Diff for /imach/src/imach.c between versions 1.41.2.1 and 1.141

version 1.41.2.1, 2003/06/12 10:43:20 version 1.141, 2014/01/26 02:42:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.141  2014/01/26 02:42:01  brouard
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.140  2011/09/02 10:37:54  brouard
   first survey ("cross") where individuals from different ages are    Summary: times.h is ok with mingw32 now.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.139  2010/06/14 07:50:17  brouard
   second wave of interviews ("longitudinal") which measure each change    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   (if any) in individual health status.  Health expectancies are    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.138  2010/04/30 18:19:40  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.137  2010/04/29 18:11:38  brouard
   conditional to be observed in state i at the first wave. Therefore    (Module): Checking covariates for more complex models
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    than V1+V2. A lot of change to be done. Unstable.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.136  2010/04/26 20:30:53  brouard
   where the markup *Covariates have to be included here again* invites    (Module): merging some libgsl code. Fixing computation
   you to do it.  More covariates you add, slower the    of likelione (using inter/intrapolation if mle = 0) in order to
   convergence.    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.135  2009/10/29 15:33:14  brouard
   identical for each individual. Also, if a individual missed an    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.133  2009/07/06 10:21:25  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    just nforces
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.132  2009/07/06 08:22:05  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Many tings
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.130  2009/05/26 06:44:34  brouard
      (Module): Max Covariate is now set to 20 instead of 8. A
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    lot of cleaning with variables initialized to 0. Trying to make
            Institut national d'études démographiques, Paris.    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.129  2007/08/31 13:49:27  lievre
   It is copyrighted identically to a GNU software product, ie programme and    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.128  2006/06/30 13:02:05  brouard
   **********************************************************************/    (Module): Clarifications on computing e.j
    
 #include <math.h>    Revision 1.127  2006/04/28 18:11:50  brouard
 #include <stdio.h>    (Module): Yes the sum of survivors was wrong since
 #include <stdlib.h>    imach-114 because nhstepm was no more computed in the age
 #include <unistd.h>    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 #define MAXLINE 256    compute health expectancies (without variances) in a first step
 #define GNUPLOTPROGRAM "wgnuplot"    and then all the health expectancies with variances or standard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    deviation (needs data from the Hessian matrices) which slows the
 #define FILENAMELENGTH 80    computation.
 /*#define DEBUG*/    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 /*#define windows*/  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.126  2006/04/28 17:23:28  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    loop. Now we define nhstepma in the age loop.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Version 0.98h
   
 #define NINTERVMAX 8    Revision 1.125  2006/04/04 15:20:31  lievre
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Errors in calculation of health expectancies. Age was not initialized.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Forecasting file added.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.124  2006/03/22 17:13:53  lievre
 #define YEARM 12. /* Number of months per year */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define AGESUP 130    The log-likelihood is printed in the log file
 #define AGEBASE 40  
     Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 int erreur; /* Error number */    name. <head> headers where missing.
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    * imach.c (Module): Weights can have a decimal point as for
 int npar=NPARMAX;    English (a comma might work with a correct LC_NUMERIC environment,
 int nlstate=2; /* Number of live states */    otherwise the weight is truncated).
 int ndeath=1; /* Number of dead states */    Modification of warning when the covariates values are not 0 or
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    1.
 int popbased=0;    Version 0.98g
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.122  2006/03/20 09:45:41  brouard
 int maxwav; /* Maxim number of waves */    (Module): Weights can have a decimal point as for
 int jmin, jmax; /* min, max spacing between 2 waves */    English (a comma might work with a correct LC_NUMERIC environment,
 int mle, weightopt;    otherwise the weight is truncated).
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Modification of warning when the covariates values are not 0 or
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    1.
 double jmean; /* Mean space between 2 waves */    Version 0.98g
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.121  2006/03/16 17:45:01  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    * imach.c (Module): Comments concerning covariates added
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    * imach.c (Module): refinements in the computation of lli if
   char filerese[FILENAMELENGTH];    status=-2 in order to have more reliable computation if stepm is
  FILE  *ficresvij;    not 1 month. Version 0.98f
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.120  2006/03/16 15:10:38  lievre
   char fileresvpl[FILENAMELENGTH];    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define NR_END 1    not 1 month. Version 0.98f
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
 #define NRANSI    computed as likelihood omitting the logarithm. Version O.98e
 #define ITMAX 200  
     Revision 1.118  2006/03/14 18:20:07  brouard
 #define TOL 2.0e-4    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define CGOLD 0.3819660    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define ZEPS 1.0e-10    (Module): Function pstamp added
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): Version 0.98d
   
 #define GOLD 1.618034    Revision 1.117  2006/03/14 17:16:22  brouard
 #define GLIMIT 100.0    (Module): varevsij Comments added explaining the second
 #define TINY 1.0e-20    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 static double maxarg1,maxarg2;    (Module): Function pstamp added
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Version 0.98d
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.116  2006/03/06 10:29:27  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Variance-covariance wrong links and
 #define rint(a) floor(a+0.5)    varian-covariance of ej. is needed (Saito).
   
 static double sqrarg;    Revision 1.115  2006/02/27 12:17:45  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): One freematrix added in mlikeli! 0.98c
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.114  2006/02/26 12:57:58  brouard
 int imx;    (Module): Some improvements in processing parameter
 int stepm;    filename with strsep.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.113  2006/02/24 14:20:24  brouard
 int estepm;    (Module): Memory leaks checks with valgrind and:
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    datafile was not closed, some imatrix were not freed and on matrix
     allocation too.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.112  2006/01/30 09:55:26  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 double *weight;    (Module): Comments can be added in data file. Missing date values
 int **s; /* Status */    can be a simple dot '.'.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.108  2006/01/19 18:05:42  lievre
 {    Gnuplot problem appeared...
    char *s;                             /* pointer */    To be fixed
    int  l1, l2;                         /* length counters */  
     Revision 1.107  2006/01/19 16:20:37  brouard
    l1 = strlen( path );                 /* length of path */    Test existence of gnuplot in imach path
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.106  2006/01/19 13:24:36  brouard
    s = strrchr( path, '\\' );           /* find last / */    Some cleaning and links added in html output
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.105  2006/01/05 20:23:19  lievre
 #endif    *** empty log message ***
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.104  2005/09/30 16:11:43  lievre
       extern char       *getwd( );    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
       if ( getwd( dirc ) == NULL ) {    that the person is alive, then we can code his/her status as -2
 #else    (instead of missing=-1 in earlier versions) and his/her
       extern char       *getcwd( );    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    the healthy state at last known wave). Version is 0.98
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.103  2005/09/30 15:54:49  lievre
       }    (Module): sump fixed, loop imx fixed, and simplifications.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.102  2004/09/15 17:31:30  brouard
       s++;                              /* after this, the filename */    Add the possibility to read data file including tab characters.
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.101  2004/09/15 10:38:38  brouard
       strcpy( name, s );                /* save file name */    Fix on curr_time
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.100  2004/07/12 18:29:06  brouard
    }    Add version for Mac OS X. Just define UNIX in Makefile
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.99  2004/06/05 08:57:40  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    *** empty log message ***
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.98  2004/05/16 15:05:56  brouard
 #endif    New version 0.97 . First attempt to estimate force of mortality
    s = strrchr( name, '.' );            /* find last / */    directly from the data i.e. without the need of knowing the health
    s++;    state at each age, but using a Gompertz model: log u =a + b*age .
    strcpy(ext,s);                       /* save extension */    This is the basic analysis of mortality and should be done before any
    l1= strlen( name);    other analysis, in order to test if the mortality estimated from the
    l2= strlen( s)+1;    cross-longitudinal survey is different from the mortality estimated
    strncpy( finame, name, l1-l2);    from other sources like vital statistic data.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
     former routines in order to include the new code within the former code.
 /******************************************/  
     The output is very simple: only an estimate of the intercept and of
 void replace(char *s, char*t)    the slope with 95% confident intervals.
 {  
   int i;    Current limitations:
   int lg=20;    A) Even if you enter covariates, i.e. with the
   i=0;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   lg=strlen(t);    B) There is no computation of Life Expectancy nor Life Table.
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.97  2004/02/20 13:25:42  lievre
     if (t[i]== '\\') s[i]='/';    Version 0.96d. Population forecasting command line is (temporarily)
   }    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 int nbocc(char *s, char occ)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   int i,j=0;  
   int lg=20;    Revision 1.95  2003/07/08 07:54:34  brouard
   i=0;    * imach.c (Repository):
   lg=strlen(s);    (Repository): Using imachwizard code to output a more meaningful covariance
   for(i=0; i<= lg; i++) {    matrix (cov(a12,c31) instead of numbers.
   if  (s[i] == occ ) j++;  
   }    Revision 1.94  2003/06/27 13:00:02  brouard
   return j;    Just cleaning
 }  
     Revision 1.93  2003/06/25 16:33:55  brouard
 void cutv(char *u,char *v, char*t, char occ)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   int i,lg,j,p=0;    (Module): Version 0.96b
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.92  2003/06/25 16:30:45  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
   
