Diff for /imach/src/imach.c between versions 1.51 and 1.151

version 1.51, 2002/07/19 12:22:25 version 1.151, 2014/06/18 16:43:30
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.151  2014/06/18 16:43:30  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.150  2014/06/18 16:42:35  brouard
   first survey ("cross") where individuals from different ages are    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   interviewed on their health status or degree of disability (in the    Author: brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.149  2014/06/18 15:51:14  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Some fixes in parameter files errors
   computed from the time spent in each health state according to a    Author: Nicolas Brouard
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.148  2014/06/17 17:38:48  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: Nothing new
   probability to be observed in state j at the second wave    Author: Brouard
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Just a new packaging for OS/X version 0.98nS
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.147  2014/06/16 10:33:11  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
   The advantage of this computer programme, compared to a simple    Author: Brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Merge, before building revised version.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
   hPijx is the probability to be observed in state i at age x+h    Author: Nicolas Brouard
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Lot of changes in order to output the results with some covariates
   states. This elementary transition (by month or quarter trimester,    After the Edimburgh REVES conference 2014, it seems mandatory to
   semester or year) is model as a multinomial logistic.  The hPx    improve the code.
   matrix is simply the matrix product of nh*stepm elementary matrices    No more memory valgrind error but a lot has to be done in order to
   and the contribution of each individual to the likelihood is simply    continue the work of splitting the code into subroutines.
   hPijx.    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
   Also this programme outputs the covariance matrix of the parameters but also    the source code.
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.143  2014/01/26 09:45:38  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   from the European Union.    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.142  2014/01/26 03:57:36  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   **********************************************************************/  
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <math.h>  
 #include <stdio.h>    Revision 1.141  2014/01/26 02:42:01  brouard
 #include <stdlib.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <unistd.h>  
     Revision 1.140  2011/09/02 10:37:54  brouard
 #define MAXLINE 256    Summary: times.h is ok with mingw32 now.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.139  2010/06/14 07:50:17  brouard
 #define FILENAMELENGTH 80    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 /*#define DEBUG*/    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.138  2010/04/30 18:19:40  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.137  2010/04/29 18:11:38  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.136  2010/04/26 20:30:53  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (Module): merging some libgsl code. Fixing computation
 #define NCOVMAX 8 /* Maximum number of covariates */    of likelione (using inter/intrapolation if mle = 0) in order to
 #define MAXN 20000    get same likelihood as if mle=1.
 #define YEARM 12. /* Number of months per year */    Some cleaning of code and comments added.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.135  2009/10/29 15:33:14  brouard
 #ifdef windows    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.134  2009/10/29 13:18:53  brouard
 #else    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.133  2009/07/06 10:21:25  brouard
 #endif    just nforces
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.132  2009/07/06 08:22:05  brouard
 int erreur; /* Error number */    Many tings
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.131  2009/06/20 16:22:47  brouard
 int npar=NPARMAX;    Some dimensions resccaled
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.130  2009/05/26 06:44:34  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Max Covariate is now set to 20 instead of 8. A
 int popbased=0;    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.129  2007/08/31 13:49:27  lievre
 int jmin, jmax; /* min, max spacing between 2 waves */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.128  2006/06/30 13:02:05  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Clarifications on computing e.j
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.127  2006/04/28 18:11:50  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): Yes the sum of survivors was wrong since
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    imach-114 because nhstepm was no more computed in the age
 FILE *ficlog;    loop. Now we define nhstepma in the age loop.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    (Module): In order to speed up (in case of numerous covariates) we
 FILE *ficresprobmorprev;    compute health expectancies (without variances) in a first step
 FILE *fichtm; /* Html File */    and then all the health expectancies with variances or standard
 FILE *ficreseij;    deviation (needs data from the Hessian matrices) which slows the
 char filerese[FILENAMELENGTH];    computation.
 FILE  *ficresvij;    In the future we should be able to stop the program is only health
 char fileresv[FILENAMELENGTH];    expectancies and graph are needed without standard deviations.
