Diff for /imach/src/imach.c between versions 1.15 and 1.158

version 1.15, 2002/02/20 17:08:52 version 1.158, 2014/08/27 17:11:51
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.158  2014/08/27 17:11:51  brouard
   individuals from different ages are interviewed on their health status    *** empty log message ***
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.157  2014/08/27 16:26:55  brouard
   Health expectancies are computed from the transistions observed between    Summary: Preparing windows Visual studio version
   waves and are computed for each degree of severity of disability (number    Author: Brouard
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    In order to compile on Visual studio, time.h is now correct and time_t
   The simplest model is the multinomial logistic model where pij is    and tm struct should be used. difftime should be used but sometimes I
   the probabibility to be observed in state j at the second wave conditional    just make the differences in raw time format (time(&now).
   to be observed in state i at the first wave. Therefore the model is:    Trying to suppress #ifdef LINUX
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Add xdg-open for __linux in order to open default browser.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.156  2014/08/25 20:10:10  brouard
     *Covariates have to be included here again* invites you to do it.    *** empty log message ***
   More covariates you add, less is the speed of the convergence.  
     Revision 1.155  2014/08/25 18:32:34  brouard
   The advantage that this computer programme claims, comes from that if the    Summary: New compile, minor changes
   delay between waves is not identical for each individual, or if some    Author: Brouard
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.154  2014/06/20 17:32:08  brouard
   hPijx is the probability to be    Summary: Outputs now all graphs of convergence to period prevalence
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.153  2014/06/20 16:45:46  brouard
   unobserved intermediate  states. This elementary transition (by month or    Summary: If 3 live state, convergence to period prevalence on same graph
   quarter trimester, semester or year) is model as a multinomial logistic.    Author: Brouard
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.152  2014/06/18 17:54:09  brouard
     Summary: open browser, use gnuplot on same dir than imach if not found in the path
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.151  2014/06/18 16:43:30  brouard
      *** empty log message ***
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.150  2014/06/18 16:42:35  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   from the European Union.    Author: brouard
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.149  2014/06/18 15:51:14  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: Some fixes in parameter files errors
   **********************************************************************/    Author: Nicolas Brouard
    
 #include <math.h>    Revision 1.148  2014/06/17 17:38:48  brouard
 #include <stdio.h>    Summary: Nothing new
 #include <stdlib.h>    Author: Brouard
 #include <unistd.h>  
     Just a new packaging for OS/X version 0.98nS
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.147  2014/06/16 10:33:11  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.146  2014/06/16 10:20:28  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Merge
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Merge, before building revised version.
   
 #define NINTERVMAX 8    Revision 1.145  2014/06/10 21:23:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Debugging with valgrind
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Author: Nicolas Brouard
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Lot of changes in order to output the results with some covariates
 #define YEARM 12. /* Number of months per year */    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define AGESUP 130    improve the code.
 #define AGEBASE 40    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 int nvar;    optimal. nbcode should be improved. Documentation has been added in
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    the source code.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.143  2014/01/26 09:45:38  brouard
 int ndeath=1; /* Number of dead states */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.142  2014/01/26 03:57:36  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.141  2014/01/26 02:42:01  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;    Revision 1.140  2011/09/02 10:37:54  brouard
 FILE *ficgp, *fichtm,*ficresprob;    Summary: times.h is ok with mingw32 now.
 FILE *ficreseij;  
   char filerese[FILENAMELENGTH];    Revision 1.139  2010/06/14 07:50:17  brouard
  FILE  *ficresvij;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   char fileresv[FILENAMELENGTH];    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.137  2010/04/29 18:11:38  brouard
 #define FTOL 1.0e-10    (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
 #define NRANSI  
 #define ITMAX 200    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 #define TOL 2.0e-4    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 #define CGOLD 0.3819660    Some cleaning of code and comments added.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.134  2009/10/29 13:18:53  brouard
 #define TINY 1.0e-20    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 static double maxarg1,maxarg2;    Revision 1.133  2009/07/06 10:21:25  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    just nforces
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.132  2009/07/06 08:22:05  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Many tings
 #define rint(a) floor(a+0.5)  
     Revision 1.131  2009/06/20 16:22:47  brouard
 static double sqrarg;    Some dimensions resccaled
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 int imx;    lot of cleaning with variables initialized to 0. Trying to make
 int stepm;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.129  2007/08/31 13:49:27  lievre
 int m,nb;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.128  2006/06/30 13:02:05  brouard
 double **pmmij, ***probs, ***mobaverage;    (Module): Clarifications on computing e.j
   
 double *weight;    Revision 1.127  2006/04/28 18:11:50  brouard
 int **s; /* Status */    (Module): Yes the sum of survivors was wrong since
 double *agedc, **covar, idx;    imach-114 because nhstepm was no more computed in the age
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    loop. Now we define nhstepma in the age loop.
     (Module): In order to speed up (in case of numerous covariates) we
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    compute health expectancies (without variances) in a first step
 double ftolhess; /* Tolerance for computing hessian */    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 /**************** split *************************/    computation.
 static  int split( char *path, char *dirc, char *name )    In the future we should be able to stop the program is only health
 {    expectancies and graph are needed without standard deviations.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
    l1 = strlen( path );                 /* length of path */    imach-114 because nhstepm was no more computed in the age
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    loop. Now we define nhstepma in the age loop.
    s = strrchr( path, '\\' );           /* find last / */    Version 0.98h
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.125  2006/04/04 15:20:31  lievre
       extern char       *getwd( );    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.124  2006/03/22 17:13:53  lievre
       extern char       *getcwd( );    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.123  2006/03/20 10:52:43  brouard
          return( GLOCK_ERROR_GETCWD );    * imach.c (Module): <title> changed, corresponds to .htm file
       }    name. <head> headers where missing.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    * imach.c (Module): Weights can have a decimal point as for
       s++;                              /* after this, the filename */    English (a comma might work with a correct LC_NUMERIC environment,
       l2 = strlen( s );                 /* length of filename */    otherwise the weight is truncated).
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Modification of warning when the covariates values are not 0 or
       strcpy( name, s );                /* save file name */    1.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Version 0.98g
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.122  2006/03/20 09:45:41  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Weights can have a decimal point as for
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    English (a comma might work with a correct LC_NUMERIC environment,
    return( 0 );                         /* we're done */    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
     Version 0.98g
 /******************************************/  
     Revision 1.121  2006/03/16 17:45:01  lievre
 void replace(char *s, char*t)    * imach.c (Module): Comments concerning covariates added
 {  
   int i;    * imach.c (Module): refinements in the computation of lli if
   int lg=20;    status=-2 in order to have more reliable computation if stepm is
   i=0;    not 1 month. Version 0.98f
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.120  2006/03/16 15:10:38  lievre
     (s[i] = t[i]);    (Module): refinements in the computation of lli if
     if (t[i]== '\\') s[i]='/';    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
 }  
     Revision 1.119  2006/03/15 17:42:26  brouard
 int nbocc(char *s, char occ)    (Module): Bug if status = -2, the loglikelihood was
 {    computed as likelihood omitting the logarithm. Version O.98e
   int i,j=0;  
   int lg=20;    Revision 1.118  2006/03/14 18:20:07  brouard
   i=0;    (Module): varevsij Comments added explaining the second
   lg=strlen(s);    table of variances if popbased=1 .
   for(i=0; i<= lg; i++) {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   if  (s[i] == occ ) j++;    (Module): Function pstamp added
   }    (Module): Version 0.98d
   return j;  
 }    Revision 1.117  2006/03/14 17:16:22  brouard
     (Module): varevsij Comments added explaining the second
 void cutv(char *u,char *v, char*t, char occ)    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   int i,lg,j,p=0;    (Module): Function pstamp added
   i=0;    (Module): Version 0.98d
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.116  2006/03/06 10:29:27  brouard
   }    (Module): Variance-covariance wrong links and
     varian-covariance of ej. is needed (Saito).
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.115  2006/02/27 12:17:45  brouard
     (u[j] = t[j]);    (Module): One freematrix added in mlikeli! 0.98c
   }  
      u[p]='\0';    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
    for(j=0; j<= lg; j++) {    filename with strsep.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.113  2006/02/24 14:20:24  brouard
 }    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 /********************** nrerror ********************/    allocation too.
   
 void nrerror(char error_text[])    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.111  2006/01/25 20:38:18  brouard
   exit(1);    (Module): Lots of cleaning and bugs added (Gompertz)
 }    (Module): Comments can be added in data file. Missing date values
 /*********************** vector *******************/    can be a simple dot '.'.
 double *vector(int nl, int nh)  
 {    Revision 1.110  2006/01/25 00:51:50  brouard
   double *v;    (Module): Lots of cleaning and bugs added (Gompertz)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");    Revision 1.109  2006/01/24 19:37:15  brouard
   return v-nl+NR_END;    (Module): Comments (lines starting with a #) are allowed in data.
 }  
     Revision 1.108  2006/01/19 18:05:42  lievre
 /************************ free vector ******************/    Gnuplot problem appeared...
 void free_vector(double*v, int nl, int nh)    To be fixed
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.107  2006/01/19 16:20:37  brouard
 }    Test existence of gnuplot in imach path
   
 /************************ivector *******************************/    Revision 1.106  2006/01/19 13:24:36  brouard
 int *ivector(long nl,long nh)    Some cleaning and links added in html output
 {  
   int *v;    Revision 1.105  2006/01/05 20:23:19  lievre
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    *** empty log message ***
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;    Revision 1.104  2005/09/30 16:11:43  lievre
 }    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 /******************free ivector **************************/    that the person is alive, then we can code his/her status as -2
 void free_ivector(int *v, long nl, long nh)    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   free((FREE_ARG)(v+nl-NR_END));    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 }    the healthy state at last known wave). Version is 0.98
   
 /******************* imatrix *******************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): sump fixed, loop imx fixed, and simplifications.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.102  2004/09/15 17:31:30  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Add the possibility to read data file including tab characters.
   int **m;  
      Revision 1.101  2004/09/15 10:38:38  brouard
   /* allocate pointers to rows */    Fix on curr_time
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.100  2004/07/12 18:29:06  brouard
   m += NR_END;    Add version for Mac OS X. Just define UNIX in Makefile
   m -= nrl;  
      Revision 1.99  2004/06/05 08:57:40  brouard
      *** empty log message ***
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.98  2004/05/16 15:05:56  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    New version 0.97 . First attempt to estimate force of mortality
   m[nrl] += NR_END;    directly from the data i.e. without the need of knowing the health
   m[nrl] -= ncl;    state at each age, but using a Gompertz model: log u =a + b*age .
      This is the basic analysis of mortality and should be done before any
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    other analysis, in order to test if the mortality estimated from the
      cross-longitudinal survey is different from the mortality estimated
   /* return pointer to array of pointers to rows */    from other sources like vital statistic data.
   return m;  
 }    The same imach parameter file can be used but the option for mle should be -3.
   
 /****************** free_imatrix *************************/    Agnès, who wrote this part of the code, tried to keep most of the
 void free_imatrix(m,nrl,nrh,ncl,nch)    former routines in order to include the new code within the former code.
       int **m;  
       long nch,ncl,nrh,nrl;    The output is very simple: only an estimate of the intercept and of
      /* free an int matrix allocated by imatrix() */    the slope with 95% confident intervals.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Current limitations:
   free((FREE_ARG) (m+nrl-NR_END));    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    suppressed.
   double **m;  
     Revision 1.96  2003/07/15 15:38:55  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!m) nrerror("allocation failure 1 in matrix()");    rewritten within the same printf. Workaround: many printfs.
   m += NR_END;  
   m -= nrl;    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Repository): Using imachwizard code to output a more meaningful covariance
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    matrix (cov(a12,c31) instead of numbers.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /*************************free matrix ************************/    (Module): Version 0.96b
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.92  2003/06/25 16:30:45  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(m+nrl-NR_END));    exist so I changed back to asctime which exists.
 }  
     Revision 1.91  2003/06/25 15:30:29  brouard
 /******************* ma3x *******************************/    * imach.c (Repository): Duplicated warning errors corrected.
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    is stamped in powell.  We created a new html file for the graphs
   double ***m;    concerning matrix of covariance. It has extension -cov.htm.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.90  2003/06/24 12:34:15  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Some bugs corrected for windows. Also, when
   m += NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
   m -= nrl;    of the covariance matrix to be input.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.89  2003/06/24 12:30:52  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Some bugs corrected for windows. Also, when
   m[nrl] += NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl] -= ncl;    of the covariance matrix to be input.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Revision 1.87  2003/06/18 12:26:01  brouard
   m[nrl][ncl] += NR_END;    Version 0.96
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Revision 1.86  2003/06/17 20:04:08  brouard
     m[nrl][j]=m[nrl][j-1]+nlay;    (Module): Change position of html and gnuplot routines and added
      routine fileappend.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.85  2003/06/17 13:12:43  brouard
     for (j=ncl+1; j<=nch; j++)    * imach.c (Repository): Check when date of death was earlier that
       m[i][j]=m[i][j-1]+nlay;    current date of interview. It may happen when the death was just
   }    prior to the death. In this case, dh was negative and likelihood
   return m;    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /*************************free ma3x ************************/    (Repository): Because some people have very long ID (first column)
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    truncation)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Repository): No more line truncation errors.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 /***************** f1dim *************************/    place. It differs from routine "prevalence" which may be called
 extern int ncom;    many times. Probs is memory consuming and must be used with
 extern double *pcom,*xicom;    parcimony.
 extern double (*nrfunc)(double []);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    
 double f1dim(double x)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   int j;  
   double f;    Revision 1.82  2003/06/05 15:57:20  brouard
   double *xt;    Add log in  imach.c and  fullversion number is now printed.
    
