[i][j]= exp(ps[i][j])*ps[i][i];
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(j=i+1; j<=nlstate+ndeath; j++)
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
             }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
           }      } /* end i */
         }      
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(jj=1; jj<= nlstate+ndeath; jj++){
           for(jk=1; jk <=nlstate ; jk++){          ps[ii][jj]=0;
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[ii][ii]=1;
               pp[jk] += freq[jk][m][i];        }
           }      }
           for(jk=1; jk <=nlstate ; jk++){      
             for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
          /*         printf("ddd %lf ",ps[ii][jj]); */
          for(jk=1; jk <=nlstate ; jk++){  /*       } */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*       printf("\n "); */
              pp[jk] += freq[jk][m][i];  /*        } */
          }  /*        printf("\n ");printf("%lf ",cov[2]); */
                   /*
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
          for(jk=1; jk <=nlstate ; jk++){                return ps;
            if( i <= (int) agemax){  }
              if(pos>=1.e-5){  
                probs[i][jk][j1]= pp[jk]/pos;  /**************** Product of 2 matrices ******************/
              }  
            }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          }  {
              /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     }    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
      long i, j, k;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for(i=nrl; i<= nrh; i++)
   free_vector(pp,1,nlstate);      for(k=ncolol; k<=ncoloh; k++)
          for(j=ncl,out[i][k]=0.; j<=nch; j++)
 }  /* End of Freq */          out[i][k] +=in[i][j]*b[j][k];
   
 /************* Waves Concatenation ***************/    return out;
   }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /************* Higher Matrix Product ***************/
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  {
      and mw[mi+1][i]. dh depends on stepm.    /* Computes the transition matrix starting at age 'age' over 
      */       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int i, mi, m;       nhstepm*hstepm matrices. 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      double sum=0., jmean=0.;*/       (typically every 2 years instead of every month which is too big 
        for the memory).
   int j, k=0,jk, ju, jl;       Model is determined by parameters x and covariates have to be 
   double sum=0.;       included manually here. 
   jmin=1e+5;  
   jmax=-1;       */
   jmean=0.;  
   for(i=1; i<=imx; i++){    int i, j, d, h, k;
     mi=0;    double **out, cov[NCOVMAX+1];
     m=firstpass;    double **newm;
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)    /* Hstepm could be zero and should return the unit matrix */
         mw[++mi][i]=m;    for (i=1;i<=nlstate+ndeath;i++)
       if(m >=lastpass)      for (j=1;j<=nlstate+ndeath;j++){
         break;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else        po[i][j][0]=(i==j ? 1.0 : 0.0);
         m++;      }
     }/* end while */    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     if (s[m][i] > nlstate){    for(h=1; h <=nhstepm; h++){
       mi++;     /* Death is another wave */      for(d=1; d <=hstepm; d++){
       /* if(mi==0)  never been interviewed correctly before death */        newm=savm;
          /* Only death is a correct wave */        /* Covariates have to be included here again */
       mw[mi][i]=m;        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) 
     wav[i]=mi;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if(mi==0)        for (k=1; k<=cptcovage;k++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         dh[mi][i]=1;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       else{        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if (s[mw[mi+1][i]][i] > nlstate) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           if (agedc[i] < 2*AGESUP) {        savm=oldm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        oldm=newm;
           if(j==0) j=1;  /* Survives at least one month after exam */      }
           k=k+1;      for(i=1; i<=nlstate+ndeath; i++)
           if (j >= jmax) jmax=j;        for(j=1;j<=nlstate+ndeath;j++) {
           if (j <= jmin) jmin=j;          po[i][j][h]=newm[i][j];
           sum=sum+j;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        }
           }      /*printf("h=%d ",h);*/
         }    } /* end h */
         else{  /*     printf("\n H=%d \n",h); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    return po;
           k=k+1;  }
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  /*************** log-likelihood *************/
           sum=sum+j;  double func( double *x)
         }  {
         jk= j/stepm;    int i, ii, j, k, mi, d, kk;
         jl= j -jk*stepm;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         ju= j -(jk+1)*stepm;    double **out;
         if(jl <= -ju)    double sw; /* Sum of weights */
           dh[mi][i]=jk;    double lli; /* Individual log likelihood */
         else    int s1, s2;
           dh[mi][i]=jk+1;    double bbh, survp;
         if(dh[mi][i]==0)    long ipmx;
           dh[mi][i]=1; /* At least one step */    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   jmean=sum/k;      printf(" %d\n",s[4][i]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    */
  }    cov[1]=1.;
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   int Ndum[20],ij=1, k, j, i;    if(mle==1){
   int cptcode=0;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   cptcoveff=0;        /* Computes the values of the ncovmodel covariates of the model
             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   for (k=0; k<19; k++) Ndum[k]=0;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   for (k=1; k<=7; k++) ncodemax[k]=0;           to be observed in j being in i according to the model.
          */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=imx; i++) {        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       ij=(int)(covar[Tvar[j]][i]);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       Ndum[ij]++;           has been calculated etc */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        for(mi=1; mi<= wav[i]-1; mi++){
       if (ij > cptcode) cptcode=ij;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=0; i<=cptcode; i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(Ndum[i]!=0) ncodemax[j]++;            }
     }          for(d=0; d<dh[mi][i]; d++){
     ij=1;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for (i=1; i<=ncodemax[j]; i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       for (k=0; k<=19; k++) {            }
         if (Ndum[k] != 0) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           nbcode[Tvar[j]][ij]=k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                      savm=oldm;
           ij++;            oldm=newm;
         }          } /* end mult */
         if (ij > ncodemax[j]) break;        
       }            /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     }          /* But now since version 0.9 we anticipate for bias at large stepm.
   }             * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
  for (k=0; k<19; k++) Ndum[k]=0;           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
  for (i=1; i<=ncovmodel-2; i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       ij=Tvar[i];           * probability in order to take into account the bias as a fraction of the way
       Ndum[ij]++;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
  ij=1;           * For stepm > 1 the results are less biased than in previous versions. 
  for (i=1; i<=10; i++) {           */
    if((Ndum[i]!=0) && (i<=ncovcol)){          s1=s[mw[mi][i]][i];
      Tvaraff[ij]=i;          s2=s[mw[mi+1][i]][i];
      ij++;          bbh=(double)bh[mi][i]/(double)stepm; 
    }          /* bias bh is positive if real duration
  }           * is higher than the multiple of stepm and negative otherwise.
             */
     cptcoveff=ij-1;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 }          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
 /*********** Health Expectancies ****************/               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
 {               In version up to 0.92 likelihood was computed
   /* Health expectancies */          as if date of death was unknown. Death was treated as any other
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          health state: the date of the interview describes the actual state
   double age, agelim, hf;          and not the date of a change in health state. The former idea was
   double ***p3mat,***varhe;          to consider that at each interview the state was recorded
   double **dnewm,**doldm;          (healthy, disable or death) and IMaCh was corrected; but when we
   double *xp;          introduced the exact date of death then we should have modified
   double **gp, **gm;          the contribution of an exact death to the likelihood. This new
   double ***gradg, ***trgradg;          contribution is smaller and very dependent of the step unit
   int theta;          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          interview up to one month before death multiplied by the
   xp=vector(1,npar);          probability to die within a month. Thanks to Chris
   dnewm=matrix(1,nlstate*2,1,npar);          Jackson for correcting this bug.  Former versions increased
   doldm=matrix(1,nlstate*2,1,nlstate*2);          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   fprintf(ficreseij,"# Health expectancies\n");          lower mortality.
   fprintf(ficreseij,"# Age");            */
   for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
   if(estepm < stepm){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     printf ("Problem %d lower than %d\n",estepm, stepm);            /*survp += out[s1][j]; */
   }            lli= log(survp);
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          
    * This is mainly to measure the difference between two models: for example          else if  (s2==-4) { 
    * if stepm=24 months pijx are given only every 2 years and by summing them            for (j=3,survp=0. ; j<=nlstate; j++)  
    * we are calculating an estimate of the Life Expectancy assuming a linear              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    * progression inbetween and thus overestimating or underestimating according            lli= log(survp); 
    * to the curvature of the survival function. If, for the same date, we          } 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear          else if  (s2==-5) { 
    * hypothesis. A more precise result, taking into account a more precise            for (j=1,survp=0. ; j<=2; j++)  
    * curvature will be obtained if estepm is as small as stepm. */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   /* For example we decided to compute the life expectancy with the smallest unit */          } 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          
      nhstepm is the number of hstepm from age to agelim          else{
      nstepm is the number of stepm from age to agelin.            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      Look at hpijx to understand the reason of that which relies in memory size            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      and note for a fixed period like estepm months */          } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
      survival function given by stepm (the optimization length). Unfortunately it          /*if(lli ==000.0)*/
      means that if the survival funtion is printed only each two years of age and if          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          ipmx +=1;
      results. So we changed our mind and took the option of the best precision.          sw += weight[i];
   */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } /* end of wave */
       } /* end of individual */
   agelim=AGESUP;    }  else if(mle==2){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* nhstepm age range expressed in number of stepm */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        for(mi=1; mi<= wav[i]-1; mi++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          for (ii=1;ii<=nlstate+ndeath;ii++)
     /* if (stepm >= YEARM) hstepm=1;*/            for (j=1;j<=nlstate+ndeath;j++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            }
     gp=matrix(0,nhstepm,1,nlstate*2);          for(d=0; d<=dh[mi][i]; d++){
     gm=matrix(0,nhstepm,1,nlstate*2);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            for (kk=1; kk<=cptcovage;kk++) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);              }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            savm=oldm;
             oldm=newm;
     /* Computing Variances of health expectancies */          } /* end mult */
         