   lg=strlen(t);    Revision 1.91  2003/06/25 15:30:29  brouard
   for(j=0; j<p; j++) {    * imach.c (Repository): Duplicated warning errors corrected.
     (u[j] = t[j]);    (Repository): Elapsed time after each iteration is now output. It
   }    helps to forecast when convergence will be reached. Elapsed time
      u[p]='\0';    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.90  2003/06/24 12:34:15  brouard
   }    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /********************** nrerror ********************/  
     Revision 1.89  2003/06/24 12:30:52  brouard
 void nrerror(char error_text[])    (Module): Some bugs corrected for windows. Also, when
 {    mle=-1 a template is output in file "or"mypar.txt with the design
   fprintf(stderr,"ERREUR ...\n");    of the covariance matrix to be input.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.86  2003/06/17 20:04:08  brouard
   if (!v) nrerror("allocation failure in vector");    (Module): Change position of html and gnuplot routines and added
   return v-nl+NR_END;    routine fileappend.
 }  
     Revision 1.85  2003/06/17 13:12:43  brouard
 /************************ free vector ******************/    * imach.c (Repository): Check when date of death was earlier that
 void free_vector(double*v, int nl, int nh)    current date of interview. It may happen when the death was just
 {    prior to the death. In this case, dh was negative and likelihood
   free((FREE_ARG)(v+nl-NR_END));    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /************************ivector *******************************/    (Repository): Because some people have very long ID (first column)
 int *ivector(long nl,long nh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   int *v;    truncation)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Repository): No more line truncation errors.
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /******************free ivector **************************/    many times. Probs is memory consuming and must be used with
 void free_ivector(int *v, long nl, long nh)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.82  2003/06/05 15:57:20  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Add log in  imach.c and  fullversion number is now printed.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  */
   int **m;  /*
       Interpolated Markov Chain
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Short summary of the programme:
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    This program computes Healthy Life Expectancies from
   m -= nrl;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   /* allocate rows and set pointers to them */    case of a health survey which is our main interest) -2- at least a
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    second wave of interviews ("longitudinal") which measure each change
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (if any) in individual health status.  Health expectancies are
   m[nrl] += NR_END;    computed from the time spent in each health state according to a
   m[nrl] -= ncl;    model. More health states you consider, more time is necessary to reach the
      Maximum Likelihood of the parameters involved in the model.  The
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    simplest model is the multinomial logistic model where pij is the
      probability to be observed in state j at the second wave
   /* return pointer to array of pointers to rows */    conditional to be observed in state i at the first wave. Therefore
   return m;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /****************** free_imatrix *************************/    where the markup *Covariates have to be included here again* invites
 void free_imatrix(m,nrl,nrh,ncl,nch)    you to do it.  More covariates you add, slower the
       int **m;    convergence.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    identical for each individual. Also, if a individual missed an
   free((FREE_ARG) (m+nrl-NR_END));    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 /******************* matrix *******************************/    hPijx is the probability to be observed in state i at age x+h
 double **matrix(long nrl, long nrh, long ncl, long nch)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    states. This elementary transition (by month, quarter,
   double **m;    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    and the contribution of each individual to the likelihood is simply
   if (!m) nrerror("allocation failure 1 in matrix()");    hPijx.
   m += NR_END;  
   m -= nrl;    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   m[nrl] += NR_END;             Institut national d'études démographiques, Paris.
   m[nrl] -= ncl;    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    It is copyrighted identically to a GNU software product, ie programme and
   return m;    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /*************************free matrix ************************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 {    
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    **********************************************************************/
   free((FREE_ARG)(m+nrl-NR_END));  /*
 }    main
     read parameterfile
 /******************* ma3x *******************************/    read datafile
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    concatwav
 {    freqsummary
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if (mle >= 1)
   double ***m;      mlikeli
     print results files
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if mle==1 
   if (!m) nrerror("allocation failure 1 in matrix()");       computes hessian
   m += NR_END;    read end of parameter file: agemin, agemax, bage, fage, estepm
   m -= nrl;        begin-prev-date,...
     open gnuplot file
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    open html file
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    period (stable) prevalence
   m[nrl] += NR_END;     for age prevalim()
   m[nrl] -= ncl;    h Pij x
     variance of p varprob
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Variance-covariance of DFLE
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    prevalence()
   m[nrl][ncl] += NR_END;     movingaverage()
   m[nrl][ncl] -= nll;    varevsij() 
   for (j=ncl+1; j<=nch; j++)    if popbased==1 varevsij(,popbased)
     m[nrl][j]=m[nrl][j-1]+nlay;    total life expectancies
      Variance of period (stable) prevalence
   for (i=nrl+1; i<=nrh; i++) {   end
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  */
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  
   }  
   return m;   
 }  #include <math.h>
   #include <stdio.h>
 /*************************free ma3x ************************/  #include <stdlib.h>
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  #include <string.h>
 {  #include <unistd.h>
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #include <limits.h>
   free((FREE_ARG)(m+nrl-NR_END));  #include <sys/types.h>
 }  #include <sys/stat.h>
   #include <errno.h>
 /***************** f1dim *************************/  extern int errno;
 extern int ncom;  
 extern double *pcom,*xicom;  #ifdef LINUX
 extern double (*nrfunc)(double []);  #include <time.h>
    #include "timeval.h"
 double f1dim(double x)  #else
 {  #include <sys/time.h>
   int j;  #endif
   double f;  
   double *xt;  #ifdef GSL
    #include <gsl/gsl_errno.h>
   xt=vector(1,ncom);  #include <gsl/gsl_multimin.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #endif
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /* #include <libintl.h> */
   return f;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   int iter;  #define FILENAMELENGTH 132
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double ftemp;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
    #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define NINTERVMAX 8
   x=w=v=bx;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   fw=fv=fx=(*f)(x);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   for (iter=1;iter<=ITMAX;iter++) {  #define NCOVMAX 20 /* Maximum number of covariates */
     xm=0.5*(a+b);  #define MAXN 20000
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define YEARM 12. /* Number of months per year */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define AGESUP 130
     printf(".");fflush(stdout);  #define AGEBASE 40
 #ifdef DEBUG  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #ifdef UNIX
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define DIRSEPARATOR '/'
 #endif  #define CHARSEPARATOR "/"
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define ODIRSEPARATOR '\\'
       *xmin=x;  #else
       return fx;  #define DIRSEPARATOR '\\'
     }  #define CHARSEPARATOR "\\"
     ftemp=fu;  #define ODIRSEPARATOR '/'
     if (fabs(e) > tol1) {  #endif
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  /* $Id$ */
       p=(x-v)*q-(x-w)*r;  /* $State$ */
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  char version[]="Imach version 0.98n, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Sicentific Research 25293121)";
       q=fabs(q);  char fullversion[]="$Revision$ $Date$"; 
       etemp=e;  char strstart[80];
       e=d;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  int nvar=0, nforce=0; /* Number of variables, number of forces */
       else {  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
         d=p/q;  int npar=NPARMAX;
         u=x+d;  int nlstate=2; /* Number of live states */
         if (u-a < tol2 || b-u < tol2)  int ndeath=1; /* Number of dead states */
           d=SIGN(tol1,xm-x);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       }  int popbased=0;
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  int *wav; /* Number of waves for this individuual 0 is possible */
     }  int maxwav=0; /* Maxim number of waves */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     fu=(*f)(u);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     if (fu <= fx) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       if (u >= x) a=x; else b=x;                     to the likelihood and the sum of weights (done by funcone)*/
       SHFT(v,w,x,u)  int mle=1, weightopt=0;
         SHFT(fv,fw,fx,fu)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         } else {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           if (u < x) a=u; else b=u;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           if (fu <= fw || w == x) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
             v=w;  double jmean=1; /* Mean space between 2 waves */
             w=u;  double **oldm, **newm, **savm; /* Working pointers to matrices */
             fv=fw;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
             fw=fu;  /*FILE *fic ; */ /* Used in readdata only */
           } else if (fu <= fv || v == x || v == w) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
             v=u;  FILE *ficlog, *ficrespow;
             fv=fu;  int globpr=0; /* Global variable for printing or not */
           }  double fretone; /* Only one call to likelihood */
         }  long ipmx=0; /* Number of contributions */
   }  double sw; /* Sum of weights */
   nrerror("Too many iterations in brent");  char filerespow[FILENAMELENGTH];
   *xmin=x;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   return fx;  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /****************** mnbrak ***********************/  FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char filerese[FILENAMELENGTH];
             double (*func)(double))  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   double ulim,u,r,q, dum;  FILE *ficrescveij;
   double fu;  char filerescve[FILENAMELENGTH];
    FILE  *ficresvij;
   *fa=(*func)(*ax);  char fileresv[FILENAMELENGTH];
   *fb=(*func)(*bx);  FILE  *ficresvpl;
   if (*fb > *fa) {  char fileresvpl[FILENAMELENGTH];
     SHFT(dum,*ax,*bx,dum)  char title[MAXLINE];
       SHFT(dum,*fb,*fa,dum)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   *cx=(*bx)+GOLD*(*bx-*ax);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   *fc=(*func)(*cx);  char command[FILENAMELENGTH];
   while (*fb > *fc) {  int  outcmd=0;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char filelog[FILENAMELENGTH]; /* Log file */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char filerest[FILENAMELENGTH];
     if ((*bx-u)*(u-*cx) > 0.0) {  char fileregp[FILENAMELENGTH];
       fu=(*func)(u);  char popfile[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
           SHFT(*fb,*fc,fu,(*func)(u))  struct timezone tzp;
           }  extern int gettimeofday();
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
       u=ulim;  long time_value;
       fu=(*func)(u);  extern long time();
     } else {  char strcurr[80], strfor[80];
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  char *endptr;
     }  long lval;
     SHFT(*ax,*bx,*cx,u)  double dval;
       SHFT(*fa,*fb,*fc,fu)  
       }  #define NR_END 1
 }  #define FREE_ARG char*
   #define FTOL 1.0e-10
 /*************** linmin ************************/  
   #define NRANSI 
 int ncom;  #define ITMAX 200 
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  #define TOL 2.0e-4 
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   double brent(double ax, double bx, double cx,  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  #define GOLD 1.618034 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define GLIMIT 100.0 
               double *fc, double (*func)(double));  #define TINY 1.0e-20 
   int j;  
   double xx,xmin,bx,ax;  static double maxarg1,maxarg2;
   double fx,fb,fa;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   ncom=n;    
   pcom=vector(1,n);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   xicom=vector(1,n);  #define rint(a) floor(a+0.5)
   nrfunc=func;  
   for (j=1;j<=n;j++) {  static double sqrarg;
     pcom[j]=p[j];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     xicom[j]=xi[j];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   }  int agegomp= AGEGOMP;
   ax=0.0;  
   xx=1.0;  int imx; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int stepm=1;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /* Stepm, step in month: minimum step interpolation*/
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int estepm;
 #endif  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  int m,nb;
     p[j] += xi[j];  long *num;
   }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   free_vector(xicom,1,n);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free_vector(pcom,1,n);  double **pmmij, ***probs;
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double *weight;
             double (*func)(double []))  int **s; /* Status */
 {  double *agedc;
   void linmin(double p[], double xi[], int n, double *fret,  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
               double (*func)(double []));                    * covar=matrix(0,NCOVMAX,1,n); 
   int i,ibig,j;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   double del,t,*pt,*ptt,*xit;  double  idx; 
   double fp,fptt;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   double *xits;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   pt=vector(1,n);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   ptt=vector(1,n);  double *lsurv, *lpop, *tpop;
   xit=vector(1,n);  
   xits=vector(1,n);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *fret=(*func)(p);  double ftolhess; /* Tolerance for computing hessian */
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /**************** split *************************/
     fp=(*fret);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     ibig=0;  {
     del=0.0;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     for (i=1;i<=n;i++)    */ 
       printf(" %d %.12f",i, p[i]);    char  *ss;                            /* pointer */
     printf("\n");    int   l1, l2;                         /* length counters */
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    l1 = strlen(path );                   /* length of path */
       fptt=(*fret);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #ifdef DEBUG    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       printf("fret=%lf \n",*fret);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 #endif      strcpy( name, path );               /* we got the fullname name because no directory */
       printf("%d",i);fflush(stdout);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       linmin(p,xit,n,fret,func);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (fabs(fptt-(*fret)) > del) {      /* get current working directory */
         del=fabs(fptt-(*fret));      /*    extern  char* getcwd ( char *buf , int len);*/
         ibig=i;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       }        return( GLOCK_ERROR_GETCWD );
 #ifdef DEBUG      }
       printf("%d %.12e",i,(*fret));      /* got dirc from getcwd*/
       for (j=1;j<=n;j++) {      printf(" DIRC = %s \n",dirc);
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    } else {                              /* strip direcotry from path */
         printf(" x(%d)=%.12e",j,xit[j]);      ss++;                               /* after this, the filename */
       }      l2 = strlen( ss );                  /* length of filename */
       for(j=1;j<=n;j++)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         printf(" p=%.12e",p[j]);      strcpy( name, ss );         /* save file name */
       printf("\n");      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 #endif      dirc[l1-l2] = 0;                    /* add zero */
     }      printf(" DIRC2 = %s \n",dirc);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    }
 #ifdef DEBUG    /* We add a separator at the end of dirc if not exists */
       int k[2],l;    l1 = strlen( dirc );                  /* length of directory */
       k[0]=1;    if( dirc[l1-1] != DIRSEPARATOR ){
       k[1]=-1;      dirc[l1] =  DIRSEPARATOR;
       printf("Max: %.12e",(*func)(p));      dirc[l1+1] = 0; 
       for (j=1;j<=n;j++)      printf(" DIRC3 = %s \n",dirc);
         printf(" %.12e",p[j]);    }
       printf("\n");    ss = strrchr( name, '.' );            /* find last / */
       for(l=0;l<=1;l++) {    if (ss >0){
         for (j=1;j<=n;j++) {      ss++;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      strcpy(ext,ss);                     /* save extension */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      l1= strlen( name);
         }      l2= strlen(ss)+1;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      strncpy( finame, name, l1-l2);
       }      finame[l1-l2]= 0;
 #endif    }
   
     return( 0 );                          /* we're done */
       free_vector(xit,1,n);  }
       free_vector(xits,1,n);  
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /******************************************/
       return;  
     }  void replace_back_to_slash(char *s, char*t)
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  {
     for (j=1;j<=n;j++) {    int i;
       ptt[j]=2.0*p[j]-pt[j];    int lg=0;
       xit[j]=p[j]-pt[j];    i=0;
       pt[j]=p[j];    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
     fptt=(*func)(ptt);      (s[i] = t[i]);
     if (fptt < fp) {      if (t[i]== '\\') s[i]='/';
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    }
       if (t < 0.0) {  }
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  char *trimbb(char *out, char *in)
           xi[j][ibig]=xi[j][n];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
           xi[j][n]=xit[j];    char *s;
         }    s=out;
 #ifdef DEBUG    while (*in != '\0'){
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         for(j=1;j<=n;j++)        in++;
           printf(" %.12e",xit[j]);      }
         printf("\n");      *out++ = *in++;
 #endif    }
       }    *out='\0';
     }    return s;
   }  }
 }  
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 /**** Prevalence limit ****************/  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 {       gives blocc="abcdef2ghi" and alocc="j".
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit       If occ is not found blocc is null and alocc is equal to in. Returns alocc
      matrix by transitions matrix until convergence is reached */    */
     char *s, *t;
   int i, ii,j,k;    t=in;s=in;
   double min, max, maxmin, maxmax,sumnew=0.;    while (*in != '\0'){
   double **matprod2();      while( *in == occ){
   double **out, cov[NCOVMAX], **pmij();        *blocc++ = *in++;
   double **newm;        s=in;
   double agefin, delaymax=50 ; /* Max number of years to converge */      }
       *blocc++ = *in++;
   for (ii=1;ii<=nlstate+ndeath;ii++)    }
     for (j=1;j<=nlstate+ndeath;j++){    if (s == t) /* occ not found */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      *(blocc-(in-s))='\0';
     }    else
       *(blocc-(in-s)-1)='\0';
    cov[1]=1.;    in=s;
      while ( *in != '\0'){
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      *alocc++ = *in++;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    }
     newm=savm;  
     /* Covariates have to be included here again */    *alocc='\0';
      cov[2]=agefin;    return s;
    }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int nbocc(char *s, char occ)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    int i,j=0;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int lg=20;
       for (k=1; k<=cptcovprod;k++)    i=0;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    lg=strlen(s);
     for(i=0; i<= lg; i++) {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    if  (s[i] == occ ) j++;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return j;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /* void cutv(char *u,char *v, char*t, char occ) */
     oldm=newm;  /* { */
     maxmax=0.;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for(j=1;j<=nlstate;j++){  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       min=1.;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       max=0.;  /*   int i,lg,j,p=0; */
       for(i=1; i<=nlstate; i++) {  /*   i=0; */
         sumnew=0;  /*   lg=strlen(t); */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /*   for(j=0; j<=lg-1; j++) { */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
         max=FMAX(max,prlim[i][j]);  /*   } */
         min=FMIN(min,prlim[i][j]);  
       }  /*   for(j=0; j<p; j++) { */
       maxmin=max-min;  /*     (u[j] = t[j]); */
       maxmax=FMAX(maxmax,maxmin);  /*   } */
     }  /*      u[p]='\0'; */
     if(maxmax < ftolpl){  
       return prlim;  /*    for(j=0; j<= lg; j++) { */
     }  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   }  /*   } */
 }  /* } */
   
 /*************** transition probabilities ***************/  /********************** nrerror ********************/
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  void nrerror(char error_text[])
 {  {
   double s1, s2;    fprintf(stderr,"ERREUR ...\n");
   /*double t34;*/    fprintf(stderr,"%s\n",error_text);
   int i,j,j1, nc, ii, jj;    exit(EXIT_FAILURE);
   }
     for(i=1; i<= nlstate; i++){  /*********************** vector *******************/
     for(j=1; j<i;j++){  double *vector(int nl, int nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         /*s2 += param[i][j][nc]*cov[nc];*/    double *v;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!v) nrerror("allocation failure in vector");
       }    return v-nl+NR_END;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /************************ free vector ******************/
     for(j=i+1; j<=nlstate+ndeath;j++){  void free_vector(double*v, int nl, int nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free((FREE_ARG)(v+nl-NR_END));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
   }  {
     /*ps[3][2]=1;*/    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for(i=1; i<= nlstate; i++){    if (!v) nrerror("allocation failure in ivector");
      s1=0;    return v-nl+NR_END;
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /******************free ivector **************************/
       s1+=exp(ps[i][j]);  void free_ivector(int *v, long nl, long nh)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    free((FREE_ARG)(v+nl-NR_END));
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /************************lvector *******************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  long *lvector(long nl,long nh)
   } /* end i */  {
     long *v;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!v) nrerror("allocation failure in ivector");
       ps[ii][jj]=0;    return v-nl+NR_END;
       ps[ii][ii]=1;  }
     }  
   }  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(v+nl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /******************* imatrix *******************************/
     printf("\n ");  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     printf("\n ");printf("%lf ",cov[2]);*/  { 
 /*    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    int **m; 
   goto end;*/    
     return ps;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /**************** Product of 2 matrices ******************/    m += NR_END; 
     m -= nrl; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    
 {    
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    /* allocate rows and set pointers to them */ 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   /* in, b, out are matrice of pointers which should have been initialized    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      before: only the contents of out is modified. The function returns    m[nrl] += NR_END; 
      a pointer to pointers identical to out */    m[nrl] -= ncl; 
   long i, j, k;    
   for(i=nrl; i<= nrh; i++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* return pointer to array of pointers to rows */ 
         out[i][k] +=in[i][j]*b[j][k];    return m; 
   } 
   return out;  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /************* Higher Matrix Product ***************/        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    free((FREE_ARG) (m+nrl-NR_END)); 
      duration (i.e. until  } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /******************* matrix *******************************/
      (typically every 2 years instead of every month which is too big).  double **matrix(long nrl, long nrh, long ncl, long nch)
      Model is determined by parameters x and covariates have to be  {
      included manually here.    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
      */  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i, j, d, h, k;    if (!m) nrerror("allocation failure 1 in matrix()");
   double **out, cov[NCOVMAX];    m += NR_END;
   double **newm;    m -= nrl;
   
   /* Hstepm could be zero and should return the unit matrix */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   for (i=1;i<=nlstate+ndeath;i++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for (j=1;j<=nlstate+ndeath;j++){    m[nrl] += NR_END;
       oldm[i][j]=(i==j ? 1.0 : 0.0);    m[nrl] -= ncl;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return m;
   for(h=1; h <=nhstepm; h++){    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     for(d=1; d <=hstepm; d++){     */
       newm=savm;  }
       /* Covariates have to be included here again */  
       cov[1]=1.;  /*************************free matrix ************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG)(m+nrl-NR_END));
       for (k=1; k<=cptcovprod;k++)  }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    double ***m;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       oldm=newm;    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     for(i=1; i<=nlstate+ndeath; i++)    m -= nrl;
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
          */    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
   } /* end h */  
   return po;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 /*************** log-likelihood *************/    m[nrl][ncl] += NR_END;
 double func( double *x)    m[nrl][ncl] -= nll;
 {    for (j=ncl+1; j<=nch; j++) 
   int i, ii, j, k, mi, d, kk;      m[nrl][j]=m[nrl][j-1]+nlay;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    
   double **out;    for (i=nrl+1; i<=nrh; i++) {
   double sw; /* Sum of weights */      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double lli; /* Individual log likelihood */      for (j=ncl+1; j<=nch; j++) 
   long ipmx;        m[i][j]=m[i][j-1]+nlay;
   /*extern weight */    }
   /* We are differentiating ll according to initial status */    return m; 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   /*for(i=1;i<imx;i++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     printf(" %d\n",s[4][i]);    */
   */  }
   cov[1]=1.;  
   /*************************free ma3x ************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  {
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(mi=1; mi<= wav[i]-1; mi++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m+nrl-NR_END));
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /*************** function subdirf ***********/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  char *subdirf(char fileres[])
         for (kk=1; kk<=cptcovage;kk++) {  {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /* Caution optionfilefiname is hidden */
         }    strcpy(tmpout,optionfilefiname);
            strcat(tmpout,"/"); /* Add to the right */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    strcat(tmpout,fileres);
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    return tmpout;
         savm=oldm;  }
         oldm=newm;  
          /*************** function subdirf2 ***********/
          char *subdirf2(char fileres[], char *preop)
       } /* end mult */  {
          