   xt=vector(1,ncom);  */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  /*
   f=(*nrfunc)(xt);     Interpolated Markov Chain
   free_vector(xt,1,ncom);  
   return f;    Short summary of the programme:
 }    
     This program computes Healthy Life Expectancies from
 /*****************brent *************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   int iter;    case of a health survey which is our main interest) -2- at least a
   double a,b,d,etemp;    second wave of interviews ("longitudinal") which measure each change
   double fu,fv,fw,fx;    (if any) in individual health status.  Health expectancies are
   double ftemp;    computed from the time spent in each health state according to a
   double p,q,r,tol1,tol2,u,v,w,x,xm;    model. More health states you consider, more time is necessary to reach the
   double e=0.0;    Maximum Likelihood of the parameters involved in the model.  The
      simplest model is the multinomial logistic model where pij is the
   a=(ax < cx ? ax : cx);    probability to be observed in state j at the second wave
   b=(ax > cx ? ax : cx);    conditional to be observed in state i at the first wave. Therefore
   x=w=v=bx;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   fw=fv=fx=(*f)(x);    'age' is age and 'sex' is a covariate. If you want to have a more
   for (iter=1;iter<=ITMAX;iter++) {    complex model than "constant and age", you should modify the program
     xm=0.5*(a+b);    where the markup *Covariates have to be included here again* invites
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    you to do it.  More covariates you add, slower the
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    convergence.
     printf(".");fflush(stdout);  
 #ifdef DEBUG    The advantage of this computer programme, compared to a simple
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    multinomial logistic model, is clear when the delay between waves is not
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    identical for each individual. Also, if a individual missed an
 #endif    intermediate interview, the information is lost, but taken into
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    account using an interpolation or extrapolation.  
       *xmin=x;  
       return fx;    hPijx is the probability to be observed in state i at age x+h
     }    conditional to the observed state i at age x. The delay 'h' can be
     ftemp=fu;    split into an exact number (nh*stepm) of unobserved intermediate
     if (fabs(e) > tol1) {    states. This elementary transition (by month, quarter,
       r=(x-w)*(fx-fv);    semester or year) is modelled as a multinomial logistic.  The hPx
       q=(x-v)*(fx-fw);    matrix is simply the matrix product of nh*stepm elementary matrices
       p=(x-v)*q-(x-w)*r;    and the contribution of each individual to the likelihood is simply
       q=2.0*(q-r);    hPijx.
       if (q > 0.0) p = -p;  
       q=fabs(q);    Also this programme outputs the covariance matrix of the parameters but also
       etemp=e;    of the life expectancies. It also computes the period (stable) prevalence. 
       e=d;    
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
         d=CGOLD*(e=(x >= xm ? a-x : b-x));             Institut national d'études démographiques, Paris.
       else {    This software have been partly granted by Euro-REVES, a concerted action
         d=p/q;    from the European Union.
         u=x+d;    It is copyrighted identically to a GNU software product, ie programme and
         if (u-a < tol2 || b-u < tol2)    software can be distributed freely for non commercial use. Latest version
           d=SIGN(tol1,xm-x);    can be accessed at http://euroreves.ined.fr/imach .
       }  
     } else {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     }    
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    **********************************************************************/
     fu=(*f)(u);  /*
     if (fu <= fx) {    main
       if (u >= x) a=x; else b=x;    read parameterfile
       SHFT(v,w,x,u)    read datafile
         SHFT(fv,fw,fx,fu)    concatwav
         } else {    freqsummary
           if (u < x) a=u; else b=u;    if (mle >= 1)
           if (fu <= fw || w == x) {      mlikeli
             v=w;    print results files
             w=u;    if mle==1 
             fv=fw;       computes hessian
             fw=fu;    read end of parameter file: agemin, agemax, bage, fage, estepm
           } else if (fu <= fv || v == x || v == w) {        begin-prev-date,...
             v=u;    open gnuplot file
             fv=fu;    open html file
           }    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
         }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   }                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   nrerror("Too many iterations in brent");      freexexit2 possible for memory heap.
   *xmin=x;  
   return fx;    h Pij x                         | pij_nom  ficrestpij
 }     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
          1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 /****************** mnbrak ***********************/         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
             double (*func)(double))         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 {    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   double ulim,u,r,q, dum;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   double fu;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
    
   *fa=(*func)(*ax);    forecasting if prevfcast==1 prevforecast call prevalence()
   *fb=(*func)(*bx);    health expectancies
   if (*fb > *fa) {    Variance-covariance of DFLE
     SHFT(dum,*ax,*bx,dum)    prevalence()
       SHFT(dum,*fb,*fa,dum)     movingaverage()
       }    varevsij() 
   *cx=(*bx)+GOLD*(*bx-*ax);    if popbased==1 varevsij(,popbased)
   *fc=(*func)(*cx);    total life expectancies
   while (*fb > *fc) {    Variance of period (stable) prevalence
     r=(*bx-*ax)*(*fb-*fc);   end
     q=(*bx-*cx)*(*fb-*fa);  */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {   
       fu=(*func)(u);  #include <math.h>
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #include <stdio.h>
       fu=(*func)(u);  #include <stdlib.h>
       if (fu < *fc) {  #include <string.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #include <unistd.h>
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  #include <limits.h>
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #include <sys/types.h>
       u=ulim;  #include <sys/stat.h>
       fu=(*func)(u);  #include <errno.h>
     } else {  extern int errno;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /* #ifdef LINUX */
     }  /* #include <time.h> */
     SHFT(*ax,*bx,*cx,u)  /* #include "timeval.h" */
       SHFT(*fa,*fb,*fc,fu)  /* #else */
       }  /* #include <sys/time.h> */
 }  /* #endif */
   
 /*************** linmin ************************/  #include <time.h>
   
 int ncom;  #ifdef GSL
 double *pcom,*xicom;  #include <gsl/gsl_errno.h>
 double (*nrfunc)(double []);  #include <gsl/gsl_multimin.h>
    #endif
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  /* #include <libintl.h> */
   double brent(double ax, double bx, double cx,  /* #define _(String) gettext (String) */
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #define GNUPLOTPROGRAM "gnuplot"
   int j;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   double xx,xmin,bx,ax;  #define FILENAMELENGTH 132
   double fx,fb,fa;  
    #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   ncom=n;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   pcom=vector(1,n);  
   xicom=vector(1,n);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   nrfunc=func;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #define NINTERVMAX 8
     xicom[j]=xi[j];  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   ax=0.0;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   xx=1.0;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  #define MAXN 20000
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define YEARM 12. /**< Number of months per year */
 #ifdef DEBUG  #define AGESUP 130
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define AGEBASE 40
 #endif  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   for (j=1;j<=n;j++) {  #ifdef _WIN32
     xi[j] *= xmin;  #define DIRSEPARATOR '\\'
     p[j] += xi[j];  #define CHARSEPARATOR "\\"
   }  #define ODIRSEPARATOR '/'
   free_vector(xicom,1,n);  #else
   free_vector(pcom,1,n);  #define DIRSEPARATOR '/'
 }  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
 /*************** powell ************************/  #endif
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  /* $Id$ */
 {  /* $State$ */
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   int i,ibig,j;  char fullversion[]="$Revision$ $Date$"; 
   double del,t,*pt,*ptt,*xit;  char strstart[80];
   double fp,fptt;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double *xits;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   pt=vector(1,n);  int nvar=0, nforce=0; /* Number of variables, number of forces */
   ptt=vector(1,n);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   xit=vector(1,n);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   xits=vector(1,n);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   *fret=(*func)(p);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   for (j=1;j<=n;j++) pt[j]=p[j];  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   for (*iter=1;;++(*iter)) {  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     fp=(*fret);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     ibig=0;  int cptcov=0; /* Working variable */
     del=0.0;  int npar=NPARMAX;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int nlstate=2; /* Number of live states */
     for (i=1;i<=n;i++)  int ndeath=1; /* Number of dead states */
       printf(" %d %.12f",i, p[i]);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     printf("\n");  int popbased=0;
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int *wav; /* Number of waves for this individuual 0 is possible */
       fptt=(*fret);  int maxwav=0; /* Maxim number of waves */
 #ifdef DEBUG  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       printf("fret=%lf \n",*fret);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #endif  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       printf("%d",i);fflush(stdout);                     to the likelihood and the sum of weights (done by funcone)*/
       linmin(p,xit,n,fret,func);  int mle=1, weightopt=0;
       if (fabs(fptt-(*fret)) > del) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         del=fabs(fptt-(*fret));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         ibig=i;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #ifdef DEBUG  double jmean=1; /* Mean space between 2 waves */
       printf("%d %.12e",i,(*fret));  double **matprod2(); /* test */
       for (j=1;j<=n;j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         printf(" x(%d)=%.12e",j,xit[j]);  /*FILE *fic ; */ /* Used in readdata only */
       }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       for(j=1;j<=n;j++)  FILE *ficlog, *ficrespow;
         printf(" p=%.12e",p[j]);  int globpr=0; /* Global variable for printing or not */
       printf("\n");  double fretone; /* Only one call to likelihood */
 #endif  long ipmx=0; /* Number of contributions */
     }  double sw; /* Sum of weights */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char filerespow[FILENAMELENGTH];
 #ifdef DEBUG  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       int k[2],l;  FILE *ficresilk;
       k[0]=1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       k[1]=-1;  FILE *ficresprobmorprev;
       printf("Max: %.12e",(*func)(p));  FILE *fichtm, *fichtmcov; /* Html File */
       for (j=1;j<=n;j++)  FILE *ficreseij;
         printf(" %.12e",p[j]);  char filerese[FILENAMELENGTH];
       printf("\n");  FILE *ficresstdeij;
       for(l=0;l<=1;l++) {  char fileresstde[FILENAMELENGTH];
         for (j=1;j<=n;j++) {  FILE *ficrescveij;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  char filerescve[FILENAMELENGTH];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  FILE  *ficresvij;
         }  char fileresv[FILENAMELENGTH];
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  FILE  *ficresvpl;
       }  char fileresvpl[FILENAMELENGTH];
 #endif  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       free_vector(xit,1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
       free_vector(xits,1,n);  char command[FILENAMELENGTH];
       free_vector(ptt,1,n);  int  outcmd=0;
       free_vector(pt,1,n);  
       return;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char filelog[FILENAMELENGTH]; /* Log file */
     for (j=1;j<=n;j++) {  char filerest[FILENAMELENGTH];
       ptt[j]=2.0*p[j]-pt[j];  char fileregp[FILENAMELENGTH];
       xit[j]=p[j]-pt[j];  char popfile[FILENAMELENGTH];
       pt[j]=p[j];  
     }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     fptt=(*func)(ptt);  
     if (fptt < fp) {  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  /* struct timezone tzp; */
       if (t < 0.0) {  /* extern int gettimeofday(); */
         linmin(p,xit,n,fret,func);  struct tm tml, *gmtime(), *localtime();
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  extern time_t time();
           xi[j][n]=xit[j];  
         }  struct tm start_time, end_time, curr_time, last_time, forecast_time;
 #ifdef DEBUG  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  struct tm tm;
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  char strcurr[80], strfor[80];
         printf("\n");  
 #endif  char *endptr;
       }  long lval;
     }  double dval;
   }  
 }  #define NR_END 1
   #define FREE_ARG char*
 /**** Prevalence limit ****************/  #define FTOL 1.0e-10
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define NRANSI 
 {  #define ITMAX 200 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  #define TOL 2.0e-4 
   
   int i, ii,j,k;  #define CGOLD 0.3819660 
   double min, max, maxmin, maxmax,sumnew=0.;  #define ZEPS 1.0e-10 
   double **matprod2();  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  #define GOLD 1.618034 
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  static double maxarg1,maxarg2;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
    cov[1]=1.;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  static double sqrarg;
     newm=savm;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     /* Covariates have to be included here again */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
      cov[2]=agefin;  int agegomp= AGEGOMP;
    