      for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ipmx +=1;
            sw += weight[i];
       cptj=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){        } /* end of wave */
         for(i=1; i<=nlstate; i++){      } /* end of individual */
           cptj=cptj+1;    }  else if(mle==3){  /* exponential inter-extrapolation */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++)            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(d=0; d<dh[mi][i]; d++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       cptj=0;            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<= nlstate; j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=1;i<=nlstate;i++){            }
           cptj=cptj+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
       }        
                s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<= nlstate*2; j++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm-1; h++){          ipmx +=1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
      }      } /* end of individual */
        }else if (mle==4){  /* ml=4 no inter-extrapolation */
 /* End theta */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
      for(h=0; h<=nhstepm-1; h++)            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate*2;j++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(theta=1; theta <=npar; theta++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         trgradg[h][j][theta]=gradg[h][theta][j];            }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
      for(i=1;i<=nlstate*2;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1;j<=nlstate*2;j++)            for (kk=1; kk<=cptcovage;kk++) {
         varhe[i][j][(int)age] =0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(h=0;h<=nhstepm-1;h++){          
       for(k=0;k<=nhstepm-1;k++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);            savm=oldm;
         for(i=1;i<=nlstate*2;i++)            oldm=newm;
           for(j=1;j<=nlstate*2;j++)          } /* end mult */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        
       }          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
                  lli=log(out[s1][s2] - savm[s1][s2]);
     /* Computing expectancies */          }else{
     for(i=1; i<=nlstate;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          ipmx +=1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
         }      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     fprintf(ficreseij,"%3.0f",age );      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     cptj=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         cptj++;            for (j=1;j<=nlstate+ndeath;j++){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"\n");            }
              for(d=0; d<dh[mi][i]; d++){
     free_matrix(gm,0,nhstepm,1,nlstate*2);            newm=savm;
     free_matrix(gp,0,nhstepm,1,nlstate*2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }          
   free_vector(xp,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(dnewm,1,nlstate*2,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            savm=oldm;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            oldm=newm;
 }          } /* end mult */
         
 /************ Variance ******************/          s1=s[mw[mi][i]][i];
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          s2=s[mw[mi+1][i]][i];
 {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* Variance of health expectancies */          ipmx +=1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          sw += weight[i];
   double **newm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **dnewm,**doldm;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int i, j, nhstepm, hstepm, h, nstepm ;        } /* end of wave */
   int k, cptcode;      } /* end of individual */
   double *xp;    } /* End of if */
   double **gp, **gm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   double ***gradg, ***trgradg;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double ***p3mat;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double age,agelim, hf;    return -l;
   int theta;  }
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");  /*************** log-likelihood *************/
   fprintf(ficresvij,"# Age");  double funcone( double *x)
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int i, ii, j, k, mi, d, kk;
   fprintf(ficresvij,"\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
   xp=vector(1,npar);    double lli; /* Individual log likelihood */
   dnewm=matrix(1,nlstate,1,npar);    double llt;
   doldm=matrix(1,nlstate,1,nlstate);    int s1, s2;
      double bbh, survp;
   if(estepm < stepm){    /*extern weight */
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   else  hstepm=estepm;      /*for(i=1;i<imx;i++) 
   /* For example we decided to compute the life expectancy with the smallest unit */      printf(" %d\n",s[4][i]);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    */
      nhstepm is the number of hstepm from age to agelim    cov[1]=1.;
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size    for(k=1; k<=nlstate; k++) ll[k]=0.;
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      survival function given by stepm (the optimization length). Unfortunately it      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      means that if the survival funtion is printed only each two years of age and if      for(mi=1; mi<= wav[i]-1; mi++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        for (ii=1;ii<=nlstate+ndeath;ii++)
      results. So we changed our mind and took the option of the best precision.          for (j=1;j<=nlstate+ndeath;j++){
   */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   agelim = AGESUP;          }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(d=0; d<dh[mi][i]; d++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          newm=savm;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (kk=1; kk<=cptcovage;kk++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     gp=matrix(0,nhstepm,1,nlstate);          }
     gm=matrix(0,nhstepm,1,nlstate);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(theta=1; theta <=npar; theta++){          savm=oldm;
       for(i=1; i<=npar; i++){ /* Computes gradient */          oldm=newm;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* end mult */
       }        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          s1=s[mw[mi][i]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
       if (popbased==1) {        /* bias is positive if real duration
         for(i=1; i<=nlstate;i++)         * is higher than the multiple of stepm and negative otherwise.
           prlim[i][i]=probs[(int)age][i][ij];         */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
       for(j=1; j<= nlstate; j++){        } else if  (s2==-2) {
         for(h=0; h<=nhstepm; h++){          for (j=1,survp=0. ; j<=nlstate; j++) 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          lli= log(survp);
         }        }else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
            } else if(mle==2){
       for(i=1; i<=npar; i++) /* Computes gradient */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        } else if(mle==3){  /* exponential inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
            lli=log(out[s1][s2]); /* Original formula */
       if (popbased==1) {        } else{  /* mle=0 back to 1 */
         for(i=1; i<=nlstate;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           prlim[i][i]=probs[(int)age][i][ij];          /*lli=log(out[s1][s2]); */ /* Original formula */
       }        } /* End of if */
         ipmx +=1;
       for(j=1; j<= nlstate; j++){        sw += weight[i];
         for(h=0; h<=nhstepm; h++){        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        if(globpr){
         }          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       }   %11.6f %11.6f %11.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(j=1; j<= nlstate; j++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         for(h=0; h<=nhstepm; h++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            llt +=ll[k]*gipmx/gsw;
         }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     } /* End theta */          }
           fprintf(ficresilk," %10.6f\n", -llt);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        }
       } /* end of wave */
     for(h=0; h<=nhstepm; h++)    } /* end of individual */
       for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(theta=1; theta <=npar; theta++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           trgradg[h][j][theta]=gradg[h][theta][j];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      gipmx=ipmx;
     for(i=1;i<=nlstate;i++)      gsw=sw;
       for(j=1;j<=nlstate;j++)    }
         vareij[i][j][(int)age] =0.;    return -l;
   }
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  /*************** function likelione ***********/
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    /* This routine should help understanding what is done with 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       the selection of individuals/waves and
       }       to check the exact contribution to the likelihood.
     }       Plotting could be done.
      */
     fprintf(ficresvij,"%.0f ",age );    int k;
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    if(*globpri !=0){ /* Just counts and sums, no printings */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
     fprintf(ficresvij,"\n");      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     free_matrix(gp,0,nhstepm,1,nlstate);        printf("Problem with resultfile: %s\n", fileresilk);
     free_matrix(gm,0,nhstepm,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   } /* End age */      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   free_vector(xp,1,npar);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   free_matrix(doldm,1,nlstate,1,npar);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
   
 }    *fretone=(*funcone)(p);
     if(*globpri !=0){
 /************ Variance of prevlim ******************/      fclose(ficresilk);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
 {      fflush(fichtm); 
   /* Variance of prevalence limit */    } 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    return;
   double **newm;  }
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  /*********** Maximum Likelihood Estimation ***************/
   double *xp;  
   double *gp, *gm;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double **gradg, **trgradg;  {
   double age,agelim;    int i,j, iter;
   int theta;    double **xi;
        double fret;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    double fretone; /* Only one call to likelihood */
   fprintf(ficresvpl,"# Age");    /*  char filerespow[FILENAMELENGTH];*/
   for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    for (i=1;i<=npar;i++)
   fprintf(ficresvpl,"\n");      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
   xp=vector(1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   dnewm=matrix(1,nlstate,1,npar);    strcpy(filerespow,"pow"); 
   doldm=matrix(1,nlstate,1,nlstate);    strcat(filerespow,fileres);
      if((ficrespow=fopen(filerespow,"w"))==NULL) {
   hstepm=1*YEARM; /* Every year of age */      printf("Problem with resultfile: %s\n", filerespow);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   agelim = AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (i=1;i<=nlstate;i++)
     if (stepm >= YEARM) hstepm=1;      for(j=1;j<=nlstate+ndeath;j++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficrespow,"\n");
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
     for(theta=1; theta <=npar; theta++){    free_matrix(xi,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    fclose(ficrespow);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /**** Computes Hessian and covariance matrix ***/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    double  **a,**y,*x,pd;
         gm[i] = prlim[i][i];    double **hess;
     int i, j,jk;
       for(i=1;i<=nlstate;i++)    int *indx;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     trgradg =matrix(1,nlstate,1,npar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     for(j=1; j<=nlstate;j++)    double gompertz(double p[]);
       for(theta=1; theta <=npar; theta++)    hess=matrix(1,npar,1,npar);
         trgradg[j][theta]=gradg[theta][j];  
     printf("\nCalculation of the hessian matrix. Wait...\n");
     for(i=1;i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       varpl[i][(int)age] =0.;    for (i=1;i<=npar;i++){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      printf("%d",i);fflush(stdout);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i=1;i<=nlstate;i++)     
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
     fprintf(ficresvpl,"%.0f ",age );      /*  printf(" %f ",p[i]);
     for(i=1; i<=nlstate;i++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    }
     fprintf(ficresvpl,"\n");    
     free_vector(gp,1,nlstate);    for (i=1;i<=npar;i++) {
     free_vector(gm,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_matrix(gradg,1,npar,1,nlstate);        if (j>i) { 
     free_matrix(trgradg,1,nlstate,1,npar);          printf(".%d%d",i,j);fflush(stdout);
   } /* End age */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);          hess[j][i]=hess[i][j];    
   free_matrix(dnewm,1,nlstate,1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
         }
 }      }
     }
 /************ Variance of one-step probabilities  ******************/    printf("\n");
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    fprintf(ficlog,"\n");
 {  
   int i, j, i1, k1, j1, z1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int k=0, cptcode;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   double **dnewm,**doldm;    
   double *xp;    a=matrix(1,npar,1,npar);
   double *gp, *gm;    y=matrix(1,npar,1,npar);
   double **gradg, **trgradg;    x=vector(1,npar);
   double age,agelim, cov[NCOVMAX];    indx=ivector(1,npar);
   int theta;    for (i=1;i<=npar;i++)
   char fileresprob[FILENAMELENGTH];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    for (j=1;j<=npar;j++) {
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      for (i=1;i<=npar;i++) x[i]=0;
     printf("Problem with resultfile: %s\n", fileresprob);      x[j]=1;
   }      lubksb(a,npar,indx,x);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for (i=1;i<=npar;i++){ 
          matcov[i][j]=x[i];
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      }
   fprintf(ficresprob,"# Age");    }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)    printf("\n#Hessian matrix#\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   fprintf(ficresprob,"\n");        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   xp=vector(1,npar);      printf("\n");
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficlog,"\n");
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    }
    
