Diff for /imach/src/imach.c between versions 1.27 and 1.142

version 1.27, 2002/02/28 17:49:07 version 1.142, 2014/01/26 03:57:36
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.142  2014/01/26 03:57:36  brouard
      Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.141  2014/01/26 02:42:01  brouard
   case of a health survey which is our main interest) -2- at least a    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.140  2011/09/02 10:37:54  brouard
   computed from the time spent in each health state according to a    Summary: times.h is ok with mingw32 now.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.139  2010/06/14 07:50:17  brouard
   simplest model is the multinomial logistic model where pij is the    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   probabibility to be observed in state j at the second wave    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.138  2010/04/30 18:19:40  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    *** empty log message ***
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.137  2010/04/29 18:11:38  brouard
   you to do it.  More covariates you add, slower the    (Module): Checking covariates for more complex models
   convergence.    than V1+V2. A lot of change to be done. Unstable.
   
   The advantage of this computer programme, compared to a simple    Revision 1.136  2010/04/26 20:30:53  brouard
   multinomial logistic model, is clear when the delay between waves is not    (Module): merging some libgsl code. Fixing computation
   identical for each individual. Also, if a individual missed an    of likelione (using inter/intrapolation if mle = 0) in order to
   intermediate interview, the information is lost, but taken into    get same likelihood as if mle=1.
   account using an interpolation or extrapolation.      Some cleaning of code and comments added.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.135  2009/10/29 15:33:14  brouard
   conditional to the observed state i at age x. The delay 'h' can be    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.134  2009/10/29 13:18:53  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.133  2009/07/06 10:21:25  brouard
   hPijx.    just nforces
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.132  2009/07/06 08:22:05  brouard
   of the life expectancies. It also computes the prevalence limits.    Many tings
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.131  2009/06/20 16:22:47  brouard
            Institut national d'études démographiques, Paris.    Some dimensions resccaled
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.130  2009/05/26 06:44:34  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Max Covariate is now set to 20 instead of 8. A
   software can be distributed freely for non commercial use. Latest version    lot of cleaning with variables initialized to 0. Trying to make
   can be accessed at http://euroreves.ined.fr/imach .    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   **********************************************************************/  
      Revision 1.129  2007/08/31 13:49:27  lievre
 #include <math.h>    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.128  2006/06/30 13:02:05  brouard
 #include <unistd.h>    (Module): Clarifications on computing e.j
   
 #define MAXLINE 256    Revision 1.127  2006/04/28 18:11:50  brouard
 #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"    (Module): Yes the sum of survivors was wrong since
 #define FILENAMELENGTH 80    imach-114 because nhstepm was no more computed in the age
 /*#define DEBUG*/    loop. Now we define nhstepma in the age loop.
 #define windows    (Module): In order to speed up (in case of numerous covariates) we
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    compute health expectancies (without variances) in a first step
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    computation.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    In the future we should be able to stop the program is only health
     expectancies and graph are needed without standard deviations.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.126  2006/04/28 17:23:28  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): Yes the sum of survivors was wrong since
 #define NCOVMAX 8 /* Maximum number of covariates */    imach-114 because nhstepm was no more computed in the age
 #define MAXN 20000    loop. Now we define nhstepma in the age loop.
 #define YEARM 12. /* Number of months per year */    Version 0.98h
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 int erreur; /* Error number */  
 int nvar;    Revision 1.124  2006/03/22 17:13:53  lievre
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int npar=NPARMAX;    The log-likelihood is printed in the log file
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.123  2006/03/20 10:52:43  brouard
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    * imach.c (Module): <title> changed, corresponds to .htm file
 int popbased=0;    name. <head> headers where missing.
   
 int *wav; /* Number of waves for this individuual 0 is possible */    * imach.c (Module): Weights can have a decimal point as for
 int maxwav; /* Maxim number of waves */    English (a comma might work with a correct LC_NUMERIC environment,
 int jmin, jmax; /* min, max spacing between 2 waves */    otherwise the weight is truncated).
 int mle, weightopt;    Modification of warning when the covariates values are not 0 or
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    1.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Version 0.98g
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.122  2006/03/20 09:45:41  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Weights can have a decimal point as for
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *ficgp,*ficresprob,*ficpop;    otherwise the weight is truncated).
 FILE *ficreseij;    Modification of warning when the covariates values are not 0 or
   char filerese[FILENAMELENGTH];    1.
  FILE  *ficresvij;    Version 0.98g
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;    Revision 1.121  2006/03/16 17:45:01  lievre
   char fileresvpl[FILENAMELENGTH];    * imach.c (Module): Comments concerning covariates added
   
 #define NR_END 1    * imach.c (Module): refinements in the computation of lli if
 #define FREE_ARG char*    status=-2 in order to have more reliable computation if stepm is
 #define FTOL 1.0e-10    not 1 month. Version 0.98f
   
 #define NRANSI    Revision 1.120  2006/03/16 15:10:38  lievre
 #define ITMAX 200    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define TOL 2.0e-4    not 1 month. Version 0.98f
   
 #define CGOLD 0.3819660    Revision 1.119  2006/03/15 17:42:26  brouard
 #define ZEPS 1.0e-10    (Module): Bug if status = -2, the loglikelihood was
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    computed as likelihood omitting the logarithm. Version O.98e
   
 #define GOLD 1.618034    Revision 1.118  2006/03/14 18:20:07  brouard
 #define GLIMIT 100.0    (Module): varevsij Comments added explaining the second
 #define TINY 1.0e-20    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 static double maxarg1,maxarg2;    (Module): Function pstamp added
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Version 0.98d
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.117  2006/03/14 17:16:22  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): varevsij Comments added explaining the second
 #define rint(a) floor(a+0.5)    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 static double sqrarg;    (Module): Function pstamp added
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Version 0.98d
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.116  2006/03/06 10:29:27  brouard
 int imx;    (Module): Variance-covariance wrong links and
 int stepm;    varian-covariance of ej. is needed (Saito).
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.115  2006/02/27 12:17:45  brouard
 int m,nb;    (Module): One freematrix added in mlikeli! 0.98c
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.114  2006/02/26 12:57:58  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Some improvements in processing parameter
 double dateintmean=0;    filename with strsep.
   
 double *weight;    Revision 1.113  2006/02/24 14:20:24  brouard
 int **s; /* Status */    (Module): Memory leaks checks with valgrind and:
 double *agedc, **covar, idx;    datafile was not closed, some imatrix were not freed and on matrix
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    allocation too.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.112  2006/01/30 09:55:26  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 /**************** split *************************/    Revision 1.111  2006/01/25 20:38:18  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
    char *s;                             /* pointer */    can be a simple dot '.'.
    int  l1, l2;                         /* length counters */  
     Revision 1.110  2006/01/25 00:51:50  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Lots of cleaning and bugs added (Gompertz)
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.109  2006/01/24 19:37:15  brouard
    s = strrchr( path, '\\' );           /* find last / */    (Module): Comments (lines starting with a #) are allowed in data.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.108  2006/01/19 18:05:42  lievre
 #endif    Gnuplot problem appeared...
    if ( s == NULL ) {                   /* no directory, so use current */    To be fixed
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.106  2006/01/19 13:24:36  brouard
       extern char       *getcwd( );    Some cleaning and links added in html output
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.105  2006/01/05 20:23:19  lievre
 #endif    *** empty log message ***
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.104  2005/09/30 16:11:43  lievre
       strcpy( name, path );             /* we've got it */    (Module): sump fixed, loop imx fixed, and simplifications.
    } else {                             /* strip direcotry from path */    (Module): If the status is missing at the last wave but we know
       s++;                              /* after this, the filename */    that the person is alive, then we can code his/her status as -2
       l2 = strlen( s );                 /* length of filename */    (instead of missing=-1 in earlier versions) and his/her
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    contributions to the likelihood is 1 - Prob of dying from last
       strcpy( name, s );                /* save file name */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    the healthy state at last known wave). Version is 0.98
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.103  2005/09/30 15:54:49  lievre
    l1 = strlen( dirc );                 /* length of directory */    (Module): sump fixed, loop imx fixed, and simplifications.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.102  2004/09/15 17:31:30  brouard
 #else    Add the possibility to read data file including tab characters.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.101  2004/09/15 10:38:38  brouard
    s = strrchr( name, '.' );            /* find last / */    Fix on curr_time
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.100  2004/07/12 18:29:06  brouard
    l1= strlen( name);    Add version for Mac OS X. Just define UNIX in Makefile
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.99  2004/06/05 08:57:40  brouard
    finame[l1-l2]= 0;    *** empty log message ***
    return( 0 );                         /* we're done */  
 }    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
     directly from the data i.e. without the need of knowing the health
 /******************************************/    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 void replace(char *s, char*t)    other analysis, in order to test if the mortality estimated from the
 {    cross-longitudinal survey is different from the mortality estimated
   int i;    from other sources like vital statistic data.
   int lg=20;  
   i=0;    The same imach parameter file can be used but the option for mle should be -3.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Agnès, who wrote this part of the code, tried to keep most of the
     (s[i] = t[i]);    former routines in order to include the new code within the former code.
     if (t[i]== '\\') s[i]='/';  
   }    The output is very simple: only an estimate of the intercept and of
 }    the slope with 95% confident intervals.
   
 int nbocc(char *s, char occ)    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
   int i,j=0;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   int lg=20;    B) There is no computation of Life Expectancy nor Life Table.
   i=0;  
   lg=strlen(s);    Revision 1.97  2004/02/20 13:25:42  lievre
   for(i=0; i<= lg; i++) {    Version 0.96d. Population forecasting command line is (temporarily)
   if  (s[i] == occ ) j++;    suppressed.
   }  
   return j;    Revision 1.96  2003/07/15 15:38:55  brouard
 }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   int i,lg,j,p=0;    * imach.c (Repository):
   i=0;    (Repository): Using imachwizard code to output a more meaningful covariance
   for(j=0; j<=strlen(t)-1; j++) {    matrix (cov(a12,c31) instead of numbers.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.93  2003/06/25 16:33:55  brouard
     (u[j] = t[j]);    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
      u[p]='\0';    (Module): Version 0.96b
   
    for(j=0; j<= lg; j++) {    Revision 1.92  2003/06/25 16:30:45  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): On windows (cygwin) function asctime_r doesn't
   }    exist so I changed back to asctime which exists.
 }  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /********************** nrerror ********************/    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 void nrerror(char error_text[])    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   fprintf(stderr,"ERREUR ...\n");    concerning matrix of covariance. It has extension -cov.htm.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
 /*********************** vector *******************/    mle=-1 a template is output in file "or"mypar.txt with the design
 double *vector(int nl, int nh)    of the covariance matrix to be input.
 {  
   double *v;    Revision 1.89  2003/06/24 12:30:52  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Some bugs corrected for windows. Also, when
   if (!v) nrerror("allocation failure in vector");    mle=-1 a template is output in file "or"mypar.txt with the design
   return v-nl+NR_END;    of the covariance matrix to be input.
 }  
     Revision 1.88  2003/06/23 17:54:56  brouard
 /************************ free vector ******************/    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.87  2003/06/18 12:26:01  brouard
   free((FREE_ARG)(v+nl-NR_END));    Version 0.96
 }  
     Revision 1.86  2003/06/17 20:04:08  brouard
 /************************ivector *******************************/    (Module): Change position of html and gnuplot routines and added
 int *ivector(long nl,long nh)    routine fileappend.
 {  
   int *v;    Revision 1.85  2003/06/17 13:12:43  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    * imach.c (Repository): Check when date of death was earlier that
   if (!v) nrerror("allocation failure in ivector");    current date of interview. It may happen when the death was just
   return v-nl+NR_END;    prior to the death. In this case, dh was negative and likelihood
 }    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
 /******************free ivector **************************/    interview.
 void free_ivector(int *v, long nl, long nh)    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
   free((FREE_ARG)(v+nl-NR_END));    memory allocation. But we also truncated to 8 characters (left
 }    truncation)
     (Repository): No more line truncation errors.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.84  2003/06/13 21:44:43  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    many times. Probs is memory consuming and must be used with
   int **m;    parcimony.
      Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.83  2003/06/10 13:39:11  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    *** empty log message ***
   m += NR_END;  
   m -= nrl;    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
    
   /* allocate rows and set pointers to them */  */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     Interpolated Markov Chain
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Short summary of the programme:
      
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    This program computes Healthy Life Expectancies from
      cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   /* return pointer to array of pointers to rows */    first survey ("cross") where individuals from different ages are
   return m;    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /****************** free_imatrix *************************/    (if any) in individual health status.  Health expectancies are
 void free_imatrix(m,nrl,nrh,ncl,nch)    computed from the time spent in each health state according to a
       int **m;    model. More health states you consider, more time is necessary to reach the
       long nch,ncl,nrh,nrl;    Maximum Likelihood of the parameters involved in the model.  The
      /* free an int matrix allocated by imatrix() */    simplest model is the multinomial logistic model where pij is the
 {    probability to be observed in state j at the second wave
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    conditional to be observed in state i at the first wave. Therefore
   free((FREE_ARG) (m+nrl-NR_END));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 }    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 /******************* matrix *******************************/    where the markup *Covariates have to be included here again* invites
 double **matrix(long nrl, long nrh, long ncl, long nch)    you to do it.  More covariates you add, slower the
 {    convergence.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    identical for each individual. Also, if a individual missed an
   if (!m) nrerror("allocation failure 1 in matrix()");    intermediate interview, the information is lost, but taken into
   m += NR_END;    account using an interpolation or extrapolation.  
   m -= nrl;  
     hPijx is the probability to be observed in state i at age x+h
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    conditional to the observed state i at age x. The delay 'h' can be
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    split into an exact number (nh*stepm) of unobserved intermediate
   m[nrl] += NR_END;    states. This elementary transition (by month, quarter,
   m[nrl] -= ncl;    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    and the contribution of each individual to the likelihood is simply
   return m;    hPijx.
 }  
     Also this programme outputs the covariance matrix of the parameters but also
 /*************************free matrix ************************/    of the life expectancies. It also computes the period (stable) prevalence. 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    
 {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free((FREE_ARG)(m[nrl]+ncl-NR_END));             Institut national d'études démographiques, Paris.
   free((FREE_ARG)(m+nrl-NR_END));    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /******************* ma3x *******************************/    software can be distributed freely for non commercial use. Latest version
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double ***m;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    **********************************************************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  /*
   m += NR_END;    main
   m -= nrl;    read parameterfile
     read datafile
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    concatwav
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    freqsummary
   m[nrl] += NR_END;    if (mle >= 1)
   m[nrl] -= ncl;      mlikeli
     print results files
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    if mle==1 
        computes hessian
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    read end of parameter file: agemin, agemax, bage, fage, estepm
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");        begin-prev-date,...
   m[nrl][ncl] += NR_END;    open gnuplot file
   m[nrl][ncl] -= nll;    open html file
   for (j=ncl+1; j<=nch; j++)    period (stable) prevalence
     m[nrl][j]=m[nrl][j-1]+nlay;     for age prevalim()
      h Pij x
   for (i=nrl+1; i<=nrh; i++) {    variance of p varprob
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    forecasting if prevfcast==1 prevforecast call prevalence()
     for (j=ncl+1; j<=nch; j++)    health expectancies
       m[i][j]=m[i][j-1]+nlay;    Variance-covariance of DFLE
   }    prevalence()
   return m;     movingaverage()
 }    varevsij() 
     if popbased==1 varevsij(,popbased)
 /*************************free ma3x ************************/    total life expectancies
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Variance of period (stable) prevalence
 {   end
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));  
 }  
    