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    /* Caution optionfilefiname is hidden */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    strcpy(tmpout,optionfilefiname);
       ipmx +=1;    strcat(tmpout,"/");
       sw += weight[i];    strcat(tmpout,preop);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    strcat(tmpout,fileres);
     } /* end of wave */    return tmpout;
   } /* end of individual */  }
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*************** function subdirf3 ***********/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  char *subdirf3(char fileres[], char *preop, char *preop2)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /*********** Maximum Likelihood Estimation ***************/    strcat(tmpout,preop);
     strcat(tmpout,preop2);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    strcat(tmpout,fileres);
 {    return tmpout;
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  /***************** f1dim *************************/
   xi=matrix(1,npar,1,npar);  extern int ncom; 
   for (i=1;i<=npar;i++)  extern double *pcom,*xicom;
     for (j=1;j<=npar;j++)  extern double (*nrfunc)(double []); 
       xi[i][j]=(i==j ? 1.0 : 0.0);   
   printf("Powell\n");  double f1dim(double x) 
   powell(p,xi,npar,ftol,&iter,&fret,func);  { 
     int j; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double f;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double *xt; 
    
 }    xt=vector(1,ncom); 
     for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /**** Computes Hessian and covariance matrix ***/    f=(*nrfunc)(xt); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    free_vector(xt,1,ncom); 
 {    return f; 
   double  **a,**y,*x,pd;  } 
   double **hess;  
   int i, j,jk;  /*****************brent *************************/
   int *indx;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   double hessii(double p[], double delta, int theta, double delti[]);    int iter; 
   double hessij(double p[], double delti[], int i, int j);    double a,b,d,etemp;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double fu,fv,fw,fx;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   hess=matrix(1,npar,1,npar);    double e=0.0; 
    
   printf("\nCalculation of the hessian matrix. Wait...\n");    a=(ax < cx ? ax : cx); 
   for (i=1;i<=npar;i++){    b=(ax > cx ? ax : cx); 
     printf("%d",i);fflush(stdout);    x=w=v=bx; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    fw=fv=fx=(*f)(x); 
     /*printf(" %f ",p[i]);*/    for (iter=1;iter<=ITMAX;iter++) { 
     /*printf(" %lf ",hess[i][i]);*/      xm=0.5*(a+b); 
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
        /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (i=1;i<=npar;i++) {      printf(".");fflush(stdout);
     for (j=1;j<=npar;j++)  {      fprintf(ficlog,".");fflush(ficlog);
       if (j>i) {  #ifdef DEBUG
         printf(".%d%d",i,j);fflush(stdout);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         hess[i][j]=hessij(p,delti,i,j);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         hess[j][i]=hess[i][j];          /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         /*printf(" %lf ",hess[i][j]);*/  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
   }        return fx; 
   printf("\n");      } 
       ftemp=fu;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      if (fabs(e) > tol1) { 
          r=(x-w)*(fx-fv); 
   a=matrix(1,npar,1,npar);        q=(x-v)*(fx-fw); 
   y=matrix(1,npar,1,npar);        p=(x-v)*q-(x-w)*r; 
   x=vector(1,npar);        q=2.0*(q-r); 
   indx=ivector(1,npar);        if (q > 0.0) p = -p; 
   for (i=1;i<=npar;i++)        q=fabs(q); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        etemp=e; 
   ludcmp(a,npar,indx,&pd);        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (j=1;j<=npar;j++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     for (i=1;i<=npar;i++) x[i]=0;        else { 
     x[j]=1;          d=p/q; 
     lubksb(a,npar,indx,x);          u=x+d; 
     for (i=1;i<=npar;i++){          if (u-a < tol2 || b-u < tol2) 
       matcov[i][j]=x[i];            d=SIGN(tol1,xm-x); 
     }        } 
   }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   printf("\n#Hessian matrix#\n");      } 
   for (i=1;i<=npar;i++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     for (j=1;j<=npar;j++) {      fu=(*f)(u); 
       printf("%.3e ",hess[i][j]);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     printf("\n");        SHFT(v,w,x,u) 
   }          SHFT(fv,fw,fx,fu) 
           } else { 
   /* Recompute Inverse */            if (u < x) a=u; else b=u; 
   for (i=1;i<=npar;i++)            if (fu <= fw || w == x) { 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];              v=w; 
   ludcmp(a,npar,indx,&pd);              w=u; 
               fv=fw; 
   /*  printf("\n#Hessian matrix recomputed#\n");              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
   for (j=1;j<=npar;j++) {              v=u; 
     for (i=1;i<=npar;i++) x[i]=0;              fv=fu; 
     x[j]=1;            } 
     lubksb(a,npar,indx,x);          } 
     for (i=1;i<=npar;i++){    } 
       y[i][j]=x[i];    nrerror("Too many iterations in brent"); 
       printf("%.3e ",y[i][j]);    *xmin=x; 
     }    return fx; 
     printf("\n");  } 
   }  
   */  /****************** mnbrak ***********************/
   
   free_matrix(a,1,npar,1,npar);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   free_matrix(y,1,npar,1,npar);              double (*func)(double)) 
   free_vector(x,1,npar);  { 
   free_ivector(indx,1,npar);    double ulim,u,r,q, dum;
   free_matrix(hess,1,npar,1,npar);    double fu; 
    
     *fa=(*func)(*ax); 
 }    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
 /*************** hessian matrix ****************/      SHFT(dum,*ax,*bx,dum) 
 double hessii( double x[], double delta, int theta, double delti[])        SHFT(dum,*fb,*fa,dum) 
 {        } 
   int i;    *cx=(*bx)+GOLD*(*bx-*ax); 
   int l=1, lmax=20;    *fc=(*func)(*cx); 
   double k1,k2;    while (*fb > *fc) { 
   double p2[NPARMAX+1];      r=(*bx-*ax)*(*fb-*fc); 
   double res;      q=(*bx-*cx)*(*fb-*fa); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double fx;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   int k=0,kmax=10;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   double l1;      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
   fx=func(x);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];        fu=(*func)(u); 
   for(l=0 ; l <=lmax; l++){        if (fu < *fc) { 
     l1=pow(10,l);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     delts=delt;            SHFT(*fb,*fc,fu,(*func)(u)) 
     for(k=1 ; k <kmax; k=k+1){            } 
       delt = delta*(l1*k);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       p2[theta]=x[theta] +delt;        u=ulim; 
       k1=func(p2)-fx;        fu=(*func)(u); 
       p2[theta]=x[theta]-delt;      } else { 
       k2=func(p2)-fx;        u=(*cx)+GOLD*(*cx-*bx); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        fu=(*func)(u); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } 
            SHFT(*ax,*bx,*cx,u) 
 #ifdef DEBUG        SHFT(*fa,*fb,*fc,fu) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        } 
 #endif  } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*************** linmin ************************/
         k=kmax;  
       }  int ncom; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double *pcom,*xicom;
         k=kmax; l=lmax*10.;  double (*nrfunc)(double []); 
       }   
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         delts=delt;  { 
       }    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
   delti[theta]=delts;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   return res;                double *fc, double (*func)(double)); 
      int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 double hessij( double x[], double delti[], int thetai,int thetaj)   
 {    ncom=n; 
   int i;    pcom=vector(1,n); 
   int l=1, l1, lmax=20;    xicom=vector(1,n); 
   double k1,k2,k3,k4,res,fx;    nrfunc=func; 
   double p2[NPARMAX+1];    for (j=1;j<=n;j++) { 
   int k;      pcom[j]=p[j]; 
       xicom[j]=xi[j]; 
   fx=func(x);    } 
   for (k=1; k<=2; k++) {    ax=0.0; 
     for (i=1;i<=npar;i++) p2[i]=x[i];    xx=1.0; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     k1=func(p2)-fx;  #ifdef DEBUG
      printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetai]=x[thetai]+delti[thetai]/k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  #endif
     k2=func(p2)-fx;    for (j=1;j<=n;j++) { 
        xi[j] *= xmin; 
     p2[thetai]=x[thetai]-delti[thetai]/k;      p[j] += xi[j]; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    } 
     k3=func(p2)-fx;    free_vector(xicom,1,n); 
      free_vector(pcom,1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  char *asc_diff_time(long time_sec, char ascdiff[])
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  {
 #ifdef DEBUG    long sec_left, days, hours, minutes;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    days = (time_sec) / (60*60*24);
 #endif    sec_left = (time_sec) % (60*60*24);
   }    hours = (sec_left) / (60*60) ;
   return res;    sec_left = (sec_left) %(60*60);
 }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
 /************** Inverse of matrix **************/    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 void ludcmp(double **a, int n, int *indx, double *d)    return ascdiff;
 {  }
   int i,imax,j,k;  
   double big,dum,sum,temp;  /*************** powell ************************/
   double *vv;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
   vv=vector(1,n);  { 
   *d=1.0;    void linmin(double p[], double xi[], int n, double *fret, 
   for (i=1;i<=n;i++) {                double (*func)(double [])); 
     big=0.0;    int i,ibig,j; 
     for (j=1;j<=n;j++)    double del,t,*pt,*ptt,*xit;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double fp,fptt;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    double *xits;
     vv[i]=1.0/big;    int niterf, itmp;
   }  
   for (j=1;j<=n;j++) {    pt=vector(1,n); 
     for (i=1;i<j;i++) {    ptt=vector(1,n); 
       sum=a[i][j];    xit=vector(1,n); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    xits=vector(1,n); 
       a[i][j]=sum;    *fret=(*func)(p); 
     }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     big=0.0;    for (*iter=1;;++(*iter)) { 
     for (i=j;i<=n;i++) {      fp=(*fret); 
       sum=a[i][j];      ibig=0; 
       for (k=1;k<j;k++)      del=0.0; 
         sum -= a[i][k]*a[k][j];      last_time=curr_time;
       a[i][j]=sum;      (void) gettimeofday(&curr_time,&tzp);
       if ( (dum=vv[i]*fabs(sum)) >= big) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         big=dum;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
         imax=i;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       }     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     if (j != imax) {        fprintf(ficlog," %d %.12lf",i, p[i]);
       for (k=1;k<=n;k++) {        fprintf(ficrespow," %.12lf", p[i]);
         dum=a[imax][k];      }
         a[imax][k]=a[j][k];      printf("\n");
         a[j][k]=dum;      fprintf(ficlog,"\n");
       }      fprintf(ficrespow,"\n");fflush(ficrespow);
       *d = -(*d);      if(*iter <=3){
       vv[imax]=vv[j];        tm = *localtime(&curr_time.tv_sec);
     }        strcpy(strcurr,asctime(&tm));
     indx[j]=imax;  /*       asctime_r(&tm,strcurr); */
     if (a[j][j] == 0.0) a[j][j]=TINY;        forecast_time=curr_time; 
     if (j != n) {        itmp = strlen(strcurr);
       dum=1.0/(a[j][j]);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          strcurr[itmp-1]='\0';
     }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   free_vector(vv,1,n);  /* Doesn't work */        for(niterf=10;niterf<=30;niterf+=10){
 ;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 }          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 void lubksb(double **a, int n, int *indx, double b[])          strcpy(strfor,asctime(&tmf));
 {          itmp = strlen(strfor);
   int i,ii=0,ip,j;          if(strfor[itmp-1]=='\n')
   double sum;          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=1;i<=n;i++) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     ip=indx[i];        }
     sum=b[ip];      }
     b[ip]=b[i];      for (i=1;i<=n;i++) { 
     if (ii)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fptt=(*fret); 
     else if (sum) ii=i;  #ifdef DEBUG
     b[i]=sum;        printf("fret=%lf \n",*fret);
   }        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=n;i>=1;i--) {  #endif
     sum=b[i];        printf("%d",i);fflush(stdout);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        fprintf(ficlog,"%d",i);fflush(ficlog);
     b[i]=sum/a[i][i];        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
 /************ Frequencies ********************/        } 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  #ifdef DEBUG
 {  /* Some frequencies */        printf("%d %.12e",i,(*fret));
          fprintf(ficlog,"%d %.12e",i,(*fret));
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        for (j=1;j<=n;j++) {
   double ***freq; /* Frequencies */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   double *pp;          printf(" x(%d)=%.12e",j,xit[j]);
   double pos, k2, dateintsum=0,k2cpt=0;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   FILE *ficresp;        }
   char fileresp[FILENAMELENGTH];        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
   pp=vector(1,nlstate);          fprintf(ficlog," p=%.12e",p[j]);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   strcpy(fileresp,"p");        printf("\n");
   strcat(fileresp,fileres);        fprintf(ficlog,"\n");
   if((ficresp=fopen(fileresp,"w"))==NULL) {  #endif
     printf("Problem with prevalence resultfile: %s\n", fileresp);      } 
     exit(0);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   }  #ifdef DEBUG
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        int k[2],l;
   j1=0;        k[0]=1;
          k[1]=-1;
   j=cptcoveff;        printf("Max: %.12e",(*func)(p));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog,"Max: %.12e",(*func)(p));
          for (j=1;j<=n;j++) {
   for(k1=1; k1<=j;k1++){          printf(" %.12e",p[j]);
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog," %.12e",p[j]);
       j1++;        }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        printf("\n");
         scanf("%d", i);*/        fprintf(ficlog,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)          for(l=0;l<=1;l++) {
         for (jk=-1; jk<=nlstate+ndeath; jk++)            for (j=1;j<=n;j++) {
           for(m=agemin; m <= agemax+3; m++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             freq[i][jk][m]=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                  fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       dateintsum=0;          }
       k2cpt=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for (i=1; i<=imx; i++) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         bool=1;        }
         if  (cptcovn>0) {  #endif
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;        free_vector(xit,1,n); 
         }        free_vector(xits,1,n); 
         if (bool==1) {        free_vector(ptt,1,n); 
           for(m=firstpass; m<=lastpass; m++){        free_vector(pt,1,n); 
             k2=anint[m][i]+(mint[m][i]/12.);        return; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (j=1;j<=n;j++) { 
               if (m<lastpass) {        ptt[j]=2.0*p[j]-pt[j]; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        xit[j]=p[j]-pt[j]; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        pt[j]=p[j]; 
               }      } 
                    fptt=(*func)(ptt); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      if (fptt < fp) { 
                 dateintsum=dateintsum+k2;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                 k2cpt++;        if (t < 0.0) { 
               }          linmin(p,xit,n,fret,func); 
             }          for (j=1;j<=n;j++) { 
           }            xi[j][ibig]=xi[j][n]; 
         }            xi[j][n]=xit[j]; 
       }          }
          #ifdef DEBUG
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if  (cptcovn>0) {          for(j=1;j<=n;j++){
         fprintf(ficresp, "\n#********** Variable ");            printf(" %.12e",xit[j]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            fprintf(ficlog," %.12e",xit[j]);
         fprintf(ficresp, "**********\n#");          }
       }          printf("\n");
       for(i=1; i<=nlstate;i++)          fprintf(ficlog,"\n");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  #endif
       fprintf(ficresp, "\n");        }
            } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    } 
         if(i==(int)agemax+3)  } 
           printf("Total");  
         else  /**** Prevalence limit (stable or period prevalence)  ****************/
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  {
             pp[jk] += freq[jk][m][i];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         }       matrix by transitions matrix until convergence is reached */
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    int i, ii,j,k;
             pos += freq[jk][m][i];    double min, max, maxmin, maxmax,sumnew=0.;
           if(pp[jk]>=1.e-10)    double **matprod2();
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double **out, cov[NCOVMAX+1], **pmij();
           else    double **newm;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    double agefin, delaymax=50 ; /* Max number of years to converge */
         }  
     for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){      for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];      }
         }  
      cov[1]=1.;
         for(jk=1,pos=0; jk <=nlstate ; jk++)   
           pos += pp[jk];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         for(jk=1; jk <=nlstate ; jk++){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           if(pos>=1.e-5)      newm=savm;
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      /* Covariates have to be included here again */
           else      cov[2]=agefin;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      
           if( i <= (int) agemax){      for (k=1; k<=cptcovn;k++) {
             if(pos>=1.e-5){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
               probs[i][jk][j1]= pp[jk]/pos;      }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
             }      for (k=1; k<=cptcovprod;k++)
             else        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      
           }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
              /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         for(jk=-1; jk <=nlstate+ndeath; jk++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
           for(m=-1; m <=nlstate+ndeath; m++)      
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      savm=oldm;
         if(i <= (int) agemax)      oldm=newm;
           fprintf(ficresp,"\n");      maxmax=0.;
         printf("\n");      for(j=1;j<=nlstate;j++){
       }        min=1.;
     }        max=0.;
   }        for(i=1; i<=nlstate; i++) {
   dateintmean=dateintsum/k2cpt;          sumnew=0;
            for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   fclose(ficresp);          prlim[i][j]= newm[i][j]/(1-sumnew);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          max=FMAX(max,prlim[i][j]);
   free_vector(pp,1,nlstate);          min=FMIN(min,prlim[i][j]);
          }
   /* End of Freq */        maxmin=max-min;
 }        maxmax=FMAX(maxmax,maxmin);
       }
 /************ Prevalence ********************/      if(maxmax < ftolpl){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        return prlim;
 {  /* Some frequencies */      }
      }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  }
   double ***freq; /* Frequencies */  
   double *pp;  /*************** transition probabilities ***************/ 
   double pos, k2;  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* According to parameters values stored in x and the covariate's values stored in cov,
         computes the probability to be observed in state j being in state i by appying the
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       model to the ncovmodel covariates (including constant and age).
   j1=0;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   j=cptcoveff;       ncth covariate in the global vector x is given by the formula:
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
  for(k1=1; k1<=j;k1++){       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     for(i1=1; i1<=ncodemax[k1];i1++){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
       j1++;       Outputs ps[i][j] the probability to be observed in j being in j according to
         the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
       for (i=-1; i<=nlstate+ndeath; i++)      */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double s1, lnpijopii;
           for(m=agemin; m <= agemax+3; m++)    /*double t34;*/
             freq[i][jk][m]=0;    int i,j,j1, nc, ii, jj;
        