       for (k=1; k<=cptcovn;k++) {  int imx; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  int stepm=1;
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/  /* Stepm, step in month: minimum step interpolation*/
       }  
       for (k=1; k<=cptcovage;k++)  int estepm;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int m,nb;
   long *num;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double *ageexmed,*agecens;
   double dateintmean=0;
     savm=oldm;  
     oldm=newm;  double *weight;
     maxmax=0.;  int **s; /* Status */
     for(j=1;j<=nlstate;j++){  double *agedc;
       min=1.;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       max=0.;                    * covar=matrix(0,NCOVMAX,1,n); 
       for(i=1; i<=nlstate; i++) {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         sumnew=0;  double  idx; 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         prlim[i][j]= newm[i][j]/(1-sumnew);  int *Ndum; /** Freq of modality (tricode */
         max=FMAX(max,prlim[i][j]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         min=FMIN(min,prlim[i][j]);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       }  double *lsurv, *lpop, *tpop;
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     }  double ftolhess; /**< Tolerance for computing hessian */
     if(maxmax < ftolpl){  
       return prlim;  /**************** split *************************/
     }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   }  {
 }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
        the name of the file (name), its extension only (ext) and its first part of the name (finame)
 /*************** transition probabilities ***************/    */ 
     char  *ss;                            /* pointer */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    int   l1, l2;                         /* length counters */
 {  
   double s1, s2;    l1 = strlen(path );                   /* length of path */
   /*double t34;*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   int i,j,j1, nc, ii, jj;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for(i=1; i<= nlstate; i++){      strcpy( name, path );               /* we got the fullname name because no directory */
     for(j=1; j<i;j++){      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         /*s2 += param[i][j][nc]*cov[nc];*/      /* get current working directory */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      /*    extern  char* getcwd ( char *buf , int len);*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       }        return( GLOCK_ERROR_GETCWD );
       ps[i][j]=s2;      }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      /* got dirc from getcwd*/
     }      printf(" DIRC = %s \n",dirc);
     for(j=i+1; j<=nlstate+ndeath;j++){    } else {                              /* strip direcotry from path */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      ss++;                               /* after this, the filename */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      l2 = strlen( ss );                  /* length of filename */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       }      strcpy( name, ss );         /* save file name */
       ps[i][j]=(s2);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
   }      printf(" DIRC2 = %s \n",dirc);
     /*ps[3][2]=1;*/    }
     /* We add a separator at the end of dirc if not exists */
   for(i=1; i<= nlstate; i++){    l1 = strlen( dirc );                  /* length of directory */
      s1=0;    if( dirc[l1-1] != DIRSEPARATOR ){
     for(j=1; j<i; j++)      dirc[l1] =  DIRSEPARATOR;
       s1+=exp(ps[i][j]);      dirc[l1+1] = 0; 
     for(j=i+1; j<=nlstate+ndeath; j++)      printf(" DIRC3 = %s \n",dirc);
       s1+=exp(ps[i][j]);    }
     ps[i][i]=1./(s1+1.);    ss = strrchr( name, '.' );            /* find last / */
     for(j=1; j<i; j++)    if (ss >0){
       ps[i][j]= exp(ps[i][j])*ps[i][i];      ss++;
     for(j=i+1; j<=nlstate+ndeath; j++)      strcpy(ext,ss);                     /* save extension */
       ps[i][j]= exp(ps[i][j])*ps[i][i];      l1= strlen( name);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      l2= strlen(ss)+1;
   } /* end i */      strncpy( finame, name, l1-l2);
       finame[l1-l2]= 0;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;    return( 0 );                          /* we're done */
       ps[ii][ii]=1;  }
     }  
   }  
   /******************************************/
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  void replace_back_to_slash(char *s, char*t)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
      printf("%lf ",ps[ii][jj]);    int i;
    }    int lg=0;
     printf("\n ");    i=0;
     }    lg=strlen(t);
     printf("\n ");printf("%lf ",cov[2]);*/    for(i=0; i<= lg; i++) {
 /*      (s[i] = t[i]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      if (t[i]== '\\') s[i]='/';
   goto end;*/    }
     return ps;  }
 }  
   char *trimbb(char *out, char *in)
 /**************** Product of 2 matrices ******************/  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    s=out;
 {    while (*in != '\0'){
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        in++;
   /* in, b, out are matrice of pointers which should have been initialized      }
      before: only the contents of out is modified. The function returns      *out++ = *in++;
      a pointer to pointers identical to out */    }
   long i, j, k;    *out='\0';
   for(i=nrl; i<= nrh; i++)    return s;
     for(k=ncolol; k<=ncoloh; k++)  }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
   return out;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
 }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
 /************* Higher Matrix Product ***************/    */
     char *s, *t, *bl;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    t=in;s=in;
 {    while ((*in != occ) && (*in != '\0')){
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      *alocc++ = *in++;
      duration (i.e. until    }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    if( *in == occ){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      *(alocc)='\0';
      (typically every 2 years instead of every month which is too big).      s=++in;
      Model is determined by parameters x and covariates have to be    }
      included manually here.   
     if (s == t) {/* occ not found */
      */      *(alocc-(in-s))='\0';
       in=s;
   int i, j, d, h, k;    }
   double **out, cov[NCOVMAX];    while ( *in != '\0'){
   double **newm;      *blocc++ = *in++;
     }
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)    *blocc='\0';
     for (j=1;j<=nlstate+ndeath;j++){    return t;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  char *cutv(char *blocc, char *alocc, char *in, char occ)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   for(h=1; h <=nhstepm; h++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     for(d=1; d <=hstepm; d++){       gives blocc="abcdef2ghi" and alocc="j".
       newm=savm;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       /* Covariates have to be included here again */    */
       cov[1]=1.;    char *s, *t;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    t=in;s=in;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    while (*in != '\0'){
       for (k=1; k<=cptcovage;k++)      while( *in == occ){
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        *blocc++ = *in++;
       for (k=1; k<=cptcovprod;k++)        s=in;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      }
       *blocc++ = *in++;
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    if (s == t) /* occ not found */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      *(blocc-(in-s))='\0';
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    else
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      *(blocc-(in-s)-1)='\0';
       savm=oldm;    in=s;
       oldm=newm;    while ( *in != '\0'){
     }      *alocc++ = *in++;
     for(i=1; i<=nlstate+ndeath; i++)    }
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];    *alocc='\0';
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    return s;
          */  }
       }  
   } /* end h */  int nbocc(char *s, char occ)
   return po;  {
 }    int i,j=0;
     int lg=20;
     i=0;
 /*************** log-likelihood *************/    lg=strlen(s);
 double func( double *x)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   int i, ii, j, k, mi, d, kk;    }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    return j;
   double **out;  }
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /* void cutv(char *u,char *v, char*t, char occ) */
   long ipmx;  /* { */
   /*extern weight */  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /* We are differentiating ll according to initial status */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*for(i=1;i<imx;i++)  /*   int i,lg,j,p=0; */
     printf(" %d\n",s[4][i]);  /*   i=0; */
   */  /*   lg=strlen(t); */
   cov[1]=1.;  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*   } */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*   for(j=0; j<p; j++) { */
     for(mi=1; mi<= wav[i]-1; mi++){  /*     (u[j] = t[j]); */
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*   } */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*      u[p]='\0'; */
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /*    for(j=0; j<= lg; j++) { */
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         for (kk=1; kk<=cptcovage;kk++) {  /*   } */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /* } */
         }  
          /********************** nrerror ********************/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  void nrerror(char error_text[])
         savm=oldm;  {
         oldm=newm;    fprintf(stderr,"ERREUR ...\n");
            fprintf(stderr,"%s\n",error_text);
            exit(EXIT_FAILURE);
       } /* end mult */  }
        /*********************** vector *******************/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  double *vector(int nl, int nh)
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  {
       ipmx +=1;    double *v;
       sw += weight[i];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if (!v) nrerror("allocation failure in vector");
     } /* end of wave */    return v-nl+NR_END;
   } /* end of individual */  }
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /************************ free vector ******************/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  void free_vector(double*v, int nl, int nh)
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  {
   return -l;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
   /************************ivector *******************************/
 /*********** Maximum Likelihood Estimation ***************/  int *ivector(long nl,long nh)
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    int *v;
 {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   int i,j, iter;    if (!v) nrerror("allocation failure in ivector");
   double **xi,*delti;    return v-nl+NR_END;
   double fret;  }
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  /******************free ivector **************************/
     for (j=1;j<=npar;j++)  void free_ivector(int *v, long nl, long nh)
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");    free((FREE_ARG)(v+nl-NR_END));
   powell(p,xi,npar,ftol,&iter,&fret,func);  }
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /************************lvector *******************************/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  long *lvector(long nl,long nh)
   {
 }    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
 /**** Computes Hessian and covariance matrix ***/    if (!v) nrerror("allocation failure in ivector");
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    return v-nl+NR_END;
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  /******************free lvector **************************/
   int i, j,jk;  void free_lvector(long *v, long nl, long nh)
   int *indx;  {
     free((FREE_ARG)(v+nl-NR_END));
   double hessii(double p[], double delta, int theta, double delti[]);  }
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /******************* imatrix *******************************/
   void ludcmp(double **a, int npar, int *indx, double *d) ;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   hess=matrix(1,npar,1,npar);  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    int **m; 
   for (i=1;i<=npar;i++){    
     printf("%d",i);fflush(stdout);    /* allocate pointers to rows */ 
     hess[i][i]=hessii(p,ftolhess,i,delti);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     /*printf(" %f ",p[i]);*/    if (!m) nrerror("allocation failure 1 in matrix()"); 
     /*printf(" %lf ",hess[i][i]);*/    m += NR_END; 
   }    m -= nrl; 
      
   for (i=1;i<=npar;i++) {    
     for (j=1;j<=npar;j++)  {    /* allocate rows and set pointers to them */ 
       if (j>i) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         printf(".%d%d",i,j);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         hess[i][j]=hessij(p,delti,i,j);    m[nrl] += NR_END; 
         hess[j][i]=hess[i][j];        m[nrl] -= ncl; 
         /*printf(" %lf ",hess[i][j]);*/    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     }    
   }    /* return pointer to array of pointers to rows */ 
   printf("\n");    return m; 
   } 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /****************** free_imatrix *************************/
   a=matrix(1,npar,1,npar);  void free_imatrix(m,nrl,nrh,ncl,nch)
   y=matrix(1,npar,1,npar);        int **m;
   x=vector(1,npar);        long nch,ncl,nrh,nrl; 
   indx=ivector(1,npar);       /* free an int matrix allocated by imatrix() */ 
   for (i=1;i<=npar;i++)  { 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   ludcmp(a,npar,indx,&pd);    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /******************* matrix *******************************/
     x[j]=1;  double **matrix(long nrl, long nrh, long ncl, long nch)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       matcov[i][j]=x[i];    double **m;
     }  
   }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   printf("\n#Hessian matrix#\n");    m += NR_END;
   for (i=1;i<=npar;i++) {    m -= nrl;
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     printf("\n");    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   
   /* Recompute Inverse */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++)    return m;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   ludcmp(a,npar,indx,&pd);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   /*  printf("\n#Hessian matrix recomputed#\n");     */
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*************************free matrix ************************/
     x[j]=1;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       y[i][j]=x[i];    free((FREE_ARG)(m+nrl-NR_END));
       printf("%.3e ",y[i][j]);  }
     }  
     printf("\n");  /******************* ma3x *******************************/
   }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   */  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   free_matrix(a,1,npar,1,npar);    double ***m;
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free_ivector(indx,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   free_matrix(hess,1,npar,1,npar);    m += NR_END;
     m -= nrl;
   
 }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** hessian matrix ****************/    m[nrl] += NR_END;
 double hessii( double x[], double delta, int theta, double delti[])    m[nrl] -= ncl;
 {  
   int i;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int l=1, lmax=20;  
   double k1,k2;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double p2[NPARMAX+1];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double res;    m[nrl][ncl] += NR_END;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m[nrl][ncl] -= nll;
   double fx;    for (j=ncl+1; j<=nch; j++) 
   int k=0,kmax=10;      m[nrl][j]=m[nrl][j-1]+nlay;
   double l1;    
     for (i=nrl+1; i<=nrh; i++) {
   fx=func(x);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   for (i=1;i<=npar;i++) p2[i]=x[i];      for (j=ncl+1; j<=nch; j++) 
   for(l=0 ; l <=lmax; l++){        m[i][j]=m[i][j-1]+nlay;
     l1=pow(10,l);    }
     delts=delt;    return m; 
     for(k=1 ; k <kmax; k=k+1){    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       delt = delta*(l1*k);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       p2[theta]=x[theta] +delt;    */
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /*************************free ma3x ************************/
       /*res= (k1-2.0*fx+k2)/delt/delt; */  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*************** function subdirf ***********/
         k=kmax;  char *subdirf(char fileres[])
       }  {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    /* Caution optionfilefiname is hidden */
         k=kmax; l=lmax*10.;    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    strcat(tmpout,fileres);
         delts=delt;    return tmpout;
       }  }
     }  
   }  /*************** function subdirf2 ***********/
   delti[theta]=delts;  char *subdirf2(char fileres[], char *preop)
   return res;  {
      
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 double hessij( double x[], double delti[], int thetai,int thetaj)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   int i;    strcat(tmpout,fileres);
   int l=1, l1, lmax=20;    return tmpout;
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   fx=func(x);  {
   for (k=1; k<=2; k++) {    
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* Caution optionfilefiname is hidden */
     p2[thetai]=x[thetai]+delti[thetai]/k;    strcpy(tmpout,optionfilefiname);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    strcat(tmpout,"/");
     k1=func(p2)-fx;    strcat(tmpout,preop);
      strcat(tmpout,preop2);
     p2[thetai]=x[thetai]+delti[thetai]/k;    strcat(tmpout,fileres);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return tmpout;
     k2=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /***************** f1dim *************************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  extern int ncom; 
     k3=func(p2)-fx;  extern double *pcom,*xicom;
    extern double (*nrfunc)(double []); 
     p2[thetai]=x[thetai]-delti[thetai]/k;   
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  double f1dim(double x) 
     k4=func(p2)-fx;  { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int j; 
 #ifdef DEBUG    double f;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double *xt; 
 #endif   
   }    xt=vector(1,ncom); 
   return res;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
 /************** Inverse of matrix **************/    return f; 
 void ludcmp(double **a, int n, int *indx, double *d)  } 
 {  
   int i,imax,j,k;  /*****************brent *************************/
   double big,dum,sum,temp;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   double *vv;  { 
      int iter; 
   vv=vector(1,n);    double a,b,d,etemp;
   *d=1.0;    double fu,fv,fw,fx;
   for (i=1;i<=n;i++) {    double ftemp;
     big=0.0;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     for (j=1;j<=n;j++)    double e=0.0; 
       if ((temp=fabs(a[i][j])) > big) big=temp;   
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    a=(ax < cx ? ax : cx); 
     vv[i]=1.0/big;    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
   for (j=1;j<=n;j++) {    fw=fv=fx=(*f)(x); 
     for (i=1;i<j;i++) {    for (iter=1;iter<=ITMAX;iter++) { 
       sum=a[i][j];      xm=0.5*(a+b); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       a[i][j]=sum;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     big=0.0;      fprintf(ficlog,".");fflush(ficlog);
     for (i=j;i<=n;i++) {  #ifdef DEBUG
       sum=a[i][j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (k=1;k<j;k++)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         sum -= a[i][k]*a[k][j];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       a[i][j]=sum;  #endif
       if ( (dum=vv[i]*fabs(sum)) >= big) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         big=dum;        *xmin=x; 
         imax=i;        return fx; 
       }      } 
     }      ftemp=fu;
     if (j != imax) {      if (fabs(e) > tol1) { 
       for (k=1;k<=n;k++) {        r=(x-w)*(fx-fv); 
         dum=a[imax][k];        q=(x-v)*(fx-fw); 
         a[imax][k]=a[j][k];        p=(x-v)*q-(x-w)*r; 
         a[j][k]=dum;        q=2.0*(q-r); 
       }        if (q > 0.0) p = -p; 
       *d = -(*d);        q=fabs(q); 
       vv[imax]=vv[j];        etemp=e; 
     }        e=d; 
     indx[j]=imax;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     if (a[j][j] == 0.0) a[j][j]=TINY;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (j != n) {        else { 
       dum=1.0/(a[j][j]);          d=p/q; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          u=x+d; 
     }          if (u-a < tol2 || b-u < tol2) 
   }            d=SIGN(tol1,xm-x); 
   free_vector(vv,1,n);  /* Doesn't work */        } 
 ;      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 void lubksb(double **a, int n, int *indx, double b[])      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   int i,ii=0,ip,j;      if (fu <= fx) { 
   double sum;        if (u >= x) a=x; else b=x; 
          SHFT(v,w,x,u) 
   for (i=1;i<=n;i++) {          SHFT(fv,fw,fx,fu) 
     ip=indx[i];          } else { 
     sum=b[ip];            if (u < x) a=u; else b=u; 
     b[ip]=b[i];            if (fu <= fw || w == x) { 
     if (ii)              v=w; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];              w=u; 
     else if (sum) ii=i;              fv=fw; 
     b[i]=sum;              fw=fu; 
   }            } else if (fu <= fv || v == x || v == w) { 
   for (i=n;i>=1;i--) {              v=u; 
     sum=b[i];              fv=fu; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            } 
     b[i]=sum/a[i][i];          } 
   }    } 
 }    nrerror("Too many iterations in brent"); 
     *xmin=x; 
 /************ Frequencies ********************/    return fx; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)  } 
 {  /* Some frequencies */  
    /****************** mnbrak ***********************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double *pp;              double (*func)(double)) 
   double pos;  { 
   FILE *ficresp;    double ulim,u,r,q, dum;
   char fileresp[FILENAMELENGTH];    double fu; 
    