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.126  2006/04/28 17:23:28  brouard
 char title[MAXLINE];    (Module): Yes the sum of survivors was wrong since
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    imach-114 because nhstepm was no more computed in the age
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.125  2006/04/04 15:20:31  lievre
 char filerest[FILENAMELENGTH];    Errors in calculation of health expectancies. Age was not initialized.
 char fileregp[FILENAMELENGTH];    Forecasting file added.
 char popfile[FILENAMELENGTH];  
     Revision 1.124  2006/03/22 17:13:53  lievre
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.123  2006/03/20 10:52:43  brouard
 #define FTOL 1.0e-10    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 #define NRANSI  
 #define ITMAX 200    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define TOL 2.0e-4    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 #define CGOLD 0.3819660    1.
 #define ZEPS 1.0e-10    Version 0.98g
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.122  2006/03/20 09:45:41  brouard
 #define GOLD 1.618034    (Module): Weights can have a decimal point as for
 #define GLIMIT 100.0    English (a comma might work with a correct LC_NUMERIC environment,
 #define TINY 1.0e-20    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 static double maxarg1,maxarg2;    1.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Version 0.98g
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.121  2006/03/16 17:45:01  lievre
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    * imach.c (Module): Comments concerning covariates added
 #define rint(a) floor(a+0.5)  
     * imach.c (Module): refinements in the computation of lli if
 static double sqrarg;    status=-2 in order to have more reliable computation if stepm is
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    not 1 month. Version 0.98f
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.120  2006/03/16 15:10:38  lievre
 int imx;    (Module): refinements in the computation of lli if
 int stepm;    status=-2 in order to have more reliable computation if stepm is
 /* Stepm, step in month: minimum step interpolation*/    not 1 month. Version 0.98f
   
 int estepm;    Revision 1.119  2006/03/15 17:42:26  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.118  2006/03/14 18:20:07  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): varevsij Comments added explaining the second
 double **pmmij, ***probs, ***mobaverage;    table of variances if popbased=1 .
 double dateintmean=0;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 double *weight;    (Module): Version 0.98d
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.117  2006/03/14 17:16:22  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double ftolhess; /* Tolerance for computing hessian */    (Module): Function pstamp added
     (Module): Version 0.98d
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.116  2006/03/06 10:29:27  brouard
 {    (Module): Variance-covariance wrong links and
    char *s;                             /* pointer */    varian-covariance of ej. is needed (Saito).
    int  l1, l2;                         /* length counters */  
     Revision 1.115  2006/02/27 12:17:45  brouard
    l1 = strlen( path );                 /* length of path */    (Module): One freematrix added in mlikeli! 0.98c
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.114  2006/02/26 12:57:58  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Some improvements in processing parameter
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    filename with strsep.
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.113  2006/02/24 14:20:24  brouard
       extern char       *getwd( );    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
       if ( getwd( dirc ) == NULL ) {    allocation too.
 #else  
       extern char       *getcwd( );    Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.111  2006/01/25 20:38:18  brouard
          return( GLOCK_ERROR_GETCWD );    (Module): Lots of cleaning and bugs added (Gompertz)
       }    (Module): Comments can be added in data file. Missing date values
       strcpy( name, path );             /* we've got it */    can be a simple dot '.'.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.110  2006/01/25 00:51:50  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Lots of cleaning and bugs added (Gompertz)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.109  2006/01/24 19:37:15  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Comments (lines starting with a #) are allowed in data.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.108  2006/01/19 18:05:42  lievre
    l1 = strlen( dirc );                 /* length of directory */    Gnuplot problem appeared...