 /***************** f1dim *************************/  #include <math.h>
 extern int ncom;  #include <stdio.h>
 extern double *pcom,*xicom;  #include <stdlib.h>
 extern double (*nrfunc)(double []);  #include <string.h>
    #include <unistd.h>
 double f1dim(double x)  
 {  #include <limits.h>
   int j;  #include <sys/types.h>
   double f;  #include <sys/stat.h>
   double *xt;  #include <errno.h>
    extern int errno;
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #ifdef LINUX
   f=(*nrfunc)(xt);  #include <time.h>
   free_vector(xt,1,ncom);  #include "timeval.h"
   return f;  #else
 }  #include <sys/time.h>
   #endif
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #ifdef GSL
 {  #include <gsl/gsl_errno.h>
   int iter;  #include <gsl/gsl_multimin.h>
   double a,b,d,etemp;  #endif
   double fu,fv,fw,fx;  
   double ftemp;  /* #include <libintl.h> */
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /* #define _(String) gettext (String) */
   double e=0.0;  
    #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define GNUPLOTPROGRAM "gnuplot"
   x=w=v=bx;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   fw=fv=fx=(*f)(x);  #define FILENAMELENGTH 132
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);  #define MAXPARM 128 /* Maximum number of parameters for the optimization */
 #ifdef DEBUG  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define NINTERVMAX 8
 #endif  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       *xmin=x;  #define NCOVMAX 20 /* Maximum number of covariates */
       return fx;  #define MAXN 20000
     }  #define YEARM 12. /* Number of months per year */
     ftemp=fu;  #define AGESUP 130
     if (fabs(e) > tol1) {  #define AGEBASE 40
       r=(x-w)*(fx-fv);  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
       q=(x-v)*(fx-fw);  #ifdef UNIX
       p=(x-v)*q-(x-w)*r;  #define DIRSEPARATOR '/'
       q=2.0*(q-r);  #define CHARSEPARATOR "/"
       if (q > 0.0) p = -p;  #define ODIRSEPARATOR '\\'
       q=fabs(q);  #else
       etemp=e;  #define DIRSEPARATOR '\\'
       e=d;  #define CHARSEPARATOR "\\"
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define ODIRSEPARATOR '/'
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #endif
       else {  
         d=p/q;  /* $Id$ */
         u=x+d;  /* $State$ */
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  char version[]="Imach version 0.98nR, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       }  char fullversion[]="$Revision$ $Date$"; 
     } else {  char strstart[80];
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  int nvar=0, nforce=0; /* Number of variables, number of forces */
     fu=(*f)(u);  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov=0; /* Number of covariates, of covariates with '*age' */
     if (fu <= fx) {  int npar=NPARMAX;
       if (u >= x) a=x; else b=x;  int nlstate=2; /* Number of live states */
       SHFT(v,w,x,u)  int ndeath=1; /* Number of dead states */
         SHFT(fv,fw,fx,fu)  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         } else {  int popbased=0;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  int *wav; /* Number of waves for this individuual 0 is possible */
             v=w;  int maxwav=0; /* Maxim number of waves */
             w=u;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
             fv=fw;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
             fw=fu;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
           } else if (fu <= fv || v == x || v == w) {                     to the likelihood and the sum of weights (done by funcone)*/
             v=u;  int mle=1, weightopt=0;
             fv=fu;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
           }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   nrerror("Too many iterations in brent");  double jmean=1; /* Mean space between 2 waves */
   *xmin=x;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return fx;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 }  /*FILE *fic ; */ /* Used in readdata only */
   FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /****************** mnbrak ***********************/  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double fretone; /* Only one call to likelihood */
             double (*func)(double))  long ipmx=0; /* Number of contributions */
 {  double sw; /* Sum of weights */
   double ulim,u,r,q, dum;  char filerespow[FILENAMELENGTH];
   double fu;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    FILE *ficresilk;
   *fa=(*func)(*ax);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   *fb=(*func)(*bx);  FILE *ficresprobmorprev;
   if (*fb > *fa) {  FILE *fichtm, *fichtmcov; /* Html File */
     SHFT(dum,*ax,*bx,dum)  FILE *ficreseij;
       SHFT(dum,*fb,*fa,dum)  char filerese[FILENAMELENGTH];
       }  FILE *ficresstdeij;
   *cx=(*bx)+GOLD*(*bx-*ax);  char fileresstde[FILENAMELENGTH];
   *fc=(*func)(*cx);  FILE *ficrescveij;
   while (*fb > *fc) {  char filerescve[FILENAMELENGTH];
     r=(*bx-*ax)*(*fb-*fc);  FILE  *ficresvij;
     q=(*bx-*cx)*(*fb-*fa);  char fileresv[FILENAMELENGTH];
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  FILE  *ficresvpl;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char fileresvpl[FILENAMELENGTH];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char title[MAXLINE];
     if ((*bx-u)*(u-*cx) > 0.0) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       fu=(*func)(u);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       fu=(*func)(u);  char command[FILENAMELENGTH];
       if (fu < *fc) {  int  outcmd=0;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char filelog[FILENAMELENGTH]; /* Log file */
       u=ulim;  char filerest[FILENAMELENGTH];
       fu=(*func)(u);  char fileregp[FILENAMELENGTH];
     } else {  char popfile[FILENAMELENGTH];
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     }  
     SHFT(*ax,*bx,*cx,u)  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       SHFT(*fa,*fb,*fc,fu)  struct timezone tzp;
       }  extern int gettimeofday();
 }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   long time_value;
 /*************** linmin ************************/  extern long time();
   char strcurr[80], strfor[80];
 int ncom;  
 double *pcom,*xicom;  char *endptr;
 double (*nrfunc)(double []);  long lval;
    double dval;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  #define NR_END 1
   double brent(double ax, double bx, double cx,  #define FREE_ARG char*
                double (*f)(double), double tol, double *xmin);  #define FTOL 1.0e-10
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #define NRANSI 
               double *fc, double (*func)(double));  #define ITMAX 200 
   int j;  
   double xx,xmin,bx,ax;  #define TOL 2.0e-4 
   double fx,fb,fa;  
    #define CGOLD 0.3819660 
   ncom=n;  #define ZEPS 1.0e-10 
   pcom=vector(1,n);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   xicom=vector(1,n);  
   nrfunc=func;  #define GOLD 1.618034 
   for (j=1;j<=n;j++) {  #define GLIMIT 100.0 
     pcom[j]=p[j];  #define TINY 1.0e-20 
     xicom[j]=xi[j];  
   }  static double maxarg1,maxarg2;
   ax=0.0;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   xx=1.0;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #ifdef DEBUG  #define rint(a) floor(a+0.5)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  static double sqrarg;
   for (j=1;j<=n;j++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     xi[j] *= xmin;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     p[j] += xi[j];  int agegomp= AGEGOMP;
   }  
   free_vector(xicom,1,n);  int imx; 
   free_vector(pcom,1,n);  int stepm=1;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /*************** powell ************************/  int estepm;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
             double (*func)(double []))  
 {  int m,nb;
   void linmin(double p[], double xi[], int n, double *fret,  long *num;
               double (*func)(double []));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   int i,ibig,j;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double del,t,*pt,*ptt,*xit;  double **pmmij, ***probs;
   double fp,fptt;  double *ageexmed,*agecens;
   double *xits;  double dateintmean=0;
   pt=vector(1,n);  
   ptt=vector(1,n);  double *weight;
   xit=vector(1,n);  int **s; /* Status */
   xits=vector(1,n);  double *agedc;
   *fret=(*func)(p);  double  **covar; /**< covar[i,j], value of jth covariate for individual i,
   for (j=1;j<=n;j++) pt[j]=p[j];                    * covar=matrix(0,NCOVMAX,1,n); 
   for (*iter=1;;++(*iter)) {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     fp=(*fret);  double  idx; 
     ibig=0;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     del=0.0;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     for (i=1;i<=n;i++)  double *lsurv, *lpop, *tpop;
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     for (i=1;i<=n;i++) {  double ftolhess; /* Tolerance for computing hessian */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /**************** split *************************/
 #ifdef DEBUG  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       printf("fret=%lf \n",*fret);  {
 #endif    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       printf("%d",i);fflush(stdout);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       linmin(p,xit,n,fret,func);    */ 
       if (fabs(fptt-(*fret)) > del) {    char  *ss;                            /* pointer */
         del=fabs(fptt-(*fret));    int   l1, l2;                         /* length counters */
         ibig=i;  
       }    l1 = strlen(path );                   /* length of path */
 #ifdef DEBUG    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       printf("%d %.12e",i,(*fret));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       for (j=1;j<=n;j++) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      strcpy( name, path );               /* we got the fullname name because no directory */
         printf(" x(%d)=%.12e",j,xit[j]);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for(j=1;j<=n;j++)      /* get current working directory */
         printf(" p=%.12e",p[j]);      /*    extern  char* getcwd ( char *buf , int len);*/
       printf("\n");      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 #endif        return( GLOCK_ERROR_GETCWD );
     }      }
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      /* got dirc from getcwd*/
 #ifdef DEBUG      printf(" DIRC = %s \n",dirc);
       int k[2],l;    } else {                              /* strip direcotry from path */
       k[0]=1;      ss++;                               /* after this, the filename */
       k[1]=-1;      l2 = strlen( ss );                  /* length of filename */
       printf("Max: %.12e",(*func)(p));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (j=1;j<=n;j++)      strcpy( name, ss );         /* save file name */
         printf(" %.12e",p[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       printf("\n");      dirc[l1-l2] = 0;                    /* add zero */
       for(l=0;l<=1;l++) {      printf(" DIRC2 = %s \n",dirc);
         for (j=1;j<=n;j++) {    }
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    /* We add a separator at the end of dirc if not exists */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    l1 = strlen( dirc );                  /* length of directory */
         }    if( dirc[l1-1] != DIRSEPARATOR ){
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      dirc[l1] =  DIRSEPARATOR;
       }      dirc[l1+1] = 0; 
 #endif      printf(" DIRC3 = %s \n",dirc);
     }
     ss = strrchr( name, '.' );            /* find last / */
       free_vector(xit,1,n);    if (ss >0){
       free_vector(xits,1,n);      ss++;
       free_vector(ptt,1,n);      strcpy(ext,ss);                     /* save extension */
       free_vector(pt,1,n);      l1= strlen( name);
       return;      l2= strlen(ss)+1;
     }      strncpy( finame, name, l1-l2);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      finame[l1-l2]= 0;
     for (j=1;j<=n;j++) {    }
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];    return( 0 );                          /* we're done */
       pt[j]=p[j];  }
     }  
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /******************************************/
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  void replace_back_to_slash(char *s, char*t)
         linmin(p,xit,n,fret,func);  {
         for (j=1;j<=n;j++) {    int i;
           xi[j][ibig]=xi[j][n];    int lg=0;
           xi[j][n]=xit[j];    i=0;
         }    lg=strlen(t);
 #ifdef DEBUG    for(i=0; i<= lg; i++) {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      (s[i] = t[i]);
         for(j=1;j<=n;j++)      if (t[i]== '\\') s[i]='/';
           printf(" %.12e",xit[j]);    }
         printf("\n");  }
 #endif  
       }  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   }    char *s;
 }    s=out;
     while (*in != '\0'){
 /**** Prevalence limit ****************/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      }
 {      *out++ = *in++;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    }
      matrix by transitions matrix until convergence is reached */    *out='\0';
     return s;
   int i, ii,j,k;  }
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  char *cutv(char *blocc, char *alocc, char *in, char occ)
   double **out, cov[NCOVMAX], **pmij();  {
   double **newm;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   double agefin, delaymax=50 ; /* Max number of years to converge */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   for (ii=1;ii<=nlstate+ndeath;ii++)       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for (j=1;j<=nlstate+ndeath;j++){    */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    char *s, *t;
     }    t=in;s=in;
     while (*in != '\0'){
    cov[1]=1.;      while( *in == occ){
          *blocc++ = *in++;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        s=in;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      }
     newm=savm;      *blocc++ = *in++;
     /* Covariates have to be included here again */    }
      cov[2]=agefin;    if (s == t) /* occ not found */
        *(blocc-(in-s))='\0';
       for (k=1; k<=cptcovn;k++) {    else
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      *(blocc-(in-s)-1)='\0';
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/    in=s;
       }    while ( *in != '\0'){
       for (k=1; k<=cptcovage;k++)      *alocc++ = *in++;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    *alocc='\0';
     return s;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  
   int nbocc(char *s, char occ)
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  {
     int i,j=0;
     savm=oldm;    int lg=20;
     oldm=newm;    i=0;
     maxmax=0.;    lg=strlen(s);
     for(j=1;j<=nlstate;j++){    for(i=0; i<= lg; i++) {
       min=1.;    if  (s[i] == occ ) j++;
       max=0.;    }
       for(i=1; i<=nlstate; i++) {    return j;
         sumnew=0;  }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /* void cutv(char *u,char *v, char*t, char occ) */
         max=FMAX(max,prlim[i][j]);  /* { */
         min=FMIN(min,prlim[i][j]);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       }  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       maxmin=max-min;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       maxmax=FMAX(maxmax,maxmin);  /*   int i,lg,j,p=0; */
     }  /*   i=0; */
     if(maxmax < ftolpl){  /*   lg=strlen(t); */
       return prlim;  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   }  /*   } */
 }  
   /*   for(j=0; j<p; j++) { */
 /*************** transition probabilities ***************/  /*     (u[j] = t[j]); */
   /*   } */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*      u[p]='\0'; */
 {  
   double s1, s2;  /*    for(j=0; j<= lg; j++) { */
   /*double t34;*/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   int i,j,j1, nc, ii, jj;  /*   } */
   /* } */
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /********************** nrerror ********************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  void nrerror(char error_text[])
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
       ps[i][j]=s2;    exit(EXIT_FAILURE);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  }
     }  /*********************** vector *******************/
     for(j=i+1; j<=nlstate+ndeath;j++){  double *vector(int nl, int nh)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double *v;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       }    if (!v) nrerror("allocation failure in vector");
       ps[i][j]=s2;    return v-nl+NR_END;
     }  }
   }  
     /*ps[3][2]=1;*/  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   for(i=1; i<= nlstate; i++){  {
      s1=0;    free((FREE_ARG)(v+nl-NR_END));
     for(j=1; j<i; j++)  }
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  /************************ivector *******************************/
       s1+=exp(ps[i][j]);  int *ivector(long nl,long nh)
     ps[i][i]=1./(s1+1.);  {
     for(j=1; j<i; j++)    int *v;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     for(j=i+1; j<=nlstate+ndeath; j++)    if (!v) nrerror("allocation failure in ivector");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return v-nl+NR_END;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  }
   } /* end i */  
   /******************free ivector **************************/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void free_ivector(int *v, long nl, long nh)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    free((FREE_ARG)(v+nl-NR_END));
       ps[ii][ii]=1;  }
     }  
   }  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    long *v;
     for(jj=1; jj<= nlstate+ndeath; jj++){    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      printf("%lf ",ps[ii][jj]);    if (!v) nrerror("allocation failure in ivector");
    }    return v-nl+NR_END;
     printf("\n ");  }
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /******************free lvector **************************/
 /*  void free_lvector(long *v, long nl, long nh)
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  {
   goto end;*/    free((FREE_ARG)(v+nl-NR_END));
     return ps;  }
 }  
   /******************* imatrix *******************************/
 /**************** Product of 2 matrices ******************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  { 
 {    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int **m; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    
   /* in, b, out are matrice of pointers which should have been initialized    /* allocate pointers to rows */ 
      before: only the contents of out is modified. The function returns    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      a pointer to pointers identical to out */    if (!m) nrerror("allocation failure 1 in matrix()"); 
   long i, j, k;    m += NR_END; 
   for(i=nrl; i<= nrh; i++)    m -= nrl; 
     for(k=ncolol; k<=ncoloh; k++)    
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    
         out[i][k] +=in[i][j]*b[j][k];    /* allocate rows and set pointers to them */ 
     m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   return out;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 }    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
     