       for (i=1; i<=imx; i++) {      for(i=1; i<= nlstate; i++){
         bool=1;        for(j=1; j<i;j++){
         if  (cptcovn>0) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for (z1=1; z1<=cptcoveff; z1++)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
               bool=0;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }          }
         if (bool==1) {          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           for(m=firstpass; m<=lastpass; m++){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=i+1; j<=nlstate+ndeath;j++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
               if (m<lastpass)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
               else          }
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        }
             }      }
           }      
         }      for(i=1; i<= nlstate; i++){
       }        s1=0;
         for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=1; j<i; j++){
           for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               pp[jk] += freq[jk][m][i];        }
           }        for(j=i+1; j<=nlstate+ndeath; j++){
           for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             for(m=-1, pos=0; m <=0 ; m++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pos += freq[jk][m][i];        }
         }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                ps[i][i]=1./(s1+1.);
          for(jk=1; jk <=nlstate ; jk++){        /* Computing other pijs */
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for(j=1; j<i; j++)
              pp[jk] += freq[jk][m][i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
          }        for(j=i+1; j<=nlstate+ndeath; j++)
                    ps[i][j]= exp(ps[i][j])*ps[i][i];
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
          for(jk=1; jk <=nlstate ; jk++){                
            if( i <= (int) agemax){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
              if(pos>=1.e-5){        for(jj=1; jj<= nlstate+ndeath; jj++){
                probs[i][jk][j1]= pp[jk]/pos;          ps[ii][jj]=0;
              }          ps[ii][ii]=1;
            }        }
          }      }
                
         }  
     }  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   }  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   /*         printf("ddd %lf ",ps[ii][jj]); */
    /*       } */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*       printf("\n "); */
   free_vector(pp,1,nlstate);  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
 }  /* End of Freq */         /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
 /************* Waves Concatenation ***************/        goto end;*/
       return ps;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  }
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /**************** Product of 2 matrices ******************/
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  {
      and mw[mi+1][i]. dh depends on stepm.    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
   int i, mi, m;       before: only the contents of out is modified. The function returns
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;       a pointer to pointers identical to out */
      double sum=0., jmean=0.;*/    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   int j, k=0,jk, ju, jl;      for(k=ncolol; k<=ncoloh; k++)
   double sum=0.;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   jmin=1e+5;          out[i][k] +=in[i][j]*b[j][k];
   jmax=-1;  
   jmean=0.;    return out;
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  
     while(s[m][i] <= nlstate){  /************* Higher Matrix Product ***************/
       if(s[m][i]>=1)  
         mw[++mi][i]=m;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       if(m >=lastpass)  {
         break;    /* Computes the transition matrix starting at age 'age' over 
       else       'nhstepm*hstepm*stepm' months (i.e. until
         m++;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }/* end while */       nhstepm*hstepm matrices. 
     if (s[m][i] > nlstate){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       mi++;     /* Death is another wave */       (typically every 2 years instead of every month which is too big 
       /* if(mi==0)  never been interviewed correctly before death */       for the memory).
          /* Only death is a correct wave */       Model is determined by parameters x and covariates have to be 
       mw[mi][i]=m;       included manually here. 
     }  
        */
     wav[i]=mi;  
     if(mi==0)    int i, j, d, h, k;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    double **out, cov[NCOVMAX+1];
   }    double **newm;
   
   for(i=1; i<=imx; i++){    /* Hstepm could be zero and should return the unit matrix */
     for(mi=1; mi<wav[i];mi++){    for (i=1;i<=nlstate+ndeath;i++)
       if (stepm <=0)      for (j=1;j<=nlstate+ndeath;j++){
         dh[mi][i]=1;        oldm[i][j]=(i==j ? 1.0 : 0.0);
       else{        po[i][j][0]=(i==j ? 1.0 : 0.0);
         if (s[mw[mi+1][i]][i] > nlstate) {      }
           if (agedc[i] < 2*AGESUP) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    for(h=1; h <=nhstepm; h++){
           if(j==0) j=1;  /* Survives at least one month after exam */      for(d=1; d <=hstepm; d++){
           k=k+1;        newm=savm;
           if (j >= jmax) jmax=j;        /* Covariates have to be included here again */
           if (j <= jmin) jmin=j;        cov[1]=1.;
           sum=sum+j;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for (k=1; k<=cptcovn;k++) 
           }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         }        for (k=1; k<=cptcovage;k++)
         else{          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for (k=1; k<=cptcovprod;k++)
           k=k+1;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           sum=sum+j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         jk= j/stepm;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         jl= j -jk*stepm;        savm=oldm;
         ju= j -(jk+1)*stepm;        oldm=newm;
         if(jl <= -ju)      }
           dh[mi][i]=jk;      for(i=1; i<=nlstate+ndeath; i++)
         else        for(j=1;j<=nlstate+ndeath;j++) {
           dh[mi][i]=jk+1;          po[i][j][h]=newm[i][j];
         if(dh[mi][i]==0)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           dh[mi][i]=1; /* At least one step */        }
       }      /*printf("h=%d ",h);*/
     }    } /* end h */
   }  /*     printf("\n H=%d \n",h); */
   jmean=sum/k;    return po;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  }
  }  
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  /*************** log-likelihood *************/
 {  double func( double *x)
   int Ndum[20],ij=1, k, j, i;  {
   int cptcode=0;    int i, ii, j, k, mi, d, kk;
   cptcoveff=0;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      double **out;
   for (k=0; k<19; k++) Ndum[k]=0;    double sw; /* Sum of weights */
   for (k=1; k<=7; k++) ncodemax[k]=0;    double lli; /* Individual log likelihood */
     int s1, s2;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double bbh, survp;
     for (i=1; i<=imx; i++) {    long ipmx;
       ij=(int)(covar[Tvar[j]][i]);    /*extern weight */
       Ndum[ij]++;    /* We are differentiating ll according to initial status */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       if (ij > cptcode) cptcode=ij;    /*for(i=1;i<imx;i++) 
     }      printf(" %d\n",s[4][i]);
     */
     for (i=0; i<=cptcode; i++) {    cov[1]=1.;
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    for(k=1; k<=nlstate; k++) ll[k]=0.;
     ij=1;  
     if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=ncodemax[j]; i++) {        /* Computes the values of the ncovmodel covariates of the model
       for (k=0; k<=19; k++) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         if (Ndum[k] != 0) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
           nbcode[Tvar[j]][ij]=k;           to be observed in j being in i according to the model.
                   */
           ij++;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
         if (ij > ncodemax[j]) break;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       }             has been calculated etc */
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }            for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
  for (k=0; k<19; k++) Ndum[k]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
  for (i=1; i<=ncovmodel-2; i++) {            }
       ij=Tvar[i];          for(d=0; d<dh[mi][i]; d++){
       Ndum[ij]++;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
  ij=1;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
  for (i=1; i<=10; i++) {            }
    if((Ndum[i]!=0) && (i<=ncovcol)){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Tvaraff[ij]=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;            savm=oldm;
    }            oldm=newm;
  }          } /* end mult */
          
     cptcoveff=ij-1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }          /* But now since version 0.9 we anticipate for bias at large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 /*********** Health Expectancies ****************/           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 {           * probability in order to take into account the bias as a fraction of the way
   /* Health expectancies */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           * -stepm/2 to stepm/2 .
   double age, agelim, hf;           * For stepm=1 the results are the same as for previous versions of Imach.
   double ***p3mat,***varhe;           * For stepm > 1 the results are less biased than in previous versions. 
   double **dnewm,**doldm;           */
   double *xp;          s1=s[mw[mi][i]][i];
   double **gp, **gm;          s2=s[mw[mi+1][i]][i];
   double ***gradg, ***trgradg;          bbh=(double)bh[mi][i]/(double)stepm; 
   int theta;          /* bias bh is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);           */
   xp=vector(1,npar);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   dnewm=matrix(1,nlstate*2,1,npar);          if( s2 > nlstate){ 
   doldm=matrix(1,nlstate*2,1,nlstate*2);            /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
   fprintf(ficreseij,"# Health expectancies\n");               die between last step unit time and current  step unit time, 
   fprintf(ficreseij,"# Age");               which is also equal to probability to die before dh 
   for(i=1; i<=nlstate;i++)               minus probability to die before dh-stepm . 
     for(j=1; j<=nlstate;j++)               In version up to 0.92 likelihood was computed
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          as if date of death was unknown. Death was treated as any other
   fprintf(ficreseij,"\n");          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   if(estepm < stepm){          to consider that at each interview the state was recorded
     printf ("Problem %d lower than %d\n",estepm, stepm);          (healthy, disable or death) and IMaCh was corrected; but when we
   }          introduced the exact date of death then we should have modified
   else  hstepm=estepm;            the contribution of an exact death to the likelihood. This new
   /* We compute the life expectancy from trapezoids spaced every estepm months          contribution is smaller and very dependent of the step unit
    * This is mainly to measure the difference between two models: for example          stepm. It is no more the probability to die between last interview
    * if stepm=24 months pijx are given only every 2 years and by summing them          and month of death but the probability to survive from last
    * we are calculating an estimate of the Life Expectancy assuming a linear          interview up to one month before death multiplied by the
    * progression inbetween and thus overestimating or underestimating according          probability to die within a month. Thanks to Chris
    * to the curvature of the survival function. If, for the same date, we          Jackson for correcting this bug.  Former versions increased
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          mortality artificially. The bad side is that we add another loop
    * to compare the new estimate of Life expectancy with the same linear          which slows down the processing. The difference can be up to 10%
    * hypothesis. A more precise result, taking into account a more precise          lower mortality.
    * curvature will be obtained if estepm is as small as stepm. */            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim          } else if  (s2==-2) {
      nstepm is the number of stepm from age to agelin.            for (j=1,survp=0. ; j<=nlstate; j++) 
      Look at hpijx to understand the reason of that which relies in memory size              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and note for a fixed period like estepm months */            /*survp += out[s1][j]; */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            lli= log(survp);
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          else if  (s2==-4) { 
      results. So we changed our mind and took the option of the best precision.            for (j=3,survp=0. ; j<=nlstate; j++)  
   */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            lli= log(survp); 
           } 
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          else if  (s2==-5) { 
     /* nhstepm age range expressed in number of stepm */            for (j=1,survp=0. ; j<=2; j++)  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            lli= log(survp); 
     /* if (stepm >= YEARM) hstepm=1;*/          } 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else{
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gp=matrix(0,nhstepm,1,nlstate*2);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     gm=matrix(0,nhstepm,1,nlstate*2);          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          /*if(lli ==000.0)*/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ipmx +=1;
            sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        } /* end of wave */
       } /* end of individual */
     /* Computing Variances of health expectancies */    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
      for(theta=1; theta <=npar; theta++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=npar; i++){        for(mi=1; mi<= wav[i]-1; mi++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cptj=0;            }
       for(j=1; j<= nlstate; j++){          for(d=0; d<=dh[mi][i]; d++){
         for(i=1; i<=nlstate; i++){            newm=savm;
           cptj=cptj+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){            for (kk=1; kk<=cptcovage;kk++) {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                  savm=oldm;
                  oldm=newm;
       for(i=1; i<=npar; i++)          } /* end mult */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            s1=s[mw[mi][i]][i];
                s2=s[mw[mi+1][i]][i];
       cptj=0;          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<= nlstate; j++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         for(i=1;i<=nlstate;i++){          ipmx +=1;
           cptj=cptj+1;          sw += weight[i];
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        } /* end of wave */
           }      } /* end of individual */
         }    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate*2; j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm-1; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
      }            newm=savm;
                cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /* End theta */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      for(h=0; h<=nhstepm-1; h++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate*2;j++)            savm=oldm;
         for(theta=1; theta <=npar; theta++)            oldm=newm;
         trgradg[h][j][theta]=gradg[h][theta][j];          } /* end mult */
         