 #ifdef windows    To be fixed
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.107  2006/01/19 16:20:37  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Test existence of gnuplot in imach path
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.106  2006/01/19 13:24:36  brouard
    s++;    Some cleaning and links added in html output
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.105  2006/01/05 20:23:19  lievre
    l2= strlen( s)+1;    *** empty log message ***
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.104  2005/09/30 16:11:43  lievre
    return( 0 );                         /* we're done */    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
     (instead of missing=-1 in earlier versions) and his/her
 /******************************************/    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 void replace(char *s, char*t)    the healthy state at last known wave). Version is 0.98
 {  
   int i;    Revision 1.103  2005/09/30 15:54:49  lievre
   int lg=20;    (Module): sump fixed, loop imx fixed, and simplifications.
   i=0;  
   lg=strlen(t);    Revision 1.102  2004/09/15 17:31:30  brouard
   for(i=0; i<= lg; i++) {    Add the possibility to read data file including tab characters.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
 }  
     Revision 1.100  2004/07/12 18:29:06  brouard
 int nbocc(char *s, char occ)    Add version for Mac OS X. Just define UNIX in Makefile
 {  
   int i,j=0;    Revision 1.99  2004/06/05 08:57:40  brouard
   int lg=20;    *** empty log message ***
   i=0;  
   lg=strlen(s);    Revision 1.98  2004/05/16 15:05:56  brouard
   for(i=0; i<= lg; i++) {    New version 0.97 . First attempt to estimate force of mortality
   if  (s[i] == occ ) j++;    directly from the data i.e. without the need of knowing the health
   }    state at each age, but using a Gompertz model: log u =a + b*age .
   return j;    This is the basic analysis of mortality and should be done before any
 }    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 void cutv(char *u,char *v, char*t, char occ)    from other sources like vital statistic data.
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    The same imach parameter file can be used but the option for mle should be -3.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Agnès, who wrote this part of the code, tried to keep most of the
   int i,lg,j,p=0;    former routines in order to include the new code within the former code.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    The output is very simple: only an estimate of the intercept and of
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    the slope with 95% confident intervals.
   }  
     Current limitations:
   lg=strlen(t);    A) Even if you enter covariates, i.e. with the
   for(j=0; j<p; j++) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     (u[j] = t[j]);    B) There is no computation of Life Expectancy nor Life Table.
   }  
      u[p]='\0';    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
    for(j=0; j<= lg; j++) {    suppressed.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.96  2003/07/15 15:38:55  brouard
 }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 /********************** nrerror ********************/  
     Revision 1.95  2003/07/08 07:54:34  brouard
 void nrerror(char error_text[])    * imach.c (Repository):
 {    (Repository): Using imachwizard code to output a more meaningful covariance
   fprintf(stderr,"ERREUR ...\n");    matrix (cov(a12,c31) instead of numbers.
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.94  2003/06/27 13:00:02  brouard
 }    Just cleaning
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.93  2003/06/25 16:33:55  brouard
 {    (Module): On windows (cygwin) function asctime_r doesn't
   double *v;    exist so I changed back to asctime which exists.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Version 0.96b
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.91  2003/06/25 15:30:29  brouard
 {    * imach.c (Repository): Duplicated warning errors corrected.
   free((FREE_ARG)(v+nl-NR_END));    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /************************ivector *******************************/    concerning matrix of covariance. It has extension -cov.htm.
 int *ivector(long nl,long nh)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int *v;    (Module): Some bugs corrected for windows. Also, when
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!v) nrerror("allocation failure in ivector");    of the covariance matrix to be input.
   return v-nl+NR_END;  
 }    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
 /******************free ivector **************************/    mle=-1 a template is output in file "or"mypar.txt with the design
 void free_ivector(int *v, long nl, long nh)    of the covariance matrix to be input.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.88  2003/06/23 17:54:56  brouard
 }    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
 /******************* imatrix *******************************/    Revision 1.87  2003/06/18 12:26:01  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Version 0.96
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.86  2003/06/17 20:04:08  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Change position of html and gnuplot routines and added
   int **m;    routine fileappend.
    
   /* allocate pointers to rows */    Revision 1.85  2003/06/17 13:12:43  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    * imach.c (Repository): Check when date of death was earlier that
   if (!m) nrerror("allocation failure 1 in matrix()");    current date of interview. It may happen when the death was just
   m += NR_END;    prior to the death. In this case, dh was negative and likelihood
   m -= nrl;    was wrong (infinity). We still send an "Error" but patch by
      assuming that the date of death was just one stepm after the
      interview.