   cov[1]=1;    /* Recompute Inverse */
   j=cptcoveff;    for (i=1;i<=npar;i++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   j1=0;    ludcmp(a,npar,indx,&pd);
   for(k1=1; k1<=1;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    /*  printf("\n#Hessian matrix recomputed#\n");
     j1++;  
     for (j=1;j<=npar;j++) {
     if  (cptcovn>0) {      for (i=1;i<=npar;i++) x[i]=0;
       fprintf(ficresprob, "\n#********** Variable ");      x[j]=1;
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      lubksb(a,npar,indx,x);
       fprintf(ficresprob, "**********\n#");      for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
            printf("%.3e ",y[i][j]);
       for (age=bage; age<=fage; age ++){        fprintf(ficlog,"%.3e ",y[i][j]);
         cov[2]=age;      }
         for (k=1; k<=cptcovn;k++) {      printf("\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      fprintf(ficlog,"\n");
              }
         }    */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)    free_matrix(a,1,npar,1,npar);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    free_matrix(y,1,npar,1,npar);
            free_vector(x,1,npar);
         gradg=matrix(1,npar,1,9);    free_ivector(indx,1,npar);
         trgradg=matrix(1,9,1,npar);    free_matrix(hess,1,npar,1,npar);
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
      }
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)  /*************** hessian matrix ****************/
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
            {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int i;
              int l=1, lmax=20;
           k=0;    double k1,k2;
           for(i=1; i<= (nlstate+ndeath); i++){    double p2[MAXPARM+1]; /* identical to x */
             for(j=1; j<=(nlstate+ndeath);j++){    double res;
               k=k+1;    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               gp[k]=pmmij[i][j];    double fx;
             }    int k=0,kmax=10;
           }    double l1;
            
           for(i=1; i<=npar; i++)    fx=func(x);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++) p2[i]=x[i];
        for(l=0 ; l <=lmax; l++){
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      l1=pow(10,l);
           k=0;      delts=delt;
           for(i=1; i<=(nlstate+ndeath); i++){      for(k=1 ; k <kmax; k=k+1){
             for(j=1; j<=(nlstate+ndeath);j++){        delt = delta*(l1*k);
               k=k+1;        p2[theta]=x[theta] +delt;
               gm[k]=pmmij[i][j];        k1=func(p2)-fx;
             }        p2[theta]=x[theta]-delt;
           }        k2=func(p2)-fx;
              /*res= (k1-2.0*fx+k2)/delt/delt; */
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          
         }  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(theta=1; theta <=npar; theta++)  #endif
             trgradg[j][theta]=gradg[theta][j];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          k=kmax;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        }
                else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         pmij(pmmij,cov,ncovmodel,x,nlstate);          k=kmax; l=lmax*10.;
                }
         k=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for(i=1; i<=(nlstate+ndeath); i++){          delts=delt;
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;      }
             gm[k]=pmmij[i][j];    }
           }    delti[theta]=delts;
         }    return res; 
          
      /*printf("\n%d ",(int)age);  }
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      }*/  {
     int i;
         fprintf(ficresprob,"\n%d ",(int)age);    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    double p2[MAXPARM+1];
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));    int k;
    
       }    fx=func(x);
     }    for (k=1; k<=2; k++) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      k1=func(p2)-fx;
   }    
   free_vector(xp,1,npar);      p2[thetai]=x[thetai]+delti[thetai]/k;
   fclose(ficresprob);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k2=func(p2)-fx;
 }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 /******************* Printing html file ***********/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      k3=func(p2)-fx;
  int lastpass, int stepm, int weightopt, char model[],\    
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \      p2[thetai]=x[thetai]-delti[thetai]/k;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  char version[], int popforecast, int estepm ){      k4=func(p2)-fx;
   int jj1, k1, i1, cpt;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   FILE *fichtm;  #ifdef DEBUG
   /*char optionfilehtm[FILENAMELENGTH];*/      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   strcpy(optionfilehtm,optionfile);  #endif
   strcat(optionfilehtm,".htm");    }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    return res;
     printf("Problem with %s \n",optionfilehtm), exit(0);  }
   }  
   /************** Inverse of matrix **************/
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  void ludcmp(double **a, int n, int *indx, double *d) 
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  { 
 \n    int i,imax,j,k; 
 Total number of observations=%d <br>\n    double big,dum,sum,temp; 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double *vv; 
 <hr  size=\"2\" color=\"#EC5E5E\">   
  <ul><li>Outputs files<br>\n    vv=vector(1,n); 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    *d=1.0; 
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    for (i=1;i<=n;i++) { 
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      big=0.0; 
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n      for (j=1;j<=n;j++) 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n        if ((temp=fabs(a[i][j])) > big) big=temp; 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
  fprintf(fichtm,"\n    } 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    for (j=1;j<=n;j++) { 
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      for (i=1;i<j;i++) { 
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        sum=a[i][j]; 
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        a[i][j]=sum; 
       } 
  if(popforecast==1) fprintf(fichtm,"\n      big=0.0; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      for (i=j;i<=n;i++) { 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        sum=a[i][j]; 
         <br>",fileres,fileres,fileres,fileres);        for (k=1;k<j;k++) 
  else          sum -= a[i][k]*a[k][j]; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        a[i][j]=sum; 
 fprintf(fichtm," <li>Graphs</li><p>");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
  m=cptcoveff;          imax=i; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        } 
       } 
  jj1=0;      if (j != imax) { 
  for(k1=1; k1<=m;k1++){        for (k=1;k<=n;k++) { 
    for(i1=1; i1<=ncodemax[k1];i1++){          dum=a[imax][k]; 
        jj1++;          a[imax][k]=a[j][k]; 
        if (cptcovn > 0) {          a[j][k]=dum; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        } 
          for (cpt=1; cpt<=cptcoveff;cpt++)        *d = -(*d); 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        vv[imax]=vv[j]; 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      } 
        }      indx[j]=imax; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      if (a[j][j] == 0.0) a[j][j]=TINY; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          if (j != n) { 
        for(cpt=1; cpt<nlstate;cpt++){        dum=1.0/(a[j][j]); 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } 
        }    } 
     for(cpt=1; cpt<=nlstate;cpt++) {    free_vector(vv,1,n);  /* Doesn't work */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  ;
 interval) in state (%d): v%s%d%d.gif <br>  } 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }  void lubksb(double **a, int n, int *indx, double b[]) 
      for(cpt=1; cpt<=nlstate;cpt++) {  { 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    int i,ii=0,ip,j; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double sum; 
      }   
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    for (i=1;i<=n;i++) { 
 health expectancies in states (1) and (2): e%s%d.gif<br>      ip=indx[i]; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      sum=b[ip]; 
 fprintf(fichtm,"\n</body>");      b[ip]=b[i]; 
    }      if (ii) 
    }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 fclose(fichtm);      else if (sum) ii=i; 
 }      b[i]=sum; 
     } 
 /******************* Gnuplot file **************/    for (i=n;i>=1;i--) { 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      b[i]=sum/a[i][i]; 
     } 
   strcpy(optionfilegnuplot,optionfilefiname);  } 
   strcat(optionfilegnuplot,".gp.txt");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  void pstamp(FILE *fichier)
     printf("Problem with file %s",optionfilegnuplot);  {
   }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
 #ifdef windows  
     fprintf(ficgp,"cd \"%s\" \n",pathc);  /************ Frequencies ********************/
 #endif  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
 m=pow(2,cptcoveff);  {  /* Some frequencies */
      