 /************* Higher Matrix Product ***************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* return pointer to array of pointers to rows */ 
 {    return m; 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  } 
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /****************** free_imatrix *************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_imatrix(m,nrl,nrh,ncl,nch)
      (typically every 2 years instead of every month which is too big).        int **m;
      Model is determined by parameters x and covariates have to be        long nch,ncl,nrh,nrl; 
      included manually here.       /* free an int matrix allocated by imatrix() */ 
   { 
      */    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
   int i, j, d, h, k;  } 
   double **out, cov[NCOVMAX];  
   double **newm;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   /* Hstepm could be zero and should return the unit matrix */  {
   for (i=1;i<=nlstate+ndeath;i++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     for (j=1;j<=nlstate+ndeath;j++){    double **m;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m += NR_END;
   for(h=1; h <=nhstepm; h++){    m -= nrl;
     for(d=1; d <=hstepm; d++){  
       newm=savm;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /* Covariates have to be included here again */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       cov[1]=1.;    m[nrl] += NR_END;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    m[nrl] -= ncl;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    return m;
       for (k=1; k<=cptcovprod;k++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     */
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*************************free matrix ************************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       savm=oldm;    free((FREE_ARG)(m+nrl-NR_END));
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /******************* ma3x *******************************/
       for(j=1;j<=nlstate+ndeath;j++) {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         po[i][j][h]=newm[i][j];  {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
          */    double ***m;
       }  
   } /* end h */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return po;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
   
 /*************** log-likelihood *************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 double func( double *x)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   int i, ii, j, k, mi, d, kk;    m[nrl] -= ncl;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   long ipmx;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /*extern weight */    m[nrl][ncl] += NR_END;
   /* We are differentiating ll according to initial status */    m[nrl][ncl] -= nll;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for (j=ncl+1; j<=nch; j++) 
   /*for(i=1;i<imx;i++)      m[nrl][j]=m[nrl][j-1]+nlay;
     printf(" %d\n",s[4][i]);    
   */    for (i=nrl+1; i<=nrh; i++) {
   cov[1]=1.;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        m[i][j]=m[i][j-1]+nlay;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    return m; 
     for(mi=1; mi<= wav[i]-1; mi++){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (ii=1;ii<=nlstate+ndeath;ii++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    */
       for(d=0; d<dh[mi][i]; d++){  }
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*************************free ma3x ************************/
         for (kk=1; kk<=cptcovage;kk++) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  {
         }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
            free((FREE_ARG)(m[nrl]+ncl-NR_END));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(m+nrl-NR_END));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
         savm=oldm;  
         oldm=newm;  /*************** function subdirf ***********/
          char *subdirf(char fileres[])
          {
       } /* end mult */    /* Caution optionfilefiname is hidden */
          strcpy(tmpout,optionfilefiname);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    strcat(tmpout,"/"); /* Add to the right */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    strcat(tmpout,fileres);
       ipmx +=1;    return tmpout;
       sw += weight[i];  }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /*************** function subdirf2 ***********/
   } /* end of individual */  char *subdirf2(char fileres[], char *preop)
   {
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* Caution optionfilefiname is hidden */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    strcpy(tmpout,optionfilefiname);
   return -l;    strcat(tmpout,"/");
 }    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     return tmpout;
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*************** function subdirf3 ***********/
 {  char *subdirf3(char fileres[], char *preop, char *preop2)
   int i,j, iter;  {
   double **xi,*delti;    
   double fret;    /* Caution optionfilefiname is hidden */
   xi=matrix(1,npar,1,npar);    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/");
     for (j=1;j<=npar;j++)    strcat(tmpout,preop);
       xi[i][j]=(i==j ? 1.0 : 0.0);    strcat(tmpout,preop2);
   printf("Powell\n");    strcat(tmpout,fileres);
   powell(p,xi,npar,ftol,&iter,&fret,func);    return tmpout;
   }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /***************** f1dim *************************/
   extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /**** Computes Hessian and covariance matrix ***/   
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  double f1dim(double x) 
 {  { 
   double  **a,**y,*x,pd;    int j; 
   double **hess;    double f;
   int i, j,jk;    double *xt; 
   int *indx;   
     xt=vector(1,ncom); 
   double hessii(double p[], double delta, int theta, double delti[]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double hessij(double p[], double delti[], int i, int j);    f=(*nrfunc)(xt); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    free_vector(xt,1,ncom); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    return f; 
   } 
   hess=matrix(1,npar,1,npar);  
   /*****************brent *************************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=npar;i++){  { 
     printf("%d",i);fflush(stdout);    int iter; 
     hess[i][i]=hessii(p,ftolhess,i,delti);    double a,b,d,etemp;
     /*printf(" %f ",p[i]);*/    double fu,fv,fw,fx;
     /*printf(" %lf ",hess[i][i]);*/    double ftemp;
   }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      double e=0.0; 
   for (i=1;i<=npar;i++) {   
     for (j=1;j<=npar;j++)  {    a=(ax < cx ? ax : cx); 
       if (j>i) {    b=(ax > cx ? ax : cx); 
         printf(".%d%d",i,j);fflush(stdout);    x=w=v=bx; 
         hess[i][j]=hessij(p,delti,i,j);    fw=fv=fx=(*f)(x); 
         hess[j][i]=hess[i][j];        for (iter=1;iter<=ITMAX;iter++) { 
         /*printf(" %lf ",hess[i][j]);*/      xm=0.5*(a+b); 
       }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   }      printf(".");fflush(stdout);
   printf("\n");      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   a=matrix(1,npar,1,npar);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   y=matrix(1,npar,1,npar);  #endif
   x=vector(1,npar);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   indx=ivector(1,npar);        *xmin=x; 
   for (i=1;i<=npar;i++)        return fx; 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      } 
   ludcmp(a,npar,indx,&pd);      ftemp=fu;
       if (fabs(e) > tol1) { 
   for (j=1;j<=npar;j++) {        r=(x-w)*(fx-fv); 
     for (i=1;i<=npar;i++) x[i]=0;        q=(x-v)*(fx-fw); 
     x[j]=1;        p=(x-v)*q-(x-w)*r; 
     lubksb(a,npar,indx,x);        q=2.0*(q-r); 
     for (i=1;i<=npar;i++){        if (q > 0.0) p = -p; 
       matcov[i][j]=x[i];        q=fabs(q); 
     }        etemp=e; 
   }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   printf("\n#Hessian matrix#\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=npar;i++) {        else { 
     for (j=1;j<=npar;j++) {          d=p/q; 
       printf("%.3e ",hess[i][j]);          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
     printf("\n");            d=SIGN(tol1,xm-x); 
   }        } 
       } else { 
   /* Recompute Inverse */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   ludcmp(a,npar,indx,&pd);      fu=(*f)(u); 
       if (fu <= fx) { 
   /*  printf("\n#Hessian matrix recomputed#\n");        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   for (j=1;j<=npar;j++) {          SHFT(fv,fw,fx,fu) 
     for (i=1;i<=npar;i++) x[i]=0;          } else { 
     x[j]=1;            if (u < x) a=u; else b=u; 
     lubksb(a,npar,indx,x);            if (fu <= fw || w == x) { 
     for (i=1;i<=npar;i++){              v=w; 
       y[i][j]=x[i];              w=u; 
       printf("%.3e ",y[i][j]);              fv=fw; 
     }              fw=fu; 
     printf("\n");            } else if (fu <= fv || v == x || v == w) { 
   }              v=u; 
   */              fv=fu; 
             } 
   free_matrix(a,1,npar,1,npar);          } 
   free_matrix(y,1,npar,1,npar);    } 
   free_vector(x,1,npar);    nrerror("Too many iterations in brent"); 
   free_ivector(indx,1,npar);    *xmin=x; 
   free_matrix(hess,1,npar,1,npar);    return fx; 
   } 
   
 }  /****************** mnbrak ***********************/
   
 /*************** hessian matrix ****************/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 double hessii( double x[], double delta, int theta, double delti[])              double (*func)(double)) 
 {  { 
   int i;    double ulim,u,r,q, dum;
   int l=1, lmax=20;    double fu; 
   double k1,k2;   
   double p2[NPARMAX+1];    *fa=(*func)(*ax); 
   double res;    *fb=(*func)(*bx); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    if (*fb > *fa) { 
   double fx;      SHFT(dum,*ax,*bx,dum) 
   int k=0,kmax=10;        SHFT(dum,*fb,*fa,dum) 
   double l1;        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
   fx=func(x);    *fc=(*func)(*cx); 
   for (i=1;i<=npar;i++) p2[i]=x[i];    while (*fb > *fc) { 
   for(l=0 ; l <=lmax; l++){      r=(*bx-*ax)*(*fb-*fc); 
     l1=pow(10,l);      q=(*bx-*cx)*(*fb-*fa); 
     delts=delt;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(k=1 ; k <kmax; k=k+1){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       delt = delta*(l1*k);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       p2[theta]=x[theta] +delt;      if ((*bx-u)*(u-*cx) > 0.0) { 
       k1=func(p2)-fx;        fu=(*func)(u); 
       p2[theta]=x[theta]-delt;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       k2=func(p2)-fx;        fu=(*func)(u); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        if (fu < *fc) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                  SHFT(*fb,*fc,fu,(*func)(u)) 
 #ifdef DEBUG            } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 #endif        u=ulim; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        fu=(*func)(u); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      } else { 
         k=kmax;        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      } 
         k=kmax; l=lmax*10.;      SHFT(*ax,*bx,*cx,u) 
       }        SHFT(*fa,*fb,*fc,fu) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        } 
         delts=delt;  } 
       }  
     }  /*************** linmin ************************/
   }  
   delti[theta]=delts;  int ncom; 
   return res;  double *pcom,*xicom;
    double (*nrfunc)(double []); 
 }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 double hessij( double x[], double delti[], int thetai,int thetaj)  { 
 {    double brent(double ax, double bx, double cx, 
   int i;                 double (*f)(double), double tol, double *xmin); 
   int l=1, l1, lmax=20;    double f1dim(double x); 
   double k1,k2,k3,k4,res,fx;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double p2[NPARMAX+1];                double *fc, double (*func)(double)); 
   int k;    int j; 
     double xx,xmin,bx,ax; 
   fx=func(x);    double fx,fb,fa;
   for (k=1; k<=2; k++) {   
     for (i=1;i<=npar;i++) p2[i]=x[i];    ncom=n; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    pcom=vector(1,n); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    xicom=vector(1,n); 
     k1=func(p2)-fx;    nrfunc=func; 
      for (j=1;j<=n;j++) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;      pcom[j]=p[j]; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      xicom[j]=xi[j]; 
     k2=func(p2)-fx;    } 
      ax=0.0; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    xx=1.0; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     k3=func(p2)-fx;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     k4=func(p2)-fx;  #endif
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (j=1;j<=n;j++) { 
 #ifdef DEBUG      xi[j] *= xmin; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      p[j] += xi[j]; 
 #endif    } 
   }    free_vector(xicom,1,n); 
   return res;    free_vector(pcom,1,n); 
 }  } 
   
 /************** Inverse of matrix **************/  char *asc_diff_time(long time_sec, char ascdiff[])
 void ludcmp(double **a, int n, int *indx, double *d)  {
 {    long sec_left, days, hours, minutes;
   int i,imax,j,k;    days = (time_sec) / (60*60*24);
   double big,dum,sum,temp;    sec_left = (time_sec) % (60*60*24);
   double *vv;    hours = (sec_left) / (60*60) ;
      sec_left = (sec_left) %(60*60);
   vv=vector(1,n);    minutes = (sec_left) /60;
   *d=1.0;    sec_left = (sec_left) % (60);
   for (i=1;i<=n;i++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     big=0.0;    return ascdiff;
     for (j=1;j<=n;j++)  }
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*************** powell ************************/
     vv[i]=1.0/big;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
   for (j=1;j<=n;j++) {  { 
     for (i=1;i<j;i++) {    void linmin(double p[], double xi[], int n, double *fret, 
       sum=a[i][j];                double (*func)(double [])); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    int i,ibig,j; 
       a[i][j]=sum;    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     big=0.0;    double *xits;
     for (i=j;i<=n;i++) {    int niterf, itmp;
       sum=a[i][j];  
       for (k=1;k<j;k++)    pt=vector(1,n); 
         sum -= a[i][k]*a[k][j];    ptt=vector(1,n); 
       a[i][j]=sum;    xit=vector(1,n); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    xits=vector(1,n); 
         big=dum;    *fret=(*func)(p); 
         imax=i;    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
     if (j != imax) {      ibig=0; 
       for (k=1;k<=n;k++) {      del=0.0; 
         dum=a[imax][k];      last_time=curr_time;
         a[imax][k]=a[j][k];      (void) gettimeofday(&curr_time,&tzp);
         a[j][k]=dum;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       *d = -(*d);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
       vv[imax]=vv[j];     for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
     indx[j]=imax;        fprintf(ficlog," %d %.12lf",i, p[i]);
     if (a[j][j] == 0.0) a[j][j]=TINY;        fprintf(ficrespow," %.12lf", p[i]);
     if (j != n) {      }
       dum=1.0/(a[j][j]);      printf("\n");
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
   }      if(*iter <=3){
   free_vector(vv,1,n);  /* Doesn't work */        tm = *localtime(&curr_time.tv_sec);
 ;        strcpy(strcurr,asctime(&tm));
 }  /*       asctime_r(&tm,strcurr); */
         forecast_time=curr_time; 
 void lubksb(double **a, int n, int *indx, double b[])        itmp = strlen(strcurr);
 {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   int i,ii=0,ip,j;          strcurr[itmp-1]='\0';
   double sum;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1;i<=n;i++) {        for(niterf=10;niterf<=30;niterf+=10){
     ip=indx[i];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     sum=b[ip];          tmf = *localtime(&forecast_time.tv_sec);
     b[ip]=b[i];  /*      asctime_r(&tmf,strfor); */
     if (ii)          strcpy(strfor,asctime(&tmf));
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          itmp = strlen(strfor);
     else if (sum) ii=i;          if(strfor[itmp-1]=='\n')
     b[i]=sum;          strfor[itmp-1]='\0';
   }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for (i=n;i>=1;i--) {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     sum=b[i];        }
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      for (i=1;i<=n;i++) { 
   }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 }        fptt=(*fret); 
   #ifdef DEBUG
 /************ Frequencies ********************/        printf("fret=%lf \n",*fret);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        fprintf(ficlog,"fret=%lf \n",*fret);
 {  /* Some frequencies */  #endif
          printf("%d",i);fflush(stdout);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fprintf(ficlog,"%d",i);fflush(ficlog);
   double ***freq; /* Frequencies */        linmin(p,xit,n,fret,func); 
   double *pp;        if (fabs(fptt-(*fret)) > del) { 
   double pos, k2, dateintsum=0,k2cpt=0;          del=fabs(fptt-(*fret)); 
   FILE *ficresp;          ibig=i; 
   char fileresp[FILENAMELENGTH];        } 
   #ifdef DEBUG
   pp=vector(1,nlstate);        printf("%d %.12e",i,(*fret));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"%d %.12e",i,(*fret));
   strcpy(fileresp,"p");        for (j=1;j<=n;j++) {
   strcat(fileresp,fileres);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   if((ficresp=fopen(fileresp,"w"))==NULL) {          printf(" x(%d)=%.12e",j,xit[j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     exit(0);        }
   }        for(j=1;j<=n;j++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          printf(" p=%.12e",p[j]);
   j1=0;          fprintf(ficlog," p=%.12e",p[j]);
         }
   j=cptcoveff;        printf("\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficlog,"\n");
   #endif
   for(k1=1; k1<=j;k1++){      } 
    for(i1=1; i1<=ncodemax[k1];i1++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
        j1++;  #ifdef DEBUG
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        int k[2],l;
          scanf("%d", i);*/        k[0]=1;
         for (i=-1; i<=nlstate+ndeath; i++)          k[1]=-1;
          for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("Max: %.12e",(*func)(p));
            for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
              freq[i][jk][m]=0;        for (j=1;j<=n;j++) {
           printf(" %.12e",p[j]);
         dateintsum=0;          fprintf(ficlog," %.12e",p[j]);
         k2cpt=0;        }
        for (i=1; i<=imx; i++) {        printf("\n");
          bool=1;        fprintf(ficlog,"\n");
          if  (cptcovn>0) {        for(l=0;l<=1;l++) {
            for (z1=1; z1<=cptcoveff; z1++)          for (j=1;j<=n;j++) {
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                bool=0;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
          if (bool==1) {          }
            for(m=firstpass; m<=lastpass; m++){          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
              k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
              if ((k2>=dateprev1) && (k2<=dateprev2)) {        }
                if(agev[m][i]==0) agev[m][i]=agemax+1;  #endif
                if(agev[m][i]==1) agev[m][i]=agemax+2;  
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        free_vector(xit,1,n); 
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        free_vector(xits,1,n); 
                  dateintsum=dateintsum+k2;        free_vector(ptt,1,n); 
                  k2cpt++;        free_vector(pt,1,n); 
                }        return; 
       } 
              }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
            }      for (j=1;j<=n;j++) { 
          }        ptt[j]=2.0*p[j]-pt[j]; 
        }        xit[j]=p[j]-pt[j]; 
                pt[j]=p[j]; 
        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      } 
       fptt=(*func)(ptt); 
         if  (cptcovn>0) {      if (fptt < fp) { 
          fprintf(ficresp, "\n#********** Variable ");        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if (t < 0.0) { 
        fprintf(ficresp, "**********\n#");          linmin(p,xit,n,fret,func); 
         }          for (j=1;j<=n;j++) { 
        for(i=1; i<=nlstate;i++)            xi[j][ibig]=xi[j][n]; 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            xi[j][n]=xit[j]; 
        fprintf(ficresp, "\n");          }
          #ifdef DEBUG
   for(i=(int)agemin; i <= (int)agemax+3; i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     if(i==(int)agemax+3)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       printf("Total");          for(j=1;j<=n;j++){
     else            printf(" %.12e",xit[j]);
       printf("Age %d", i);            fprintf(ficlog," %.12e",xit[j]);
     for(jk=1; jk <=nlstate ; jk++){          }
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          printf("\n");
         pp[jk] += freq[jk][m][i];          fprintf(ficlog,"\n");
     }  #endif
     for(jk=1; jk <=nlstate ; jk++){        }
       for(m=-1, pos=0; m <=0 ; m++)      } 
         pos += freq[jk][m][i];    } 
       if(pp[jk]>=1.e-10)  } 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else  /**** Prevalence limit (stable or period prevalence)  ****************/
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
      for(jk=1; jk <=nlstate ; jk++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)       matrix by transitions matrix until convergence is reached */
         pp[jk] += freq[jk][m][i];  
      }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     for(jk=1,pos=0; jk <=nlstate ; jk++)    double **matprod2();
       pos += pp[jk];    double **out, cov[NCOVMAX+1], **pmij();
     for(jk=1; jk <=nlstate ; jk++){    double **newm;
       if(pos>=1.e-5)    double agefin, delaymax=50 ; /* Max number of years to converge */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else    for (ii=1;ii<=nlstate+ndeath;ii++)
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      for (j=1;j<=nlstate+ndeath;j++){
       if( i <= (int) agemax){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(pos>=1.e-5){      }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
           probs[i][jk][j1]= pp[jk]/pos;     cov[1]=1.;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       else    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      newm=savm;
       }      /* Covariates have to be included here again */
     }      cov[2]=agefin;
     for(jk=-1; jk <=nlstate+ndeath; jk++)      
       for(m=-1; m <=nlstate+ndeath; m++)      for (k=1; k<=cptcovn;k++) {
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     if(i <= (int) agemax)        /*        printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       fprintf(ficresp,"\n");      }
     printf("\n");      for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     }      for (k=1; k<=cptcovprod;k++)
     }        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  }      
   dateintmean=dateintsum/k2cpt;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   fclose(ficresp);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   free_vector(pp,1,nlstate);      
       savm=oldm;
   /* End of Freq */      oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 /************ Prevalence ********************/        min=1.;
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        max=0.;
 {  /* Some frequencies */        for(i=1; i<=nlstate; i++) {
            sumnew=0;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double ***freq; /* Frequencies */          prlim[i][j]= newm[i][j]/(1-sumnew);
   double *pp;          max=FMAX(max,prlim[i][j]);
   double pos, k2;          min=FMIN(min,prlim[i][j]);
         }
   pp=vector(1,nlstate);        maxmin=max-min;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        maxmax=FMAX(maxmax,maxmin);
        }
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      if(maxmax < ftolpl){
   j1=0;        return prlim;
        }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  }
    