   /* allocate rows and set pointers to them */    (Repository): Because some people have very long ID (first column)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    we changed int to long in num[] and we added a new lvector for
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    memory allocation. But we also truncated to 8 characters (left
   m[nrl] += NR_END;    truncation)
   m[nrl] -= ncl;    (Repository): No more line truncation errors.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
   /* return pointer to array of pointers to rows */    place. It differs from routine "prevalence" which may be called
   return m;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.83  2003/06/10 13:39:11  lievre
       int **m;    *** empty log message ***
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));  */
 }  /*
      Interpolated Markov Chain
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Short summary of the programme:
 {    
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    This program computes Healthy Life Expectancies from
   double **m;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    interviewed on their health status or degree of disability (in the
   if (!m) nrerror("allocation failure 1 in matrix()");    case of a health survey which is our main interest) -2- at least a
   m += NR_END;    second wave of interviews ("longitudinal") which measure each change
   m -= nrl;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    model. More health states you consider, more time is necessary to reach the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m[nrl] += NR_END;    simplest model is the multinomial logistic model where pij is the
   m[nrl] -= ncl;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   return m;    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /*************************free matrix ************************/    you to do it.  More covariates you add, slower the
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    convergence.
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    The advantage of this computer programme, compared to a simple
   free((FREE_ARG)(m+nrl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
 }    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************* ma3x *******************************/    account using an interpolation or extrapolation.  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    hPijx is the probability to be observed in state i at age x+h
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    conditional to the observed state i at age x. The delay 'h' can be
   double ***m;    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!m) nrerror("allocation failure 1 in matrix()");    matrix is simply the matrix product of nh*stepm elementary matrices
   m += NR_END;    and the contribution of each individual to the likelihood is simply
   m -= nrl;    hPijx.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Also this programme outputs the covariance matrix of the parameters but also
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    of the life expectancies. It also computes the period (stable) prevalence. 
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    It is copyrighted identically to a GNU software product, ie programme and
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    software can be distributed freely for non commercial use. Latest version
   m[nrl][ncl] += NR_END;    can be accessed at http://euroreves.ined.fr/imach .
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     m[nrl][j]=m[nrl][j-1]+nlay;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
      
   for (i=nrl+1; i<=nrh; i++) {    **********************************************************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  /*
     for (j=ncl+1; j<=nch; j++)    main
       m[i][j]=m[i][j-1]+nlay;    read parameterfile
   }    read datafile
   return m;    concatwav
 }    freqsummary
     if (mle >= 1)
 /*************************free ma3x ************************/      mlikeli
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    print results files
 {    if mle==1 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));       computes hessian
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    read end of parameter file: agemin, agemax, bage, fage, estepm
   free((FREE_ARG)(m+nrl-NR_END));        begin-prev-date,...
 }    open gnuplot file
     open html file
 /***************** f1dim *************************/    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 extern int ncom;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 extern double *pcom,*xicom;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 extern double (*nrfunc)(double []);      freexexit2 possible for memory heap.