           s1=s[mw[mi][i]][i];
      for(i=1;i<=nlstate*2;i++)          s2=s[mw[mi+1][i]][i];
       for(j=1;j<=nlstate*2;j++)          bbh=(double)bh[mi][i]/(double)stepm; 
         varhe[i][j][(int)age] =0.;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
     for(h=0;h<=nhstepm-1;h++){          sw += weight[i];
       for(k=0;k<=nhstepm-1;k++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        } /* end of wave */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);      } /* end of individual */
         for(i=1;i<=nlstate*2;i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           for(j=1;j<=nlstate*2;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* Computing expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            newm=savm;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                      for (kk=1; kk<=cptcovage;kk++) {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficreseij,"%3.0f",age );                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     cptj=0;            savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       for(j=1; j<=nlstate;j++){          } /* end mult */
         cptj++;        
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     fprintf(ficreseij,"\n");          if( s2 > nlstate){ 
                lli=log(out[s1][s2] - savm[s1][s2]);
     free_matrix(gm,0,nhstepm,1,nlstate*2);          }else{
     free_matrix(gp,0,nhstepm,1,nlstate*2);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          }
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          ipmx +=1;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(xp,1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_matrix(dnewm,1,nlstate*2,1,npar);        } /* end of wave */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      } /* end of individual */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Variance ******************/        for(mi=1; mi<= wav[i]-1; mi++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Variance of health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double **newm;            }
   double **dnewm,**doldm;          for(d=0; d<dh[mi][i]; d++){
   int i, j, nhstepm, hstepm, h, nstepm ;            newm=savm;
   int k, cptcode;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double *xp;            for (kk=1; kk<=cptcovage;kk++) {
   double **gp, **gm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***gradg, ***trgradg;            }
   double ***p3mat;          
   double age,agelim, hf;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
    fprintf(ficresvij,"# Covariances of life expectancies\n");            oldm=newm;
   fprintf(ficresvij,"# Age");          } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=nlstate;j++)          s1=s[mw[mi][i]][i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          s2=s[mw[mi+1][i]][i];
   fprintf(ficresvij,"\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
   xp=vector(1,npar);          sw += weight[i];
   dnewm=matrix(1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   doldm=matrix(1,nlstate,1,nlstate);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
          } /* end of wave */
   if(estepm < stepm){      } /* end of individual */
     printf ("Problem %d lower than %d\n",estepm, stepm);    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   else  hstepm=estepm;      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* For example we decided to compute the life expectancy with the smallest unit */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    return -l;
      nhstepm is the number of hstepm from age to agelim  }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*************** log-likelihood *************/
      and note for a fixed period like k years */  double funcone( double *x)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {
      survival function given by stepm (the optimization length). Unfortunately it    /* Same as likeli but slower because of a lot of printf and if */
      means that if the survival funtion is printed only each two years of age and if    int i, ii, j, k, mi, d, kk;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      results. So we changed our mind and took the option of the best precision.    double **out;
   */    double lli; /* Individual log likelihood */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double llt;
   agelim = AGESUP;    int s1, s2;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double bbh, survp;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*extern weight */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    /* We are differentiating ll according to initial status */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*for(i=1;i<imx;i++) 
     gp=matrix(0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     gm=matrix(0,nhstepm,1,nlstate);    */
     cov[1]=1.;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
       if (popbased==1) {          for (j=1;j<=nlstate+ndeath;j++){
         for(i=1; i<=nlstate;i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           prlim[i][i]=probs[(int)age][i][ij];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }          }
          for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++){          newm=savm;
         for(h=0; h<=nhstepm; h++){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for (kk=1; kk<=cptcovage;kk++) {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         }          }
       }          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++) /* Computes gradient */          savm=oldm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          oldm=newm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          } /* end mult */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        
          s1=s[mw[mi][i]][i];
       if (popbased==1) {        s2=s[mw[mi+1][i]][i];
         for(i=1; i<=nlstate;i++)        bbh=(double)bh[mi][i]/(double)stepm; 
           prlim[i][i]=probs[(int)age][i][ij];        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
          */
       for(j=1; j<= nlstate; j++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for(h=0; h<=nhstepm; h++){          lli=log(out[s1][s2] - savm[s1][s2]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        } else if  (s2==-2) {
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          for (j=1,survp=0. ; j<=nlstate; j++) 
         }            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
         }else if (mle==1){
       for(j=1; j<= nlstate; j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(h=0; h<=nhstepm; h++){        } else if(mle==2){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         }        } else if(mle==3){  /* exponential inter-extrapolation */
     } /* End theta */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
     for(h=0; h<=nhstepm; h++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(j=1; j<=nlstate;j++)          /*lli=log(out[s1][s2]); */ /* Original formula */
         for(theta=1; theta <=npar; theta++)        } /* End of if */
           trgradg[h][j][theta]=gradg[h][theta][j];        ipmx +=1;
         sw += weight[i];
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(i=1;i<=nlstate;i++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       for(j=1;j<=nlstate;j++)        if(globpr){
         vareij[i][j][(int)age] =0.;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
     for(h=0;h<=nhstepm;h++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(k=0;k<=nhstepm;k++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            llt +=ll[k]*gipmx/gsw;
         for(i=1;i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(j=1;j<=nlstate;j++)          }
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
     }      } /* end of wave */
     } /* end of individual */
     fprintf(ficresvij,"%.0f ",age );    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i=1; i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=1; j<=nlstate;j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    if(globpr==0){ /* First time we count the contributions and weights */
       }      gipmx=ipmx;
     fprintf(ficresvij,"\n");      gsw=sw;
     free_matrix(gp,0,nhstepm,1,nlstate);    }
     free_matrix(gm,0,nhstepm,1,nlstate);    return -l;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  }
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_vector(xp,1,npar);  {
   free_matrix(doldm,1,nlstate,1,npar);    /* This routine should help understanding what is done with 
   free_matrix(dnewm,1,nlstate,1,nlstate);       the selection of individuals/waves and
        to check the exact contribution to the likelihood.
 }       Plotting could be done.
      */
 /************ Variance of prevlim ******************/    int k;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* Variance of prevalence limit */      strcpy(fileresilk,"ilk"); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      strcat(fileresilk,fileres);
   double **newm;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   double **dnewm,**doldm;        printf("Problem with resultfile: %s\n", fileresilk);
   int i, j, nhstepm, hstepm;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int k, cptcode;      }
   double *xp;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double *gp, *gm;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **gradg, **trgradg;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double age,agelim;      for(k=1; k<=nlstate; k++) 
   int theta;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
          fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    }
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    *fretone=(*funcone)(p);
       fprintf(ficresvpl," %1d-%1d",i,i);    if(*globpri !=0){
   fprintf(ficresvpl,"\n");      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   xp=vector(1,npar);      fflush(fichtm); 
   dnewm=matrix(1,nlstate,1,npar);    } 
   doldm=matrix(1,nlstate,1,nlstate);    return;
    }
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  /*********** Maximum Likelihood Estimation ***************/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int i,j, iter;
     gradg=matrix(1,npar,1,nlstate);    double **xi;
     gp=vector(1,nlstate);    double fret;
     gm=vector(1,nlstate);    double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
     for(theta=1; theta <=npar; theta++){    xi=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=1;i<=npar;i++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1;i<=nlstate;i++)    strcpy(filerespow,"pow"); 
         gp[i] = prlim[i][i];    strcat(filerespow,fileres);
        if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("Problem with resultfile: %s\n", filerespow);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         gm[i] = prlim[i][i];    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
       for(i=1;i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    fprintf(ficrespow,"\n");
     } /* End theta */  
     powell(p,xi,npar,ftol,&iter,&fret,func);
     trgradg =matrix(1,nlstate,1,npar);  
     free_matrix(xi,1,npar,1,npar);
     for(j=1; j<=nlstate;j++)    fclose(ficrespow);
       for(theta=1; theta <=npar; theta++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         trgradg[j][theta]=gradg[theta][j];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;  }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /**** Computes Hessian and covariance matrix ***/
     for(i=1;i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  {
     double  **a,**y,*x,pd;
     fprintf(ficresvpl,"%.0f ",age );    double **hess;
     for(i=1; i<=nlstate;i++)    int i, j,jk;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    int *indx;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     free_vector(gm,1,nlstate);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     free_matrix(gradg,1,npar,1,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_matrix(trgradg,1,nlstate,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   } /* End age */    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);    printf("\nCalculation of the hessian matrix. Wait...\n");
   free_matrix(dnewm,1,nlstate,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
 }      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 /************ Variance of one-step probabilities  ******************/     
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 {      
   int i, j, i1, k1, j1, z1;      /*  printf(" %f ",p[i]);
   int k=0, cptcode;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   double **dnewm,**doldm;    }
   double *xp;    
   double *gp, *gm;    for (i=1;i<=npar;i++) {
   double **gradg, **trgradg;      for (j=1;j<=npar;j++)  {
   double age,agelim, cov[NCOVMAX];        if (j>i) { 
   int theta;          printf(".%d%d",i,j);fflush(stdout);
   char fileresprob[FILENAMELENGTH];          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
   strcpy(fileresprob,"prob");          
   strcat(fileresprob,fileres);          hess[j][i]=hess[i][j];    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          /*printf(" %lf ",hess[i][j]);*/
     printf("Problem with resultfile: %s\n", fileresprob);        }
   }      }
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
      printf("\n");
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");    fprintf(ficlog,"\n");
   fprintf(ficresprob,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     for(j=1; j<=(nlstate+ndeath);j++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    
     a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   fprintf(ficresprob,"\n");    x=vector(1,npar);
     indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   xp=vector(1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    ludcmp(a,npar,indx,&pd);
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));  
      for (j=1;j<=npar;j++) {
   cov[1]=1;      for (i=1;i<=npar;i++) x[i]=0;
   j=cptcoveff;      x[j]=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      lubksb(a,npar,indx,x);
   j1=0;      for (i=1;i<=npar;i++){ 
   for(k1=1; k1<=1;k1++){        matcov[i][j]=x[i];
     for(i1=1; i1<=ncodemax[k1];i1++){      }
     j1++;    }
   
     if  (cptcovn>0) {    printf("\n#Hessian matrix#\n");
       fprintf(ficresprob, "\n#********** Variable ");    fprintf(ficlog,"\n#Hessian matrix#\n");
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=npar;i++) { 
       fprintf(ficresprob, "**********\n#");      for (j=1;j<=npar;j++) { 
     }        printf("%.3e ",hess[i][j]);
            fprintf(ficlog,"%.3e ",hess[i][j]);
       for (age=bage; age<=fage; age ++){      }
         cov[2]=age;      printf("\n");
         for (k=1; k<=cptcovn;k++) {      fprintf(ficlog,"\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    }
            
         }    /* Recompute Inverse */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    for (i=1;i<=npar;i++)
         for (k=1; k<=cptcovprod;k++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    ludcmp(a,npar,indx,&pd);
          
         gradg=matrix(1,npar,1,9);    /*  printf("\n#Hessian matrix recomputed#\n");
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1;j<=npar;j++) {
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
         for(theta=1; theta <=npar; theta++){      lubksb(a,npar,indx,x);
           for(i=1; i<=npar; i++)      for (i=1;i<=npar;i++){ 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        y[i][j]=x[i];
                  printf("%.3e ",y[i][j]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        fprintf(ficlog,"%.3e ",y[i][j]);
                }
           k=0;      printf("\n");
           for(i=1; i<= (nlstate+ndeath); i++){      fprintf(ficlog,"\n");
             for(j=1; j<=(nlstate+ndeath);j++){    }
               k=k+1;    */
               gp[k]=pmmij[i][j];  
             }    free_matrix(a,1,npar,1,npar);
           }    free_matrix(y,1,npar,1,npar);
              free_vector(x,1,npar);
           for(i=1; i<=npar; i++)    free_ivector(indx,1,npar);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_matrix(hess,1,npar,1,npar);
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;  }
           for(i=1; i<=(nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  /*************** hessian matrix ****************/
               k=k+1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
               gm[k]=pmmij[i][j];  {
             }    int i;
           }    int l=1, lmax=20;
          double k1,k2;
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)    double p2[MAXPARM+1]; /* identical to x */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double res;
         }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)    int k=0,kmax=10;
           for(theta=1; theta <=npar; theta++)    double l1;
             trgradg[j][theta]=gradg[theta][j];  
            fx=func(x);
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++) p2[i]=x[i];
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    for(l=0 ; l <=lmax; l++){
              l1=pow(10,l);
         pmij(pmmij,cov,ncovmodel,x,nlstate);      delts=delt;
              for(k=1 ; k <kmax; k=k+1){
         k=0;        delt = delta*(l1*k);
         for(i=1; i<=(nlstate+ndeath); i++){        p2[theta]=x[theta] +delt;
           for(j=1; j<=(nlstate+ndeath);j++){        k1=func(p2)-fx;
             k=k+1;        p2[theta]=x[theta]-delt;
             gm[k]=pmmij[i][j];        k2=func(p2)-fx;
           }        /*res= (k1-2.0*fx+k2)/delt/delt; */
         }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
              
      /*printf("\n%d ",(int)age);  #ifdef DEBUGHESS
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      }*/  #endif
         /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         fprintf(ficresprob,"\n%d ",(int)age);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           k=kmax;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        }
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
       }        }
     }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          delts=delt;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
   }    delti[theta]=delts;
   free_vector(xp,1,npar);    return res; 
   fclose(ficresprob);    
    }
 }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 /******************* Printing html file ***********/  {
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int i;
  int lastpass, int stepm, int weightopt, char model[],\    int l=1, l1, lmax=20;
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    double k1,k2,k3,k4,res,fx;
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    double p2[MAXPARM+1];
  char version[], int popforecast, int estepm ){    int k;
   int jj1, k1, i1, cpt;  
   FILE *fichtm;    fx=func(x);
   /*char optionfilehtm[FILENAMELENGTH];*/    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   strcpy(optionfilehtm,optionfile);      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(optionfilehtm,".htm");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      k1=func(p2)-fx;
     printf("Problem with %s \n",optionfilehtm), exit(0);    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      k2=func(p2)-fx;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    
 \n      p2[thetai]=x[thetai]-delti[thetai]/k;
 Total number of observations=%d <br>\n      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      k3=func(p2)-fx;
 <hr  size=\"2\" color=\"#EC5E5E\">    
  <ul><li>Outputs files<br>\n      p2[thetai]=x[thetai]-delti[thetai]/k;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n      k4=func(p2)-fx;
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n  #ifdef DEBUG
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
  fprintf(fichtm,"\n    }
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    return res;
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n  /************** Inverse of matrix **************/
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
  if(popforecast==1) fprintf(fichtm,"\n    int i,imax,j,k; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double big,dum,sum,temp; 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double *vv; 
         <br>",fileres,fileres,fileres,fileres);   
  else    vv=vector(1,n); 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    *d=1.0; 
 fprintf(fichtm," <li>Graphs</li><p>");    for (i=1;i<=n;i++) { 
       big=0.0; 
  m=cptcoveff;      for (j=1;j<=n;j++) 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
  jj1=0;      vv[i]=1.0/big; 
  for(k1=1; k1<=m;k1++){    } 
    for(i1=1; i1<=ncodemax[k1];i1++){    for (j=1;j<=n;j++) { 
        jj1++;      for (i=1;i<j;i++) { 
        if (cptcovn > 0) {        sum=a[i][j]; 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          for (cpt=1; cpt<=cptcoveff;cpt++)        a[i][j]=sum; 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      } 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      big=0.0; 
        }      for (i=j;i<=n;i++) { 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        sum=a[i][j]; 
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for (k=1;k<j;k++) 
        for(cpt=1; cpt<nlstate;cpt++){          sum -= a[i][k]*a[k][j]; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        a[i][j]=sum; 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        }          big=dum; 
     for(cpt=1; cpt<=nlstate;cpt++) {          imax=i; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        } 
 interval) in state (%d): v%s%d%d.gif <br>      } 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        if (j != imax) { 
      }        for (k=1;k<=n;k++) { 
      for(cpt=1; cpt<=nlstate;cpt++) {          dum=a[imax][k]; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          a[imax][k]=a[j][k]; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          a[j][k]=dum; 
      }        } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        *d = -(*d); 
 health expectancies in states (1) and (2): e%s%d.gif<br>        vv[imax]=vv[j]; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } 
 fprintf(fichtm,"\n</body>");      indx[j]=imax; 
    }      if (a[j][j] == 0.0) a[j][j]=TINY; 
    }      if (j != n) { 
 fclose(fichtm);        dum=1.0/(a[j][j]); 
 }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 /******************* Gnuplot file **************/    } 
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    free_vector(vv,1,n);  /* Doesn't work */
   ;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  } 
   
   strcpy(optionfilegnuplot,optionfilefiname);  void lubksb(double **a, int n, int *indx, double b[]) 
   strcat(optionfilegnuplot,".gp.txt");  { 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    int i,ii=0,ip,j; 
     printf("Problem with file %s",optionfilegnuplot);    double sum; 
   }   
     for (i=1;i<=n;i++) { 
 #ifdef windows      ip=indx[i]; 
     fprintf(ficgp,"cd \"%s\" \n",pathc);      sum=b[ip]; 
 #endif      b[ip]=b[i]; 
 m=pow(2,cptcoveff);      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
  /* 1eme*/      else if (sum) ii=i; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {      b[i]=sum; 
    for (k1=1; k1<= m ; k1 ++) {    } 
     for (i=n;i>=1;i--) { 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 for (i=1; i<= nlstate ; i ++) {      b[i]=sum/a[i][i]; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  } 
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  void pstamp(FILE *fichier)
     for (i=1; i<= nlstate ; i ++) {  {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  /************ Frequencies ********************/
      for (i=1; i<= nlstate ; i ++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  {  /* Some frequencies */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      int i, m, jk, k1,i1, j1, bool, z1,j;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    int first;
     double ***freq; /* Frequencies */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double *pp, **prop;
    }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   }    char fileresp[FILENAMELENGTH];
   /*2 eme*/    
     pp=vector(1,nlstate);
   for (k1=1; k1<= m ; k1 ++) {    prop=matrix(1,nlstate,iagemin,iagemax+3);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
     for (i=1; i<= nlstate+1 ; i ++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
       k=2*i;      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       for (j=1; j<= nlstate+1 ; j ++) {      exit(0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
 }      j1=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    j=cptcoveff;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for (j=1; j<= nlstate+1 ; j ++) {  
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    first=1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      for(k1=1; k1<=j;k1++){
       fprintf(ficgp,"\" t\"\" w l 0,");      for(i1=1; i1<=ncodemax[k1];i1++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        j1++;
       for (j=1; j<= nlstate+1 ; j ++) {        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          scanf("%d", i);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for (i=-5; i<=nlstate+ndeath; i++)  
 }            for (jk=-5; jk<=nlstate+ndeath; jk++)  
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            for(m=iagemin; m <= iagemax+3; m++)
       else fprintf(ficgp,"\" t\"\" w l 0,");              freq[i][jk][m]=0;
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      for (i=1; i<=nlstate; i++)  
   }        for(m=iagemin; m <= iagemax+3; m++)
            prop[i][m]=0;
   /*3eme*/        
         dateintsum=0;
   for (k1=1; k1<= m ; k1 ++) {        k2cpt=0;
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for (i=1; i<=imx; i++) {
       k=2+nlstate*(2*cpt-2);          bool=1;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          if  (cptcovn>0) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for (z1=1; z1<=cptcoveff; z1++) 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                bool=0;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if (bool==1){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
 */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       for (i=1; i< nlstate ; i ++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                if (m<lastpass) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     }                }
                  