   pp=vector(1,nlstate);    *fa=(*func)(*ax); 
  probs= ma3x(1,130 ,1,8, 1,8);    *fb=(*func)(*bx); 
   strcpy(fileresp,"p");    if (*fb > *fa) { 
   strcat(fileresp,fileres);      SHFT(dum,*ax,*bx,dum) 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        SHFT(dum,*fb,*fa,dum) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        } 
     exit(0);    *cx=(*bx)+GOLD*(*bx-*ax); 
   }    *fc=(*func)(*cx); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    while (*fb > *fc) { 
   j1=0;      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
   j=cptcoveff;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       ulim=(*bx)+GLIMIT*(*cx-*bx); 
   for(k1=1; k1<=j;k1++){      if ((*bx-u)*(u-*cx) > 0.0) { 
    for(i1=1; i1<=ncodemax[k1];i1++){        fu=(*func)(u); 
        j1++;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        fu=(*func)(u); 
          scanf("%d", i);*/        if (fu < *fc) { 
         for (i=-1; i<=nlstate+ndeath; i++)            SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
          for (jk=-1; jk<=nlstate+ndeath; jk++)              SHFT(*fb,*fc,fu,(*func)(u)) 
            for(m=agemin; m <= agemax+3; m++)            } 
              freq[i][jk][m]=0;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
                u=ulim; 
        for (i=1; i<=imx; i++) {        fu=(*func)(u); 
          bool=1;      } else { 
          if  (cptcovn>0) {        u=(*cx)+GOLD*(*cx-*bx); 
            for (z1=1; z1<=cptcoveff; z1++)        fu=(*func)(u); 
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      } 
                bool=0;      SHFT(*ax,*bx,*cx,u) 
          }        SHFT(*fa,*fb,*fc,fu) 
           if (bool==1) {        } 
            for(m=fprev1; m<=lprev1; m++){  } 
              if(agev[m][i]==0) agev[m][i]=agemax+1;  
              if(agev[m][i]==1) agev[m][i]=agemax+2;  /*************** linmin ************************/
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  int ncom; 
            }  double *pcom,*xicom;
          }  double (*nrfunc)(double []); 
        }   
         if  (cptcovn>0) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
          fprintf(ficresp, "\n#********** Variable ");  { 
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double brent(double ax, double bx, double cx, 
        fprintf(ficresp, "**********\n#");                 double (*f)(double), double tol, double *xmin); 
         }    double f1dim(double x); 
        for(i=1; i<=nlstate;i++)    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                double *fc, double (*func)(double)); 
        fprintf(ficresp, "\n");    int j; 
            double xx,xmin,bx,ax; 
   for(i=(int)agemin; i <= (int)agemax+3; i++){    double fx,fb,fa;
     if(i==(int)agemax+3)   
       printf("Total");    ncom=n; 
     else    pcom=vector(1,n); 
       printf("Age %d", i);    xicom=vector(1,n); 
     for(jk=1; jk <=nlstate ; jk++){    nrfunc=func; 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (j=1;j<=n;j++) { 
         pp[jk] += freq[jk][m][i];      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
     for(jk=1; jk <=nlstate ; jk++){    } 
       for(m=-1, pos=0; m <=0 ; m++)    ax=0.0; 
         pos += freq[jk][m][i];    xx=1.0; 
       if(pp[jk]>=1.e-10)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       else  #ifdef DEBUG
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
      for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=n;j++) { 
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      xi[j] *= xmin; 
         pp[jk] += freq[jk][m][i];      p[j] += xi[j]; 
      }    } 
     free_vector(xicom,1,n); 
     for(jk=1,pos=0; jk <=nlstate ; jk++)    free_vector(pcom,1,n); 
       pos += pp[jk];  } 
     for(jk=1; jk <=nlstate ; jk++){  
       if(pos>=1.e-5)  char *asc_diff_time(long time_sec, char ascdiff[])
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
       else    long sec_left, days, hours, minutes;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    days = (time_sec) / (60*60*24);
       if( i <= (int) agemax){    sec_left = (time_sec) % (60*60*24);
         if(pos>=1.e-5){    hours = (sec_left) / (60*60) ;
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    sec_left = (sec_left) %(60*60);
           probs[i][jk][j1]= pp[jk]/pos;    minutes = (sec_left) /60;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    sec_left = (sec_left) % (60);
         }    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       else    return ascdiff;
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  }
       }  
     }  /*************** powell ************************/
     for(jk=-1; jk <=nlstate+ndeath; jk++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for(m=-1; m <=nlstate+ndeath; m++)              double (*func)(double [])) 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  { 
     if(i <= (int) agemax)    void linmin(double p[], double xi[], int n, double *fret, 
       fprintf(ficresp,"\n");                double (*func)(double [])); 
     printf("\n");    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
  }    double *xits;
      int niterf, itmp;
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    pt=vector(1,n); 
   free_vector(pp,1,nlstate);    ptt=vector(1,n); 
     xit=vector(1,n); 
 }  /* End of Freq */    xits=vector(1,n); 
     *fret=(*func)(p); 
 /************ Prevalence ********************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1)      rcurr_time = time(NULL);  
 {  /* Some frequencies */    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      ibig=0; 
   double ***freq; /* Frequencies */      del=0.0; 
   double *pp;      rlast_time=rcurr_time;
   double pos;      /* (void) gettimeofday(&curr_time,&tzp); */
       rcurr_time = time(NULL);  
   pp=vector(1,nlstate);      curr_time = *localtime(&rcurr_time);
   probs= ma3x(1,130 ,1,8, 1,8);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   j1=0;     for (i=1;i<=n;i++) {
          printf(" %d %.12f",i, p[i]);
   j=cptcoveff;        fprintf(ficlog," %d %.12lf",i, p[i]);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        fprintf(ficrespow," %.12lf", p[i]);
        }
  for(k1=1; k1<=j;k1++){      printf("\n");
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,"\n");
       j1++;      fprintf(ficrespow,"\n");fflush(ficrespow);
        if(*iter <=3){
       for (i=-1; i<=nlstate+ndeath; i++)          tml = *localtime(&rcurr_time);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          strcpy(strcurr,asctime(&tml));
           for(m=agemin; m <= agemax+3; m++)  /*       asctime_r(&tm,strcurr); */
           freq[i][jk][m]=0;        rforecast_time=rcurr_time; 
              itmp = strlen(strcurr);
       for (i=1; i<=imx; i++) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         bool=1;          strcurr[itmp-1]='\0';
         if  (cptcovn>0) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
           for (z1=1; z1<=cptcoveff; z1++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for(niterf=10;niterf<=30;niterf+=10){
               bool=0;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
               }          forecast_time = *localtime(&rforecast_time);
         if (bool==1) {  /*      asctime_r(&tmf,strfor); */
           for(m=fprev1; m<=lprev1; m++){          strcpy(strfor,asctime(&forecast_time));
             if(agev[m][i]==0) agev[m][i]=agemax+1;          itmp = strlen(strfor);
             if(agev[m][i]==1) agev[m][i]=agemax+2;          if(strfor[itmp-1]=='\n')
             freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          strfor[itmp-1]='\0';
             freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }        }
       }      }
        for(i=(int)agemin; i <= (int)agemax+3; i++){      for (i=1;i<=n;i++) { 
         for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        fptt=(*fret); 
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }        printf("fret=%lf \n",*fret);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"fret=%lf \n",*fret);
           for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];        printf("%d",i);fflush(stdout);
         }        fprintf(ficlog,"%d",i);fflush(ficlog);
                linmin(p,xit,n,fret,func); 
          for(jk=1; jk <=nlstate ; jk++){        if (fabs(fptt-(*fret)) > del) { 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          del=fabs(fptt-(*fret)); 
              pp[jk] += freq[jk][m][i];          ibig=i; 
          }        } 
            #ifdef DEBUG
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
          for(jk=1; jk <=nlstate ; jk++){                  for (j=1;j<=n;j++) {
            if( i <= (int) agemax){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
              if(pos>=1.e-5){          printf(" x(%d)=%.12e",j,xit[j]);
                probs[i][jk][j1]= pp[jk]/pos;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
              }        }
            }        for(j=1;j<=n;j++) {
          }          printf(" p=%.12e",p[j]);
                    fprintf(ficlog," p=%.12e",p[j]);
          }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
    #endif
        } 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   free_vector(pp,1,nlstate);  #ifdef DEBUG
          int k[2],l;
 }  /* End of Freq */        k[0]=1;
 /************* Waves Concatenation ***************/        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        fprintf(ficlog,"Max: %.12e",(*func)(p));
 {        for (j=1;j<=n;j++) {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          printf(" %.12e",p[j]);
      Death is a valid wave (if date is known).          fprintf(ficlog," %.12e",p[j]);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        printf("\n");
      and mw[mi+1][i]. dh depends on stepm.        fprintf(ficlog,"\n");
      */        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
   int i, mi, m;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
      double sum=0., jmean=0.;*/            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
   int j, k=0,jk, ju, jl;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double sum=0.;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   jmin=1e+5;        }
   jmax=-1;  #endif
   jmean=0.;  
   for(i=1; i<=imx; i++){  
     mi=0;        free_vector(xit,1,n); 
     m=firstpass;        free_vector(xits,1,n); 
     while(s[m][i] <= nlstate){        free_vector(ptt,1,n); 
       if(s[m][i]>=1)        free_vector(pt,1,n); 
         mw[++mi][i]=m;        return; 
       if(m >=lastpass)      } 
         break;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       else      for (j=1;j<=n;j++) { 
         m++;        ptt[j]=2.0*p[j]-pt[j]; 
     }/* end while */        xit[j]=p[j]-pt[j]; 
     if (s[m][i] > nlstate){        pt[j]=p[j]; 
       mi++;     /* Death is another wave */      } 
       /* if(mi==0)  never been interviewed correctly before death */      fptt=(*func)(ptt); 
          /* Only death is a correct wave */      if (fptt < fp) { 
       mw[mi][i]=m;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
     wav[i]=mi;          for (j=1;j<=n;j++) { 
     if(mi==0)            xi[j][ibig]=xi[j][n]; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            xi[j][n]=xit[j]; 
   }          }
   #ifdef DEBUG
   for(i=1; i<=imx; i++){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(mi=1; mi<wav[i];mi++){          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       if (stepm <=0)          for(j=1;j<=n;j++){
         dh[mi][i]=1;            printf(" %.12e",xit[j]);
       else{            fprintf(ficlog," %.12e",xit[j]);
         if (s[mw[mi+1][i]][i] > nlstate) {          }
           if (agedc[i] < 2*AGESUP) {          printf("\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          fprintf(ficlog,"\n");
           if(j==0) j=1;  /* Survives at least one month after exam */  #endif
           k=k+1;        }
           if (j >= jmax) jmax=j;      } 
           if (j <= jmin) jmin=j;    } 
           sum=sum+j;  } 
           /* if (j<10) printf("j=%d num=%d ",j,i); */  
           }  /**** Prevalence limit (stable or period prevalence)  ****************/
         }  
         else{  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           if (j >= jmax) jmax=j;       matrix by transitions matrix until convergence is reached */
           else if (j <= jmin)jmin=j;  
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    int i, ii,j,k;
           sum=sum+j;    double min, max, maxmin, maxmax,sumnew=0.;
         }    /* double **matprod2(); */ /* test */
         jk= j/stepm;    double **out, cov[NCOVMAX+1], **pmij();
         jl= j -jk*stepm;    double **newm;
         ju= j -(jk+1)*stepm;    double agefin, delaymax=50 ; /* Max number of years to converge */
         if(jl <= -ju)  
           dh[mi][i]=jk;    for (ii=1;ii<=nlstate+ndeath;ii++)
         else      for (j=1;j<=nlstate+ndeath;j++){
           dh[mi][i]=jk+1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(dh[mi][i]==0)      }
           dh[mi][i]=1; /* At least one step */  
       }     cov[1]=1.;
     }   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   jmean=sum/k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      newm=savm;
  }      /* Covariates have to be included here again */
 /*********** Tricode ****************************/      cov[2]=agefin;
 void tricode(int *Tvar, int **nbcode, int imx)      
 {      for (k=1; k<=cptcovn;k++) {
   int Ndum[20],ij=1, k, j, i;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int cptcode=0;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   cptcoveff=0;      }
        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   for (k=0; k<19; k++) Ndum[k]=0;      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   for (k=1; k<=7; k++) ncodemax[k]=0;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for (i=1; i<=imx; i++) {      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       ij=(int)(covar[Tvar[j]][i]);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       Ndum[ij]++;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       if (ij > cptcode) cptcode=ij;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     }      
       savm=oldm;
     for (i=0; i<=cptcode; i++) {      oldm=newm;
       if(Ndum[i]!=0) ncodemax[j]++;      maxmax=0.;
     }      for(j=1;j<=nlstate;j++){
     ij=1;        min=1.;
         max=0.;
         for(i=1; i<=nlstate; i++) {
     for (i=1; i<=ncodemax[j]; i++) {          sumnew=0;
       for (k=0; k<=19; k++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         if (Ndum[k] != 0) {          prlim[i][j]= newm[i][j]/(1-sumnew);
           nbcode[Tvar[j]][ij]=k;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           ij++;          max=FMAX(max,prlim[i][j]);
         }          min=FMIN(min,prlim[i][j]);
         if (ij > ncodemax[j]) break;        }
       }          maxmin=max-min;
     }        maxmax=FMAX(maxmax,maxmin);
   }        }
       if(maxmax < ftolpl){
  for (k=0; k<19; k++) Ndum[k]=0;        return prlim;
       }
  for (i=1; i<=ncovmodel-2; i++) {    }
       ij=Tvar[i];  }
       Ndum[ij]++;  
     }  /*************** transition probabilities ***************/ 
   