  /* 1eme*/    int i, m, jk, k1,i1, j1, bool, z1,j;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    int first;
    for (k1=1; k1<= m ; k1 ++) {    double ***freq; /* Frequencies */
     double *pp, **prop;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     char fileresp[FILENAMELENGTH];
 for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    pp=vector(1,nlstate);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    prop=matrix(1,nlstate,iagemin,iagemax+3);
 }    strcpy(fileresp,"p");
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresp,fileres);
     for (i=1; i<= nlstate ; i ++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
 }      exit(0);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    }
      for (i=1; i<= nlstate ; i ++) {    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    j1=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      j=cptcoveff;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    first=1;
    }  
   }    for(k1=1; k1<=j;k1++){
   /*2 eme*/      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   for (k1=1; k1<= m ; k1 ++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
     for (i=1; i<= nlstate+1 ; i ++) {          for (jk=-5; jk<=nlstate+ndeath; jk++)  
       k=2*i;            for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              freq[i][jk][m]=0;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for (i=1; i<=nlstate; i++)  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(m=iagemin; m <= iagemax+3; m++)
 }            prop[i][m]=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        dateintsum=0;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        k2cpt=0;
       for (j=1; j<= nlstate+1 ; j ++) {        for (i=1; i<=imx; i++) {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          bool=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          if  (cptcovn>0) {
 }              for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficgp,"\" t\"\" w l 0,");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                bool=0;
       for (j=1; j<= nlstate+1 ; j ++) {          }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if (bool==1){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=firstpass; m<=lastpass; m++){
 }                k2=anint[m][i]+(mint[m][i]/12.);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       else fprintf(ficgp,"\" t\"\" w l 0,");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   }                if (m<lastpass) {
                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /*3eme*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
   for (k1=1; k1<= m ; k1 ++) {                
     for (cpt=1; cpt<= nlstate ; cpt ++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       k=2+nlstate*(2*cpt-2);                  dateintsum=dateintsum+k2;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                  k2cpt++;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                /*}*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);         
         /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 */        pstamp(ficresp);
       for (i=1; i< nlstate ; i ++) {        if  (cptcovn>0) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresp, "**********\n#");
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        }
     }        for(i=1; i<=nlstate;i++) 
     }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(ficresp, "\n");
   /* CV preval stat */        
     for (k1=1; k1<= m ; k1 ++) {        for(i=iagemin; i <= iagemax+3; i++){
     for (cpt=1; cpt<nlstate ; cpt ++) {          if(i==iagemax+3){
       k=3;            fprintf(ficlog,"Total");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          }else{
             if(first==1){
       for (i=1; i< nlstate ; i ++)              first=0;
         fprintf(ficgp,"+$%d",k+i+1);              printf("See log file for details...\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                  fprintf(ficlog,"Age %d", i);
       l=3+(nlstate+ndeath)*cpt;          }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for(jk=1; jk <=nlstate ; jk++){
       for (i=1; i< nlstate ; i ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         l=3+(nlstate+ndeath)*cpt;              pp[jk] += freq[jk][m][i]; 
         fprintf(ficgp,"+$%d",l+i+1);          }
       }          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              for(m=-1, pos=0; m <=0 ; m++)
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              pos += freq[jk][m][i];
     }            if(pp[jk]>=1.e-10){
   }                if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* proba elementaires */              }
    for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for(k=1; k <=(nlstate+ndeath); k++){            }else{
       if (k != i) {              if(first==1)
         for(j=1; j <=ncovmodel; j++){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                      fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }
           jk++;          }
           fprintf(ficgp,"\n");  
         }          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     }              pp[jk] += freq[jk][m][i];
     }          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     for(jk=1; jk <=m; jk++) {            pos += pp[jk];
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            posprop += prop[jk][i];
    i=1;          }
    for(k2=1; k2<=nlstate; k2++) {          for(jk=1; jk <=nlstate ; jk++){
      k3=i;            if(pos>=1.e-5){
      for(k=1; k<=(nlstate+ndeath); k++) {              if(first==1)
        if (k != k2){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 ij=1;            }else{
         for(j=3; j <=ncovmodel; j++) {              if(first==1)
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             ij++;            }
           }            if( i <= iagemax){
           else              if(pos>=1.e-5){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         }                /*probs[i][jk][j1]= pp[jk]/pos;*/
           fprintf(ficgp,")/(1");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                      }
         for(k1=1; k1 <=nlstate; k1++){                else
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
 ij=1;            }
           for(j=3; j <=ncovmodel; j++){          }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             ij++;            for(m=-1; m <=nlstate+ndeath; m++)
           }              if(freq[jk][m][i] !=0 ) {
           else              if(first==1)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           fprintf(ficgp,")");              }
         }          if(i <= iagemax)
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            fprintf(ficresp,"\n");
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          if(first==1)
         i=i+ncovmodel;            printf("Others in log...\n");
        }          fprintf(ficlog,"\n");
      }        }
    }      }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    }
    }    dateintmean=dateintsum/k2cpt; 
       
   fclose(ficgp);    fclose(ficresp);
 }  /* end gnuplot */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 /*************** Moving average **************/    /* End of Freq */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  }
   
   int i, cpt, cptcod;  /************ Prevalence ********************/
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for (i=1; i<=nlstate;i++)  {  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           mobaverage[(int)agedeb][i][cptcod]=0.;       in each health status at the date of interview (if between dateprev1 and dateprev2).
           We still use firstpass and lastpass as another selection.
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    */
       for (i=1; i<=nlstate;i++){   
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int i, m, jk, k1, i1, j1, bool, z1,j;
           for (cpt=0;cpt<=4;cpt++){    double ***freq; /* Frequencies */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    double *pp, **prop;
           }    double pos,posprop; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double  y2; /* in fractional years */
         }    int iagemin, iagemax;
       }  
     }    iagemin= (int) agemin;
        iagemax= (int) agemax;
 }    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 /************** Forecasting ******************/    j1=0;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    
      j=cptcoveff;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for(k1=1; k1<=j;k1++){
   double *popeffectif,*popcount;      for(i1=1; i1<=ncodemax[k1];i1++){
   double ***p3mat;        j1++;
   char fileresf[FILENAMELENGTH];        
         for (i=1; i<=nlstate; i++)  
  agelim=AGESUP;          for(m=iagemin; m <= iagemax+3; m++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            prop[i][m]=0.0;
        
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for (i=1; i<=imx; i++) { /* Each individual */
            bool=1;
            if  (cptcovn>0) {
   strcpy(fileresf,"f");            for (z1=1; z1<=cptcoveff; z1++) 
   strcat(fileresf,fileres);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   if((ficresf=fopen(fileresf,"w"))==NULL) {                bool=0;
     printf("Problem with forecast resultfile: %s\n", fileresf);          } 
   }          if (bool==1) { 
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if (mobilav==1) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     movingaverage(agedeb, fage, ageminpar, mobaverage);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   if (stepm<=12) stepsize=1;                } 
                }
   agelim=AGESUP;            } /* end selection of waves */
            }
   hstepm=1;        }
   hstepm=hstepm/stepm;        for(i=iagemin; i <= iagemax+3; i++){  
   yp1=modf(dateintmean,&yp);          
   anprojmean=yp;          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   yp2=modf((yp1*12),&yp);            posprop += prop[jk][i]; 
   mprojmean=yp;          } 
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;          for(jk=1; jk <=nlstate ; jk++){     
   if(jprojmean==0) jprojmean=1;            if( i <=  iagemax){ 
   if(mprojmean==0) jprojmean=1;              if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);              } else
                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   for(cptcov=1;cptcov<=i2;cptcov++){            } 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          }/* end jk */ 
       k=k+1;        }/* end i */ 
       fprintf(ficresf,"\n#******");      } /* end i1 */
       for(j=1;j<=cptcoveff;j++) {    } /* end k1 */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       fprintf(ficresf,"******\n");    /*free_vector(pp,1,nlstate);*/
       fprintf(ficresf,"# StartingAge FinalAge");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  }  /* End of prevalence */
        
        /************* Waves Concatenation ***************/
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       Death is a valid wave (if date is known).
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           nhstepm = nhstepm/hstepm;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                 and mw[mi+1][i]. dh depends on stepm.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i, mi, m;
            /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for (h=0; h<=nhstepm; h++){       double sum=0., jmean=0.;*/
             if (h==(int) (calagedate+YEARM*cpt)) {    int first;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    int j, k=0,jk, ju, jl;
             }    double sum=0.;
             for(j=1; j<=nlstate+ndeath;j++) {    first=0;
               kk1=0.;kk2=0;    jmin=1e+5;
               for(i=1; i<=nlstate;i++) {                  jmax=-1;
                 if (mobilav==1)    jmean=0.;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for(i=1; i<=imx; i++){
                 else {      mi=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      m=firstpass;
                 }      while(s[m][i] <= nlstate){
                        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               }          mw[++mi][i]=m;
               if (h==(int)(calagedate+12*cpt)){        if(m >=lastpass)
                 fprintf(ficresf," %.3f", kk1);          break;
                                else
               }          m++;
             }      }/* end while */
           }      if (s[m][i] > nlstate){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        mi++;     /* Death is another wave */
         }        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
     }        mw[mi][i]=m;
   }      }
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      wav[i]=mi;
       if(mi==0){
   fclose(ficresf);        nbwarn++;
 }        if(first==0){
 /************** Forecasting ******************/          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          first=1;
          }
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if(first==1){
   int *popage;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        }
   double *popeffectif,*popcount;      } /* end mi==0 */
   double ***p3mat,***tabpop,***tabpopprev;    } /* End individuals */
   char filerespop[FILENAMELENGTH];  
     for(i=1; i<=imx; i++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(mi=1; mi<wav[i];mi++){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (stepm <=0)
   agelim=AGESUP;          dh[mi][i]=1;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        else{
            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            if (agedc[i] < 2*AGESUP) {
                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   strcpy(filerespop,"pop");              else if(j<0){
   strcat(filerespop,fileres);                nberr++;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     printf("Problem with forecast resultfile: %s\n", filerespop);                j=1; /* Temporary Dangerous patch */
   }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   printf("Computing forecasting: result on file '%s' \n", filerespop);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              }
               k=k+1;
   if (mobilav==1) {              if (j >= jmax){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                jmax=j;
     movingaverage(agedeb, fage, ageminpar, mobaverage);                ijmax=i;
   }              }
               if (j <= jmin){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                jmin=j;
   if (stepm<=12) stepsize=1;                ijmin=i;
                }
   agelim=AGESUP;              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   hstepm=1;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   hstepm=hstepm/stepm;            }
            }
   if (popforecast==1) {          else{
     if((ficpop=fopen(popfile,"r"))==NULL) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       printf("Problem with population file : %s\n",popfile);exit(0);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
     }  
     popage=ivector(0,AGESUP);            k=k+1;
     popeffectif=vector(0,AGESUP);            if (j >= jmax) {
     popcount=vector(0,AGESUP);              jmax=j;
                  ijmax=i;
     i=1;              }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            else if (j <= jmin){
                  jmin=j;
     imx=i;              ijmin=i;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            }
   }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   for(cptcov=1;cptcov<=i2;cptcov++){            if(j<0){
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              nberr++;
       k=k+1;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficrespop,"\n#******");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(j=1;j<=cptcoveff;j++) {            }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            sum=sum+j;
       }          }
       fprintf(ficrespop,"******\n");          jk= j/stepm;
       fprintf(ficrespop,"# Age");          jl= j -jk*stepm;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          ju= j -(jk+1)*stepm;
       if (popforecast==1)  fprintf(ficrespop," [Population]");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                  if(jl==0){
       for (cpt=0; cpt<=0;cpt++) {              dh[mi][i]=jk;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                bh[mi][i]=0;
                    }else{ /* We want a negative bias in order to only have interpolation ie
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                    * to avoid the price of an extra matrix product in likelihood */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              dh[mi][i]=jk+1;
           nhstepm = nhstepm/hstepm;              bh[mi][i]=ju;
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }else{
           oldm=oldms;savm=savms;            if(jl <= -ju){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                dh[mi][i]=jk;
                      bh[mi][i]=jl;       /* bias is positive if real duration
           for (h=0; h<=nhstepm; h++){                                   * is higher than the multiple of stepm and negative otherwise.
             if (h==(int) (calagedate+YEARM*cpt)) {                                   */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            }
             }            else{
             for(j=1; j<=nlstate+ndeath;j++) {              dh[mi][i]=jk+1;
               kk1=0.;kk2=0;              bh[mi][i]=ju;
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            if(dh[mi][i]==0){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              dh[mi][i]=1; /* At least one step */
                 else {              bh[mi][i]=ju; /* At least one step */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                 }            }
               }          } /* end if mle */
               if (h==(int)(calagedate+12*cpt)){        }
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      } /* end wave */
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    jmean=sum/k;
               }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
             }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
             for(i=1; i<=nlstate;i++){   }
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){  /*********** Tricode ****************************/
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  void tricode(int *Tvar, int **nbcode, int imx)
                 }  {
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* Uses cptcovn+2*cptcovprod as the number of covariates */
             }    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    int modmaxcovj=0; /* Modality max of covariates j */
           }    cptcoveff=0; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
         }    for (k=0; k<maxncov; k++) Ndum[k]=0;
       }    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
    