  for(k1=1; k1<=j;k1++){  /*************** transition probabilities ***************/ 
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
    {
       for (i=-1; i<=nlstate+ndeath; i++)      /* According to parameters values stored in x and the covariate's values stored in cov,
         for (jk=-1; jk<=nlstate+ndeath; jk++)         computes the probability to be observed in state j being in state i by appying the
           for(m=agemin; m <= agemax+3; m++)       model to the ncovmodel covariates (including constant and age).
             freq[i][jk][m]=0;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       for (i=1; i<=imx; i++) {       ncth covariate in the global vector x is given by the formula:
         bool=1;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         if  (cptcovn>0) {       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           for (z1=1; z1<=cptcoveff; z1++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
               bool=0;       Outputs ps[i][j] the probability to be observed in j being in j according to
         }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         if (bool==1) {    */
           for(m=firstpass; m<=lastpass; m++){    double s1, lnpijopii;
             k2=anint[m][i]+(mint[m][i]/12.);    /*double t34;*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int i,j,j1, nc, ii, jj;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(i=1; i<= nlstate; i++){
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        for(j=1; j<i;j++){
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];            for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }          }
                ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         for(i=(int)agemin; i <= (int)agemax+3; i++){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           for(jk=1; jk <=nlstate ; jk++){        }
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(j=i+1; j<=nlstate+ndeath;j++){
               pp[jk] += freq[jk][m][i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           for(jk=1; jk <=nlstate ; jk++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             for(m=-1, pos=0; m <=0 ; m++)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
             pos += freq[jk][m][i];          }
         }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                }
          for(jk=1; jk <=nlstate ; jk++){      }
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      
              pp[jk] += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
          }        s1=0;
                  for(j=1; j<i; j++){
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
          for(jk=1; jk <=nlstate ; jk++){                  }
            if( i <= (int) agemax){        for(j=i+1; j<=nlstate+ndeath; j++){
              if(pos>=1.e-5){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                probs[i][jk][j1]= pp[jk]/pos;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
              }        }
            }        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
          }        ps[i][i]=1./(s1+1.);
                  /* Computing other pijs */
         }        for(j=1; j<i; j++)
     }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   }        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
          /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end i */
   free_vector(pp,1,nlstate);      
        for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 }  /* End of Freq */        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
 /************* Waves Concatenation ***************/          ps[ii][ii]=1;
         }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      }
 {      
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  
      Death is a valid wave (if date is known).  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  /*         printf("ddd %lf ",ps[ii][jj]); */
      and mw[mi+1][i]. dh depends on stepm.  /*       } */
      */  /*       printf("\n "); */
   /*        } */
   int i, mi, m;  /*        printf("\n ");printf("%lf ",cov[2]); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;         /*
      double sum=0., jmean=0.;*/        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
   int j, k=0,jk, ju, jl;      return ps;
   double sum=0.;  }
   jmin=1e+5;  
   jmax=-1;  /**************** Product of 2 matrices ******************/
   jmean=0.;  
   for(i=1; i<=imx; i++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     mi=0;  {
     m=firstpass;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     while(s[m][i] <= nlstate){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       if(s[m][i]>=1)    /* in, b, out are matrice of pointers which should have been initialized 
         mw[++mi][i]=m;       before: only the contents of out is modified. The function returns
       if(m >=lastpass)       a pointer to pointers identical to out */
         break;    long i, j, k;
       else    for(i=nrl; i<= nrh; i++)
         m++;      for(k=ncolol; k<=ncoloh; k++)
     }/* end while */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     if (s[m][i] > nlstate){          out[i][k] +=in[i][j]*b[j][k];
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    return out;
          /* Only death is a correct wave */  }
       mw[mi][i]=m;  
     }  
   /************* Higher Matrix Product ***************/
     wav[i]=mi;  
     if(mi==0)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);  {
   }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   for(i=1; i<=imx; i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     for(mi=1; mi<wav[i];mi++){       nhstepm*hstepm matrices. 
       if (stepm <=0)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         dh[mi][i]=1;       (typically every 2 years instead of every month which is too big 
       else{       for the memory).
         if (s[mw[mi+1][i]][i] > nlstate) {       Model is determined by parameters x and covariates have to be 
           if (agedc[i] < 2*AGESUP) {       included manually here. 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */       */
           k=k+1;  
           if (j >= jmax) jmax=j;    int i, j, d, h, k;
           if (j <= jmin) jmin=j;    double **out, cov[NCOVMAX+1];
           sum=sum+j;    double **newm;
           /* if (j<10) printf("j=%d num=%d ",j,i); */  
           }    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
         else{      for (j=1;j<=nlstate+ndeath;j++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        oldm[i][j]=(i==j ? 1.0 : 0.0);
           k=k+1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for(h=1; h <=nhstepm; h++){
           sum=sum+j;      for(d=1; d <=hstepm; d++){
         }        newm=savm;
         jk= j/stepm;        /* Covariates have to be included here again */
         jl= j -jk*stepm;        cov[1]=1.;
         ju= j -(jk+1)*stepm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         if(jl <= -ju)        for (k=1; k<=cptcovn;k++) 
           dh[mi][i]=jk;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         else        for (k=1; k<=cptcovage;k++)
           dh[mi][i]=jk+1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if(dh[mi][i]==0)        for (k=1; k<=cptcovprod;k++)
           dh[mi][i]=1; /* At least one step */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   jmean=sum/k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
  }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Tricode ****************************/        savm=oldm;
 void tricode(int *Tvar, int **nbcode, int imx)        oldm=newm;
 {      }
   int Ndum[20],ij=1, k, j, i;      for(i=1; i<=nlstate+ndeath; i++)
   int cptcode=0;        for(j=1;j<=nlstate+ndeath;j++) {
   cptcoveff=0;          po[i][j][h]=newm[i][j];
            /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   for (k=0; k<19; k++) Ndum[k]=0;        }
   for (k=1; k<=7; k++) ncodemax[k]=0;      /*printf("h=%d ",h);*/
     } /* end h */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*     printf("\n H=%d \n",h); */
     for (i=1; i<=imx; i++) {    return po;
       ij=(int)(covar[Tvar[j]][i]);  }
       Ndum[ij]++;  
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  /*************** log-likelihood *************/
     }  double func( double *x)
   {
     for (i=0; i<=cptcode; i++) {    int i, ii, j, k, mi, d, kk;
       if(Ndum[i]!=0) ncodemax[j]++;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     }    double **out;
     ij=1;    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     int s1, s2;
     for (i=1; i<=ncodemax[j]; i++) {    double bbh, survp;
       for (k=0; k<=19; k++) {    long ipmx;
         if (Ndum[k] != 0) {    /*extern weight */
           nbcode[Tvar[j]][ij]=k;    /* We are differentiating ll according to initial status */
           ij++;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
         if (ij > ncodemax[j]) break;      printf(" %d\n",s[4][i]);
       }      */
     }    cov[1]=1.;
   }    
     for(k=1; k<=nlstate; k++) ll[k]=0.;
  for (k=0; k<19; k++) Ndum[k]=0;  
     if(mle==1){
  for (i=1; i<=ncovmodel-2; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       ij=Tvar[i];        /* Computes the values of the ncovmodel covariates of the model
       Ndum[ij]++;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
  ij=1;         */
  for (i=1; i<=10; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    if((Ndum[i]!=0) && (i<=ncov)){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
      Tvaraff[ij]=i;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
      ij++;           has been calculated etc */
    }        for(mi=1; mi<= wav[i]-1; mi++){
  }          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
     cptcoveff=ij-1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 /*********** Health Expectancies ****************/          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   /* Health expectancies */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   int i, j, nhstepm, hstepm, h;            }
   double age, agelim,hf;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***p3mat;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   fprintf(ficreseij,"# Health expectancies\n");            oldm=newm;
   fprintf(ficreseij,"# Age");          } /* end mult */
   for(i=1; i<=nlstate;i++)        
     for(j=1; j<=nlstate;j++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       fprintf(ficreseij," %1d-%1d",i,j);          /* But now since version 0.9 we anticipate for bias at large stepm.
   fprintf(ficreseij,"\n");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   hstepm=1*YEARM; /*  Every j years of age (in month) */           * the nearest (and in case of equal distance, to the lowest) interval but now
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   agelim=AGESUP;           * probability in order to take into account the bias as a fraction of the way
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     /* nhstepm age range expressed in number of stepm */           * -stepm/2 to stepm/2 .
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);           * For stepm=1 the results are the same as for previous versions of Imach.
     /* Typically if 20 years = 20*12/6=40 stepm */           * For stepm > 1 the results are less biased than in previous versions. 
     if (stepm >= YEARM) hstepm=1;           */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          s1=s[mw[mi][i]][i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s2=s[mw[mi+1][i]][i];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          bbh=(double)bh[mi][i]/(double)stepm; 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /* bias bh is positive if real duration
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             * is higher than the multiple of stepm and negative otherwise.
            */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for(i=1; i<=nlstate;i++)          if( s2 > nlstate){ 
       for(j=1; j<=nlstate;j++)            /* i.e. if s2 is a death state and if the date of death is known 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){               then the contribution to the likelihood is the probability to 
           eij[i][j][(int)age] +=p3mat[i][j][h];               die between last step unit time and current  step unit time, 
         }               which is also equal to probability to die before dh 
                   minus probability to die before dh-stepm . 
     hf=1;               In version up to 0.92 likelihood was computed
     if (stepm >= YEARM) hf=stepm/YEARM;          as if date of death was unknown. Death was treated as any other
     fprintf(ficreseij,"%.0f",age );          health state: the date of the interview describes the actual state
     for(i=1; i<=nlstate;i++)          and not the date of a change in health state. The former idea was
       for(j=1; j<=nlstate;j++){          to consider that at each interview the state was recorded
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     fprintf(ficreseij,"\n");          the contribution of an exact death to the likelihood. This new
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          contribution is smaller and very dependent of the step unit
   }          stepm. It is no more the probability to die between last interview
 }          and month of death but the probability to survive from last
           interview up to one month before death multiplied by the
 /************ Variance ******************/          probability to die within a month. Thanks to Chris
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          Jackson for correcting this bug.  Former versions increased
 {          mortality artificially. The bad side is that we add another loop
   /* Variance of health expectancies */          which slows down the processing. The difference can be up to 10%
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          lower mortality.
   double **newm;            */
   double **dnewm,**doldm;            lli=log(out[s1][s2] - savm[s1][s2]);
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;  
   double *xp;          } else if  (s2==-2) {
   double **gp, **gm;            for (j=1,survp=0. ; j<=nlstate; j++) 
   double ***gradg, ***trgradg;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double ***p3mat;            /*survp += out[s1][j]; */
   double age,agelim;            lli= log(survp);
   int theta;          }
           