  ij=1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
  for (i=1; i<=10; i++) {  {
    if((Ndum[i]!=0) && (i<=ncov)){    /* According to parameters values stored in x and the covariate's values stored in cov,
      Tvaraff[ij]=i;       computes the probability to be observed in state j being in state i by appying the
      ij++;       model to the ncovmodel covariates (including constant and age).
    }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
  }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         ncth covariate in the global vector x is given by the formula:
     cptcoveff=ij-1;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
 /*********** Health Expectancies ****************/       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
 {    */
   /* Health expectancies */    double s1, lnpijopii;
   int i, j, nhstepm, hstepm, h;    /*double t34;*/
   double age, agelim,hf;    int i,j,j1, nc, ii, jj;
   double ***p3mat;  
        for(i=1; i<= nlstate; i++){
   fprintf(ficreseij,"# Health expectancies\n");        for(j=1; j<i;j++){
   fprintf(ficreseij,"# Age");          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   for(i=1; i<=nlstate;i++)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     for(j=1; j<=nlstate;j++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       fprintf(ficreseij," %1d-%1d",i,j);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   fprintf(ficreseij,"\n");          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   hstepm=1*YEARM; /*  Every j years of age (in month) */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   agelim=AGESUP;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     /* nhstepm age range expressed in number of stepm */            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     /* Typically if 20 years = 20*12/6=40 stepm */          }
     if (stepm >= YEARM) hstepm=1;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for(i=1; i<= nlstate; i++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          s1=0;
         for(j=1; j<i; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for(i=1; i<=nlstate;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       for(j=1; j<=nlstate;j++)        }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        for(j=i+1; j<=nlstate+ndeath; j++){
           eij[i][j][(int)age] +=p3mat[i][j][h];          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
            }
     hf=1;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     if (stepm >= YEARM) hf=stepm/YEARM;        ps[i][i]=1./(s1+1.);
     fprintf(ficreseij,"%.0f",age );        /* Computing other pijs */
     for(i=1; i<=nlstate;i++)        for(j=1; j<i; j++)
       for(j=1; j<=nlstate;j++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        for(j=i+1; j<=nlstate+ndeath; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     fprintf(ficreseij,"\n");        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end i */
   }      
 }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         for(jj=1; jj<= nlstate+ndeath; jj++){
 /************ Variance ******************/          ps[ii][jj]=0;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          ps[ii][ii]=1;
 {        }
   /* Variance of health expectancies */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      
   double **newm;      
   double **dnewm,**doldm;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   int i, j, nhstepm, hstepm, h;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int k, cptcode;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   double *xp;      /*   } */
   double **gp, **gm;      /*   printf("\n "); */
   double ***gradg, ***trgradg;      /* } */
   double ***p3mat;      /* printf("\n ");printf("%lf ",cov[2]);*/
   double age,agelim;      /*
   int theta;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
    fprintf(ficresvij,"# Covariances of life expectancies\n");      return ps;
   fprintf(ficresvij,"# Age");  }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  /**************** Product of 2 matrices ******************/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
   xp=vector(1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   dnewm=matrix(1,nlstate,1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   doldm=matrix(1,nlstate,1,nlstate);    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   hstepm=1*YEARM; /* Every year of age */       a pointer to pointers identical to out */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    int i, j, k;
   agelim = AGESUP;    for(i=nrl; i<= nrh; i++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      for(k=ncolol; k<=ncoloh; k++){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        out[i][k]=0.;
     if (stepm >= YEARM) hstepm=1;        for(j=ncl; j<=nch; j++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          out[i][k] +=in[i][j]*b[j][k];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    return out;
     gp=matrix(0,nhstepm,1,nlstate);  }
     gm=matrix(0,nhstepm,1,nlstate);  
   
     for(theta=1; theta <=npar; theta++){  /************* Higher Matrix Product ***************/
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       }  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* Computes the transition matrix starting at age 'age' over 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       if (popbased==1) {       nhstepm*hstepm matrices. 
         for(i=1; i<=nlstate;i++)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           prlim[i][i]=probs[(int)age][i][ij];       (typically every 2 years instead of every month which is too big 
       }       for the memory).
             Model is determined by parameters x and covariates have to be 
       for(j=1; j<= nlstate; j++){       included manually here. 
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }    int i, j, d, h, k;
       }    double **out, cov[NCOVMAX+1];
        double **newm;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* Hstepm could be zero and should return the unit matrix */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=nlstate+ndeath;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
       if (popbased==1) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate;i++)      }
           prlim[i][i]=probs[(int)age][i][ij];    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
       for(j=1; j<= nlstate; j++){        newm=savm;
         for(h=0; h<=nhstepm; h++){        /* Covariates have to be included here again */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        cov[1]=1.;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         }        for (k=1; k<=cptcovn;k++) 
       }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
       for(j=1; j<= nlstate; j++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(h=0; h<=nhstepm; h++){        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         }  
     } /* End theta */  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for(h=0; h<=nhstepm; h++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(j=1; j<=nlstate;j++)        savm=oldm;
         for(theta=1; theta <=npar; theta++)        oldm=newm;
           trgradg[h][j][theta]=gradg[h][theta][j];      }
       for(i=1; i<=nlstate+ndeath; i++)
     for(i=1;i<=nlstate;i++)        for(j=1;j<=nlstate+ndeath;j++) {
       for(j=1;j<=nlstate;j++)          po[i][j][h]=newm[i][j];
         vareij[i][j][(int)age] =0.;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){      /*printf("h=%d ",h);*/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    } /* end h */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /*     printf("\n H=%d \n",h); */
         for(i=1;i<=nlstate;i++)    return po;
           for(j=1;j<=nlstate;j++)  }
             vareij[i][j][(int)age] += doldm[i][j];  
       }  
     }  /*************** log-likelihood *************/
     h=1;  double func( double *x)
     if (stepm >= YEARM) h=stepm/YEARM;  {
     fprintf(ficresvij,"%.0f ",age );    int i, ii, j, k, mi, d, kk;
     for(i=1; i<=nlstate;i++)    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for(j=1; j<=nlstate;j++){    double **out;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
     fprintf(ficresvij,"\n");    int s1, s2;
     free_matrix(gp,0,nhstepm,1,nlstate);    double bbh, survp;
     free_matrix(gm,0,nhstepm,1,nlstate);    long ipmx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    /*extern weight */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* We are differentiating ll according to initial status */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   } /* End age */    /*for(i=1;i<imx;i++) 
        printf(" %d\n",s[4][i]);
   free_vector(xp,1,npar);    */
   free_matrix(doldm,1,nlstate,1,npar);    cov[1]=1.;
   free_matrix(dnewm,1,nlstate,1,nlstate);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  
     if(mle==1){
 /************ Variance of prevlim ******************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        /* Computes the values of the ncovmodel covariates of the model
 {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   /* Variance of prevalence limit */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           to be observed in j being in i according to the model.
   double **newm;         */
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   int i, j, nhstepm, hstepm;          cov[2+k]=covar[Tvar[k]][i];
   int k, cptcode;        }
   double *xp;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   double *gp, *gm;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   double **gradg, **trgradg;           has been calculated etc */
   double age,agelim;        for(mi=1; mi<= wav[i]-1; mi++){
   int theta;          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Age");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)            }
       fprintf(ficresvpl," %1d-%1d",i,i);          for(d=0; d<dh[mi][i]; d++){
   fprintf(ficresvpl,"\n");            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   xp=vector(1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   dnewm=matrix(1,nlstate,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   doldm=matrix(1,nlstate,1,nlstate);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=1*YEARM; /* Every year of age */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            savm=oldm;
   agelim = AGESUP;            oldm=newm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } /* end mult */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        
     if (stepm >= YEARM) hstepm=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /* But now since version 0.9 we anticipate for bias at large stepm.
     gradg=matrix(1,npar,1,nlstate);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     gp=vector(1,nlstate);           * (in months) between two waves is not a multiple of stepm, we rounded to 
     gm=vector(1,nlstate);           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for(theta=1; theta <=npar; theta++){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
       for(i=1; i<=npar; i++){ /* Computes gradient */           * probability in order to take into account the bias as a fraction of the way
         xp[i] = x[i] + (i==theta ?delti[theta]:0);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
       }           * -stepm/2 to stepm/2 .
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);           * For stepm=1 the results are the same as for previous versions of Imach.
       for(i=1;i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
         gp[i] = prlim[i][i];           */
              s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++) /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          /* bias bh is positive if real duration
       for(i=1;i<=nlstate;i++)           * is higher than the multiple of stepm and negative otherwise.
         gm[i] = prlim[i][i];           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(i=1;i<=nlstate;i++)          if( s2 > nlstate){ 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];            /* i.e. if s2 is a death state and if the date of death is known 
     } /* End theta */               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
     trgradg =matrix(1,nlstate,1,npar);               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
     for(j=1; j<=nlstate;j++)               In version up to 0.92 likelihood was computed
       for(theta=1; theta <=npar; theta++)          as if date of death was unknown. Death was treated as any other
         trgradg[j][theta]=gradg[theta][j];          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
     for(i=1;i<=nlstate;i++)          to consider that at each interview the state was recorded
       varpl[i][(int)age] =0.;          (healthy, disable or death) and IMaCh was corrected; but when we
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          introduced the exact date of death then we should have modified
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          the contribution of an exact death to the likelihood. This new
     for(i=1;i<=nlstate;i++)          contribution is smaller and very dependent of the step unit
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
     fprintf(ficresvpl,"%.0f ",age );          interview up to one month before death multiplied by the
     for(i=1; i<=nlstate;i++)          probability to die within a month. Thanks to Chris
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          Jackson for correcting this bug.  Former versions increased
     fprintf(ficresvpl,"\n");          mortality artificially. The bad side is that we add another loop
     free_vector(gp,1,nlstate);          which slows down the processing. The difference can be up to 10%
     free_vector(gm,1,nlstate);          lower mortality.
     free_matrix(gradg,1,npar,1,nlstate);            */
     free_matrix(trgradg,1,nlstate,1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   } /* End age */  
   
   free_vector(xp,1,npar);          } else if  (s2==-2) {
   free_matrix(doldm,1,nlstate,1,npar);            for (j=1,survp=0. ; j<=nlstate; j++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             /*survp += out[s1][j]; */
 }            lli= log(survp);
           }
 /************ Variance of one-step probabilities  ******************/          
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)          else if  (s2==-4) { 
 {            for (j=3,survp=0. ; j<=nlstate; j++)  
   int i, j;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int k=0, cptcode;            lli= log(survp); 
   double **dnewm,**doldm;          } 
   double *xp;  
   double *gp, *gm;          else if  (s2==-5) { 
   double **gradg, **trgradg;            for (j=1,survp=0. ; j<=2; j++)  
   double age,agelim, cov[NCOVMAX];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int theta;            lli= log(survp); 
   char fileresprob[FILENAMELENGTH];          } 
           
   strcpy(fileresprob,"prob");          else{
   strcat(fileresprob,fileres);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     printf("Problem with resultfile: %s\n", fileresprob);          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   xp=vector(1,npar);          sw += weight[i];
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));        } /* end of wave */
        } /* end of individual */
   cov[1]=1;    }  else if(mle==2){
   for (age=bage; age<=fage; age ++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     cov[2]=age;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gradg=matrix(1,npar,1,9);        for(mi=1; mi<= wav[i]-1; mi++){
     trgradg=matrix(1,9,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));            for (j=1;j<=nlstate+ndeath;j++){
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++)          for(d=0; d<=dh[mi][i]; d++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       k=0;            }
       for(i=1; i<= (nlstate+ndeath); i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(j=1; j<=(nlstate+ndeath);j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
            k=k+1;            savm=oldm;
           gp[k]=pmmij[i][j];            oldm=newm;
         }          } /* end mult */
       }        
           s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++)          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
              lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);          sw += weight[i];
       k=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1; i<=(nlstate+ndeath); i++){        } /* end of wave */
         for(j=1; j<=(nlstate+ndeath);j++){      } /* end of individual */
           k=k+1;    }  else if(mle==3){  /* exponential inter-extrapolation */
           gm[k]=pmmij[i][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            for (j=1;j<=nlstate+ndeath;j++){
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)          for(d=0; d<dh[mi][i]; d++){
       for(theta=1; theta <=npar; theta++)            newm=savm;
       trgradg[j][theta]=gradg[theta][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      pmij(pmmij,cov,ncovmodel,x,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
      k=0;            oldm=newm;
      for(i=1; i<=(nlstate+ndeath); i++){          } /* end mult */
        for(j=1; j<=(nlstate+ndeath);j++){        
          k=k+1;          s1=s[mw[mi][i]][i];
          gm[k]=pmmij[i][j];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
      }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                ipmx +=1;
      /*printf("\n%d ",(int)age);          sw += weight[i];
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                } /* end of wave */
       } /* end of individual */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      }*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficresprob,"\n%d ",(int)age);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            for (j=1;j<=nlstate+ndeath;j++){
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<dh[mi][i]; d++){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            newm=savm;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            for (kk=1; kk<=cptcovage;kk++) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
  free_vector(xp,1,npar);          
 fclose(ficresprob);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  exit(0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /***********************************************/          } /* end mult */
 /**************** Main Program *****************/        
 /***********************************************/          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /*int main(int argc, char *argv[])*/          if( s2 > nlstate){ 
 int main()            lli=log(out[s1][s2] - savm[s1][s2]);
 {          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          }
   double agedeb, agefin,hf;          ipmx +=1;
   double agemin=1.e20, agemax=-1.e20;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double fret;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **xi,tmp,delta;        } /* end of wave */
       } /* end of individual */
   double dum; /* Dummy variable */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double ***p3mat;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int *indx;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char line[MAXLINE], linepar[MAXLINE];        for(mi=1; mi<= wav[i]-1; mi++){
   char title[MAXLINE];          for (ii=1;ii<=nlstate+ndeath;ii++)
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];            for (j=1;j<=nlstate+ndeath;j++){
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char filerest[FILENAMELENGTH];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char fileregp[FILENAMELENGTH];            }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];          for(d=0; d<dh[mi][i]; d++){
   int firstobs=1, lastobs=10;            newm=savm;
   int sdeb, sfin; /* Status at beginning and end */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int c,  h , cpt,l;            for (kk=1; kk<=cptcovage;kk++) {
   int ju,jl, mi;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          
   int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int hstepm, nhstepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   double bage, fage, age, agelim, agebase;            oldm=newm;
   double ftolpl=FTOL;          } /* end mult */
   double **prlim;        
   double *severity;          s1=s[mw[mi][i]][i];
   double ***param; /* Matrix of parameters */          s2=s[mw[mi+1][i]][i];
   double  *p;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **matcov; /* Matrix of covariance */          ipmx +=1;
   double ***delti3; /* Scale */          sw += weight[i];
   double *delti; /* Scale */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***eij, ***vareij;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double **varpl; /* Variances of prevalence limits by age */        } /* end of wave */
   double *epj, vepp;      } /* end of individual */
   double kk1;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   }
   char z[1]="c", occ;  
 #include <sys/time.h>  /*************** log-likelihood *************/
 #include <time.h>  double funcone( double *x)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  {
   /* long total_usecs;    /* Same as likeli but slower because of a lot of printf and if */
   struct timeval start_time, end_time;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double **out;
     double lli; /* Individual log likelihood */
     double llt;
   printf("\nIMACH, Version 0.64b");    int s1, s2;
   printf("\nEnter the parameter file name: ");    double bbh, survp;
     /*extern weight */
 #ifdef windows    /* We are differentiating ll according to initial status */
   scanf("%s",pathtot);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   getcwd(pathcd, size);    /*for(i=1;i<imx;i++) 
   /*cygwin_split_path(pathtot,path,optionfile);      printf(" %d\n",s[4][i]);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    */
   /* cutv(path,optionfile,pathtot,'\\');*/    cov[1]=1.;
   