   /******/    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                                 modality of this covariate Vj*/ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                                        modality of the nth covariate of individual i. */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
           nhstepm = nhstepm/hstepm;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                  if (ij > modmaxcovj) modmaxcovj=ij; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* getting the maximum value of the modality of the covariate
           oldm=oldms;savm=savms;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             female is 1, then modmaxcovj=1.*/
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
             }        if( Ndum[i] != 0 )
             for(j=1; j<=nlstate+ndeath;j++) {          ncodemax[j]++; 
               kk1=0.;kk2=0;        /* Number of modalities of the j th covariate. In fact
               for(i=1; i<=nlstate;i++) {                         ncodemax[j]=2 (dichotom. variables only) but it could be more for
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];               historical reasons */
               }      } /* Ndum[-1] number of undefined modalities */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
           }      ij=1; 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
         }        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
       }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
    }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   }                                       k is a modality. If we have model=V1+V1*sex 
                                         then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            ij++;
           }
   if (popforecast==1) {          if (ij > ncodemax[j]) break; 
     free_ivector(popage,0,AGESUP);        }  /* end of loop on */
     free_vector(popeffectif,0,AGESUP);      } /* end of loop on modality */ 
     free_vector(popcount,0,AGESUP);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   }    
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (k=0; k< maxncov; k++) Ndum[k]=0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
   fclose(ficrespop);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
 }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
 /***********************************************/     Ndum[ij]++;
 /**************** Main Program *****************/   }
 /***********************************************/  
    ij=1;
 int main(int argc, char *argv[])   for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
 {     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;       ij++;
   double agedeb, agefin,hf;     }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;   }
    ij--;
   double fret;   cptcoveff=ij; /*Number of simple covariates*/
   double **xi,tmp,delta;  }
   
   double dum; /* Dummy variable */  /*********** Health Expectancies ****************/
   double ***p3mat;  
   int *indx;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];  {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* Health expectancies, no variances */
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      int nhstepma, nstepma; /* Decreasing with age */
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    double age, agelim, hf;
     double ***p3mat;
   char filerest[FILENAMELENGTH];    double eip;
   char fileregp[FILENAMELENGTH];  
   char popfile[FILENAMELENGTH];    pstamp(ficreseij);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   int firstobs=1, lastobs=10;    fprintf(ficreseij,"# Age");
   int sdeb, sfin; /* Status at beginning and end */    for(i=1; i<=nlstate;i++){
   int c,  h , cpt,l;      for(j=1; j<=nlstate;j++){
   int ju,jl, mi;        fprintf(ficreseij," e%1d%1d ",i,j);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(ficreseij," e%1d. ",i);
   int mobilav=0,popforecast=0;    }
   int hstepm, nhstepm;    fprintf(ficreseij,"\n");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
     
   double bage, fage, age, agelim, agebase;    if(estepm < stepm){
   double ftolpl=FTOL;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double **prlim;    }
   double *severity;    else  hstepm=estepm;   
   double ***param; /* Matrix of parameters */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double  *p;     * This is mainly to measure the difference between two models: for example
   double **matcov; /* Matrix of covariance */     * if stepm=24 months pijx are given only every 2 years and by summing them
   double ***delti3; /* Scale */     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double *delti; /* Scale */     * progression in between and thus overestimating or underestimating according
   double ***eij, ***vareij;     * to the curvature of the survival function. If, for the same date, we 
   double **varpl; /* Variances of prevalence limits by age */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double *epj, vepp;     * to compare the new estimate of Life expectancy with the same linear 
   double kk1, kk2;     * hypothesis. A more precise result, taking into account a more precise
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;     * curvature will be obtained if estepm is as small as stepm. */
    
     /* For example we decided to compute the life expectancy with the smallest unit */
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char *alph[]={"a","a","b","c","d","e"}, str[4];       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   char z[1]="c", occ;       and note for a fixed period like estepm months */
 #include <sys/time.h>    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 #include <time.h>       survival function given by stepm (the optimization length). Unfortunately it
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       means that if the survival funtion is printed only each two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* long total_usecs;       results. So we changed our mind and took the option of the best precision.
   struct timeval start_time, end_time;    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);    agelim=AGESUP;
     /* If stepm=6 months */
   printf("\n%s",version);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if(argc <=1){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("\nEnter the parameter file name: ");      
     scanf("%s",pathtot);  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   else{    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     strcpy(pathtot,argv[1]);    /* if (stepm >= YEARM) hstepm=1;*/
   }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    for (age=bage; age<=fage; age ++){ 
   /* cutv(path,optionfile,pathtot,'\\');*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      /* if (stepm >= YEARM) hstepm=1;*/
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   chdir(path);  
   replace(pathc,path);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
 /*-------- arguments in the command line --------*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
   strcpy(fileres,"r");      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   strcat(fileres, optionfilefiname);      
   strcat(fileres,".txt");    /* Other files have txt extension */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   /*---------arguments file --------*/      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      
     printf("Problem with optionfile %s\n",optionfile);      /* Computing expectancies */
     goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcpy(filereso,"o");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   strcat(filereso,fileres);            
   if((ficparo=fopen(filereso,"w"))==NULL) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }          }
   