   /* CV preval stat */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for (k1=1; k1<= m ; k1 ++) {                  dateintsum=dateintsum+k2;
     for (cpt=1; cpt<nlstate ; cpt ++) {                  k2cpt++;
       k=3;                }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                /*}*/
             }
       for (i=1; i< nlstate ; i ++)          }
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);         
              /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       l=3+(nlstate+ndeath)*cpt;        pstamp(ficresp);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        if  (cptcovn>0) {
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresp, "\n#********** Variable "); 
         l=3+(nlstate+ndeath)*cpt;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficgp,"+$%d",l+i+1);          fprintf(ficresp, "**********\n#");
       }        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     }        fprintf(ficresp, "\n");
   }          
          for(i=iagemin; i <= iagemax+3; i++){
   /* proba elementaires */          if(i==iagemax+3){
    for(i=1,jk=1; i <=nlstate; i++){            fprintf(ficlog,"Total");
     for(k=1; k <=(nlstate+ndeath); k++){          }else{
       if (k != i) {            if(first==1){
         for(j=1; j <=ncovmodel; j++){              first=0;
                      printf("See log file for details...\n");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            }
           jk++;            fprintf(ficlog,"Age %d", i);
           fprintf(ficgp,"\n");          }
         }          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     }              pp[jk] += freq[jk][m][i]; 
     }          }
           for(jk=1; jk <=nlstate ; jk++){
     for(jk=1; jk <=m; jk++) {            for(m=-1, pos=0; m <=0 ; m++)
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              pos += freq[jk][m][i];
    i=1;            if(pp[jk]>=1.e-10){
    for(k2=1; k2<=nlstate; k2++) {              if(first==1){
      k3=i;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      for(k=1; k<=(nlstate+ndeath); k++) {              }
        if (k != k2){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }else{
 ij=1;              if(first==1)
         for(j=3; j <=ncovmodel; j++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;          }
           }  
           else          for(jk=1; jk <=nlstate ; jk++){
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         }              pp[jk] += freq[jk][m][i];
           fprintf(ficgp,")/(1");          }       
                  for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         for(k1=1; k1 <=nlstate; k1++){              pos += pp[jk];
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            posprop += prop[jk][i];
 ij=1;          }
           for(j=3; j <=ncovmodel; j++){          for(jk=1; jk <=nlstate ; jk++){
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            if(pos>=1.e-5){
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              if(first==1)
             ij++;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           else            }else{
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              if(first==1)
           }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficgp,")");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            if( i <= iagemax){
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");              if(pos>=1.e-5){
         i=i+ncovmodel;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
        }                /*probs[i][jk][j1]= pp[jk]/pos;*/
      }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    }              }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);              else
    }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                }
   fclose(ficgp);          }
 }  /* end gnuplot */          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 /*************** Moving average **************/              if(freq[jk][m][i] !=0 ) {
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   int i, cpt, cptcod;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              }
       for (i=1; i<=nlstate;i++)          if(i <= iagemax)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            fprintf(ficresp,"\n");
           mobaverage[(int)agedeb][i][cptcod]=0.;          if(first==1)
                printf("Others in log...\n");
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          fprintf(ficlog,"\n");
       for (i=1; i<=nlstate;i++){        }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
           for (cpt=0;cpt<=4;cpt++){    }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    dateintmean=dateintsum/k2cpt; 
           }   
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    fclose(ficresp);
         }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
       }    free_vector(pp,1,nlstate);
     }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        /* End of Freq */
 }  }
   
   /************ Prevalence ********************/
 /************** Forecasting ******************/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  {  
      /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   int *popage;       We still use firstpass and lastpass as another selection.
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    */
   double *popeffectif,*popcount;   
   double ***p3mat;    int i, m, jk, k1, i1, j1, bool, z1,j;
   char fileresf[FILENAMELENGTH];    double ***freq; /* Frequencies */
     double *pp, **prop;
  agelim=AGESUP;    double pos,posprop; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    double  y2; /* in fractional years */
     int iagemin, iagemax;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      iagemin= (int) agemin;
      iagemax= (int) agemax;
   strcpy(fileresf,"f");    /*pp=vector(1,nlstate);*/
   strcat(fileresf,fileres);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   if((ficresf=fopen(fileresf,"w"))==NULL) {    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     printf("Problem with forecast resultfile: %s\n", fileresf);    j1=0;
   }    
   printf("Computing forecasting: result on file '%s' \n", fileresf);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    
     for(k1=1; k1<=j;k1++){
   if (mobilav==1) {      for(i1=1; i1<=ncodemax[k1];i1++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        j1++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);        
   }        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;            prop[i][m]=0.0;
   if (stepm<=12) stepsize=1;       
          for (i=1; i<=imx; i++) { /* Each individual */
   agelim=AGESUP;          bool=1;
            if  (cptcovn>0) {
   hstepm=1;            for (z1=1; z1<=cptcoveff; z1++) 
   hstepm=hstepm/stepm;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   yp1=modf(dateintmean,&yp);                bool=0;
   anprojmean=yp;          } 
   yp2=modf((yp1*12),&yp);          if (bool==1) { 
   mprojmean=yp;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   yp1=modf((yp2*30.5),&yp);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   jprojmean=yp;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if(jprojmean==0) jprojmean=1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   if(mprojmean==0) jprojmean=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                  if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   for(cptcov=1;cptcov<=i2;cptcov++){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                  prop[s[m][i]][iagemax+3] += weight[i]; 
       k=k+1;                } 
       fprintf(ficresf,"\n#******");              }
       for(j=1;j<=cptcoveff;j++) {            } /* end selection of waves */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }        }
       fprintf(ficresf,"******\n");        for(i=iagemin; i <= iagemax+3; i++){  
       fprintf(ficresf,"# StartingAge FinalAge");          
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                  posprop += prop[jk][i]; 
                } 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");          for(jk=1; jk <=nlstate ; jk++){     
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                probs[i][jk][j1]= prop[jk][i]/posprop;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              } else
           nhstepm = nhstepm/hstepm;                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
                      } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }/* end jk */ 
           oldm=oldms;savm=savms;        }/* end i */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        } /* end i1 */
            } /* end k1 */
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    /*free_vector(pp,1,nlstate);*/
             }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
             for(j=1; j<=nlstate+ndeath;j++) {  }  /* End of prevalence */
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                /************* Waves Concatenation ***************/
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                 else {  {
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                 }       Death is a valid wave (if date is known).
                       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
               }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
               if (h==(int)(calagedate+12*cpt)){       and mw[mi+1][i]. dh depends on stepm.
                 fprintf(ficresf," %.3f", kk1);       */
                          
               }    int i, mi, m;
             }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           }       double sum=0., jmean=0.;*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int first;
         }    int j, k=0,jk, ju, jl;
       }    double sum=0.;
     }    first=0;
   }    jmin=1e+5;
            jmax=-1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    jmean=0.;
     for(i=1; i<=imx; i++){
   fclose(ficresf);      mi=0;
 }      m=firstpass;
 /************** Forecasting ******************/      while(s[m][i] <= nlstate){
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if(m >=lastpass)
   int *popage;          break;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        else
   double *popeffectif,*popcount;          m++;
   double ***p3mat,***tabpop,***tabpopprev;      }/* end while */
   char filerespop[FILENAMELENGTH];      if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* if(mi==0)  never been interviewed correctly before death */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           /* Only death is a correct wave */
   agelim=AGESUP;        mw[mi][i]=m;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      }
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      wav[i]=mi;
        if(mi==0){
          nbwarn++;
   strcpy(filerespop,"pop");        if(first==0){
   strcat(filerespop,fileres);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          first=1;
     printf("Problem with forecast resultfile: %s\n", filerespop);        }
   }        if(first==1){
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      } /* end mi==0 */
     } /* End individuals */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=imx; i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(mi=1; mi<wav[i];mi++){
   }        if (stepm <=0)
           dh[mi][i]=1;
   stepsize=(int) (stepm+YEARM-1)/YEARM;        else{
   if (stepm<=12) stepsize=1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
   agelim=AGESUP;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   hstepm=1;              else if(j<0){
   hstepm=hstepm/stepm;                nberr++;
                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (popforecast==1) {                j=1; /* Temporary Dangerous patch */
     if((ficpop=fopen(popfile,"r"))==NULL) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       printf("Problem with population file : %s\n",popfile);exit(0);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     popage=ivector(0,AGESUP);              }
     popeffectif=vector(0,AGESUP);              k=k+1;
     popcount=vector(0,AGESUP);              if (j >= jmax){
                    jmax=j;
     i=1;                  ijmax=i;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              }
                  if (j <= jmin){
     imx=i;                jmin=j;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                ijmin=i;
   }              }
               sum=sum+j;
   for(cptcov=1;cptcov<=i2;cptcov++){              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       k=k+1;            }
       fprintf(ficrespop,"\n#******");          }
       for(j=1;j<=cptcoveff;j++) {          else{
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");            k=k+1;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            if (j >= jmax) {
       if (popforecast==1)  fprintf(ficrespop," [Population]");              jmax=j;
                    ijmax=i;
       for (cpt=0; cpt<=0;cpt++) {            }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              else if (j <= jmin){
                      jmin=j;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              ijmin=i;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            }
           nhstepm = nhstepm/hstepm;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                      /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if(j<0){
           oldm=oldms;savm=savms;              nberr++;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for (h=0; h<=nhstepm; h++){            }
             if (h==(int) (calagedate+YEARM*cpt)) {            sum=sum+j;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }          jk= j/stepm;
             for(j=1; j<=nlstate+ndeath;j++) {          jl= j -jk*stepm;
               kk1=0.;kk2=0;          ju= j -(jk+1)*stepm;
               for(i=1; i<=nlstate;i++) {                        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                 if (mobilav==1)            if(jl==0){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];              dh[mi][i]=jk;
                 else {              bh[mi][i]=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }else{ /* We want a negative bias in order to only have interpolation ie
                 }                    * to avoid the price of an extra matrix product in likelihood */
               }              dh[mi][i]=jk+1;
               if (h==(int)(calagedate+12*cpt)){              bh[mi][i]=ju;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;            }
                   /*fprintf(ficrespop," %.3f", kk1);          }else{
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            if(jl <= -ju){
               }              dh[mi][i]=jk;
             }              bh[mi][i]=jl;       /* bias is positive if real duration
             for(i=1; i<=nlstate;i++){                                   * is higher than the multiple of stepm and negative otherwise.
               kk1=0.;                                   */
                 for(j=1; j<=nlstate;j++){            }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            else{
                 }              dh[mi][i]=jk+1;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              bh[mi][i]=ju;
             }            }
             if(dh[mi][i]==0){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              dh[mi][i]=1; /* At least one step */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              bh[mi][i]=ju; /* At least one step */
           }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
         }          } /* end if mle */
       }        }
        } /* end wave */
   /******/    }
     jmean=sum/k;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /*********** Tricode ****************************/
            void tricode(int *Tvar, int **nbcode, int imx)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    /* Uses cptcovn+2*cptcovprod as the number of covariates */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int modmaxcovj=0; /* Modality max of covariates j */
             }    cptcoveff=0; 
             for(j=1; j<=nlstate+ndeath;j++) {   
               kk1=0.;kk2=0;    for (k=0; k<maxncov; k++) Ndum[k]=0;
               for(i=1; i<=nlstate;i++) {                  for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
             }                                 modality of this covariate Vj*/ 
           }        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                                        modality of the nth covariate of individual i. */
         }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    }        if (ij > modmaxcovj) modmaxcovj=ij; 
   }        /* getting the maximum value of the modality of the covariate
             (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           female is 1, then modmaxcovj=1.*/
       }
   if (popforecast==1) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
     free_ivector(popage,0,AGESUP);      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
     free_vector(popeffectif,0,AGESUP);        if( Ndum[i] != 0 )
     free_vector(popcount,0,AGESUP);          ncodemax[j]++; 
   }        /* Number of modalities of the j th covariate. In fact
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           ncodemax[j]=2 (dichotom. variables only) but it could be more for
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           historical reasons */
   fclose(ficrespop);      } /* Ndum[-1] number of undefined modalities */
 }  
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
 /***********************************************/      ij=1; 
 /**************** Main Program *****************/      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
 /***********************************************/        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 int main(int argc, char *argv[])            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
 {                                       k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            ij++;
   double agedeb, agefin,hf;          }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   double fret;      } /* end of loop on modality */ 
   double **xi,tmp,delta;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
   double dum; /* Dummy variable */    for (k=0; k< maxncov; k++) Ndum[k]=0;
   double ***p3mat;    
   int *indx;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
   char line[MAXLINE], linepar[MAXLINE];     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   char title[MAXLINE];     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];     Ndum[ij]++;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];   }
    