 split(pathtot, path,optionfile);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   chdir(path);  
   replace(pathc,path);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 #endif      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #ifdef unix      for(mi=1; mi<= wav[i]-1; mi++){
   scanf("%s",optionfile);        for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*-------- arguments in the command line --------*/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   strcpy(fileres,"r");        for(d=0; d<dh[mi][i]; d++){
   strcat(fileres, optionfile);          newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*---------arguments file --------*/          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          }
     printf("Problem with optionfile %s\n",optionfile);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     goto end;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   strcpy(filereso,"o");          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   strcat(filereso,fileres);          savm=oldm;
   if((ficparo=fopen(filereso,"w"))==NULL) {          oldm=newm;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;        } /* end mult */
   }        
         s1=s[mw[mi][i]][i];
   /* Reads comments: lines beginning with '#' */        s2=s[mw[mi+1][i]][i];
   while((c=getc(ficpar))=='#' && c!= EOF){        bbh=(double)bh[mi][i]/(double)stepm; 
     ungetc(c,ficpar);        /* bias is positive if real duration
     fgets(line, MAXLINE, ficpar);         * is higher than the multiple of stepm and negative otherwise.
     puts(line);         */
     fputs(line,ficparo);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   }          lli=log(out[s1][s2] - savm[s1][s2]);
   ungetc(c,ficpar);        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          lli= log(survp);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);        }else if (mle==1){
 while((c=getc(ficpar))=='#' && c!= EOF){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     ungetc(c,ficpar);        } else if(mle==2){
     fgets(line, MAXLINE, ficpar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     puts(line);        } else if(mle==3){  /* exponential inter-extrapolation */
     fputs(line,ficparo);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   ungetc(c,ficpar);          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* mle=0 back to 1 */
   fscanf(ficpar,"fprevalence=%d lprevalence=%d pop_based=%d\n",&fprev,&lprev,&popbased);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
  while((c=getc(ficpar))=='#' && c!= EOF){          /*lli=log(out[s1][s2]); */ /* Original formula */
     ungetc(c,ficpar);        } /* End of if */
     fgets(line, MAXLINE, ficpar);        ipmx +=1;
     puts(line);        sw += weight[i];
     fputs(line,ficparo);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   ungetc(c,ficpar);        if(globpr){
            fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   fscanf(ficpar,"fprevalence=%d lprevalence=%d nforecast=%d mob_average=%d\n",&fprevfore,&lprevfore,&nforecast,&mobilav);   %11.6f %11.6f %11.6f ", \
                    num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   covar=matrix(0,NCOVMAX,1,n);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   cptcovn=0;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   ncovmodel=2+cptcovn;          }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficresilk," %10.6f\n", -llt);
          }
   /* Read guess parameters */      } /* end of wave */
   /* Reads comments: lines beginning with '#' */    } /* end of individual */
   while((c=getc(ficpar))=='#' && c!= EOF){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     ungetc(c,ficpar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fgets(line, MAXLINE, ficpar);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     puts(line);    if(globpr==0){ /* First time we count the contributions and weights */
     fputs(line,ficparo);      gipmx=ipmx;
   }      gsw=sw;
   ungetc(c,ficpar);    }
      return -l;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  }
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*************** function likelione ***********/
       fprintf(ficparo,"%1d%1d",i1,j1);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       printf("%1d%1d",i,j);  {
       for(k=1; k<=ncovmodel;k++){    /* This routine should help understanding what is done with 
         fscanf(ficpar," %lf",&param[i][j][k]);       the selection of individuals/waves and
         printf(" %lf",param[i][j][k]);       to check the exact contribution to the likelihood.
         fprintf(ficparo," %lf",param[i][j][k]);       Plotting could be done.
       }     */
       fscanf(ficpar,"\n");    int k;
       printf("\n");  
       fprintf(ficparo,"\n");    if(*globpri !=0){ /* Just counts and sums, no printings */
     }      strcpy(fileresilk,"ilk"); 
        strcat(fileresilk,fileres);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", fileresilk);
   p=param[1][1];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
        }
   /* Reads comments: lines beginning with '#' */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     ungetc(c,ficpar);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     fgets(line, MAXLINE, ficpar);      for(k=1; k<=nlstate; k++) 
     puts(line);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     fputs(line,ficparo);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   ungetc(c,ficpar);  
     *fretone=(*funcone)(p);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if(*globpri !=0){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fclose(ficresilk);
   for(i=1; i <=nlstate; i++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(j=1; j <=nlstate+ndeath-1; j++){      fflush(fichtm); 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    } 
       printf("%1d%1d",i,j);    return;
       fprintf(ficparo,"%1d%1d",i1,j1);  }
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  /*********** Maximum Likelihood Estimation ***************/
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       fscanf(ficpar,"\n");  {
       printf("\n");    int i,j, iter;
       fprintf(ficparo,"\n");    double **xi;
     }    double fret;
   }    double fretone; /* Only one call to likelihood */
   delti=delti3[1][1];    /*  char filerespow[FILENAMELENGTH];*/
      xi=matrix(1,npar,1,npar);
   /* Reads comments: lines beginning with '#' */    for (i=1;i<=npar;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){      for (j=1;j<=npar;j++)
     ungetc(c,ficpar);        xi[i][j]=(i==j ? 1.0 : 0.0);
     fgets(line, MAXLINE, ficpar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     puts(line);    strcpy(filerespow,"pow"); 
     fputs(line,ficparo);    strcat(filerespow,fileres);
   }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", filerespow);
        fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     fscanf(ficpar,"%s",&str);    for (i=1;i<=nlstate;i++)
     printf("%s",str);      for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficparo,"%s",str);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(j=1; j <=i; j++){    fprintf(ficrespow,"\n");
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);    powell(p,xi,npar,ftol,&iter,&fret,func);
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    free_matrix(xi,1,npar,1,npar);
     fscanf(ficpar,"\n");    fclose(ficrespow);
     printf("\n");    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficparo,"\n");    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)  }
       matcov[i][j]=matcov[j][i];  
      /**** Computes Hessian and covariance matrix ***/
   printf("\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     double  **a,**y,*x,pd;
     /*-------- data file ----------*/    double **hess;
     if((ficres =fopen(fileres,"w"))==NULL) {    int i, j,jk;
       printf("Problem with resultfile: %s\n", fileres);goto end;    int *indx;
     }  
     fprintf(ficres,"#%s\n",version);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
        double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     if((fic=fopen(datafile,"r"))==NULL)    {    void lubksb(double **a, int npar, int *indx, double b[]) ;
       printf("Problem with datafile: %s\n", datafile);goto end;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }    double gompertz(double p[]);
     hess=matrix(1,npar,1,npar);
     n= lastobs;  
     severity = vector(1,maxwav);    printf("\nCalculation of the hessian matrix. Wait...\n");
     outcome=imatrix(1,maxwav+1,1,n);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     num=ivector(1,n);    for (i=1;i<=npar;i++){
     moisnais=vector(1,n);      printf("%d",i);fflush(stdout);
     annais=vector(1,n);      fprintf(ficlog,"%d",i);fflush(ficlog);
     moisdc=vector(1,n);     
     andc=vector(1,n);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     agedc=vector(1,n);      
     cod=ivector(1,n);      /*  printf(" %f ",p[i]);
     weight=vector(1,n);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    }
     mint=matrix(1,maxwav,1,n);    
     anint=matrix(1,maxwav,1,n);    for (i=1;i<=npar;i++) {
     s=imatrix(1,maxwav+1,1,n);      for (j=1;j<=npar;j++)  {
     adl=imatrix(1,maxwav+1,1,n);            if (j>i) { 
     tab=ivector(1,NCOVMAX);          printf(".%d%d",i,j);fflush(stdout);
     ncodemax=ivector(1,8);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
     i=1;          
     while (fgets(line, MAXLINE, fic) != NULL)    {          hess[j][i]=hess[i][j];    
       if ((i >= firstobs) && (i <=lastobs)) {          /*printf(" %lf ",hess[i][j]);*/
                }
         for (j=maxwav;j>=1;j--){      }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    }
           strcpy(line,stra);    printf("\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
            fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    x=vector(1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for (j=ncov;j>=1;j--){    ludcmp(a,npar,indx,&pd);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    for (j=1;j<=npar;j++) {
         num[i]=atol(stra);      for (i=1;i<=npar;i++) x[i]=0;
              x[j]=1;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      lubksb(a,npar,indx,x);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
         i=i+1;      }
       }    }
     }  
     /* printf("ii=%d", ij);    printf("\n#Hessian matrix#\n");
        scanf("%d",i);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
   imx=i-1; /* Number of individuals */    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
   /* for (i=1; i<=imx; i++){        printf("%.3e ",hess[i][j]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        fprintf(ficlog,"%.3e ",hess[i][j]);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      printf("\n");
     }      fprintf(ficlog,"\n");
     for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    }
   
   /* Calculation of the number of parameter from char model*/    /* Recompute Inverse */
   Tvar=ivector(1,15);    for (i=1;i<=npar;i++)
   Tprod=ivector(1,15);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   Tvaraff=ivector(1,15);    ludcmp(a,npar,indx,&pd);
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          /*  printf("\n#Hessian matrix recomputed#\n");
      
   if (strlen(model) >1){    for (j=1;j<=npar;j++) {
     j=0, j1=0, k1=1, k2=1;      for (i=1;i<=npar;i++) x[i]=0;
     j=nbocc(model,'+');      x[j]=1;
     j1=nbocc(model,'*');      lubksb(a,npar,indx,x);
     cptcovn=j+1;      for (i=1;i<=npar;i++){ 
     cptcovprod=j1;        y[i][j]=x[i];
            printf("%.3e ",y[i][j]);
            fprintf(ficlog,"%.3e ",y[i][j]);
     strcpy(modelsav,model);      }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      printf("\n");
       printf("Error. Non available option model=%s ",model);      fprintf(ficlog,"\n");
       goto end;    }
     }    */
      
     for(i=(j+1); i>=1;i--){    free_matrix(a,1,npar,1,npar);
       cutv(stra,strb,modelsav,'+');    free_matrix(y,1,npar,1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    free_vector(x,1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_ivector(indx,1,npar);
       /*scanf("%d",i);*/    free_matrix(hess,1,npar,1,npar);
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');  
         if (strcmp(strc,"age")==0) {  }
           cptcovprod--;  
           cutv(strb,stre,strd,'V');  /*************** hessian matrix ****************/
           Tvar[i]=atoi(stre);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           cptcovage++;  {
             Tage[cptcovage]=i;    int i;
             /*printf("stre=%s ", stre);*/    int l=1, lmax=20;
         }    double k1,k2;
         else if (strcmp(strd,"age")==0) {    double p2[MAXPARM+1]; /* identical to x */
           cptcovprod--;    double res;
           cutv(strb,stre,strc,'V');    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           Tvar[i]=atoi(stre);    double fx;
           cptcovage++;    int k=0,kmax=10;
           Tage[cptcovage]=i;    double l1;
         }  
         else {    fx=func(x);
           cutv(strb,stre,strc,'V');    for (i=1;i<=npar;i++) p2[i]=x[i];
           Tvar[i]=ncov+k1;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
           cutv(strb,strc,strd,'V');      l1=pow(10,l);
           Tprod[k1]=i;      delts=delt;
           Tvard[k1][1]=atoi(strc);      for(k=1 ; k <kmax; k=k+1){
           Tvard[k1][2]=atoi(stre);        delt = delta*(l1*k);
           Tvar[cptcovn+k2]=Tvard[k1][1];        p2[theta]=x[theta] +delt;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
           for (k=1; k<=lastobs;k++)        p2[theta]=x[theta]-delt;
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        k2=func(p2)-fx;
           k1++;        /*res= (k1-2.0*fx+k2)/delt/delt; */
           k2=k2+2;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         }        
       }  #ifdef DEBUGHESS
       else {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        /*  scanf("%d",i);*/  #endif
       cutv(strd,strc,strb,'V');        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       Tvar[i]=atoi(strc);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       }          k=kmax;
       strcpy(modelsav,stra);          }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         scanf("%d",i);*/          k=kmax; l=lmax*10.;
     }        }
 }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        }
   printf("cptcovprod=%d ", cptcovprod);      }
   scanf("%d ",i);*/    }
     fclose(fic);    delti[theta]=delts;
     return res; 
     /*  if(mle==1){*/    
     if (weightopt != 1) { /* Maximisation without weights*/  }
       for(i=1;i<=n;i++) weight[i]=1.0;  
     }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     /*-calculation of age at interview from date of interview and age at death -*/  {
     agev=matrix(1,maxwav,1,imx);    int i;
     int l=1, l1, lmax=20;
    for (i=1; i<=imx; i++)    double k1,k2,k3,k4,res,fx;
      for(m=2; (m<= maxwav); m++)    double p2[MAXPARM+1];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    int k;
          anint[m][i]=9999;  
          s[m][i]=-1;    fx=func(x);
        }    for (k=1; k<=2; k++) {
          for (i=1;i<=npar;i++) p2[i]=x[i];
     for (i=1; i<=imx; i++)  {      p2[thetai]=x[thetai]+delti[thetai]/k;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(m=1; (m<= maxwav); m++){      k1=func(p2)-fx;
         if(s[m][i] >0){    
           if (s[m][i] == nlstate+1) {      p2[thetai]=x[thetai]+delti[thetai]/k;
             if(agedc[i]>0)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
               if(moisdc[i]!=99 && andc[i]!=9999)      k2=func(p2)-fx;
               agev[m][i]=agedc[i];    
             else {      p2[thetai]=x[thetai]-delti[thetai]/k;
               if (andc[i]!=9999){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      k3=func(p2)-fx;
               agev[m][i]=-1;    
               }      p2[thetai]=x[thetai]-delti[thetai]/k;
             }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           }      k4=func(p2)-fx;
           else if(s[m][i] !=9){ /* Should no more exist */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  #ifdef DEBUG
             if(mint[m][i]==99 || anint[m][i]==9999)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               agev[m][i]=1;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             else if(agev[m][i] <agemin){  #endif
               agemin=agev[m][i];    }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    return res;
             }  }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];  /************** Inverse of matrix **************/
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  void ludcmp(double **a, int n, int *indx, double *d) 
             }  { 
             /*agev[m][i]=anint[m][i]-annais[i];*/    int i,imax,j,k; 
             /*   agev[m][i] = age[i]+2*m;*/    double big,dum,sum,temp; 
           }    double *vv; 
           else { /* =9 */   
             agev[m][i]=1;    vv=vector(1,n); 
             s[m][i]=-1;    *d=1.0; 
           }    for (i=1;i<=n;i++) { 
         }      big=0.0; 
         else /*= 0 Unknown */      for (j=1;j<=n;j++) 
           agev[m][i]=1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
       }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
          vv[i]=1.0/big; 
     }    } 
     for (i=1; i<=imx; i++)  {    for (j=1;j<=n;j++) { 
       for(m=1; (m<= maxwav); m++){      for (i=1;i<j;i++) { 
         if (s[m][i] > (nlstate+ndeath)) {        sum=a[i][j]; 
           printf("Error: Wrong value in nlstate or ndeath\n");          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           goto end;        a[i][j]=sum; 
         }      } 
       }      big=0.0; 
     }      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
     free_vector(severity,1,maxwav);        a[i][j]=sum; 
     free_imatrix(outcome,1,maxwav+1,1,n);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_vector(moisnais,1,n);          big=dum; 
     free_vector(annais,1,n);          imax=i; 
     free_matrix(mint,1,maxwav,1,n);        } 
     free_matrix(anint,1,maxwav,1,n);      } 
     free_vector(moisdc,1,n);      if (j != imax) { 
     free_vector(andc,1,n);        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
              a[imax][k]=a[j][k]; 
     wav=ivector(1,imx);          a[j][k]=dum; 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        } 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        *d = -(*d); 
            vv[imax]=vv[j]; 
     /* Concatenates waves */      } 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
       if (j != n) { 
       Tcode=ivector(1,100);        dum=1.0/(a[j][j]); 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       ncodemax[1]=1;      } 
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    } 
          free_vector(vv,1,n);  /* Doesn't work */
    codtab=imatrix(1,100,1,10);  ;
    h=0;  } 
    m=pow(2,cptcoveff);  
    void lubksb(double **a, int n, int *indx, double b[]) 
    for(k=1;k<=cptcoveff; k++){  { 
      for(i=1; i <=(m/pow(2,k));i++){    int i,ii=0,ip,j; 
        for(j=1; j <= ncodemax[k]; j++){    double sum; 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   
            h++;    for (i=1;i<=n;i++) { 
            if (h>m) h=1;codtab[h][k]=j;      ip=indx[i]; 
          }      sum=b[ip]; 
        }      b[ip]=b[i]; 
      }      if (ii) 
    }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
       b[i]=sum; 
    /*for(i=1; i <=m ;i++){    } 
      for(k=1; k <=cptcovn; k++){    for (i=n;i>=1;i--) { 
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      sum=b[i]; 
      }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      printf("\n");      b[i]=sum/a[i][i]; 
    }    } 
    scanf("%d",i);*/  } 
      