   /* Reads comments: lines beginning with '#' */      fprintf(ficreseij,"%3.0f",age );
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1; i<=nlstate;i++){
     ungetc(c,ficpar);        eip=0;
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++){
     puts(line);          eip +=eij[i][j][(int)age];
     fputs(line,ficparo);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   }        }
   ungetc(c,ficpar);        fprintf(ficreseij,"%9.4f", eip );
       }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      fprintf(ficreseij,"\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    }
 while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     ungetc(c,ficpar);    printf("\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficlog,"\n");
     puts(line);    
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
      {
   covar=matrix(0,NCOVMAX,1,n);    /* Covariances of health expectancies eij and of total life expectancies according
   cptcovn=0;     to initial status i, ei. .
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   ncovmodel=2+cptcovn;    int nhstepma, nstepma; /* Decreasing with age */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double age, agelim, hf;
      double ***p3matp, ***p3matm, ***varhe;
   /* Read guess parameters */    double **dnewm,**doldm;
   /* Reads comments: lines beginning with '#' */    double *xp, *xm;
   while((c=getc(ficpar))=='#' && c!= EOF){    double **gp, **gm;
     ungetc(c,ficpar);    double ***gradg, ***trgradg;
     fgets(line, MAXLINE, ficpar);    int theta;
     puts(line);  
     fputs(line,ficparo);    double eip, vip;
   }  
   ungetc(c,ficpar);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
      xp=vector(1,npar);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    xm=vector(1,npar);
     for(i=1; i <=nlstate; i++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    
       fprintf(ficparo,"%1d%1d",i1,j1);    pstamp(ficresstdeij);
       printf("%1d%1d",i,j);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresstdeij,"# Age");
         fscanf(ficpar," %lf",&param[i][j][k]);    for(i=1; i<=nlstate;i++){
         printf(" %lf",param[i][j][k]);      for(j=1; j<=nlstate;j++)
         fprintf(ficparo," %lf",param[i][j][k]);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       }      fprintf(ficresstdeij," e%1d. ",i);
       fscanf(ficpar,"\n");    }
       printf("\n");    fprintf(ficresstdeij,"\n");
       fprintf(ficparo,"\n");  
     }    pstamp(ficrescveij);
      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
   p=param[1][1];      for(j=1; j<=nlstate;j++){
          cptj= (j-1)*nlstate+i;
   /* Reads comments: lines beginning with '#' */        for(i2=1; i2<=nlstate;i2++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for(j2=1; j2<=nlstate;j2++){
     ungetc(c,ficpar);            cptj2= (j2-1)*nlstate+i2;
     fgets(line, MAXLINE, ficpar);            if(cptj2 <= cptj)
     puts(line);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     fputs(line,ficparo);          }
   }      }
   ungetc(c,ficpar);    fprintf(ficrescveij,"\n");
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if(estepm < stepm){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      printf ("Problem %d lower than %d\n",estepm, stepm);
   for(i=1; i <=nlstate; i++){    }
     for(j=1; j <=nlstate+ndeath-1; j++){    else  hstepm=estepm;   
       fscanf(ficpar,"%1d%1d",&i1,&j1);    /* We compute the life expectancy from trapezoids spaced every estepm months
       printf("%1d%1d",i,j);     * This is mainly to measure the difference between two models: for example
       fprintf(ficparo,"%1d%1d",i1,j1);     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(k=1; k<=ncovmodel;k++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fscanf(ficpar,"%le",&delti3[i][j][k]);     * progression in between and thus overestimating or underestimating according
         printf(" %le",delti3[i][j][k]);     * to the curvature of the survival function. If, for the same date, we 
         fprintf(ficparo," %le",delti3[i][j][k]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       }     * to compare the new estimate of Life expectancy with the same linear 
       fscanf(ficpar,"\n");     * hypothesis. A more precise result, taking into account a more precise
       printf("\n");     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficparo,"\n");  
     }    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   delti=delti3[1][1];       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /* Reads comments: lines beginning with '#' */       Look at hpijx to understand the reason of that which relies in memory size
   while((c=getc(ficpar))=='#' && c!= EOF){       and note for a fixed period like estepm months */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fgets(line, MAXLINE, ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     puts(line);       means that if the survival funtion is printed only each two years of age and if
     fputs(line,ficparo);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   ungetc(c,ficpar);    */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){    /* If stepm=6 months */
     fscanf(ficpar,"%s",&str);    /* nhstepm age range expressed in number of stepm */
     printf("%s",str);    agelim=AGESUP;
     fprintf(ficparo,"%s",str);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     for(j=1; j <=i; j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fscanf(ficpar," %le",&matcov[i][j]);    /* if (stepm >= YEARM) hstepm=1;*/
       printf(" %.5le",matcov[i][j]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficparo," %.5le",matcov[i][j]);    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fscanf(ficpar,"\n");    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fprintf(ficparo,"\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   for(i=1; i <=npar; i++)    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];    for (age=bage; age<=fage; age ++){ 
          nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   printf("\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */      /* If stepm=6 months */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
      strcat(rfileres,".");    /* */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      
     if((ficres =fopen(rfileres,"w"))==NULL) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
     }      /* Computing  Variances of health expectancies */
     fprintf(ficres,"#%s\n",version);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             decrease memory allocation */
     /*-------- data file ----------*/      for(theta=1; theta <=npar; theta++){
     if((fic=fopen(datafile,"r"))==NULL)    {        for(i=1; i<=npar; i++){ 
       printf("Problem with datafile: %s\n", datafile);goto end;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
     n= lastobs;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     severity = vector(1,maxwav);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     outcome=imatrix(1,maxwav+1,1,n);    
     num=ivector(1,n);        for(j=1; j<= nlstate; j++){
     moisnais=vector(1,n);          for(i=1; i<=nlstate; i++){
     annais=vector(1,n);            for(h=0; h<=nhstepm-1; h++){
     moisdc=vector(1,n);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     andc=vector(1,n);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     agedc=vector(1,n);            }
     cod=ivector(1,n);          }
     weight=vector(1,n);        }
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       
     mint=matrix(1,maxwav,1,n);        for(ij=1; ij<= nlstate*nlstate; ij++)
     anint=matrix(1,maxwav,1,n);          for(h=0; h<=nhstepm-1; h++){
     s=imatrix(1,maxwav+1,1,n);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);      }/* End theta */
     ncodemax=ivector(1,8);      
       
     i=1;      for(h=0; h<=nhstepm-1; h++)
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(j=1; j<=nlstate*nlstate;j++)
       if ((i >= firstobs) && (i <=lastobs)) {          for(theta=1; theta <=npar; theta++)
                    trgradg[h][j][theta]=gradg[h][theta][j];
         for (j=maxwav;j>=1;j--){      
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);       for(ij=1;ij<=nlstate*nlstate;ij++)
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(ji=1;ji<=nlstate*nlstate;ji++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          varhe[ij][ji][(int)age] =0.;
         }  
               printf("%d|",(int)age);fflush(stdout);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            for(ji=1;ji<=nlstate*nlstate;ji++)
         for (j=ncovcol;j>=1;j--){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
         }      }
         num[i]=atol(stra);  
              /* Computing expectancies */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
         i=i+1;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     }            
     /* printf("ii=%d", ij);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */          }
   
   /* for (i=1; i<=imx; i++){      fprintf(ficresstdeij,"%3.0f",age );
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(i=1; i<=nlstate;i++){
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        eip=0.;
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        vip=0.;
     }*/        for(j=1; j<=nlstate;j++){
    /*  for (i=1; i<=imx; i++){          eip += eij[i][j][(int)age];
      if (s[4][i]==9)  s[4][i]=-1;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   /* Calculation of the number of parameter from char model*/        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   Tvar=ivector(1,15);      }
   Tprod=ivector(1,15);      fprintf(ficresstdeij,"\n");
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      fprintf(ficrescveij,"%3.0f",age );
   Tage=ivector(1,15);            for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
   if (strlen(model) >1){          cptj= (j-1)*nlstate+i;
     j=0, j1=0, k1=1, k2=1;          for(i2=1; i2<=nlstate;i2++)
     j=nbocc(model,'+');            for(j2=1; j2<=nlstate;j2++){
     j1=nbocc(model,'*');              cptj2= (j2-1)*nlstate+i2;
     cptcovn=j+1;              if(cptj2 <= cptj)
     cptcovprod=j1;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                }
     strcpy(modelsav,model);        }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fprintf(ficrescveij,"\n");
       printf("Error. Non available option model=%s ",model);     
       goto end;    }
     }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
        free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     for(i=(j+1); i>=1;i--){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       cutv(stra,strb,modelsav,'+');    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*scanf("%d",i);*/    printf("\n");
       if (strchr(strb,'*')) {    fprintf(ficlog,"\n");
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {    free_vector(xm,1,npar);
           cptcovprod--;    free_vector(xp,1,npar);
           cutv(strb,stre,strd,'V');    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           Tvar[i]=atoi(stre);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           cptcovage++;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
             Tage[cptcovage]=i;  }
             /*printf("stre=%s ", stre);*/  
         }  /************ Variance ******************/
         else if (strcmp(strd,"age")==0) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           cptcovprod--;  {
           cutv(strb,stre,strc,'V');    /* Variance of health expectancies */
           Tvar[i]=atoi(stre);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           cptcovage++;    /* double **newm;*/
           Tage[cptcovage]=i;    double **dnewm,**doldm;
         }    double **dnewmp,**doldmp;
         else {    int i, j, nhstepm, hstepm, h, nstepm ;
           cutv(strb,stre,strc,'V');    int k, cptcode;
           Tvar[i]=ncovcol+k1;    double *xp;
           cutv(strb,strc,strd,'V');    double **gp, **gm;  /* for var eij */
           Tprod[k1]=i;    double ***gradg, ***trgradg; /*for var eij */
           Tvard[k1][1]=atoi(strc);    double **gradgp, **trgradgp; /* for var p point j */
           Tvard[k1][2]=atoi(stre);    double *gpp, *gmp; /* for var p point j */
           Tvar[cptcovn+k2]=Tvard[k1][1];    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double ***p3mat;
           for (k=1; k<=lastobs;k++)    double age,agelim, hf;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double ***mobaverage;
           k1++;    int theta;
           k2=k2+2;    char digit[4];
         }    char digitp[25];
       }  
       else {    char fileresprobmorprev[FILENAMELENGTH];
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  
        /*  scanf("%d",i);*/    if(popbased==1){
       cutv(strd,strc,strb,'V');      if(mobilav!=0)
       Tvar[i]=atoi(strc);        strcpy(digitp,"-populbased-mobilav-");
       }      else strcpy(digitp,"-populbased-nomobil-");
       strcpy(modelsav,stra);      }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    else 
         scanf("%d",i);*/      strcpy(digitp,"-stablbased-");
     }  
 }    if (mobilav!=0) {
        mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   printf("cptcovprod=%d ", cptcovprod);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   scanf("%d ",i);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fclose(fic);      }
     }
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    strcpy(fileresprobmorprev,"prmorprev"); 
       for(i=1;i<=n;i++) weight[i]=1.0;    sprintf(digit,"%-d",ij);
     }    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     /*-calculation of age at interview from date of interview and age at death -*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     agev=matrix(1,maxwav,1,imx);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     for (i=1; i<=imx; i++) {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       for(m=2; (m<= maxwav); m++) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
          anint[m][i]=9999;    }
          s[m][i]=-1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        }   
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    pstamp(ficresprobmorprev);
     }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for (i=1; i<=imx; i++)  {    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(m=1; (m<= maxwav); m++){      for(i=1; i<=nlstate;i++)
         if(s[m][i] >0){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           if (s[m][i] >= nlstate+1) {    }  
             if(agedc[i]>0)    fprintf(ficresprobmorprev,"\n");
               if(moisdc[i]!=99 && andc[i]!=9999)    fprintf(ficgp,"\n# Routine varevsij");
                 agev[m][i]=agedc[i];    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
            else {    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
               if (andc[i]!=9999){  /*   } */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               agev[m][i]=-1;    pstamp(ficresvij);
               }    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             }    if(popbased==1)
           }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
           else if(s[m][i] !=9){ /* Should no more exist */    else
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresvij,"# Age");
               agev[m][i]=1;    for(i=1; i<=nlstate;i++)
             else if(agev[m][i] <agemin){      for(j=1; j<=nlstate;j++)
               agemin=agev[m][i];        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    fprintf(ficresvij,"\n");
             }  
             else if(agev[m][i] >agemax){    xp=vector(1,npar);
               agemax=agev[m][i];    dnewm=matrix(1,nlstate,1,npar);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    doldm=matrix(1,nlstate,1,nlstate);
             }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             /*agev[m][i]=anint[m][i]-annais[i];*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             /*   agev[m][i] = age[i]+2*m;*/  
           }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           else { /* =9 */    gpp=vector(nlstate+1,nlstate+ndeath);
             agev[m][i]=1;    gmp=vector(nlstate+1,nlstate+ndeath);
             s[m][i]=-1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           }    
         }    if(estepm < stepm){
         else /*= 0 Unknown */      printf ("Problem %d lower than %d\n",estepm, stepm);
           agev[m][i]=1;    }
       }    else  hstepm=estepm;   
        /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for (i=1; i<=imx; i++)  {       nhstepm is the number of hstepm from age to agelim 
       for(m=1; (m<= maxwav); m++){       nstepm is the number of stepm from age to agelin. 
         if (s[m][i] > (nlstate+ndeath)) {       Look at function hpijx to understand why (it is linked to memory size questions) */
           printf("Error: Wrong value in nlstate or ndeath\n");      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           goto end;       survival function given by stepm (the optimization length). Unfortunately it
         }       means that if the survival funtion is printed every two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
     */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     free_vector(severity,1,maxwav);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_imatrix(outcome,1,maxwav+1,1,n);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_vector(moisnais,1,n);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_vector(annais,1,n);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* free_matrix(mint,1,maxwav,1,n);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        free_matrix(anint,1,maxwav,1,n);*/      gp=matrix(0,nhstepm,1,nlstate);
     free_vector(moisdc,1,n);      gm=matrix(0,nhstepm,1,nlstate);
     free_vector(andc,1,n);  
   