    fprintf(ficresvij,"# Covariances of life expectancies\n");          else if  (s2==-4) { 
   fprintf(ficresvij,"# Age");            for (j=3,survp=0. ; j<=nlstate; j++)  
   for(i=1; i<=nlstate;i++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(j=1; j<=nlstate;j++)            lli= log(survp); 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          } 
   fprintf(ficresvij,"\n");  
           else if  (s2==-5) { 
   xp=vector(1,npar);            for (j=1,survp=0. ; j<=2; j++)  
   dnewm=matrix(1,nlstate,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   doldm=matrix(1,nlstate,1,nlstate);            lli= log(survp); 
            } 
   hstepm=1*YEARM; /* Every year of age */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          else{
   agelim = AGESUP;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          } 
     if (stepm >= YEARM) hstepm=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /*if(lli ==000.0)*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          ipmx +=1;
     gp=matrix(0,nhstepm,1,nlstate);          sw += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++){ /* Computes gradient */    }  else if(mle==2){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
       if (popbased==1) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           prlim[i][i]=probs[(int)age][i][ij];            }
       }          for(d=0; d<=dh[mi][i]; d++){
              newm=savm;
       for(j=1; j<= nlstate; j++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(h=0; h<=nhstepm; h++){            for (kk=1; kk<=cptcovage;kk++) {
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
       for(i=1; i<=npar; i++) /* Computes gradient */            oldm=newm;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          } /* end mult */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
       if (popbased==1) {          bbh=(double)bh[mi][i]/(double)stepm; 
         for(i=1; i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           prlim[i][i]=probs[(int)age][i][ij];          ipmx +=1;
       }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){        } /* end of wave */
         for(h=0; h<=nhstepm; h++){      } /* end of individual */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    }  else if(mle==3){  /* exponential inter-extrapolation */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
     } /* End theta */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     for(h=0; h<=nhstepm; h++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<=nlstate;j++)            }
         for(theta=1; theta <=npar; theta++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           trgradg[h][j][theta]=gradg[h][theta][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     for(i=1;i<=nlstate;i++)            oldm=newm;
       for(j=1;j<=nlstate;j++)          } /* end mult */
         vareij[i][j][(int)age] =0.;        
     for(h=0;h<=nhstepm;h++){          s1=s[mw[mi][i]][i];
       for(k=0;k<=nhstepm;k++){          s2=s[mw[mi+1][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1;i<=nlstate;i++)          ipmx +=1;
           for(j=1;j<=nlstate;j++)          sw += weight[i];
             vareij[i][j][(int)age] += doldm[i][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     h=1;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     if (stepm >= YEARM) h=stepm/YEARM;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficresvij,"%.0f ",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresvij,"\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gp,0,nhstepm,1,nlstate);            }
     free_matrix(gm,0,nhstepm,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            newm=savm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
   } /* End age */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   free_vector(xp,1,npar);          
   free_matrix(doldm,1,nlstate,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(dnewm,1,nlstate,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 }            oldm=newm;
           } /* end mult */
 /************ Variance of prevlim ******************/        
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          s1=s[mw[mi][i]][i];
 {          s2=s[mw[mi+1][i]][i];
   /* Variance of prevalence limit */          if( s2 > nlstate){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli=log(out[s1][s2] - savm[s1][s2]);
   double **newm;          }else{
   double **dnewm,**doldm;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int i, j, nhstepm, hstepm;          }
   int k, cptcode;          ipmx +=1;
   double *xp;          sw += weight[i];
   double *gp, *gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **gradg, **trgradg;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double age,agelim;        } /* end of wave */
   int theta;      } /* end of individual */
        }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvpl,"# Age");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresvpl," %1d-%1d",i,i);          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvpl,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   xp=vector(1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);            }
   doldm=matrix(1,nlstate,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   hstepm=1*YEARM; /* Every year of age */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            for (kk=1; kk<=cptcovage;kk++) {
   agelim = AGESUP;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          
     if (stepm >= YEARM) hstepm=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=matrix(1,npar,1,nlstate);            savm=oldm;
     gp=vector(1,nlstate);            oldm=newm;
     gm=vector(1,nlstate);          } /* end mult */
         
     for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       }          ipmx +=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          sw += weight[i];
       for(i=1;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gp[i] = prlim[i][i];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    } /* End of if */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(i=1;i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         gm[i] = prlim[i][i];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
       for(i=1;i<=nlstate;i++)  }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  /*************** log-likelihood *************/
   double funcone( double *x)
     trgradg =matrix(1,nlstate,1,npar);  {
     /* Same as likeli but slower because of a lot of printf and if */
     for(j=1; j<=nlstate;j++)    int i, ii, j, k, mi, d, kk;
       for(theta=1; theta <=npar; theta++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         trgradg[j][theta]=gradg[theta][j];    double **out;
     double lli; /* Individual log likelihood */
     for(i=1;i<=nlstate;i++)    double llt;
       varpl[i][(int)age] =0.;    int s1, s2;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double bbh, survp;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /*extern weight */
     for(i=1;i<=nlstate;i++)    /* We are differentiating ll according to initial status */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
     fprintf(ficresvpl,"%.0f ",age );      printf(" %d\n",s[4][i]);
     for(i=1; i<=nlstate;i++)    */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    cov[1]=1.;
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(trgradg,1,nlstate,1,npar);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* End age */      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(xp,1,npar);          for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(doldm,1,nlstate,1,npar);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 }        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 /************ Variance of one-step probabilities  ******************/          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          for (kk=1; kk<=cptcovage;kk++) {
 {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j;          }
   int k=0, cptcode;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *xp;          savm=oldm;
   double *gp, *gm;          oldm=newm;
   double **gradg, **trgradg;        } /* end mult */
   double age,agelim, cov[NCOVMAX];        
   int theta;        s1=s[mw[mi][i]][i];
   char fileresprob[FILENAMELENGTH];        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   strcpy(fileresprob,"prob");        /* bias is positive if real duration
   strcat(fileresprob,fileres);         * is higher than the multiple of stepm and negative otherwise.
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {         */
     printf("Problem with resultfile: %s\n", fileresprob);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);        } else if  (s2==-2) {
            for (j=1,survp=0. ; j<=nlstate; j++) 
             survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   xp=vector(1,npar);          lli= log(survp);
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }else if (mle==1){
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
          } else if(mle==2){
   cov[1]=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   for (age=bage; age<=fage; age ++){        } else if(mle==3){  /* exponential inter-extrapolation */
     cov[2]=age;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gradg=matrix(1,npar,1,9);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     trgradg=matrix(1,9,1,npar);          lli=log(out[s1][s2]); /* Original formula */
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        } else{  /* mle=0 back to 1 */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*lli=log(out[s1][s2]); */ /* Original formula */
     for(theta=1; theta <=npar; theta++){        } /* End of if */
       for(i=1; i<=npar; i++)        ipmx +=1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
       k=0;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1; i<= (nlstate+ndeath); i++){   %11.6f %11.6f %11.6f ", \
         for(j=1; j<=(nlstate+ndeath);j++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
            k=k+1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           gp[k]=pmmij[i][j];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           }
       for(i=1; i<=npar; i++)          fprintf(ficresilk," %10.6f\n", -llt);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        }
          } /* end of wave */
     } /* end of individual */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       k=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1; i<=(nlstate+ndeath); i++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(j=1; j<=(nlstate+ndeath);j++){    if(globpr==0){ /* First time we count the contributions and weights */
           k=k+1;      gipmx=ipmx;
           gm[k]=pmmij[i][j];      gsw=sw;
         }    }
       }    return -l;
        }
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)  
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
     }  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)  {
       for(theta=1; theta <=npar; theta++)    /* This routine should help understanding what is done with 
       trgradg[j][theta]=gradg[theta][j];       the selection of individuals/waves and
         to check the exact contribution to the likelihood.
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);       Plotting could be done.
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);     */
     int k;
      pmij(pmmij,cov,ncovmodel,x,nlstate);  
     if(*globpri !=0){ /* Just counts and sums, no printings */
      k=0;      strcpy(fileresilk,"ilk"); 
      for(i=1; i<=(nlstate+ndeath); i++){      strcat(fileresilk,fileres);
        for(j=1; j<=(nlstate+ndeath);j++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          k=k+1;        printf("Problem with resultfile: %s\n", fileresilk);
          gm[k]=pmmij[i][j];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
      }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
            fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
      /*printf("\n%d ",(int)age);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      for(k=1; k<=nlstate; k++) 
                fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/  
     *fretone=(*funcone)(p);
   fprintf(ficresprob,"\n%d ",(int)age);    if(*globpri !=0){
       fclose(ficresilk);
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);      fflush(fichtm); 
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);    } 
   }    return;
   }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /*********** Maximum Likelihood Estimation ***************/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
 }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
  free_vector(xp,1,npar);  {
 fclose(ficresprob);    int i,j, iter;
     double **xi;
 }    double fret;
     double fretone; /* Only one call to likelihood */
 /******************* Printing html file ***********/    /*  char filerespow[FILENAMELENGTH];*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, int lastpass, int stepm, int weightopt, char model[],int imx,int jmin, int jmax, double jmeanint,char optionfile[],char optionfilehtm[] ){    xi=matrix(1,npar,1,npar);
   int jj1, k1, i1, cpt;    for (i=1;i<=npar;i++)
   FILE *fichtm;      for (j=1;j<=npar;j++)
   /*char optionfilehtm[FILENAMELENGTH];*/        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   strcpy(optionfilehtm,optionfile);    strcpy(filerespow,"pow"); 
   strcat(optionfilehtm,".htm");    strcat(filerespow,fileres);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     printf("Problem with %s \n",optionfilehtm), exit(0);      printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>    for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
 Total number of observations=%d <br>        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>    fprintf(ficrespow,"\n");
 <hr  size=\"2\" color=\"#EC5E5E\">  
 <li>Outputs files<br><br>\n    powell(p,xi,npar,ftol,&iter,&fret,func);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>    free_matrix(xi,1,npar,1,npar);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    fclose(ficrespow);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  }
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>  
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>  /**** Computes Hessian and covariance matrix ***/
         <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
 fprintf(fichtm," <li>Graphs</li><p>");    double  **a,**y,*x,pd;
     double **hess;
  m=cptcoveff;    int i, j,jk;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    int *indx;
   
  jj1=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
  for(k1=1; k1<=m;k1++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
    for(i1=1; i1<=ncodemax[k1];i1++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
        jj1++;    void ludcmp(double **a, int npar, int *indx, double *d) ;
        if (cptcovn > 0) {    double gompertz(double p[]);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    hess=matrix(1,npar,1,npar);
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    printf("\nCalculation of the hessian matrix. Wait...\n");
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
        }    for (i=1;i<=npar;i++){
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      printf("%d",i);fflush(stdout);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          fprintf(ficlog,"%d",i);fflush(ficlog);
        for(cpt=1; cpt<nlstate;cpt++){     
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      
        }      /*  printf(" %f ",p[i]);
     for(cpt=1; cpt<=nlstate;cpt++) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    }
 interval) in state (%d): v%s%d%d.gif <br>    
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (i=1;i<=npar;i++) {
      }      for (j=1;j<=npar;j++)  {
      for(cpt=1; cpt<=nlstate;cpt++) {        if (j>i) { 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          printf(".%d%d",i,j);fflush(stdout);
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
      }          hess[i][j]=hessij(p,delti,i,j,func,npar);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          
 health expectancies in states (1) and (2): e%s%d.gif<br>          hess[j][i]=hess[i][j];    
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          /*printf(" %lf ",hess[i][j]);*/
 fprintf(fichtm,"\n</body>");        }
    }      }
    }    }
 fclose(fichtm);    printf("\n");
 }    fprintf(ficlog,"\n");
   
 /******************* Gnuplot file **************/    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double agemin, double agemax, double fage , char pathc[], double p[]){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   strcpy(optionfilegnuplot,optionfilefiname);    x=vector(1,npar);
   strcat(optionfilegnuplot,".plt");    indx=ivector(1,npar);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    for (i=1;i<=npar;i++)
     printf("Problem with file %s",optionfilegnuplot);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   }    ludcmp(a,npar,indx,&pd);
   
 #ifdef windows    for (j=1;j<=npar;j++) {
     fprintf(ficgp,"cd \"%s\" \n",pathc);      for (i=1;i<=npar;i++) x[i]=0;
 #endif      x[j]=1;
 m=pow(2,cptcoveff);      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
  /* 1eme*/        matcov[i][j]=x[i];
   for (cpt=1; cpt<= nlstate ; cpt ++) {      }
    for (k1=1; k1<= m ; k1 ++) {    }
   