    /* Calculates basic frequencies. Computes observed prevalence at single age  void pstamp(FILE *fichier)
        and prints on file fileres'p'. */  {
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Frequencies ********************/
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {  /* Some frequencies */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
          int i, m, jk, k1,i1, j1, bool, z1,j;
     /* For Powell, parameters are in a vector p[] starting at p[1]    int first;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    double ***freq; /* Frequencies */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     if(mle==1){    char fileresp[FILENAMELENGTH];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    
     }    pp=vector(1,nlstate);
        prop=matrix(1,nlstate,iagemin,iagemax+3);
     /*--------- results files --------------*/    strcpy(fileresp,"p");
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    strcat(fileresp,fileres);
        if((ficresp=fopen(fileresp,"w"))==NULL) {
    jk=1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
    fprintf(ficres,"# Parameters\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    printf("# Parameters\n");      exit(0);
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(k=1; k <=(nlstate+ndeath); k++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        if (k != i)    j1=0;
          {    
            printf("%d%d ",i,k);    j=cptcoveff;
            fprintf(ficres,"%1d%1d ",i,k);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);    first=1;
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
            }    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
            printf("\n");    /*    j1++;
            fprintf(ficres,"\n");  */
          }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
      }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
    }          scanf("%d", i);*/
  if(mle==1){        for (i=-5; i<=nlstate+ndeath; i++)  
     /* Computing hessian and covariance matrix */          for (jk=-5; jk<=nlstate+ndeath; jk++)  
     ftolhess=ftol; /* Usually correct */            for(m=iagemin; m <= iagemax+3; m++)
     hesscov(matcov, p, npar, delti, ftolhess, func);              freq[i][jk][m]=0;
  }        
     fprintf(ficres,"# Scales\n");        for (i=1; i<=nlstate; i++)  
     printf("# Scales\n");          for(m=iagemin; m <= iagemax+3; m++)
      for(i=1,jk=1; i <=nlstate; i++){            prop[i][m]=0;
       for(j=1; j <=nlstate+ndeath; j++){        
         if (j!=i) {        dateintsum=0;
           fprintf(ficres,"%1d%1d",i,j);        k2cpt=0;
           printf("%1d%1d",i,j);        for (i=1; i<=imx; i++) {
           for(k=1; k<=ncovmodel;k++){          bool=1;
             printf(" %.5e",delti[jk]);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             fprintf(ficres," %.5e",delti[jk]);            for (z1=1; z1<=cptcoveff; z1++)       
             jk++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
           printf("\n");                bool=0;
           fprintf(ficres,"\n");                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
       }                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
       }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                  } 
     k=1;          }
     fprintf(ficres,"# Covariance\n");   
     printf("# Covariance\n");          if (bool==1){
     for(i=1;i<=npar;i++){            for(m=firstpass; m<=lastpass; m++){
       /*  if (k>nlstate) k=1;              k2=anint[m][i]+(mint[m][i]/12.);
       i1=(i-1)/(ncovmodel*nlstate)+1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       fprintf(ficres,"%3d",i);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       printf("%3d",i);                if (m<lastpass) {
       for(j=1; j<=i;j++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         fprintf(ficres," %.5e",matcov[i][j]);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         printf(" %.5e",matcov[i][j]);                }
       }                
       fprintf(ficres,"\n");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       printf("\n");                  dateintsum=dateintsum+k2;
       k++;                  k2cpt++;
     }                }
                    /*}*/
     while((c=getc(ficpar))=='#' && c!= EOF){            }
       ungetc(c,ficpar);          }
       fgets(line, MAXLINE, ficpar);        } /* end i */
       puts(line);         
       fputs(line,ficparo);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     }        pstamp(ficresp);
     ungetc(c,ficpar);        if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
     if (fage <= 2) {          fprintf(ficlog, "\n#********** Variable "); 
       bage = agemin;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fage = agemax;          fprintf(ficlog, "**********\n#");
     }        }
         for(i=1; i<=nlstate;i++) 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        fprintf(ficresp, "\n");
         
            for(i=iagemin; i <= iagemax+3; i++){
 /*------------ gnuplot -------------*/          if(i==iagemax+3){
 chdir(pathcd);            fprintf(ficlog,"Total");
   if((ficgp=fopen("graph.plt","w"))==NULL) {          }else{
     printf("Problem with file graph.gp");goto end;            if(first==1){
   }              first=0;
 #ifdef windows              printf("See log file for details...\n");
   fprintf(ficgp,"cd \"%s\" \n",pathc);            }
 #endif            fprintf(ficlog,"Age %d", i);
 m=pow(2,cptcoveff);          }
            for(jk=1; jk <=nlstate ; jk++){
  /* 1eme*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {              pp[jk] += freq[jk][m][i]; 
    for (k1=1; k1<= m ; k1 ++) {          }
           for(jk=1; jk <=nlstate ; jk++){
 #ifdef windows            for(m=-1, pos=0; m <=0 ; m++)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);              pos += freq[jk][m][i];
 #endif            if(pp[jk]>=1.e-10){
 #ifdef unix              if(first==1){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 #endif              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 for (i=1; i<= nlstate ; i ++) {            }else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1; jk <=nlstate ; jk++){
 }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              pp[jk] += freq[jk][m][i];
      for (i=1; i<= nlstate ; i ++) {          }       
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");            pos += pp[jk];
 }              posprop += prop[jk][i];
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }
 #ifdef unix          for(jk=1; jk <=nlstate ; jk++){
 fprintf(ficgp,"\nset ter gif small size 400,300");            if(pos>=1.e-5){
 #endif              if(first==1)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
   /*2 eme*/              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   for (k1=1; k1<= m ; k1 ++) {              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            }
                if( i <= iagemax){
     for (i=1; i<= nlstate+1 ; i ++) {              if(pos>=1.e-5){
       k=2*i;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       for (j=1; j<= nlstate+1 ; j ++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else
 }                  fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          
       for (j=1; j<= nlstate+1 ; j ++) {          for(jk=-1; jk <=nlstate+ndeath; jk++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(m=-1; m <=nlstate+ndeath; m++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              if(freq[jk][m][i] !=0 ) {
 }                if(first==1)
       fprintf(ficgp,"\" t\"\" w l 0,");                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for (j=1; j<= nlstate+1 ; j ++) {              }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if(i <= iagemax)
   else fprintf(ficgp," \%%*lf (\%%*lf)");            fprintf(ficresp,"\n");
 }            if(first==1)
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            printf("Others in log...\n");
       else fprintf(ficgp,"\" t\"\" w l 0,");          fprintf(ficlog,"\n");
     }        }
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        /*}*/
   }    }
      dateintmean=dateintsum/k2cpt; 
   /*3eme*/   
     fclose(ficresp);
   for (k1=1; k1<= m ; k1 ++) {    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    free_vector(pp,1,nlstate);
       k=2+nlstate*(cpt-1);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    /* End of Freq */
       for (i=1; i< nlstate ; i ++) {  }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }  /************ Prevalence ********************/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     }  {  
   }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   /* CV preval stat */       We still use firstpass and lastpass as another selection.
   for (k1=1; k1<= m ; k1 ++) {    */
     for (cpt=1; cpt<nlstate ; cpt ++) {   
       k=3;    int i, m, jk, k1, i1, j1, bool, z1,j;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    double ***freq; /* Frequencies */
       for (i=1; i< nlstate ; i ++)    double *pp, **prop;
         fprintf(ficgp,"+$%d",k+i+1);    double pos,posprop; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    double  y2; /* in fractional years */
          int iagemin, iagemax;
       l=3+(nlstate+ndeath)*cpt;    int first; /** to stop verbosity which is redirected to log file */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    iagemin= (int) agemin;
         l=3+(nlstate+ndeath)*cpt;    iagemax= (int) agemax;
         fprintf(ficgp,"+$%d",l+i+1);    /*pp=vector(1,nlstate);*/
       }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    j1=0;
     }    
   }      /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   /* proba elementaires */    
    for(i=1,jk=1; i <=nlstate; i++){    first=1;
     for(k=1; k <=(nlstate+ndeath); k++){    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       if (k != i) {      /*for(i1=1; i1<=ncodemax[k1];i1++){
         for(j=1; j <=ncovmodel; j++){        j1++;*/
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        
           /*fprintf(ficgp,"%s",alph[1]);*/        for (i=1; i<=nlstate; i++)  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for(m=iagemin; m <= iagemax+3; m++)
           jk++;            prop[i][m]=0.0;
           fprintf(ficgp,"\n");       
         }        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
     }          if  (cptcovn>0) {
     }            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   for(jk=1; jk <=m; jk++) {                bool=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          } 
    i=1;          if (bool==1) { 
    for(k2=1; k2<=nlstate; k2++) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      k3=i;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      for(k=1; k<=(nlstate+ndeath); k++) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
        if (k != k2){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 ij=1;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for(j=3; j <=ncovmodel; j++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
             ij++;                  prop[s[m][i]][iagemax+3] += weight[i]; 
           }                } 
           else              }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            } /* end selection of waves */
         }          }
           fprintf(ficgp,")/(1");        }
                for(i=iagemin; i <= iagemax+3; i++){  
         for(k1=1; k1 <=nlstate; k1++){            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            posprop += prop[jk][i]; 
 ij=1;          } 
           for(j=3; j <=ncovmodel; j++){          
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(jk=1; jk <=nlstate ; jk++){     
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if( i <=  iagemax){ 
             ij++;              if(posprop>=1.e-5){ 
           }                probs[i][jk][j1]= prop[jk][i]/posprop;
           else              } else{
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                if(first==1){
           }                  first=0;
           fprintf(ficgp,")");                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
         }                }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);              }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            } 
         i=i+ncovmodel;          }/* end jk */ 
        }        }/* end i */ 
      }      /*} *//* end i1 */
    }    } /* end j1 */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
   }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        /*free_vector(pp,1,nlstate);*/
   fclose(ficgp);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
 chdir(path);  
      /************* Waves Concatenation ***************/
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    {
     free_ivector(num,1,n);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_vector(agedc,1,n);       Death is a valid wave (if date is known).
     /*free_matrix(covar,1,NCOVMAX,1,n);*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     fclose(ficparo);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fclose(ficres);       and mw[mi+1][i]. dh depends on stepm.
     /*  }*/       */
      