          for(theta=1; theta <=npar; theta++){
     wav=ivector(1,imx);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /* Concatenates waves */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
         if (popbased==1) {
           if(mobilav ==0){
       Tcode=ivector(1,100);            for(i=1; i<=nlstate;i++)
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);              prlim[i][i]=probs[(int)age][i][ij];
       ncodemax[1]=1;          }else{ /* mobilav */ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            for(i=1; i<=nlstate;i++)
                    prlim[i][i]=mobaverage[(int)age][i][ij];
    codtab=imatrix(1,100,1,10);          }
    h=0;        }
    m=pow(2,cptcoveff);    
          for(j=1; j<= nlstate; j++){
    for(k=1;k<=cptcoveff; k++){          for(h=0; h<=nhstepm; h++){
      for(i=1; i <=(m/pow(2,k));i++){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
        for(j=1; j <= ncodemax[k]; j++){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          }
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        /* This for computing probability of death (h=1 means
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/           computed over hstepm matrices product = hstepm*stepm months) 
          }           as a weighted average of prlim.
        }        */
      }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       codtab[1][2]=1;codtab[2][2]=2; */        }    
    /* for(i=1; i <=m ;i++){        /* end probability of death */
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       scanf("%d",i);*/   
            if (popbased==1) {
    /* Calculates basic frequencies. Computes observed prevalence at single age          if(mobilav ==0){
        and prints on file fileres'p'. */            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              prlim[i][i]=mobaverage[(int)age][i][ij];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                for(h=0; h<=nhstepm; h++){
     /* For Powell, parameters are in a vector p[] starting at p[1]            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          }
         }
     if(mle==1){        /* This for computing probability of death (h=1 means
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);           computed over hstepm matrices product = hstepm*stepm months) 
     }           as a weighted average of prlim.
            */
     /*--------- results files --------------*/        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
    jk=1;        /* end probability of death */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(j=1; j<= nlstate; j++) /* vareij */
    for(i=1,jk=1; i <=nlstate; i++){          for(h=0; h<=nhstepm; h++){
      for(k=1; k <=(nlstate+ndeath); k++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        if (k != i)          }
          {  
            printf("%d%d ",i,k);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            fprintf(ficres,"%1d%1d ",i,k);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);      } /* End theta */
              jk++;  
            }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
            printf("\n");  
            fprintf(ficres,"\n");      for(h=0; h<=nhstepm; h++) /* veij */
          }        for(j=1; j<=nlstate;j++)
      }          for(theta=1; theta <=npar; theta++)
    }            trgradg[h][j][theta]=gradg[h][theta][j];
  if(mle==1){  
     /* Computing hessian and covariance matrix */      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     ftolhess=ftol; /* Usually correct */        for(theta=1; theta <=npar; theta++)
     hesscov(matcov, p, npar, delti, ftolhess, func);          trgradgp[j][theta]=gradgp[theta][j];
  }    
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  
     printf("# Scales (for hessian or gradient estimation)\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for(i=1,jk=1; i <=nlstate; i++){      for(i=1;i<=nlstate;i++)
       for(j=1; j <=nlstate+ndeath; j++){        for(j=1;j<=nlstate;j++)
         if (j!=i) {          vareij[i][j][(int)age] =0.;
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);      for(h=0;h<=nhstepm;h++){
           for(k=1; k<=ncovmodel;k++){        for(k=0;k<=nhstepm;k++){
             printf(" %.5e",delti[jk]);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             fprintf(ficres," %.5e",delti[jk]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
             jk++;          for(i=1;i<=nlstate;i++)
           }            for(j=1;j<=nlstate;j++)
           printf("\n");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           fprintf(ficres,"\n");        }
         }      }
       }    
      }      /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     k=1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     for(i=1;i<=npar;i++){          varppt[j][i]=doldmp[j][i];
       /*  if (k>nlstate) k=1;      /* end ppptj */
       i1=(i-1)/(ncovmodel*nlstate)+1;      /*  x centered again */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       fprintf(ficres,"%3d",i);   
       printf("%3d",i);      if (popbased==1) {
       for(j=1; j<=i;j++){        if(mobilav ==0){
         fprintf(ficres," %.5e",matcov[i][j]);          for(i=1; i<=nlstate;i++)
         printf(" %.5e",matcov[i][j]);            prlim[i][i]=probs[(int)age][i][ij];
       }        }else{ /* mobilav */ 
       fprintf(ficres,"\n");          for(i=1; i<=nlstate;i++)
       printf("\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
       k++;        }
     }      }
                   
     while((c=getc(ficpar))=='#' && c!= EOF){      /* This for computing probability of death (h=1 means
       ungetc(c,ficpar);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fgets(line, MAXLINE, ficpar);         as a weighted average of prlim.
       puts(line);      */
       fputs(line,ficparo);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     estepm=0;      }    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      /* end probability of death */
     if (estepm==0 || estepm < stepm) estepm=stepm;  
     if (fage <= 2) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       bage = ageminpar;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fage = agemaxpar;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     }        for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      } 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      fprintf(ficresprobmorprev,"\n");
    
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvij,"%.0f ",age );
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        for(j=1; j<=nlstate;j++){
     puts(line);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fputs(line,ficparo);        }
   }      fprintf(ficresvij,"\n");
   ungetc(c,ficpar);      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          } /* End age */
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gpp,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fputs(line,ficparo);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   ungetc(c,ficpar);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   fscanf(ficpar,"pop_based=%d\n",&popbased);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   fprintf(ficparo,"pop_based=%d\n",popbased);      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   while((c=getc(ficpar))=='#' && c!= EOF){  */
     ungetc(c,ficpar);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     puts(line);  
     fputs(line,ficparo);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,nlstate);
   ungetc(c,ficpar);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
 while((c=getc(ficpar))=='#' && c!= EOF){    fflush(fichtm); 
     ungetc(c,ficpar);  }  /* end varevsij */
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /************ Variance of prevlim ******************/
     fputs(line,ficparo);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   }  {
   ungetc(c,ficpar);    /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    double **newm;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double **dnewm,**doldm;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    int i, j, nhstepm, hstepm;
     int k, cptcode;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double *xp;
     double *gp, *gm;
 /*------------ gnuplot -------------*/    double **gradg, **trgradg;
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    double age,agelim;
      int theta;
 /*------------ free_vector  -------------*/    
  chdir(path);    pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
  free_ivector(wav,1,imx);    fprintf(ficresvpl,"# Age");
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    for(i=1; i<=nlstate;i++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          fprintf(ficresvpl," %1d-%1d",i,i);
  free_ivector(num,1,n);    fprintf(ficresvpl,"\n");
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    xp=vector(1,npar);
  fclose(ficparo);    dnewm=matrix(1,nlstate,1,npar);
  fclose(ficres);    doldm=matrix(1,nlstate,1,nlstate);
     