 #ifdef windows    printf("\n#Hessian matrix#\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    fprintf(ficlog,"\n#Hessian matrix#\n");
 #endif    for (i=1;i<=npar;i++) { 
 #ifdef unix      for (j=1;j<=npar;j++) { 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        printf("%.3e ",hess[i][j]);
 #endif        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
 for (i=1; i<= nlstate ; i ++) {      printf("\n");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      fprintf(ficlog,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* Recompute Inverse */
     for (i=1; i<= nlstate ; i ++) {    for (i=1;i<=npar;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    ludcmp(a,npar,indx,&pd);
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    /*  printf("\n#Hessian matrix recomputed#\n");
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for (j=1;j<=npar;j++) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for (i=1;i<=npar;i++) x[i]=0;
 }        x[j]=1;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      lubksb(a,npar,indx,x);
 #ifdef unix      for (i=1;i<=npar;i++){ 
 fprintf(ficgp,"\nset ter gif small size 400,300");        y[i][j]=x[i];
 #endif        printf("%.3e ",y[i][j]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        fprintf(ficlog,"%.3e ",y[i][j]);
    }      }
   }      printf("\n");
   /*2 eme*/      fprintf(ficlog,"\n");
     }
   for (k1=1; k1<= m ; k1 ++) {    */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
        free_matrix(a,1,npar,1,npar);
     for (i=1; i<= nlstate+1 ; i ++) {    free_matrix(y,1,npar,1,npar);
       k=2*i;    free_vector(x,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_ivector(indx,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(hess,1,npar,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  /*************** hessian matrix ****************/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for (j=1; j<= nlstate+1 ; j ++) {  {
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int i;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int l=1, lmax=20;
 }      double k1,k2;
       fprintf(ficgp,"\" t\"\" w l 0,");    double p2[MAXPARM+1]; /* identical to x */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double res;
       for (j=1; j<= nlstate+1 ; j ++) {    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int k=0,kmax=10;
 }      double l1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    fx=func(x);
     }    for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    for(l=0 ; l <=lmax; l++){
   }      l1=pow(10,l);
        delts=delt;
   /*3eme*/      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   for (k1=1; k1<= m ; k1 ++) {        p2[theta]=x[theta] +delt;
     for (cpt=1; cpt<= nlstate ; cpt ++) {        k1=func(p2)-fx;
       k=2+nlstate*(cpt-1);        p2[theta]=x[theta]-delt;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);        k2=func(p2)-fx;
       for (i=1; i< nlstate ; i ++) {        /*res= (k1-2.0*fx+k2)/delt/delt; */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
       }        
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  #ifdef DEBUGHESS
     }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
    #endif
   /* CV preval stat */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for (k1=1; k1<= m ; k1 ++) {        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     for (cpt=1; cpt<nlstate ; cpt ++) {          k=kmax;
       k=3;        }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          delts=delt;
              }
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    }
       for (i=1; i< nlstate ; i ++) {    delti[theta]=delts;
         l=3+(nlstate+ndeath)*cpt;    return res; 
         fprintf(ficgp,"+$%d",l+i+1);    
       }  }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     }  {
   }      int i;
      int l=1, l1, lmax=20;
   /* proba elementaires */    double k1,k2,k3,k4,res,fx;
    for(i=1,jk=1; i <=nlstate; i++){    double p2[MAXPARM+1];
     for(k=1; k <=(nlstate+ndeath); k++){    int k;
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){    fx=func(x);
            for (k=1; k<=2; k++) {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      for (i=1;i<=npar;i++) p2[i]=x[i];
           jk++;      p2[thetai]=x[thetai]+delti[thetai]/k;
           fprintf(ficgp,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         }      k1=func(p2)-fx;
       }    
     }      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
     for(jk=1; jk <=m; jk++) {    
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);      p2[thetai]=x[thetai]-delti[thetai]/k;
    i=1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    for(k2=1; k2<=nlstate; k2++) {      k3=func(p2)-fx;
      k3=i;    
      for(k=1; k<=(nlstate+ndeath); k++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
        if (k != k2){      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      k4=func(p2)-fx;
 ij=1;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(j=3; j <=ncovmodel; j++) {  #ifdef DEBUG
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             ij++;  #endif
           }    }
           else    return res;
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  }
         }  
           fprintf(ficgp,")/(1");  /************** Inverse of matrix **************/
          void ludcmp(double **a, int n, int *indx, double *d) 
         for(k1=1; k1 <=nlstate; k1++){    { 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    int i,imax,j,k; 
 ij=1;    double big,dum,sum,temp; 
           for(j=3; j <=ncovmodel; j++){    double *vv; 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    vv=vector(1,n); 
             ij++;    *d=1.0; 
           }    for (i=1;i<=n;i++) { 
           else      big=0.0; 
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for (j=1;j<=n;j++) 
           }        if ((temp=fabs(a[i][j])) > big) big=temp; 
           fprintf(ficgp,")");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    } 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    for (j=1;j<=n;j++) { 
         i=i+ncovmodel;      for (i=1;i<j;i++) { 
        }        sum=a[i][j]; 
      }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
    }        a[i][j]=sum; 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      } 
    }      big=0.0; 
          for (i=j;i<=n;i++) { 
   fclose(ficgp);        sum=a[i][j]; 
 }  /* end gnuplot */        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 /*************** Moving average **************/        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 void movingaverage(double agedeb, double fage,double agemin, double ***mobaverage){          big=dum; 
           imax=i; 
   int i, cpt, cptcod;        } 
     for (agedeb=agemin; agedeb<=fage; agedeb++)      } 
       for (i=1; i<=nlstate;i++)      if (j != imax) { 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        for (k=1;k<=n;k++) { 
           mobaverage[(int)agedeb][i][cptcod]=0.;          dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
     for (agedeb=agemin+4; agedeb<=fage; agedeb++){          a[j][k]=dum; 
       for (i=1; i<=nlstate;i++){        } 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        *d = -(*d); 
           for (cpt=0;cpt<=4;cpt++){        vv[imax]=vv[j]; 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      } 
           }      indx[j]=imax; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      if (a[j][j] == 0.0) a[j][j]=TINY; 
         }      if (j != n) { 
       }        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
          } 
 }    } 
     free_vector(vv,1,n);  /* Doesn't work */
   ;
 /************** Forecasting ******************/  } 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  
    void lubksb(double **a, int n, int *indx, double b[]) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  { 
   int *popage;    int i,ii=0,ip,j; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double sum; 
   double *popeffectif,*popcount;   
   double ***p3mat;    for (i=1;i<=n;i++) { 
   char fileresf[FILENAMELENGTH];      ip=indx[i]; 
       sum=b[ip]; 
  agelim=AGESUP;      b[ip]=b[i]; 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      if (ii) 
          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      else if (sum) ii=i; 
       b[i]=sum; 
      } 
   strcpy(fileresf,"f");    for (i=n;i>=1;i--) { 
   strcat(fileresf,fileres);      sum=b[i]; 
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);      b[i]=sum/a[i][i]; 
   }    } 
   printf("Computing forecasting: result on file '%s' \n", fileresf);  } 
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  void pstamp(FILE *fichier)
   {
   if (mobilav==1) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
     movingaverage(agedeb, fage, agemin, mobaverage);  
   }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {  /* Some frequencies */
   if (stepm<=12) stepsize=1;    
      int i, m, jk, k1,i1, j1, bool, z1,j;
   agelim=AGESUP;    int first;
      double ***freq; /* Frequencies */
   hstepm=1;    double *pp, **prop;
   hstepm=hstepm/stepm;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   yp1=modf(dateintmean,&yp);    char fileresp[FILENAMELENGTH];
   anprojmean=yp;    
   yp2=modf((yp1*12),&yp);    pp=vector(1,nlstate);
   mprojmean=yp;    prop=matrix(1,nlstate,iagemin,iagemax+3);
   yp1=modf((yp2*30.5),&yp);    strcpy(fileresp,"p");
   jprojmean=yp;    strcat(fileresp,fileres);
   if(jprojmean==0) jprojmean=1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   if(mprojmean==0) jprojmean=1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
        fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      exit(0);
      }
   for(cptcov=1;cptcov<=i2;cptcov++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    j1=0;
       k=k+1;    
       fprintf(ficresf,"\n#******");    j=cptcoveff;
       for(j=1;j<=cptcoveff;j++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    first=1;
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    for(k1=1; k1<=j;k1++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      for(i1=1; i1<=ncodemax[k1];i1++){
              j1++;
              /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          scanf("%d", i);*/
         fprintf(ficresf,"\n");        for (i=-5; i<=nlstate+ndeath; i++)  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for (jk=-5; jk<=nlstate+ndeath; jk++)  
                    for(m=iagemin; m <= iagemax+3; m++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){              freq[i][jk][m]=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          prop[i][m]=0;
           oldm=oldms;savm=savms;        
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          dateintsum=0;
                k2cpt=0;
           for (h=0; h<=nhstepm; h++){        for (i=1; i<=imx; i++) {
             if (h==(int) (calagedate+YEARM*cpt)) {          bool=1;
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);          if  (cptcovn>0) {
             }            for (z1=1; z1<=cptcoveff; z1++) 
             for(j=1; j<=nlstate+ndeath;j++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               kk1=0.;kk2=0;                bool=0;
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)          if (bool==1){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(m=firstpass; m<=lastpass; m++){
                 else {              k2=anint[m][i]+(mint[m][i]/12.);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               if (h==(int)(calagedate+12*cpt)){                if (m<lastpass) {
                 fprintf(ficresf," %.3f", kk1);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                                          freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
               }                }
             }                
           }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  dateintsum=dateintsum+k2;
         }                  k2cpt++;
       }                }
     }                /*}*/
   }            }
                  }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
          
   fclose(ficresf);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 }        pstamp(ficresp);
 /************** Forecasting ******************/        if  (cptcovn>0) {
 populforecast(char fileres[], double anproj1,double mproj1,double jproj1,double agemin, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresp, "**********\n#");
   int *popage;        }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        for(i=1; i<=nlstate;i++) 
   double *popeffectif,*popcount;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double ***p3mat,***tabpop,***tabpopprev;        fprintf(ficresp, "\n");
   char filerespop[FILENAMELENGTH];        
         for(i=iagemin; i <= iagemax+3; i++){
 tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          if(i==iagemax+3){
 tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficlog,"Total");
  agelim=AGESUP;          }else{
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            if(first==1){
                first=0;
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              printf("See log file for details...\n");
             }
              fprintf(ficlog,"Age %d", i);
   strcpy(filerespop,"pop");          }
   strcat(filerespop,fileres);          for(jk=1; jk <=nlstate ; jk++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     printf("Problem with forecast resultfile: %s\n", filerespop);              pp[jk] += freq[jk][m][i]; 
   }          }
   printf("Computing forecasting: result on file '%s' \n", filerespop);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
   if (mobilav==1) {              if(first==1){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     movingaverage(agedeb, fage, agemin, mobaverage);              }
   }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
   stepsize=(int) (stepm+YEARM-1)/YEARM;              if(first==1)
   if (stepm<=12) stepsize=1;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   agelim=AGESUP;            }
            }
   hstepm=1;  
   hstepm=hstepm/stepm;          for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   if (popforecast==1) {              pp[jk] += freq[jk][m][i];
     if((ficpop=fopen(popfile,"r"))==NULL) {          }       
       printf("Problem with population file : %s\n",popfile);exit(0);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     }            pos += pp[jk];
     popage=ivector(0,AGESUP);            posprop += prop[jk][i];
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){
                if(pos>=1.e-5){
     i=1;                if(first==1)
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                  fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     imx=i;            }else{
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   for(cptcov=1;cptcov<=i2;cptcov++){            }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            if( i <= iagemax){
       k=k+1;              if(pos>=1.e-5){
       fprintf(ficrespop,"\n#******");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       for(j=1;j<=cptcoveff;j++) {                /*probs[i][jk][j1]= pp[jk]/pos;*/
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       }              }
       fprintf(ficrespop,"******\n");              else
       fprintf(ficrespop,"# StartingAge FinalAge");                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            }
       if (popforecast==1)  fprintf(ficrespop," [Population]");          }
                
       for (cpt=0; cpt<=0;cpt++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
         fprintf(ficrespop,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              for(m=-1; m <=nlstate+ndeath; m++)
                      if(freq[jk][m][i] !=0 ) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){              if(first==1)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           nhstepm = nhstepm/hstepm;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                        }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if(i <= iagemax)
           oldm=oldms;savm=savms;            fprintf(ficresp,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if(first==1)
                    printf("Others in log...\n");
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog,"\n");
             if (h==(int) (calagedate+YEARM*cpt)) {        }
               fprintf(ficrespop,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);      }
             }    }
             for(j=1; j<=nlstate+ndeath;j++) {    dateintmean=dateintsum/k2cpt; 
               kk1=0.;kk2=0;   
               for(i=1; i<=nlstate;i++) {                  fclose(ficresp);
                 if (mobilav==1)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_vector(pp,1,nlstate);
                 else {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* End of Freq */
                 }  }
               }  
               if (h==(int)(calagedate+12*cpt)){  /************ Prevalence ********************/
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   /*fprintf(ficrespop," %.3f", kk1);  {  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               }       in each health status at the date of interview (if between dateprev1 and dateprev2).
             }       We still use firstpass and lastpass as another selection.
             for(i=1; i<=nlstate;i++){    */
               kk1=0.;   
                 for(j=1; j<=nlstate;j++){    int i, m, jk, k1, i1, j1, bool, z1,j;
                   kk1= kk1+Tabpop[(int)(agedeb)][j][cptcod];    double ***freq; /* Frequencies */
                 }    double *pp, **prop;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    double pos,posprop; 
             }    double  y2; /* in fractional years */
     int iagemin, iagemax;
 if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) fprintf(ficrespop," %.3f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    iagemin= (int) agemin;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    iagemax= (int) agemax;
         }    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   /******/    j1=0;
     
       for (cpt=1; cpt<=4;cpt++) {    j=cptcoveff;
         fprintf(ficrespop,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(agemin-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for(k1=1; k1<=j;k1++){
           nhstepm = nhstepm/hstepm;      for(i1=1; i1<=ncodemax[k1];i1++){
                  j1++;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           oldm=oldms;savm=savms;        for (i=1; i<=nlstate; i++)  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(m=iagemin; m <= iagemax+3; m++)
           for (h=0; h<=nhstepm; h++){            prop[i][m]=0.0;
             if (h==(int) (calagedate+YEARM*cpt)) {       
               fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);        for (i=1; i<=imx; i++) { /* Each individual */
             }          bool=1;
             for(j=1; j<=nlstate+ndeath;j++) {          if  (cptcovn>0) {
               kk1=0.;kk2=0;            for (z1=1; z1<=cptcoveff; z1++) 
               for(i=1; i<=nlstate;i++) {                            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                    bool=0;
               }          } 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %.3f", kk1);            if (bool==1) { 
             }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
    }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   if (popforecast==1) {                } 
     free_ivector(popage,0,AGESUP);              }
     free_vector(popeffectif,0,AGESUP);            } /* end selection of waves */
     free_vector(popcount,0,AGESUP);          }
   }        }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=iagemin; i <= iagemax+3; i++){  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
   fclose(ficrespop);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
 }            posprop += prop[jk][i]; 
           } 
 /***********************************************/  
 /**************** Main Program *****************/          for(jk=1; jk <=nlstate ; jk++){     
 /***********************************************/            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
 int main(int argc, char *argv[])                probs[i][jk][j1]= prop[jk][i]/posprop;
 {              } else
                 printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\n",jk,i,j1,probs[i][jk][j1]);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            } 
   double agedeb, agefin,hf;          }/* end jk */ 
   double agemin=1.e20, agemax=-1.e20;        }/* end i */ 
       } /* end i1 */
   double fret;    } /* end k1 */
   double **xi,tmp,delta;    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double dum; /* Dummy variable */    /*free_vector(pp,1,nlstate);*/
   double ***p3mat;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   int *indx;  }  /* End of prevalence */
   char line[MAXLINE], linepar[MAXLINE];  
   char title[MAXLINE];  /************* Waves Concatenation ***************/
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
   char filerest[FILENAMELENGTH];       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   char fileregp[FILENAMELENGTH];       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   char popfile[FILENAMELENGTH];       and mw[mi+1][i]. dh depends on stepm.
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];       */
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    int i, mi, m;
   int c,  h , cpt,l;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   int ju,jl, mi;       double sum=0., jmean=0.;*/
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    int first;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int j, k=0,jk, ju, jl;
   int mobilav=0,popforecast=0;    double sum=0.;
   int hstepm, nhstepm;    first=0;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;    jmin=1e+5;
     jmax=-1;
   double bage, fage, age, agelim, agebase;    jmean=0.;
   double ftolpl=FTOL;    for(i=1; i<=imx; i++){
   double **prlim;      mi=0;
   double *severity;      m=firstpass;
   double ***param; /* Matrix of parameters */      while(s[m][i] <= nlstate){
   double  *p;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   double **matcov; /* Matrix of covariance */          mw[++mi][i]=m;
   double ***delti3; /* Scale */        if(m >=lastpass)
   double *delti; /* Scale */          break;
   double ***eij, ***vareij;        else
   double **varpl; /* Variances of prevalence limits by age */          m++;
   double *epj, vepp;      }/* end while */
   double kk1, kk2;      if (s[m][i] > nlstate){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
   char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";        mw[mi][i]=m;
   char *alph[]={"a","a","b","c","d","e"}, str[4];      }
   