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];   ij=1;
    for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   char filerest[FILENAMELENGTH];     if((Ndum[i]!=0) && (i<=ncovcol)){
   char fileregp[FILENAMELENGTH];       Tvaraff[ij]=i; /*For printing */
   char popfile[FILENAMELENGTH];       ij++;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];     }
   int firstobs=1, lastobs=10;   }
   int sdeb, sfin; /* Status at beginning and end */   ij--;
   int c,  h , cpt,l;   cptcoveff=ij; /*Number of simple covariates*/
   int ju,jl, mi;  }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  /*********** Health Expectancies ****************/
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   {
   double bage, fage, age, agelim, agebase;    /* Health expectancies, no variances */
   double ftolpl=FTOL;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   double **prlim;    int nhstepma, nstepma; /* Decreasing with age */
   double *severity;    double age, agelim, hf;
   double ***param; /* Matrix of parameters */    double ***p3mat;
   double  *p;    double eip;
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */    pstamp(ficreseij);
   double *delti; /* Scale */    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   double ***eij, ***vareij;    fprintf(ficreseij,"# Age");
   double **varpl; /* Variances of prevalence limits by age */    for(i=1; i<=nlstate;i++){
   double *epj, vepp;      for(j=1; j<=nlstate;j++){
   double kk1, kk2;        fprintf(ficreseij," e%1d%1d ",i,j);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      }
        fprintf(ficreseij," e%1d. ",i);
     }
   char version[80]="Imach version 0.8a, May 2002, INED-EUROREVES ";    fprintf(ficreseij,"\n");
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
     
     if(estepm < stepm){
   char z[1]="c", occ;      printf ("Problem %d lower than %d\n",estepm, stepm);
 #include <sys/time.h>    }
 #include <time.h>    else  hstepm=estepm;   
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   /* long total_usecs;     * if stepm=24 months pijx are given only every 2 years and by summing them
   struct timeval start_time, end_time;     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */     * to the curvature of the survival function. If, for the same date, we 
   getcwd(pathcd, size);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
   printf("\n%s",version);     * hypothesis. A more precise result, taking into account a more precise
   if(argc <=1){     * curvature will be obtained if estepm is as small as stepm. */
     printf("\nEnter the parameter file name: ");  
     scanf("%s",pathtot);    /* For example we decided to compute the life expectancy with the smallest unit */
   }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   else{       nhstepm is the number of hstepm from age to agelim 
     strcpy(pathtot,argv[1]);       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       and note for a fixed period like estepm months */
   /*cygwin_split_path(pathtot,path,optionfile);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       survival function given by stepm (the optimization length). Unfortunately it
   /* cutv(path,optionfile,pathtot,'\\');*/       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       results. So we changed our mind and took the option of the best precision.
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    */
   chdir(path);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   replace(pathc,path);  
     agelim=AGESUP;
 /*-------- arguments in the command line --------*/    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   strcpy(fileres,"r");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcat(fileres, optionfilefiname);      
   strcat(fileres,".txt");    /* Other files have txt extension */  /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /*---------arguments file --------*/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("Problem with optionfile %s\n",optionfile);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     goto end;  
   }    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcpy(filereso,"o");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcat(filereso,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
   if((ficparo=fopen(filereso,"w"))==NULL) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  
   }      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   /* Reads comments: lines beginning with '#' */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fgets(line, MAXLINE, ficpar);      
     puts(line);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fputs(line,ficparo);      
   }      printf("%d|",(int)age);fflush(stdout);
   ungetc(c,ficpar);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      /* Computing expectancies */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);      for(i=1; i<=nlstate;i++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(j=1; j<=nlstate;j++)
 while((c=getc(ficpar))=='#' && c!= EOF){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     ungetc(c,ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fgets(line, MAXLINE, ficpar);            
     puts(line);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fputs(line,ficparo);  
   }          }
   ungetc(c,ficpar);  
        fprintf(ficreseij,"%3.0f",age );
          for(i=1; i<=nlstate;i++){
   covar=matrix(0,NCOVMAX,1,n);        eip=0;
   cptcovn=0;        for(j=1; j<=nlstate;j++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   ncovmodel=2+cptcovn;        }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        fprintf(ficreseij,"%9.4f", eip );
        }
   /* Read guess parameters */      fprintf(ficreseij,"\n");
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    printf("\n");
     puts(line);    fprintf(ficlog,"\n");
     fputs(line,ficparo);    
   }  }
   ungetc(c,ficpar);  
    void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  {
     for(j=1; j <=nlstate+ndeath-1; j++){    /* Covariances of health expectancies eij and of total life expectancies according
       fscanf(ficpar,"%1d%1d",&i1,&j1);     to initial status i, ei. .
       fprintf(ficparo,"%1d%1d",i1,j1);    */
       printf("%1d%1d",i,j);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
       for(k=1; k<=ncovmodel;k++){    int nhstepma, nstepma; /* Decreasing with age */
         fscanf(ficpar," %lf",&param[i][j][k]);    double age, agelim, hf;
         printf(" %lf",param[i][j][k]);    double ***p3matp, ***p3matm, ***varhe;
         fprintf(ficparo," %lf",param[i][j][k]);    double **dnewm,**doldm;
       }    double *xp, *xm;
       fscanf(ficpar,"\n");    double **gp, **gm;
       printf("\n");    double ***gradg, ***trgradg;
       fprintf(ficparo,"\n");    int theta;
     }  
      double eip, vip;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   p=param[1][1];    xp=vector(1,npar);
      xm=vector(1,npar);
   /* Reads comments: lines beginning with '#' */    dnewm=matrix(1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    pstamp(ficresstdeij);
     puts(line);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fputs(line,ficparo);    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
   ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresstdeij," e%1d. ",i);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    fprintf(ficresstdeij,"\n");
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);    pstamp(ficrescveij);
       printf("%1d%1d",i,j);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficrescveij,"# Age");
       for(k=1; k<=ncovmodel;k++){    for(i=1; i<=nlstate;i++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(j=1; j<=nlstate;j++){
         printf(" %le",delti3[i][j][k]);        cptj= (j-1)*nlstate+i;
         fprintf(ficparo," %le",delti3[i][j][k]);        for(i2=1; i2<=nlstate;i2++)
       }          for(j2=1; j2<=nlstate;j2++){
       fscanf(ficpar,"\n");            cptj2= (j2-1)*nlstate+i2;
       printf("\n");            if(cptj2 <= cptj)
       fprintf(ficparo,"\n");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     }          }
   }      }
   delti=delti3[1][1];    fprintf(ficrescveij,"\n");
      
   /* Reads comments: lines beginning with '#' */    if(estepm < stepm){
   while((c=getc(ficpar))=='#' && c!= EOF){      printf ("Problem %d lower than %d\n",estepm, stepm);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    else  hstepm=estepm;   
     puts(line);    /* We compute the life expectancy from trapezoids spaced every estepm months
     fputs(line,ficparo);     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
   ungetc(c,ficpar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       * progression in between and thus overestimating or underestimating according
   matcov=matrix(1,npar,1,npar);     * to the curvature of the survival function. If, for the same date, we 
   for(i=1; i <=npar; i++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     fscanf(ficpar,"%s",&str);     * to compare the new estimate of Life expectancy with the same linear 
     printf("%s",str);     * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficparo,"%s",str);     * curvature will be obtained if estepm is as small as stepm. */
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    /* For example we decided to compute the life expectancy with the smallest unit */
       printf(" %.5le",matcov[i][j]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficparo," %.5le",matcov[i][j]);       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
     fscanf(ficpar,"\n");       Look at hpijx to understand the reason of that which relies in memory size
     printf("\n");       and note for a fixed period like estepm months */
     fprintf(ficparo,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
   for(i=1; i <=npar; i++)       means that if the survival funtion is printed only each two years of age and if
     for(j=i+1;j<=npar;j++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       matcov[i][j]=matcov[j][i];       results. So we changed our mind and took the option of the best precision.
        */
   printf("\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /*-------- Rewriting paramater file ----------*/    /* nhstepm age range expressed in number of stepm */
      strcpy(rfileres,"r");    /* "Rparameterfile */    agelim=AGESUP;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
      strcat(rfileres,".");    /* */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    /* if (stepm >= YEARM) hstepm=1;*/
     if((ficres =fopen(rfileres,"w"))==NULL) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficres,"#%s\n",version);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     /*-------- data file ----------*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     if((fic=fopen(datafile,"r"))==NULL)    {    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       printf("Problem with datafile: %s\n", datafile);goto end;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }  
     for (age=bage; age<=fage; age ++){ 
     n= lastobs;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     severity = vector(1,maxwav);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     outcome=imatrix(1,maxwav+1,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     num=ivector(1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     moisnais=vector(1,n);  
     annais=vector(1,n);      /* If stepm=6 months */
     moisdc=vector(1,n);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     andc=vector(1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     agedc=vector(1,n);      
     cod=ivector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      /* Computing  Variances of health expectancies */
     mint=matrix(1,maxwav,1,n);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     anint=matrix(1,maxwav,1,n);         decrease memory allocation */
     s=imatrix(1,maxwav+1,1,n);      for(theta=1; theta <=npar; theta++){
     adl=imatrix(1,maxwav+1,1,n);            for(i=1; i<=npar; i++){ 
     tab=ivector(1,NCOVMAX);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     ncodemax=ivector(1,8);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
     i=1;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     while (fgets(line, MAXLINE, fic) != NULL)    {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       if ((i >= firstobs) && (i <=lastobs)) {    
                for(j=1; j<= nlstate; j++){
         for (j=maxwav;j>=1;j--){          for(i=1; i<=nlstate; i++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(h=0; h<=nhstepm-1; h++){
           strcpy(line,stra);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }          }
                }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);       
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
       }/* End theta */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      
         for (j=ncovcol;j>=1;j--){      
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(h=0; h<=nhstepm-1; h++)
         }        for(j=1; j<=nlstate*nlstate;j++)
         num[i]=atol(stra);          for(theta=1; theta <=npar; theta++)
                    trgradg[h][j][theta]=gradg[h][theta][j];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/  
        for(ij=1;ij<=nlstate*nlstate;ij++)
         i=i+1;        for(ji=1;ji<=nlstate*nlstate;ji++)
       }          varhe[ij][ji][(int)age] =0.;
     }  
     /* printf("ii=%d", ij);       printf("%d|",(int)age);fflush(stdout);
        scanf("%d",i);*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   imx=i-1; /* Number of individuals */       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
   /* for (i=1; i<=imx; i++){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          for(ij=1;ij<=nlstate*nlstate;ij++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;            for(ji=1;ji<=nlstate*nlstate;ji++)
     }*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
    /*  for (i=1; i<=imx; i++){        }
      if (s[4][i]==9)  s[4][i]=-1;      }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
        /* Computing expectancies */
        hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   /* Calculation of the number of parameter from char model*/      for(i=1; i<=nlstate;i++)
   Tvar=ivector(1,15);        for(j=1; j<=nlstate;j++)
   Tprod=ivector(1,15);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   Tvaraff=ivector(1,15);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   Tvard=imatrix(1,15,1,2);            
   Tage=ivector(1,15);                  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
   if (strlen(model) >1){          }
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');      fprintf(ficresstdeij,"%3.0f",age );
     j1=nbocc(model,'*');      for(i=1; i<=nlstate;i++){
     cptcovn=j+1;        eip=0.;
     cptcovprod=j1;        vip=0.;
            for(j=1; j<=nlstate;j++){
     strcpy(modelsav,model);          eip += eij[i][j][(int)age];
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
       printf("Error. Non available option model=%s ",model);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       goto end;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     }        }
            fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     for(i=(j+1); i>=1;i--){      }
       cutv(stra,strb,modelsav,'+');      fprintf(ficresstdeij,"\n");
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      fprintf(ficrescveij,"%3.0f",age );
       /*scanf("%d",i);*/      for(i=1; i<=nlstate;i++)
       if (strchr(strb,'*')) {        for(j=1; j<=nlstate;j++){
         cutv(strd,strc,strb,'*');          cptj= (j-1)*nlstate+i;
         if (strcmp(strc,"age")==0) {          for(i2=1; i2<=nlstate;i2++)
           cptcovprod--;            for(j2=1; j2<=nlstate;j2++){
           cutv(strb,stre,strd,'V');              cptj2= (j2-1)*nlstate+i2;
           Tvar[i]=atoi(stre);              if(cptj2 <= cptj)
           cptcovage++;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             Tage[cptcovage]=i;            }
             /*printf("stre=%s ", stre);*/        }
         }      fprintf(ficrescveij,"\n");
         else if (strcmp(strd,"age")==0) {     
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           Tvar[i]=atoi(stre);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           cptcovage++;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           Tage[cptcovage]=i;    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
         }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cutv(strb,stre,strc,'V');    printf("\n");
           Tvar[i]=ncovcol+k1;    fprintf(ficlog,"\n");
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;    free_vector(xm,1,npar);
           Tvard[k1][1]=atoi(strc);    free_vector(xp,1,npar);
           Tvard[k1][2]=atoi(stre);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           for (k=1; k<=lastobs;k++)  }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;  /************ Variance ******************/
           k2=k2+2;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
         }  {
       }    /* Variance of health expectancies */
       else {    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /* double **newm;*/
        /*  scanf("%d",i);*/    double **dnewm,**doldm;
       cutv(strd,strc,strb,'V');    double **dnewmp,**doldmp;
       Tvar[i]=atoi(strc);    int i, j, nhstepm, hstepm, h, nstepm ;
       }    int k, cptcode;
       strcpy(modelsav,stra);      double *xp;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double **gp, **gm;  /* for var eij */
         scanf("%d",i);*/    double ***gradg, ***trgradg; /*for var eij */
     }    double **gradgp, **trgradgp; /* for var p point j */
 }    double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double ***p3mat;
   printf("cptcovprod=%d ", cptcovprod);    double age,agelim, hf;
   scanf("%d ",i);*/    double ***mobaverage;
     fclose(fic);    int theta;
     char digit[4];
     /*  if(mle==1){*/    char digitp[25];
     if (weightopt != 1) { /* Maximisation without weights*/  
       for(i=1;i<=n;i++) weight[i]=1.0;    char fileresprobmorprev[FILENAMELENGTH];
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    if(popbased==1){
     agev=matrix(1,maxwav,1,imx);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
     for (i=1; i<=imx; i++) {      else strcpy(digitp,"-populbased-nomobil-");
       for(m=2; (m<= maxwav); m++) {    }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    else 
          anint[m][i]=9999;      strcpy(digitp,"-stablbased-");
          s[m][i]=-1;  
        }    if (mobilav!=0) {
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for (i=1; i<=imx; i++)  {      }
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    }
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){    strcpy(fileresprobmorprev,"prmorprev"); 
           if (s[m][i] >= nlstate+1) {    sprintf(digit,"%-d",ij);
             if(agedc[i]>0)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
               if(moisdc[i]!=99 && andc[i]!=9999)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                 agev[m][i]=agedc[i];    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    strcat(fileresprobmorprev,fileres);
            else {    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
               if (andc[i]!=9999){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               agev[m][i]=-1;    }
               }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             }   
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           else if(s[m][i] !=9){ /* Should no more exist */    pstamp(ficresprobmorprev);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
               agev[m][i]=1;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             else if(agev[m][i] <agemin){      fprintf(ficresprobmorprev," p.%-d SE",j);
               agemin=agev[m][i];      for(i=1; i<=nlstate;i++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
             }    }  
             else if(agev[m][i] >agemax){    fprintf(ficresprobmorprev,"\n");
               agemax=agev[m][i];    fprintf(ficgp,"\n# Routine varevsij");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
             }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
             /*agev[m][i]=anint[m][i]-annais[i];*/    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
             /*   agev[m][i] = age[i]+2*m;*/  /*   } */
           }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           else { /* =9 */    pstamp(ficresvij);
             agev[m][i]=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
             s[m][i]=-1;    if(popbased==1)
           }      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         }    else
         else /*= 0 Unknown */      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           agev[m][i]=1;    fprintf(ficresvij,"# Age");
       }    for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
     }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     for (i=1; i<=imx; i++)  {    fprintf(ficresvij,"\n");
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {    xp=vector(1,npar);
           printf("Error: Wrong value in nlstate or ndeath\n");      dnewm=matrix(1,nlstate,1,npar);
           goto end;    doldm=matrix(1,nlstate,1,nlstate);
         }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     free_vector(severity,1,maxwav);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);    if(estepm < stepm){
     free_vector(annais,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     /* free_matrix(mint,1,maxwav,1,n);    }
        free_matrix(anint,1,maxwav,1,n);*/    else  hstepm=estepm;   
     free_vector(moisdc,1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
     free_vector(andc,1,n);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
     wav=ivector(1,imx);       Look at function hpijx to understand why (it is linked to memory size questions) */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       survival function given by stepm (the optimization length). Unfortunately it
           means that if the survival funtion is printed every two years of age and if
     /* Concatenates waves */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);       results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       Tcode=ivector(1,100);    agelim = AGESUP;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       ncodemax[1]=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    codtab=imatrix(1,100,1,10);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
    h=0;      gp=matrix(0,nhstepm,1,nlstate);
    m=pow(2,cptcoveff);      gm=matrix(0,nhstepm,1,nlstate);
    