 /*--------- index.htm --------*/    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   /*--------------- Prevalence limit --------------*/      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   strcpy(filerespl,"pl");      gradg=matrix(1,npar,1,nlstate);
   strcat(filerespl,fileres);      gp=vector(1,nlstate);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      gm=vector(1,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }      for(theta=1; theta <=npar; theta++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(ficrespl,"#Prevalence limit\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficrespl,"#Age ");        }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficrespl,"\n");        for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
   prlim=matrix(1,nlstate,1,nlstate);      
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1; i<=npar; i++) /* Computes gradient */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          gm[i] = prlim[i][i];
   k=0;  
   agebase=ageminpar;        for(i=1;i<=nlstate;i++)
   agelim=agemaxpar;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   ftolpl=1.e-10;      } /* End theta */
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}      trgradg =matrix(1,nlstate,1,npar);
   
   for(cptcov=1;cptcov<=i1;cptcov++){      for(j=1; j<=nlstate;j++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(theta=1; theta <=npar; theta++)
         k=k+1;          trgradg[j][theta]=gradg[theta][j];
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      for(i=1;i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)        varpl[i][(int)age] =0.;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         fprintf(ficrespl,"******\n");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
              for(i=1;i<=nlstate;i++)
         for (age=agebase; age<=agelim; age++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );      fprintf(ficresvpl,"%.0f ",age );
           for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
           fprintf(ficrespl,"\n");      fprintf(ficresvpl,"\n");
         }      free_vector(gp,1,nlstate);
       }      free_vector(gm,1,nlstate);
     }      free_matrix(gradg,1,npar,1,nlstate);
   fclose(ficrespl);      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   /*------------- h Pij x at various ages ------------*/  
      free_vector(xp,1,npar);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    free_matrix(doldm,1,nlstate,1,npar);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    free_matrix(dnewm,1,nlstate,1,nlstate);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }  }
   printf("Computing pij: result on file '%s' \n", filerespij);  
    /************ Variance of one-step probabilities  ******************/
   stepsize=(int) (stepm+YEARM-1)/YEARM;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   /*if (stepm<=24) stepsize=2;*/  {
     int i, j=0,  i1, k1, l1, t, tj;
   agelim=AGESUP;    int k2, l2, j1,  z1;
   hstepm=stepsize*YEARM; /* Every year of age */    int k=0,l, cptcode;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    int first=1, first1;
      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   k=0;    double **dnewm,**doldm;
   for(cptcov=1;cptcov<=i1;cptcov++){    double *xp;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double *gp, *gm;
       k=k+1;    double **gradg, **trgradg;
         fprintf(ficrespij,"\n#****** ");    double **mu;
         for(j=1;j<=cptcoveff;j++)    double age,agelim, cov[NCOVMAX];
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         fprintf(ficrespij,"******\n");    int theta;
            char fileresprob[FILENAMELENGTH];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    char fileresprobcov[FILENAMELENGTH];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    char fileresprobcor[FILENAMELENGTH];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double ***varpij;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      strcpy(fileresprob,"prob"); 
           fprintf(ficrespij,"# Age");    strcat(fileresprob,fileres);
           for(i=1; i<=nlstate;i++)    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
             for(j=1; j<=nlstate+ndeath;j++)      printf("Problem with resultfile: %s\n", fileresprob);
               fprintf(ficrespij," %1d-%1d",i,j);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
           fprintf(ficrespij,"\n");    }
            for (h=0; h<=nhstepm; h++){    strcpy(fileresprobcov,"probcov"); 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    strcat(fileresprobcov,fileres);
             for(i=1; i<=nlstate;i++)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               for(j=1; j<=nlstate+ndeath;j++)      printf("Problem with resultfile: %s\n", fileresprobcov);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
             fprintf(ficrespij,"\n");    }
              }    strcpy(fileresprobcor,"probcor"); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcat(fileresprobcor,fileres);
           fprintf(ficrespij,"\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         }      printf("Problem with resultfile: %s\n", fileresprobcor);
     }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   }    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fclose(ficrespij);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   /*---------- Forecasting ------------------*/    pstamp(ficresprob);
   if((stepm == 1) && (strcmp(model,".")==0)){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    fprintf(ficresprob,"# Age");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    pstamp(ficresprobcov);
   }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   else{    fprintf(ficresprobcov,"# Age");
     erreur=108;    pstamp(ficresprobcor);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcor,"# Age");
    
   
   /*---------- Health expectancies and variances ------------*/    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   strcpy(filerest,"t");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   strcat(filerest,fileres);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   if((ficrest=fopen(filerest,"w"))==NULL) {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      }  
   }   /* fprintf(ficresprob,"\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
   strcpy(filerese,"e");    xp=vector(1,npar);
   strcat(filerese,fileres);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    first=1;
     fprintf(ficgp,"\n# Routine varprob");
  strcpy(fileresv,"v");    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   strcat(fileresv,fileres);    fprintf(fichtm,"\n");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    file %s<br>\n",optionfilehtmcov);
   calagedate=-1;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   k=0;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   for(cptcov=1;cptcov<=i1;cptcov++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
       k=k+1;  standard deviations wide on each axis. <br>\
       fprintf(ficrest,"\n#****** ");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       for(j=1;j<=cptcoveff;j++)   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fprintf(ficrest,"******\n");  
     cov[1]=1;
       fprintf(ficreseij,"\n#****** ");    tj=cptcoveff;
       for(j=1;j<=cptcoveff;j++)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    j1=0;
       fprintf(ficreseij,"******\n");    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
       fprintf(ficresvij,"\n#****** ");        j1++;
       for(j=1;j<=cptcoveff;j++)        if  (cptcovn>0) {
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprob, "\n#********** Variable "); 
       fprintf(ficresvij,"******\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficresprobcov, "\n#********** Variable "); 
       oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficresprobcov, "**********\n#\n");
            
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficgp, "\n#********** Variable "); 
       oldm=oldms;savm=savms;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);          fprintf(ficgp, "**********\n#\n");
              
           
            fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficrest,"\n");          
           fprintf(ficresprobcor, "\n#********** Variable ");    
       epj=vector(1,nlstate+1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       for(age=bage; age <=fage ;age++){          fprintf(ficresprobcor, "**********\n#");    
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }
         if (popbased==1) {        
           for(i=1; i<=nlstate;i++)        for (age=bage; age<=fage; age ++){ 
             prlim[i][i]=probs[(int)age][i][k];          cov[2]=age;
         }          for (k=1; k<=cptcovn;k++) {
                    cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         fprintf(ficrest," %4.0f",age);          }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for (k=1; k<=cptcovprod;k++)
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          
           }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           epj[nlstate+1] +=epj[j];          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }          gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
         for(i=1, vepp=0.;i <=nlstate;i++)      
           for(j=1;j <=nlstate;j++)          for(theta=1; theta <=npar; theta++){
             vepp += vareij[i][j][(int)age];            for(i=1; i<=npar; i++)
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         for(j=1;j <=nlstate;j++){            
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         }            
         fprintf(ficrest,"\n");            k=0;
       }            for(i=1; i<= (nlstate); i++){
     }              for(j=1; j<=(nlstate+ndeath);j++){
   }                k=k+1;
 free_matrix(mint,1,maxwav,1,n);                gp[k]=pmmij[i][j];
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);              }
     free_vector(weight,1,n);            }
   fclose(ficreseij);            
   fclose(ficresvij);            for(i=1; i<=npar; i++)
   fclose(ficrest);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   fclose(ficpar);      
   free_vector(epj,1,nlstate+1);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              k=0;
   /*------- Variance limit prevalence------*/              for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   strcpy(fileresvpl,"vpl");                k=k+1;
   strcat(fileresvpl,fileres);                gm[k]=pmmij[i][j];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            }
     exit(0);       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(theta=1; theta <=npar; theta++)
       k=k+1;              trgradg[j][theta]=gradg[theta][j];
       fprintf(ficresvpl,"\n#****** ");          
       for(j=1;j<=cptcoveff;j++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       fprintf(ficresvpl,"******\n");          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       oldm=oldms;savm=savms;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }          pmij(pmmij,cov,ncovmodel,x,nlstate);
  }          
           k=0;
   fclose(ficresvpl);          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
   /*---------- End : free ----------------*/              k=k+1;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);              mu[k][(int) age]=pmmij[i][j];
              }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                varpij[i][j][(int)age] = doldm[i][j];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          /*printf("\n%d ",(int)age);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   free_matrix(matcov,1,npar,1,npar);            }*/
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);          fprintf(ficresprob,"\n%d ",(int)age);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   else   printf("End of Imach\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /*printf("Total time was %d uSec.\n", total_usecs);*/          }
   /*------ End -----------*/          i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
  end:              i=i++;
   /* chdir(pathcd);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  /*system("wgnuplot graph.plt");*/              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  /*system("../gp37mgw/wgnuplot graph.plt");*/              for (j=1; j<=i;j++){
  /*system("cd ../gp37mgw");*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  strcpy(plotcmd,GNUPLOTPROGRAM);              }
  strcat(plotcmd," ");            }
  strcat(plotcmd,optionfilegnuplot);          }/* end of loop for state */
  system(plotcmd);        } /* end of loop for age */
   
  /*#ifdef windows*/        /* Confidence intervalle of pij  */
   while (z[0] != 'q') {        /*
     /* chdir(path); */          fprintf(ficgp,"\nunset parametric;unset label");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     scanf("%s",z);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     if (z[0] == 'c') system("./imach");          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     else if (z[0] == 'e') system(optionfilehtm);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     else if (z[0] == 'q') exit(0);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   }        */
   /*#endif */  
 }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %ld for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); 
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* For V3*V2 Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) {
               h=1;
               codtab[h][k]=j;
               codtab[h][Tvar[k]]=j;
             }
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
    endfree:
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.138


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>