       wav[i]=mi;
   char z[1]="c", occ;      if(mi==0){
 #include <sys/time.h>        nbwarn++;
 #include <time.h>        if(first==0){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            first=1;
   /* long total_usecs;        }
   struct timeval start_time, end_time;        if(first==1){
            fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
       } /* end mi==0 */
     } /* End individuals */
   printf("\n%s",version);  
   if(argc <=1){    for(i=1; i<=imx; i++){
     printf("\nEnter the parameter file name: ");      for(mi=1; mi<wav[i];mi++){
     scanf("%s",pathtot);        if (stepm <=0)
   }          dh[mi][i]=1;
   else{        else{
     strcpy(pathtot,argv[1]);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   }            if (agedc[i] < 2*AGESUP) {
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /*cygwin_split_path(pathtot,path,optionfile);              if(j==0) j=1;  /* Survives at least one month after exam */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              else if(j<0){
   /* cutv(path,optionfile,pathtot,'\\');*/                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                j=1; /* Temporary Dangerous patch */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   chdir(path);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   replace(pathc,path);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
 /*-------- arguments in the command line --------*/              k=k+1;
               if (j >= jmax){
   strcpy(fileres,"r");                jmax=j;
   strcat(fileres, optionfilefiname);                ijmax=i;
   strcat(fileres,".txt");    /* Other files have txt extension */              }
               if (j <= jmin){
   /*---------arguments file --------*/                jmin=j;
                 ijmin=i;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {              }
     printf("Problem with optionfile %s\n",optionfile);              sum=sum+j;
     goto end;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   strcpy(filereso,"o");          }
   strcat(filereso,fileres);          else{
   if((ficparo=fopen(filereso,"w"))==NULL) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   }  
             k=k+1;
   /* Reads comments: lines beginning with '#' */            if (j >= jmax) {
   while((c=getc(ficpar))=='#' && c!= EOF){              jmax=j;
     ungetc(c,ficpar);              ijmax=i;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            else if (j <= jmin){
     fputs(line,ficparo);              jmin=j;
   }              ijmin=i;
   ungetc(c,ficpar);            }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);            if(j<0){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);              nberr++;
 while((c=getc(ficpar))=='#' && c!= EOF){              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     ungetc(c,ficpar);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            sum=sum+j;
     fputs(line,ficparo);          }
   }          jk= j/stepm;
   ungetc(c,ficpar);          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
              if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   covar=matrix(0,NCOVMAX,1,n);            if(jl==0){
   cptcovn=0;              dh[mi][i]=jk;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;              bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
   ncovmodel=2+cptcovn;                    * to avoid the price of an extra matrix product in likelihood */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   /* Read guess parameters */            }
   /* Reads comments: lines beginning with '#' */          }else{
   while((c=getc(ficpar))=='#' && c!= EOF){            if(jl <= -ju){
     ungetc(c,ficpar);              dh[mi][i]=jk;
     fgets(line, MAXLINE, ficpar);              bh[mi][i]=jl;       /* bias is positive if real duration
     puts(line);                                   * is higher than the multiple of stepm and negative otherwise.
     fputs(line,ficparo);                                   */
   }            }
   ungetc(c,ficpar);            else{
                dh[mi][i]=jk+1;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              bh[mi][i]=ju;
     for(i=1; i <=nlstate; i++)            }
     for(j=1; j <=nlstate+ndeath-1; j++){            if(dh[mi][i]==0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);              dh[mi][i]=1; /* At least one step */
       fprintf(ficparo,"%1d%1d",i1,j1);              bh[mi][i]=ju; /* At least one step */
       printf("%1d%1d",i,j);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for(k=1; k<=ncovmodel;k++){            }
         fscanf(ficpar," %lf",&param[i][j][k]);          } /* end if mle */
         printf(" %lf",param[i][j][k]);        }
         fprintf(ficparo," %lf",param[i][j][k]);      } /* end wave */
       }    }
       fscanf(ficpar,"\n");    jmean=sum/k;
       printf("\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficparo,"\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   p=param[1][1];  {
      /* Uses cptcovn+2*cptcovprod as the number of covariates */
   /* Reads comments: lines beginning with '#' */    /*      Tvar[i]=atoi(stre); /* find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    int Ndum[20],ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     fgets(line, MAXLINE, ficpar);    int modmaxcovj=0; /* Modality max of covariates j */
     puts(line);    cptcoveff=0; 
     fputs(line,ficparo);   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
   ungetc(c,ficpar);    for (k=1; k<=7; k++) ncodemax[k]=0; /* Horrible constant again */
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) { /* For each covariate j */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum value of the 
   for(i=1; i <=nlstate; i++){                                 modality of this covariate Vj*/ 
     for(j=1; j <=nlstate+ndeath-1; j++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Finds for covariate j, n=Tvar[j] of Vn . ij is the
       fscanf(ficpar,"%1d%1d",&i1,&j1);                                        modality of the nth covariate of individual i. */
       printf("%1d%1d",i,j);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
       fprintf(ficparo,"%1d%1d",i1,j1);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for(k=1; k<=ncovmodel;k++){        if (ij > modmaxcovj) modmaxcovj=ij; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /* getting the maximum value of the modality of the covariate
         printf(" %le",delti3[i][j][k]);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         fprintf(ficparo," %le",delti3[i][j][k]);           female is 1, then modmaxcovj=1.*/
       }      }
       fscanf(ficpar,"\n");      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
       printf("\n");      for (i=0; i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each modality of model-cov j */
       fprintf(ficparo,"\n");        if( Ndum[i] != 0 )
     }          ncodemax[j]++; 
   }        /* Number of modalities of the j th covariate. In fact
   delti=delti3[1][1];           ncodemax[j]=2 (dichotom. variables only) but it could be more for
             historical reasons */
   /* Reads comments: lines beginning with '#' */      } /* Ndum[-1] number of undefined modalities */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
     fgets(line, MAXLINE, ficpar);      ij=1; 
     puts(line);      for (i=1; i<=ncodemax[j]; i++) { /* i= 1 to 2 for dichotomous */
     fputs(line,ficparo);        for (k=0; k<= modmaxcovj; k++) { /* k=-1 ? NCOVMAX*//* maxncov or modmaxcovj */
   }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   ungetc(c,ficpar);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                         k is a modality. If we have model=V1+V1*sex 
   matcov=matrix(1,npar,1,npar);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   for(i=1; i <=npar; i++){            ij++;
     fscanf(ficpar,"%s",&str);          }
     printf("%s",str);          if (ij > ncodemax[j]) break; 
     fprintf(ficparo,"%s",str);        }  /* end of loop on */
     for(j=1; j <=i; j++){      } /* end of loop on modality */ 
       fscanf(ficpar," %le",&matcov[i][j]);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       printf(" %.5le",matcov[i][j]);    
       fprintf(ficparo," %.5le",matcov[i][j]);    for (k=0; k< maxncov; k++) Ndum[k]=0;
     }    
     fscanf(ficpar,"\n");    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */
     printf("\n");     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     fprintf(ficparo,"\n");     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */
   }     Ndum[ij]++;
   for(i=1; i <=npar; i++)   }
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];   ij=1;
       for (i=1; i<= maxncov; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   printf("\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
        ij++;
     /*-------- data file ----------*/     }
     if((ficres =fopen(fileres,"w"))==NULL) {   }
       printf("Problem with resultfile: %s\n", fileres);goto end;   ij--;
     }   cptcoveff=ij; /*Number of simple covariates*/
     fprintf(ficres,"#%s\n",version);  }
      
     if((fic=fopen(datafile,"r"))==NULL)    {  /*********** Health Expectancies ****************/
       printf("Problem with datafile: %s\n", datafile);goto end;  
     }  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
     n= lastobs;  {
     severity = vector(1,maxwav);    /* Health expectancies, no variances */
     outcome=imatrix(1,maxwav+1,1,n);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     num=ivector(1,n);    int nhstepma, nstepma; /* Decreasing with age */
     moisnais=vector(1,n);    double age, agelim, hf;
     annais=vector(1,n);    double ***p3mat;
     moisdc=vector(1,n);    double eip;
     andc=vector(1,n);  
     agedc=vector(1,n);    pstamp(ficreseij);
     cod=ivector(1,n);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     weight=vector(1,n);    fprintf(ficreseij,"# Age");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    for(i=1; i<=nlstate;i++){
     mint=matrix(1,maxwav,1,n);      for(j=1; j<=nlstate;j++){
     anint=matrix(1,maxwav,1,n);        fprintf(ficreseij," e%1d%1d ",i,j);
     s=imatrix(1,maxwav+1,1,n);      }
     adl=imatrix(1,maxwav+1,1,n);          fprintf(ficreseij," e%1d. ",i);
     tab=ivector(1,NCOVMAX);    }
     ncodemax=ivector(1,8);    fprintf(ficreseij,"\n");
   
     i=1;    
     while (fgets(line, MAXLINE, fic) != NULL)    {    if(estepm < stepm){
       if ((i >= firstobs) && (i <=lastobs)) {      printf ("Problem %d lower than %d\n",estepm, stepm);
            }
         for (j=maxwav;j>=1;j--){    else  hstepm=estepm;   
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    /* We compute the life expectancy from trapezoids spaced every estepm months
           strcpy(line,stra);     * This is mainly to measure the difference between two models: for example
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * if stepm=24 months pijx are given only every 2 years and by summing them
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
             * to the curvature of the survival function. If, for the same date, we 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);     * curvature will be obtained if estepm is as small as stepm. */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);  
     /* For example we decided to compute the life expectancy with the smallest unit */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for (j=ncov;j>=1;j--){       nhstepm is the number of hstepm from age to agelim 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);       nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
         num[i]=atol(stra);       and note for a fixed period like estepm months */
            /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){       survival function given by stepm (the optimization length). Unfortunately it
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         i=i+1;       results. So we changed our mind and took the option of the best precision.
       }    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/    agelim=AGESUP;
   imx=i-1; /* Number of individuals */    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
   /* for (i=1; i<=imx; i++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  /* nhstepm age range expressed in number of stepm */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     for (i=1; i<=imx; i++)    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   /* Calculation of the number of parameter from char model*/    for (age=bage; age<=fage; age ++){ 
   Tvar=ivector(1,15);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   Tprod=ivector(1,15);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   Tvaraff=ivector(1,15);      /* if (stepm >= YEARM) hstepm=1;*/
   Tvard=imatrix(1,15,1,2);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   Tage=ivector(1,15);        
          /* If stepm=6 months */
   if (strlen(model) >1){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     j=0, j1=0, k1=1, k2=1;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     j=nbocc(model,'+');      
     j1=nbocc(model,'*');      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     cptcovn=j+1;      
     cptcovprod=j1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
          printf("%d|",(int)age);fflush(stdout);
     strcpy(modelsav,model);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      
       printf("Error. Non available option model=%s ",model);      /* Computing expectancies */
       goto end;      for(i=1; i<=nlstate;i++)
     }        for(j=1; j<=nlstate;j++)
              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(i=(j+1); i>=1;i--){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       cutv(stra,strb,modelsav,'+');            
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/          }
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');      fprintf(ficreseij,"%3.0f",age );
         if (strcmp(strc,"age")==0) {      for(i=1; i<=nlstate;i++){
           cptcovprod--;        eip=0;
           cutv(strb,stre,strd,'V');        for(j=1; j<=nlstate;j++){
           Tvar[i]=atoi(stre);          eip +=eij[i][j][(int)age];
           cptcovage++;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
             Tage[cptcovage]=i;        }
             /*printf("stre=%s ", stre);*/        fprintf(ficreseij,"%9.4f", eip );
         }      }
         else if (strcmp(strd,"age")==0) {      fprintf(ficreseij,"\n");
           cptcovprod--;      
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=atoi(stre);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           cptcovage++;    printf("\n");
           Tage[cptcovage]=i;    fprintf(ficlog,"\n");
         }    
         else {  }
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncov+k1;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           cutv(strb,strc,strd,'V');  
           Tprod[k1]=i;  {
           Tvard[k1][1]=atoi(strc);    /* Covariances of health expectancies eij and of total life expectancies according
           Tvard[k1][2]=atoi(stre);     to initial status i, ei. .
           Tvar[cptcovn+k2]=Tvard[k1][1];    */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
           for (k=1; k<=lastobs;k++)    int nhstepma, nstepma; /* Decreasing with age */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double age, agelim, hf;
           k1++;    double ***p3matp, ***p3matm, ***varhe;
           k2=k2+2;    double **dnewm,**doldm;
         }    double *xp, *xm;
       }    double **gp, **gm;
       else {    double ***gradg, ***trgradg;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int theta;
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    double eip, vip;
       Tvar[i]=atoi(strc);  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       strcpy(modelsav,stra);      xp=vector(1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    xm=vector(1,npar);
         scanf("%d",i);*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
     }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 }    
      pstamp(ficresstdeij);
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficresstdeij,"# Age");
   scanf("%d ",i);*/    for(i=1; i<=nlstate;i++){
     fclose(fic);      for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     /*  if(mle==1){*/      fprintf(ficresstdeij," e%1d. ",i);
     if (weightopt != 1) { /* Maximisation without weights*/    }
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficresstdeij,"\n");
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    pstamp(ficrescveij);
     agev=matrix(1,maxwav,1,imx);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
    for (i=1; i<=imx; i++)    for(i=1; i<=nlstate;i++)
      for(m=2; (m<= maxwav); m++)      for(j=1; j<=nlstate;j++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        cptj= (j-1)*nlstate+i;
          anint[m][i]=9999;        for(i2=1; i2<=nlstate;i2++)
          s[m][i]=-1;          for(j2=1; j2<=nlstate;j2++){
        }            cptj2= (j2-1)*nlstate+i2;
                if(cptj2 <= cptj)
     for (i=1; i<=imx; i++)  {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          }
       for(m=1; (m<= maxwav); m++){      }
         if(s[m][i] >0){    fprintf(ficrescveij,"\n");
           if (s[m][i] == nlstate+1) {    
             if(agedc[i]>0)    if(estepm < stepm){
               if(moisdc[i]!=99 && andc[i]!=9999)      printf ("Problem %d lower than %d\n",estepm, stepm);
               agev[m][i]=agedc[i];    }
             else {    else  hstepm=estepm;   
               if (andc[i]!=9999){    /* We compute the life expectancy from trapezoids spaced every estepm months
               printf("Warning negative age at death: %d line:%d\n",num[i],i);     * This is mainly to measure the difference between two models: for example
               agev[m][i]=-1;     * if stepm=24 months pijx are given only every 2 years and by summing them
               }     * we are calculating an estimate of the Life Expectancy assuming a linear 
             }     * progression in between and thus overestimating or underestimating according
           }     * to the curvature of the survival function. If, for the same date, we 
           else if(s[m][i] !=9){ /* Should no more exist */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);     * to compare the new estimate of Life expectancy with the same linear 
             if(mint[m][i]==99 || anint[m][i]==9999)     * hypothesis. A more precise result, taking into account a more precise
               agev[m][i]=1;     * curvature will be obtained if estepm is as small as stepm. */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];    /* For example we decided to compute the life expectancy with the smallest unit */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
             else if(agev[m][i] >agemax){       nstepm is the number of stepm from age to agelin. 
               agemax=agev[m][i];       Look at hpijx to understand the reason of that which relies in memory size
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             /*agev[m][i]=anint[m][i]-annais[i];*/       survival function given by stepm (the optimization length). Unfortunately it
             /*   agev[m][i] = age[i]+2*m;*/       means that if the survival funtion is printed only each two years of age and if
           }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           else { /* =9 */       results. So we changed our mind and took the option of the best precision.
             agev[m][i]=1;    */
             s[m][i]=-1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           }  
         }    /* If stepm=6 months */
         else /*= 0 Unknown */    /* nhstepm age range expressed in number of stepm */
           agev[m][i]=1;    agelim=AGESUP;
       }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     }    /* if (stepm >= YEARM) hstepm=1;*/
     for (i=1; i<=imx; i++)  {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           printf("Error: Wrong value in nlstate or ndeath\n");      p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           goto end;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     free_vector(severity,1,maxwav);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_imatrix(outcome,1,maxwav+1,1,n);      /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(moisnais,1,n);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);      /* If stepm=6 months */
        free_matrix(anint,1,maxwav,1,n);*/      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     free_vector(moisdc,1,n);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     free_vector(andc,1,n);      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
     wav=ivector(1,imx);      /* Computing  Variances of health expectancies */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     mw=imatrix(1,lastpass-firstpass+1,1,imx);         decrease memory allocation */
          for(theta=1; theta <=npar; theta++){
     /* Concatenates waves */        for(i=1; i<=npar; i++){ 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
       Tcode=ivector(1,100);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       ncodemax[1]=1;    
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        for(j=1; j<= nlstate; j++){
                for(i=1; i<=nlstate; i++){
    codtab=imatrix(1,100,1,10);            for(h=0; h<=nhstepm-1; h++){
    h=0;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
    m=pow(2,cptcoveff);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              }
    for(k=1;k<=cptcoveff; k++){          }
      for(i=1; i <=(m/pow(2,k));i++){        }
        for(j=1; j <= ncodemax[k]; j++){       
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(ij=1; ij<= nlstate*nlstate; ij++)
            h++;          for(h=0; h<=nhstepm-1; h++){
            if (h>m) h=1;codtab[h][k]=j;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
          }          }
        }      }/* End theta */
      }      
    }      
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
    /*for(i=1; i <=m ;i++){          for(theta=1; theta <=npar; theta++)
      for(k=1; k <=cptcovn; k++){            trgradg[h][j][theta]=gradg[h][theta][j];
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      
      }  
      printf("\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
    }        for(ji=1;ji<=nlstate*nlstate;ji++)
    scanf("%d",i);*/          varhe[ij][ji][(int)age] =0.;
      