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      for(theta=1; theta <=npar; theta++){
        for(j=1; j <= ncodemax[k]; j++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            h++;        }
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          }  
        }        if (popbased==1) {
      }          if(mobilav ==0){
    }            for(i=1; i<=nlstate;i++)
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);              prlim[i][i]=probs[(int)age][i][ij];
       codtab[1][2]=1;codtab[2][2]=2; */          }else{ /* mobilav */ 
    /* for(i=1; i <=m ;i++){            for(i=1; i<=nlstate;i++)
       for(k=1; k <=cptcovn; k++){              prlim[i][i]=mobaverage[(int)age][i][ij];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          }
       }        }
       printf("\n");    
       }        for(j=1; j<= nlstate; j++){
       scanf("%d",i);*/          for(h=0; h<=nhstepm; h++){
                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    /* Calculates basic frequencies. Computes observed prevalence at single age              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
        and prints on file fileres'p'. */          }
         }
            /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           as a weighted average of prlim.
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
              }    
     /* For Powell, parameters are in a vector p[] starting at p[1]        /* end probability of death */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
     if(mle==1){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }   
            if (popbased==1) {
     /*--------- results files --------------*/          if(mobilav ==0){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
    jk=1;            for(i=1; i<=nlstate;i++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          }
    for(i=1,jk=1; i <=nlstate; i++){        }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
          {          for(h=0; h<=nhstepm; h++){
            printf("%d%d ",i,k);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
            fprintf(ficres,"%1d%1d ",i,k);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            for(j=1; j <=ncovmodel; j++){          }
              printf("%f ",p[jk]);        }
              fprintf(ficres,"%f ",p[jk]);        /* This for computing probability of death (h=1 means
              jk++;           computed over hstepm matrices product = hstepm*stepm months) 
            }           as a weighted average of prlim.
            printf("\n");        */
            fprintf(ficres,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
    }        }    
  if(mle==1){        /* end probability of death */
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */        for(j=1; j<= nlstate; j++) /* vareij */
     hesscov(matcov, p, npar, delti, ftolhess, func);          for(h=0; h<=nhstepm; h++){
  }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          }
     printf("# Scales (for hessian or gradient estimation)\n");  
      for(i=1,jk=1; i <=nlstate; i++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for(j=1; j <=nlstate+ndeath; j++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         if (j!=i) {        }
           fprintf(ficres,"%1d%1d",i,j);  
           printf("%1d%1d",i,j);      } /* End theta */
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
             fprintf(ficres," %.5e",delti[jk]);  
             jk++;      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
           printf("\n");          for(theta=1; theta <=npar; theta++)
           fprintf(ficres,"\n");            trgradg[h][j][theta]=gradg[h][theta][j];
         }  
       }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      }        for(theta=1; theta <=npar; theta++)
              trgradgp[j][theta]=gradgp[theta][j];
     k=1;    
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1;i<=npar;i++){      for(i=1;i<=nlstate;i++)
       /*  if (k>nlstate) k=1;        for(j=1;j<=nlstate;j++)
       i1=(i-1)/(ncovmodel*nlstate)+1;          vareij[i][j][(int)age] =0.;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/      for(h=0;h<=nhstepm;h++){
       fprintf(ficres,"%3d",i);        for(k=0;k<=nhstepm;k++){
       printf("%3d",i);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       for(j=1; j<=i;j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         fprintf(ficres," %.5e",matcov[i][j]);          for(i=1;i<=nlstate;i++)
         printf(" %.5e",matcov[i][j]);            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       fprintf(ficres,"\n");        }
       printf("\n");      }
       k++;    
     }      /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     while((c=getc(ficpar))=='#' && c!= EOF){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       ungetc(c,ficpar);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       fgets(line, MAXLINE, ficpar);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       puts(line);          varppt[j][i]=doldmp[j][i];
       fputs(line,ficparo);      /* end ppptj */
     }      /*  x centered again */
     ungetc(c,ficpar);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     estepm=0;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);   
     if (estepm==0 || estepm < stepm) estepm=stepm;      if (popbased==1) {
     if (fage <= 2) {        if(mobilav ==0){
       bage = ageminpar;          for(i=1; i<=nlstate;i++)
       fage = agemaxpar;            prlim[i][i]=probs[(int)age][i][ij];
     }        }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      }
                 
     while((c=getc(ficpar))=='#' && c!= EOF){      /* This for computing probability of death (h=1 means
     ungetc(c,ficpar);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     fgets(line, MAXLINE, ficpar);         as a weighted average of prlim.
     puts(line);      */
     fputs(line,ficparo);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   ungetc(c,ficpar);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      /* end probability of death */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
            for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     ungetc(c,ficpar);        for(i=1; i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     puts(line);        }
     fputs(line,ficparo);      } 
   }      fprintf(ficresprobmorprev,"\n");
   ungetc(c,ficpar);  
        fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        for(j=1; j<=nlstate;j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
   fscanf(ficpar,"pop_based=%d\n",&popbased);      fprintf(ficresvij,"\n");
   fprintf(ficparo,"pop_based=%d\n",popbased);        free_matrix(gp,0,nhstepm,1,nlstate);
   fprintf(ficres,"pop_based=%d\n",popbased);        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ungetc(c,ficpar);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    } /* End age */
     puts(line);    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     ungetc(c,ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     puts(line);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fputs(line,ficparo);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   ungetc(c,ficpar);  */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 /*------------ gnuplot -------------*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 /*------------ free_vector  -------------*/    fclose(ficresprobmorprev);
  chdir(path);    fflush(ficgp);
      fflush(fichtm); 
  free_ivector(wav,1,imx);  }  /* end varevsij */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    /************ Variance of prevlim ******************/
  free_ivector(num,1,n);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
  free_vector(agedc,1,n);  {
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    /* Variance of prevalence limit */
  fclose(ficparo);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
  fclose(ficres);    double **newm;
     double **dnewm,**doldm;
 /*--------- index.htm --------*/    int i, j, nhstepm, hstepm;
     int k, cptcode;
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    double *xp;
     double *gp, *gm;
      double **gradg, **trgradg;
   /*--------------- Prevalence limit --------------*/    double age,agelim;
      int theta;
   strcpy(filerespl,"pl");    
   strcat(filerespl,fileres);    pstamp(ficresvpl);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficresvpl,"# Age");
   }    for(i=1; i<=nlstate;i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficresvpl," %1d-%1d",i,i);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficresvpl,"\n");
   fprintf(ficrespl,"#Age ");  
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    xp=vector(1,npar);
   fprintf(ficrespl,"\n");    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   prlim=matrix(1,nlstate,1,nlstate);    
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=1*YEARM; /* Every year of age */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim = AGESUP;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   k=0;      if (stepm >= YEARM) hstepm=1;
   agebase=ageminpar;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   agelim=agemaxpar;      gradg=matrix(1,npar,1,nlstate);
   ftolpl=1.e-10;      gp=vector(1,nlstate);
   i1=cptcoveff;      gm=vector(1,nlstate);
   if (cptcovn < 1){i1=1;}  
       for(theta=1; theta <=npar; theta++){
   for(cptcov=1;cptcov<=i1;cptcov++){        for(i=1; i<=npar; i++){ /* Computes gradient */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         k=k+1;        }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         fprintf(ficrespl,"\n#******");        for(i=1;i<=nlstate;i++)
         for(j=1;j<=cptcoveff;j++)          gp[i] = prlim[i][i];
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
         fprintf(ficrespl,"******\n");        for(i=1; i<=npar; i++) /* Computes gradient */
                  xp[i] = x[i] - (i==theta ?delti[theta]:0);
         for (age=agebase; age<=agelim; age++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(i=1;i<=nlstate;i++)
           fprintf(ficrespl,"%.0f",age );          gm[i] = prlim[i][i];
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);        for(i=1;i<=nlstate;i++)
           fprintf(ficrespl,"\n");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
       }  
     }      trgradg =matrix(1,nlstate,1,npar);
   fclose(ficrespl);  
       for(j=1; j<=nlstate;j++)
   /*------------- h Pij x at various ages ------------*/        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      for(i=1;i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        varpl[i][(int)age] =0.;
   }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   printf("Computing pij: result on file '%s' \n", filerespij);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
        for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /*if (stepm<=24) stepsize=2;*/  
       fprintf(ficresvpl,"%.0f ",age );
   agelim=AGESUP;      for(i=1; i<=nlstate;i++)
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficresvpl,"\n");
        free_vector(gp,1,nlstate);
   k=0;      free_vector(gm,1,nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){      free_matrix(gradg,1,npar,1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_matrix(trgradg,1,nlstate,1,npar);
       k=k+1;    } /* End age */
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    free_vector(xp,1,npar);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(doldm,1,nlstate,1,npar);
         fprintf(ficrespij,"******\n");    free_matrix(dnewm,1,nlstate,1,nlstate);
          
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  /************ Variance of one-step probabilities  ******************/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i, j=0,  i1, k1, l1, t, tj;
           fprintf(ficrespij,"# Age");    int k2, l2, j1,  z1;
           for(i=1; i<=nlstate;i++)    int k=0,l, cptcode;
             for(j=1; j<=nlstate+ndeath;j++)    int first=1, first1;
               fprintf(ficrespij," %1d-%1d",i,j);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           fprintf(ficrespij,"\n");    double **dnewm,**doldm;
            for (h=0; h<=nhstepm; h++){    double *xp;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    double *gp, *gm;
             for(i=1; i<=nlstate;i++)    double **gradg, **trgradg;
               for(j=1; j<=nlstate+ndeath;j++)    double **mu;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    double age,agelim, cov[NCOVMAX];
             fprintf(ficrespij,"\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
              }    int theta;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    char fileresprob[FILENAMELENGTH];
           fprintf(ficrespij,"\n");    char fileresprobcov[FILENAMELENGTH];
         }    char fileresprobcor[FILENAMELENGTH];
     }  
   }    double ***varpij;
   
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
   fclose(ficrespij);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /*---------- Forecasting ------------------*/    }
   if((stepm == 1) && (strcmp(model,".")==0)){    strcpy(fileresprobcov,"probcov"); 
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    strcat(fileresprobcov,fileres);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   else{      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     erreur=108;    }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    strcpy(fileresprobcor,"probcor"); 
   }    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
   /*---------- Health expectancies and variances ------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   strcpy(filerest,"t");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   strcat(filerest,fileres);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if((ficrest=fopen(filerest,"w"))==NULL) {    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   strcpy(filerese,"e");    fprintf(ficresprob,"# Age");
   strcat(filerese,fileres);    pstamp(ficresprobcov);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    fprintf(ficresprobcov,"# Age");
   }    pstamp(ficresprobcor);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
  strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      for(j=1; j<=(nlstate+ndeath);j++){
   }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   calagedate=-1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      }  
    /* fprintf(ficresprob,"\n");
   k=0;    fprintf(ficresprobcov,"\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobcor,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   */
       k=k+1;    xp=vector(1,npar);
       fprintf(ficrest,"\n#****** ");    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for(j=1;j<=cptcoveff;j++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       fprintf(ficrest,"******\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
       fprintf(ficreseij,"\n#****** ");    fprintf(ficgp,"\n# Routine varprob");
       for(j=1;j<=cptcoveff;j++)    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtm,"\n");
       fprintf(ficreseij,"******\n");  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fprintf(ficresvij,"\n#****** ");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       for(j=1;j<=cptcoveff;j++)    file %s<br>\n",optionfilehtmcov);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       fprintf(ficresvij,"******\n");  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       oldm=oldms;savm=savms;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    standard deviations wide on each axis. <br>\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       oldm=oldms;savm=savms;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
      
     cov[1]=1;
      tj=cptcoveff;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    j1=0;
       fprintf(ficrest,"\n");    for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
       epj=vector(1,nlstate+1);        j1++;
       for(age=bage; age <=fage ;age++){        if  (cptcovn>0) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficresprob, "\n#********** Variable "); 
         if (popbased==1) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           for(i=1; i<=nlstate;i++)          fprintf(ficresprob, "**********\n#\n");
             prlim[i][i]=probs[(int)age][i][k];          fprintf(ficresprobcov, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                  fprintf(ficresprobcov, "**********\n#\n");
         fprintf(ficrest," %4.0f",age);          
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          fprintf(ficgp, "\n#********** Variable "); 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          fprintf(ficgp, "**********\n#\n");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          
           }          
           epj[nlstate+1] +=epj[j];          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(i=1, vepp=0.;i <=nlstate;i++)          
           for(j=1;j <=nlstate;j++)          fprintf(ficresprobcor, "\n#********** Variable ");    
             vepp += vareij[i][j][(int)age];          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          fprintf(ficresprobcor, "**********\n#");    
         for(j=1;j <=nlstate;j++){        }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        
         }        for (age=bage; age<=fage; age ++){ 
         fprintf(ficrest,"\n");          cov[2]=age;
       }          for (k=1; k<=cptcovn;k++) {
     }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   }          }
 free_matrix(mint,1,maxwav,1,n);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          for (k=1; k<=cptcovprod;k++)
     free_vector(weight,1,n);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fclose(ficreseij);          
   fclose(ficresvij);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   fclose(ficrest);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   fclose(ficpar);          gp=vector(1,(nlstate)*(nlstate+ndeath));
   free_vector(epj,1,nlstate+1);          gm=vector(1,(nlstate)*(nlstate+ndeath));
        
   /*------- Variance limit prevalence------*/            for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   strcpy(fileresvpl,"vpl");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   strcat(fileresvpl,fileres);            
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            
     exit(0);            k=0;
   }            for(i=1; i<= (nlstate); i++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   k=0;                gp[k]=pmmij[i][j];
   for(cptcov=1;cptcov<=i1;cptcov++){              }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }
       k=k+1;            
       fprintf(ficresvpl,"\n#****** ");            for(i=1; i<=npar; i++)
       for(j=1;j<=cptcoveff;j++)              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficresvpl,"******\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                  k=0;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);            for(i=1; i<=(nlstate); i++){
       oldm=oldms;savm=savms;              for(j=1; j<=(nlstate+ndeath);j++){
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                k=k+1;
     }                gm[k]=pmmij[i][j];
  }              }
             }
   fclose(ficresvpl);       
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /*---------- End : free ----------------*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          }
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
            
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_matrix(matcov,1,npar,1,npar);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   free_vector(delti,1,npar);  
   free_matrix(agev,1,maxwav,1,imx);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          
           k=0;
   if(erreur >0)          for(i=1; i<=(nlstate); i++){
     printf("End of Imach with error or warning %d\n",erreur);            for(j=1; j<=(nlstate+ndeath);j++){
   else   printf("End of Imach\n");              k=k+1;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              mu[k][(int) age]=pmmij[i][j];
              }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          }
   /*printf("Total time was %d uSec.\n", total_usecs);*/          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   /*------ End -----------*/            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
  end:          /*printf("\n%d ",(int)age);
   /* chdir(pathcd);*/            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  /*system("wgnuplot graph.plt");*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  /*system("../gp37mgw/wgnuplot graph.plt");*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
  /*system("cd ../gp37mgw");*/            }*/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  
  strcpy(plotcmd,GNUPLOTPROGRAM);          fprintf(ficresprob,"\n%d ",(int)age);
  strcat(plotcmd," ");          fprintf(ficresprobcov,"\n%d ",(int)age);
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficresprobcor,"\n%d ",(int)age);
  system(plotcmd);  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
  /*#ifdef windows*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   while (z[0] != 'q') {          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     /* chdir(path); */            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     scanf("%s",z);          }
     if (z[0] == 'c') system("./imach");          i=0;
     else if (z[0] == 'e') system(optionfilehtm);          for (k=1; k<=(nlstate);k++){
     else if (z[0] == 'g') system(plotcmd);            for (l=1; l<=(nlstate+ndeath);l++){ 
     else if (z[0] == 'q') exit(0);              i=i++;
   }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   /*#endif */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 }              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.1  
changed lines
  Added in v.1.141


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>