    /*________fin mle=1_________*/    int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
      int first;
     /* No more information from the sample is required now */    int j, k=0,jk, ju, jl;
   /* Reads comments: lines beginning with '#' */    double sum=0.;
   while((c=getc(ficpar))=='#' && c!= EOF){    first=0;
     ungetc(c,ficpar);    jmin=1e+5;
     fgets(line, MAXLINE, ficpar);    jmax=-1;
     puts(line);    jmean=0.;
     fputs(line,ficparo);    for(i=1; i<=imx; i++){
   }      mi=0;
   ungetc(c,ficpar);      m=firstpass;
        while(s[m][i] <= nlstate){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          mw[++mi][i]=m;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        if(m >=lastpass)
 /*--------- index.htm --------*/          break;
         else
   strcpy(optionfilehtm,optionfile);          m++;
   strcat(optionfilehtm,".htm");      }/* end while */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      if (s[m][i] > nlstate){
     printf("Problem with %s \n",optionfilehtm);goto end;        mi++;     /* Death is another wave */
   }        /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">        mw[mi][i]=m;
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>      }
 Total number of observations=%d <br>  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>      wav[i]=mi;
 <hr  size=\"2\" color=\"#EC5E5E\">      if(mi==0){
 <li>Outputs files<br><br>\n        nbwarn++;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        if(first==0){
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          first=1;
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>        if(first==1){
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      } /* end mi==0 */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>    } /* End individuals */
         - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>  
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
  fprintf(fichtm," <li>Graphs</li><p>");        if (stepm <=0)
           dh[mi][i]=1;
  m=cptcoveff;        else{
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
  j1=0;              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  for(k1=1; k1<=m;k1++){              if(j==0) j=1;  /* Survives at least one month after exam */
    for(i1=1; i1<=ncodemax[k1];i1++){              else if(j<0){
        j1++;                nberr++;
        if (cptcovn > 0) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                j=1; /* Temporary Dangerous patch */
          for (cpt=1; cpt<=cptcoveff;cpt++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        }              }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              k=k+1;
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                  if (j >= jmax){
        for(cpt=1; cpt<nlstate;cpt++){                jmax=j;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>                ijmax=i;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              }
        }              if (j <= jmin){
     for(cpt=1; cpt<=nlstate;cpt++) {                jmin=j;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                ijmin=i;
 interval) in state (%d): v%s%d%d.gif <br>              }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                sum=sum+j;
      }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      for(cpt=1; cpt<=nlstate;cpt++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          }
      }          else{
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 health expectancies in states (1) and (2): e%s%d.gif<br>  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");            k=k+1;
    }            if (j >= jmax) {
  }              jmax=j;
 fclose(fichtm);              ijmax=i;
             }
   /*--------------- Prevalence limit --------------*/            else if (j <= jmin){
                jmin=j;
   strcpy(filerespl,"pl");              ijmin=i;
   strcat(filerespl,fileres);            }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              nberr++;
   fprintf(ficrespl,"#Prevalence limit\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficrespl,"#Age ");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");            sum=sum+j;
            }
   prlim=matrix(1,nlstate,1,nlstate);          jk= j/stepm;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          jl= j -jk*stepm;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          ju= j -(jk+1)*stepm;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl==0){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              dh[mi][i]=jk;
   k=0;              bh[mi][i]=0;
   agebase=agemin;            }else{ /* We want a negative bias in order to only have interpolation ie
   agelim=agemax;                    * to avoid the price of an extra matrix product in likelihood */
   ftolpl=1.e-10;              dh[mi][i]=jk+1;
   i1=cptcoveff;              bh[mi][i]=ju;
   if (cptcovn < 1){i1=1;}            }
           }else{
   for(cptcov=1;cptcov<=i1;cptcov++){            if(jl <= -ju){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              dh[mi][i]=jk;
         k=k+1;              bh[mi][i]=jl;       /* bias is positive if real duration
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                                   * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficrespl,"\n#******");                                   */
         for(j=1;j<=cptcoveff;j++)            }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            else{
         fprintf(ficrespl,"******\n");              dh[mi][i]=jk+1;
                      bh[mi][i]=ju;
         for (age=agebase; age<=agelim; age++){            }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            if(dh[mi][i]==0){
           fprintf(ficrespl,"%.0f",age );              dh[mi][i]=1; /* At least one step */
           for(i=1; i<=nlstate;i++)              bh[mi][i]=ju; /* At least one step */
           fprintf(ficrespl," %.5f", prlim[i][i]);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           fprintf(ficrespl,"\n");            }
         }          } /* end if mle */
       }        }
     }      } /* end wave */
   fclose(ficrespl);    }
     jmean=sum/k;
   /*------------- h Pij x at various ages ------------*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   printf("Computing pij: result on file '%s' \n", filerespij);  {
      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   /*if (stepm<=24) stepsize=2;*/    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   agelim=AGESUP;    /* nbcode[Tvar[j]][1]= 
   hstepm=stepsize*YEARM; /* Every year of age */    */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
      int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   k=0;    int modmaxcovj=0; /* Modality max of covariates j */
   for(cptcov=1;cptcov<=i1;cptcov++){    int cptcode=0; /* Modality max of covariates j */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int modmincovj=0; /* Modality min of covariates j */
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)    cptcoveff=0; 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   
         fprintf(ficrespij,"******\n");    for (k=-1; k < maxncov; k++) Ndum[k]=0;
            for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Loop on covariates without age and products */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
           oldm=oldms;savm=savms;                                 modality of this covariate Vj*/ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
           fprintf(ficrespij,"# Age");                                      * If product of Vn*Vm, still boolean *:
           for(i=1; i<=nlstate;i++)                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
             for(j=1; j<=nlstate+ndeath;j++)                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
               fprintf(ficrespij," %1d-%1d",i,j);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
           fprintf(ficrespij,"\n");                                        modality of the nth covariate of individual i. */
           for (h=0; h<=nhstepm; h++){        if (ij > modmaxcovj)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          modmaxcovj=ij; 
             for(i=1; i<=nlstate;i++)        else if (ij < modmincovj) 
               for(j=1; j<=nlstate+ndeath;j++)          modmincovj=ij; 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        if ((ij < -1) && (ij > NCOVMAX)){
             fprintf(ficrespij,"\n");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           }          exit(1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }else
           fprintf(ficrespij,"\n");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
     }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/           female is 1, then modmaxcovj=1.*/
       }
   fclose(ficrespij);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
   /*---------- Forecasting ------------------*/      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
   strcpy(fileresf,"f");      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   strcat(fileresf,fileres);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   if((ficresf=fopen(fileresf,"w"))==NULL) {        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   }        }
   printf("Computing forecasting: result on file '%s' \n", fileresf);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore);      } /* Ndum[-1] number of undefined modalities */
   
  free_matrix(agev,1,maxwav,1,imx);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   /* Mobile average */      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   if (mobilav==1) {         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         variables V1_1 and V1_2.
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)         nbcode[Tvar[j]][ij]=k;
       for (i=1; i<=nlstate;i++)         nbcode[Tvar[j]][1]=0;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)         nbcode[Tvar[j]][2]=1;
           mobaverage[(int)agedeb][i][cptcod]=0.;         nbcode[Tvar[j]][3]=2;
          */
     for (agedeb=bage+4; agedeb<=fage; agedeb++){      ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=1; i<=nlstate;i++){      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           for (cpt=0;cpt<=4;cpt++){          /*recode from 0 */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                                       k is a modality. If we have model=V1+V1*sex 
         }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       }            ij++;
     }            }
   }          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } /* end of loop on modality */ 
   if (stepm<=12) stepsize=1;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
   agelim=AGESUP;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   hstepm=stepsize*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
    k=0;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   for(cptcov=1;cptcov<=i1;cptcov++){     Ndum[ij]++; 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   } 
       k=k+1;  
       fprintf(ficresf,"\n#****** ");   ij=1;
       for(j=1;j<=cptcoveff;j++) {   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       }     if((Ndum[i]!=0) && (i<=ncovcol)){
       fprintf(ficresf,"******\n");       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");       Tvaraff[ij]=i; /*For printing (unclear) */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       ij++;
      }else
       for (agedeb=fage; agedeb>=bage; agedeb--){         Tvaraff[ij]=0;
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);   }
        if (mobilav==1) {   ij--;
         for(j=1; j<=nlstate;j++)   cptcoveff=ij; /*Number of total covariates*/
           fprintf(ficresf," %.5f ",mobaverage[(int)agedeb][j][cptcod]);  
         }  }
         else {  
           for(j=1; j<=nlstate;j++)  
           fprintf(ficresf," %.5f ",probs[(int)agedeb][j][cptcod]);  /*********** Health Expectancies ****************/
         }    
       for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       }  
       for (cpt=1; cpt<=nforecast;cpt++)    {
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    /* Health expectancies, no variances */
            int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    int nhstepma, nstepma; /* Decreasing with age */
         nhstepm = nhstepm/hstepm;    double age, agelim, hf;
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/    double ***p3mat;
     double eip;
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         oldm=oldms;savm=savms;    pstamp(ficreseij);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                    fprintf(ficreseij,"# Age");
         for (h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++){
              for(j=1; j<=nlstate;j++){
          if (h*hstepm/YEARM*stepm==cpt)        fprintf(ficreseij," e%1d%1d ",i,j);
             fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);      }
                fprintf(ficreseij," e%1d. ",i);
              }
           for(j=1; j<=nlstate+ndeath;j++) {    fprintf(ficreseij,"\n");
             kk1=0.;  
             for(i=1; i<=nlstate;i++) {            
               if (mobilav==1)    if(estepm < stepm){
               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];      printf ("Problem %d lower than %d\n",estepm, stepm);
               else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];    }
             }        else  hstepm=estepm;   
           if (h*hstepm/YEARM*stepm==cpt) fprintf(ficresf," %.5f ", kk1);    /* We compute the life expectancy from trapezoids spaced every estepm months
           }     * This is mainly to measure the difference between two models: for example
         }     * if stepm=24 months pijx are given only every 2 years and by summing them
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       }     * progression in between and thus overestimating or underestimating according
     }     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * to compare the new estimate of Life expectancy with the same linear 
   free_imatrix(s,1,maxwav+1,1,n);     * hypothesis. A more precise result, taking into account a more precise
   free_vector(weight,1,n);     * curvature will be obtained if estepm is as small as stepm. */
   fclose(ficresf);  
   /*---------- Health expectancies and variances ------------*/    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcpy(filerest,"t");       nhstepm is the number of hstepm from age to agelim 
   strcat(filerest,fileres);       nstepm is the number of stepm from age to agelin. 
   if((ficrest=fopen(filerest,"w"))==NULL) {       Look at hpijx to understand the reason of that which relies in memory size
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   strcpy(filerese,"e");       results. So we changed our mind and took the option of the best precision.
   strcat(filerese,fileres);    */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }    agelim=AGESUP;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
  strcpy(fileresv,"v");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   strcat(fileresv,fileres);      
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /* nhstepm age range expressed in number of stepm */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   }    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   k=0;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for (age=bage; age<=fage; age ++){ 
       k=k+1;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       fprintf(ficrest,"\n#****** ");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       for(j=1;j<=cptcoveff;j++)      /* if (stepm >= YEARM) hstepm=1;*/
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       fprintf(ficrest,"******\n");  
       /* If stepm=6 months */
       fprintf(ficreseij,"\n#****** ");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       for(j=1;j<=cptcoveff;j++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      
       fprintf(ficreseij,"******\n");      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       fprintf(ficresvij,"\n#****** ");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(j=1;j<=cptcoveff;j++)      
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      printf("%d|",(int)age);fflush(stdout);
       fprintf(ficresvij,"******\n");      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /* Computing expectancies */
       oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          for(j=1; j<=nlstate;j++)
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       oldm=oldms;savm=savms;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            
                  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          }
       fprintf(ficrest,"\n");  
              fprintf(ficreseij,"%3.0f",age );
       hf=1;      for(i=1; i<=nlstate;i++){
       if (stepm >= YEARM) hf=stepm/YEARM;        eip=0;
       epj=vector(1,nlstate+1);        for(j=1; j<=nlstate;j++){
       for(age=bage; age <=fage ;age++){          eip +=eij[i][j][(int)age];
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         if (popbased==1) {        }
           for(i=1; i<=nlstate;i++)        fprintf(ficreseij,"%9.4f", eip );
             prlim[i][i]=probs[(int)age][i][k];      }
         }      fprintf(ficreseij,"\n");
              
         fprintf(ficrest," %.0f",age);    }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    printf("\n");
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficlog,"\n");
           }    
           epj[nlstate+1] +=epj[j];  }
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  {
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    /* Covariances of health expectancies eij and of total life expectancies according
         for(j=1;j <=nlstate;j++){     to initial status i, ei. .
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         fprintf(ficrest,"\n");    int nhstepma, nstepma; /* Decreasing with age */
       }    double age, agelim, hf;
     }    double ***p3matp, ***p3matm, ***varhe;
   }    double **dnewm,**doldm;
            double *xp, *xm;
            double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
  fclose(ficreseij);  
  fclose(ficresvij);    double eip, vip;
   fclose(ficrest);  
   fclose(ficpar);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   free_vector(epj,1,nlstate+1);    xp=vector(1,npar);
   /*  scanf("%d ",i); */    xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
   /*------- Variance limit prevalence------*/      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
 strcpy(fileresvpl,"vpl");    pstamp(ficresstdeij);
   strcat(fileresvpl,fileres);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    fprintf(ficresstdeij,"# Age");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    for(i=1; i<=nlstate;i++){
     exit(0);      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      fprintf(ficresstdeij," e%1d. ",i);
     }
  k=0;    fprintf(ficresstdeij,"\n");
  for(cptcov=1;cptcov<=i1;cptcov++){  
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    pstamp(ficrescveij);
      k=k+1;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficresvpl,"\n#****** ");    fprintf(ficrescveij,"# Age");
      for(j=1;j<=cptcoveff;j++)    for(i=1; i<=nlstate;i++)
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j<=nlstate;j++){
      fprintf(ficresvpl,"******\n");        cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(j2=1; j2<=nlstate;j2++){
      oldm=oldms;savm=savms;            cptj2= (j2-1)*nlstate+i2;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            if(cptj2 <= cptj)
    }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
  }          }
       }
   fclose(ficresvpl);    fprintf(ficrescveij,"\n");
     
   /*---------- End : free ----------------*/    if(estepm < stepm){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    else  hstepm=estepm;   
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);     * progression in between and thus overestimating or underestimating according
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);     * to the curvature of the survival function. If, for the same date, we 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   free_matrix(matcov,1,npar,1,npar);     * hypothesis. A more precise result, taking into account a more precise
   free_vector(delti,1,npar);     * curvature will be obtained if estepm is as small as stepm. */
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("End of Imach\n");       nhstepm is the number of hstepm from age to agelim 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       and note for a fixed period like estepm months */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*------ End -----------*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  end:       results. So we changed our mind and took the option of the best precision.
 #ifdef windows    */
  chdir(pathcd);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 #endif  
      /* If stepm=6 months */
  system("..\\gp37mgw\\wgnuplot graph.plt");    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
 #ifdef windows    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   while (z[0] != 'q') {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     chdir(pathcd);    /* if (stepm >= YEARM) hstepm=1;*/
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     scanf("%s",z);    
     if (z[0] == 'c') system("./imach");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     else if (z[0] == 'e') {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       chdir(path);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       system(optionfilehtm);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
     else if (z[0] == 'q') exit(0);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   }  
 #endif    for (age=bage; age<=fage; age ++){ 
 }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.15  
changed lines
  Added in v.1.158


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>