    /* Calculates basic frequencies. Computes observed prevalence at single age       printf("%d|",(int)age);fflush(stdout);
        and prints on file fileres'p'. */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
            for(k=0;k<=nhstepm-1;k++){
              matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(ij=1;ij<=nlstate*nlstate;ij++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(ji=1;ji<=nlstate*nlstate;ji++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
            }
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* Computing expectancies */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
     if(mle==1){        for(j=1; j<=nlstate;j++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                
     /*--------- results files --------------*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);  
            }
   
    jk=1;      fprintf(ficresstdeij,"%3.0f",age );
    fprintf(ficres,"# Parameters\n");      for(i=1; i<=nlstate;i++){
    printf("# Parameters\n");        eip=0.;
    for(i=1,jk=1; i <=nlstate; i++){        vip=0.;
      for(k=1; k <=(nlstate+ndeath); k++){        for(j=1; j<=nlstate;j++){
        if (k != i)          eip += eij[i][j][(int)age];
          {          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
            printf("%d%d ",i,k);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
              fprintf(ficres,"%f ",p[jk]);      }
              jk++;      fprintf(ficresstdeij,"\n");
            }  
            printf("\n");      fprintf(ficrescveij,"%3.0f",age );
            fprintf(ficres,"\n");      for(i=1; i<=nlstate;i++)
          }        for(j=1; j<=nlstate;j++){
      }          cptj= (j-1)*nlstate+i;
    }          for(i2=1; i2<=nlstate;i2++)
  if(mle==1){            for(j2=1; j2<=nlstate;j2++){
     /* Computing hessian and covariance matrix */              cptj2= (j2-1)*nlstate+i2;
     ftolhess=ftol; /* Usually correct */              if(cptj2 <= cptj)
     hesscov(matcov, p, npar, delti, ftolhess, func);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
  }            }
     fprintf(ficres,"# Scales\n");        }
     printf("# Scales\n");      fprintf(ficrescveij,"\n");
      for(i=1,jk=1; i <=nlstate; i++){     
       for(j=1; j <=nlstate+ndeath; j++){    }
         if (j!=i) {    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           fprintf(ficres,"%1d%1d",i,j);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           printf("%1d%1d",i,j);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           for(k=1; k<=ncovmodel;k++){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
             printf(" %.5e",delti[jk]);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficres," %.5e",delti[jk]);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             jk++;    printf("\n");
           }    fprintf(ficlog,"\n");
           printf("\n");  
           fprintf(ficres,"\n");    free_vector(xm,1,npar);
         }    free_vector(xp,1,npar);
       }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
        free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     k=1;  }
     fprintf(ficres,"# Covariance\n");  
     printf("# Covariance\n");  /************ Variance ******************/
     for(i=1;i<=npar;i++){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       /*  if (k>nlstate) k=1;  {
       i1=(i-1)/(ncovmodel*nlstate)+1;    /* Variance of health expectancies */
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/    /* double **newm;*/
       fprintf(ficres,"%3d",i);    double **dnewm,**doldm;
       printf("%3d",i);    double **dnewmp,**doldmp;
       for(j=1; j<=i;j++){    int i, j, nhstepm, hstepm, h, nstepm ;
         fprintf(ficres," %.5e",matcov[i][j]);    int k, cptcode;
         printf(" %.5e",matcov[i][j]);    double *xp;
       }    double **gp, **gm;  /* for var eij */
       fprintf(ficres,"\n");    double ***gradg, ***trgradg; /*for var eij */
       printf("\n");    double **gradgp, **trgradgp; /* for var p point j */
       k++;    double *gpp, *gmp; /* for var p point j */
     }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
        double ***p3mat;
     while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim, hf;
       ungetc(c,ficpar);    double ***mobaverage;
       fgets(line, MAXLINE, ficpar);    int theta;
       puts(line);    char digit[4];
       fputs(line,ficparo);    char digitp[25];
     }  
     ungetc(c,ficpar);    char fileresprobmorprev[FILENAMELENGTH];
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    if(popbased==1){
          if(mobilav!=0)
     if (fage <= 2) {        strcpy(digitp,"-populbased-mobilav-");
       bage = agemin;      else strcpy(digitp,"-populbased-nomobil-");
       fage = agemax;    }
     }    else 
          strcpy(digitp,"-stablbased-");
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    if (mobilav!=0) {
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     ungetc(c,ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);  
   }    strcpy(fileresprobmorprev,"prmorprev"); 
   ungetc(c,ficpar);    sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcat(fileresprobmorprev,fileres);
          if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   while((c=getc(ficpar))=='#' && c!= EOF){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fputs(line,ficparo);   
   }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   ungetc(c,ficpar);    pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    fprintf(ficparo,"pop_based=%d\n",popbased);      }  
    fprintf(ficres,"pop_based=%d\n",popbased);      fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
   while((c=getc(ficpar))=='#' && c!= EOF){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     puts(line);  /*   } */
     fputs(line,ficparo);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    pstamp(ficresvij);
   ungetc(c,ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    if(popbased==1)
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
 /*------------ gnuplot -------------*/      for(j=1; j<=nlstate;j++)
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, agemin,agemax,fage, pathc,p);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
 /*------------ free_vector  -------------*/  
  chdir(path);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
  free_ivector(wav,1,imx);    doldm=matrix(1,nlstate,1,nlstate);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  free_ivector(num,1,n);  
  free_vector(agedc,1,n);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    gpp=vector(nlstate+1,nlstate+ndeath);
  fclose(ficparo);    gmp=vector(nlstate+1,nlstate+ndeath);
  fclose(ficres);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      
   /* Reads comments: lines beginning with '#' */    if(estepm < stepm){
   while((c=getc(ficpar))=='#' && c!= EOF){      printf ("Problem %d lower than %d\n",estepm, stepm);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    else  hstepm=estepm;   
     puts(line);    /* For example we decided to compute the life expectancy with the smallest unit */
     fputs(line,ficparo);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   ungetc(c,ficpar);       nstepm is the number of stepm from age to agelin. 
         Look at function hpijx to understand why (it is linked to memory size questions) */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);       means that if the survival funtion is printed every two years of age and if
 /*--------- index.htm --------*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   /*--------------- Prevalence limit --------------*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   strcpy(filerespl,"pl");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcat(filerespl,fileres);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");      for(theta=1; theta <=npar; theta++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   fprintf(ficrespl,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   prlim=matrix(1,nlstate,1,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (popbased==1) {
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mobilav ==0){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for(i=1; i<=nlstate;i++)
   k=0;              prlim[i][i]=probs[(int)age][i][ij];
   agebase=agemin;          }else{ /* mobilav */ 
   agelim=agemax;            for(i=1; i<=nlstate;i++)
   ftolpl=1.e-10;              prlim[i][i]=mobaverage[(int)age][i][ij];
   i1=cptcoveff;          }
   if (cptcovn < 1){i1=1;}        }
     
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1; j<= nlstate; j++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for(h=0; h<=nhstepm; h++){
         k=k+1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficrespl,"\n#******");          }
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        /* This for computing probability of death (h=1 means
         fprintf(ficrespl,"******\n");           computed over hstepm matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
         for (age=agebase; age<=agelim; age++){        */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           fprintf(ficrespl,"%.0f",age );          for(i=1,gpp[j]=0.; i<= nlstate; i++)
           for(i=1; i<=nlstate;i++)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           fprintf(ficrespl," %.5f", prlim[i][i]);        }    
           fprintf(ficrespl,"\n");        /* end probability of death */
         }  
       }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficrespl);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /*------------- h Pij x at various ages ------------*/   
          if (popbased==1) {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          if(mobilav ==0){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   printf("Computing pij: result on file '%s' \n", filerespij);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   stepsize=(int) (stepm+YEARM-1)/YEARM;          }
   /*if (stepm<=24) stepsize=2;*/        }
   
   agelim=AGESUP;        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   hstepm=stepsize*YEARM; /* Every year of age */          for(h=0; h<=nhstepm; h++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   k=0;          }
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        /* This for computing probability of death (h=1 means
       k=k+1;           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficrespij,"\n#****** ");           as a weighted average of prlim.
         for(j=1;j<=cptcoveff;j++)        */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficrespij,"******\n");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   gmp[j] += prlim[i][i]*p3mat[i][j][1];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */        }    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /* end probability of death */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(j=1; j<= nlstate; j++) /* vareij */
           oldm=oldms;savm=savms;          for(h=0; h<=nhstepm; h++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
               fprintf(ficrespij," %1d-%1d",i,j);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           fprintf(ficrespij,"\n");        }
           for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      } /* End theta */
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");      for(h=0; h<=nhstepm; h++) /* veij */
           }        for(j=1; j<=nlstate;j++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(theta=1; theta <=npar; theta++)
           fprintf(ficrespij,"\n");            trgradg[h][j][theta]=gradg[h][theta][j];
         }  
     }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   }        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    
   
   fclose(ficrespij);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
   /*---------- Forecasting ------------------*/          vareij[i][j][(int)age] =0.;
   if(stepm == 1) {  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for(h=0;h<=nhstepm;h++){
 populforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        for(k=0;k<=nhstepm;k++){
     free_matrix(mint,1,maxwav,1,n);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     free_vector(weight,1,n);}          for(i=1;i<=nlstate;i++)
   else{            for(j=1;j<=nlstate;j++)
     erreur=108;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);        }
   }      }
      
       /* pptj */
   /*---------- Health expectancies and variances ------------*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcpy(filerest,"t");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   strcat(filerest,fileres);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if((ficrest=fopen(filerest,"w"))==NULL) {          varppt[j][i]=doldmp[j][i];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      /* end ppptj */
   }      /*  x centered again */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
   strcpy(filerese,"e");      if (popbased==1) {
   strcat(filerese,fileres);        if(mobilav ==0){
   if((ficreseij=fopen(filerese,"w"))==NULL) {          for(i=1; i<=nlstate;i++)
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            prlim[i][i]=probs[(int)age][i][ij];
   }        }else{ /* mobilav */ 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
  strcpy(fileresv,"v");        }
   strcat(fileresv,fileres);      }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {               
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      /* This for computing probability of death (h=1 means
   }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         as a weighted average of prlim.
       */
   k=0;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       k=k+1;      }    
       fprintf(ficrest,"\n#****** ");      /* end probability of death */
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       fprintf(ficrest,"******\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fprintf(ficreseij,"\n#****** ");        for(i=1; i<=nlstate;i++){
       for(j=1;j<=cptcoveff;j++)          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        }
       fprintf(ficreseij,"******\n");      } 
       fprintf(ficresprobmorprev,"\n");
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      for(i=1; i<=nlstate;i++)
       fprintf(ficresvij,"******\n");        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;      fprintf(ficresvij,"\n");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        free_matrix(gp,0,nhstepm,1,nlstate);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      free_matrix(gm,0,nhstepm,1,nlstate);
       oldm=oldms;savm=savms;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    free_vector(gmp,nlstate+1,nlstate+ndeath);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficrest,"\n");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small;set size 0.65, 0.65");
       hf=1;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       if (stepm >= YEARM) hf=stepm/YEARM;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       epj=vector(1,nlstate+1);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       for(age=bage; age <=fage ;age++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         if (popbased==1) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 2 ",subdirf(fileresprobmorprev));
           for(i=1; i<=nlstate;i++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 3 ",subdirf(fileresprobmorprev));
             prlim[i][i]=probs[(int)age][i][k];    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 3 ",subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
            fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficrest," %.0f",age);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           }  
           epj[nlstate+1] +=epj[j];    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,nlstate);
         for(i=1, vepp=0.;i <=nlstate;i++)    free_matrix(dnewm,1,nlstate,1,npar);
           for(j=1;j <=nlstate;j++)    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             vepp += vareij[i][j][(int)age];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         for(j=1;j <=nlstate;j++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    fclose(ficresprobmorprev);
         }    fflush(ficgp);
         fprintf(ficrest,"\n");    fflush(fichtm); 
       }  }  /* end varevsij */
     }  
   }  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   fclose(ficreseij);  {
   fclose(ficresvij);    /* Variance of prevalence limit */
   fclose(ficrest);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   fclose(ficpar);    double **newm;
   free_vector(epj,1,nlstate+1);    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   /*------- Variance limit prevalence------*/      int k, cptcode;
     double *xp;
   strcpy(fileresvpl,"vpl");    double *gp, *gm;
   strcat(fileresvpl,fileres);    double **gradg, **trgradg;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double age,agelim;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int theta;
     exit(0);    
   }    pstamp(ficresvpl);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   k=0;    for(i=1; i<=nlstate;i++)
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresvpl," %1d-%1d",i,i);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficresvpl,"\n");
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");    xp=vector(1,npar);
       for(j=1;j<=cptcoveff;j++)    dnewm=matrix(1,nlstate,1,npar);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficresvpl,"******\n");    
          hstepm=1*YEARM; /* Every year of age */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       oldm=oldms;savm=savms;    agelim = AGESUP;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  }      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   fclose(ficresvpl);      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   /*---------- End : free ----------------*/      gm=vector(1,nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
        for(theta=1; theta <=npar; theta++){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for(i=1; i<=npar; i++){ /* Computes gradient */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1;i<=nlstate;i++)
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          gp[i] = prlim[i][i];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for(i=1; i<=npar; i++) /* Computes gradient */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   free_matrix(matcov,1,npar,1,npar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   free_vector(delti,1,npar);        for(i=1;i<=nlstate;i++)
   free_matrix(agev,1,maxwav,1,imx);          gm[i] = prlim[i][i];
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
         for(i=1;i<=nlstate;i++)
   if(erreur >0)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     printf("End of Imach with error %d\n",erreur);      } /* End theta */
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      trgradg =matrix(1,nlstate,1,npar);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for(j=1; j<=nlstate;j++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for(theta=1; theta <=npar; theta++)
   /*------ End -----------*/          trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
  end:        varpl[i][(int)age] =0.;
 #ifdef windows      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   /* chdir(pathcd);*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 #endif      for(i=1;i<=nlstate;i++)
  /*system("wgnuplot graph.plt");*/        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/      fprintf(ficresvpl,"%.0f ",age );
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for(i=1; i<=nlstate;i++)
  strcpy(plotcmd,GNUPLOTPROGRAM);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
  strcat(plotcmd," ");      fprintf(ficresvpl,"\n");
  strcat(plotcmd,optionfilegnuplot);      free_vector(gp,1,nlstate);
  system(plotcmd);      free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
 #ifdef windows      free_matrix(trgradg,1,nlstate,1,npar);
   while (z[0] != 'q') {    } /* End age */
     chdir(path);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    free_vector(xp,1,npar);
     scanf("%s",z);    free_matrix(doldm,1,nlstate,1,npar);
     if (z[0] == 'c') system("./imach");    free_matrix(dnewm,1,nlstate,1,nlstate);
     else if (z[0] == 'e') {  
       chdir(path);  }
       system(optionfilehtm);  
     }  /************ Variance of one-step probabilities  ******************/
     else if (z[0] == 'q') exit(0);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
 #endif    int i, j=0,  i1, k1, l1, t, tj;
 }    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       printf("Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Continuing by making them positive: WRONG RESULTS.\n", lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       fprintf(ficlog,"Error: One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e\n", lc1, lc2, v1, v2, cv12);fflush(ficlog);
                       lc1=fabs(lc1);
                       lc2=fabs(lc2);
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 1,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 2,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 2,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 3",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 1,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 1");
         else fprintf(ficgp,"\" t\"\" w l lt 1,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /* Bug valgrind */
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   
   int decodemodel ( char model[], int lastobs)
   {
     int i, j, k;
     int i1, j1, k1, k2;
     char modelsav[80];
      char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; /* Number of covariates V1+V2*age+V3 =>(2 plus signs) + 1=3 
                     but the covariates which are product must be computed and stored. */
       cptcovprod=j1; /*Number of products  V1*V2 +v3*age = 2 */
       
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       for(k=cptcovn; k>=1;k--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 
                                       */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn: strb=V3*age strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V'); /* stre="V3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=2 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1;  /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1]=atoi(strc); /* m 1 for V1*/
             Tvard[k1][2]=atoi(stre); /* n 4 for V4*/
             Tvar[cptcovn+k2]=Tvard[k1][1]; /* Tvar[(cptcovn=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovn+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovn=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
             k1++;
             k2=k2+2;
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutv(strd,strc,strb,'V');
           Tvar[k]=atoi(strc);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       cptcovn=nbocc(model,'+')+1;
     /* ncovprod */
     ncovmodel=2+cptcovn; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8); /* hard coded ? */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,15); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,15); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=(m/pow(2,k));i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate */
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             codtab[h][k]=j;
             codtab[h][Tvar[k]]=j;
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,codtab[cptcod][cptcov],nbcode);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         }
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms;
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.27  
changed lines
  Added in v.1.142


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>