    
 double f1dim(double x)    h Pij x                         | pij_nom  ficrestpij
 {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   int j;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   double f;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   double *xt;  
           1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   xt=vector(1,ncom);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   f=(*nrfunc)(xt);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   free_vector(xt,1,ncom);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   return f;  
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /*****************brent *************************/    Variance-covariance of DFLE
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    prevalence()
 {     movingaverage()
   int iter;    varevsij() 
   double a,b,d,etemp;    if popbased==1 varevsij(,popbased)
   double fu,fv,fw,fx;    total life expectancies
   double ftemp;    Variance of period (stable) prevalence
   double p,q,r,tol1,tol2,u,v,w,x,xm;   end
   double e=0.0;  */
    
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);  #include <math.h>
   for (iter=1;iter<=ITMAX;iter++) {  #include <stdio.h>
     xm=0.5*(a+b);  #include <stdlib.h>
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #include <string.h>
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #include <unistd.h>
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  #include <limits.h>
 #ifdef DEBUG  #include <sys/types.h>
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #include <sys/stat.h>
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #include <errno.h>
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  extern int errno;
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #ifdef LINUX
       *xmin=x;  #include <time.h>
       return fx;  #include "timeval.h"
     }  #else
     ftemp=fu;  #include <sys/time.h>
     if (fabs(e) > tol1) {  #endif
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);  #ifdef GSL
       p=(x-v)*q-(x-w)*r;  #include <gsl/gsl_errno.h>
       q=2.0*(q-r);  #include <gsl/gsl_multimin.h>
       if (q > 0.0) p = -p;  #endif
       q=fabs(q);  
       etemp=e;  /* #include <libintl.h> */
       e=d;  /* #define _(String) gettext (String) */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       else {  
         d=p/q;  #define GNUPLOTPROGRAM "gnuplot"
         u=x+d;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         if (u-a < tol2 || b-u < tol2)  #define FILENAMELENGTH 132
           d=SIGN(tol1,xm-x);  
       }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     } else {  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     fu=(*f)(u);  
     if (fu <= fx) {  #define NINTERVMAX 8
       if (u >= x) a=x; else b=x;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       SHFT(v,w,x,u)  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         SHFT(fv,fw,fx,fu)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
         } else {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
           if (u < x) a=u; else b=u;  #define MAXN 20000
           if (fu <= fw || w == x) {  #define YEARM 12. /**< Number of months per year */
             v=w;  #define AGESUP 130
             w=u;  #define AGEBASE 40
             fv=fw;  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
             fw=fu;  #ifdef UNIX
           } else if (fu <= fv || v == x || v == w) {  #define DIRSEPARATOR '/'
             v=u;  #define CHARSEPARATOR "/"
             fv=fu;  #define ODIRSEPARATOR '\\'
           }  #else
         }  #define DIRSEPARATOR '\\'
   }  #define CHARSEPARATOR "\\"
   nrerror("Too many iterations in brent");  #define ODIRSEPARATOR '/'
   *xmin=x;  #endif
   return fx;  
 }  /* $Id$ */
   /* $State$ */
 /****************** mnbrak ***********************/  
   char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  char fullversion[]="$Revision$ $Date$"; 
             double (*func)(double))  char strstart[80];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double ulim,u,r,q, dum;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   double fu;  int nvar=0, nforce=0; /* Number of variables, number of forces */
    /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   *fa=(*func)(*ax);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   *fb=(*func)(*bx);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   if (*fb > *fa) {  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     SHFT(dum,*ax,*bx,dum)  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       SHFT(dum,*fb,*fa,dum)  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       }  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   *cx=(*bx)+GOLD*(*bx-*ax);  int cptcov=0; /* Working variable */
   *fc=(*func)(*cx);  int npar=NPARMAX;
   while (*fb > *fc) {  int nlstate=2; /* Number of live states */
     r=(*bx-*ax)*(*fb-*fc);  int ndeath=1; /* Number of dead states */
     q=(*bx-*cx)*(*fb-*fa);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int popbased=0;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int *wav; /* Number of waves for this individuual 0 is possible */
     if ((*bx-u)*(u-*cx) > 0.0) {  int maxwav=0; /* Maxim number of waves */
       fu=(*func)(u);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       fu=(*func)(u);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       if (fu < *fc) {                     to the likelihood and the sum of weights (done by funcone)*/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int mle=1, weightopt=0;
           SHFT(*fb,*fc,fu,(*func)(u))  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
           }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       u=ulim;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       fu=(*func)(u);  double jmean=1; /* Mean space between 2 waves */
     } else {  double **matprod2(); /* test */
       u=(*cx)+GOLD*(*cx-*bx);  double **oldm, **newm, **savm; /* Working pointers to matrices */
       fu=(*func)(u);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
     SHFT(*ax,*bx,*cx,u)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       SHFT(*fa,*fb,*fc,fu)  FILE *ficlog, *ficrespow;
       }  int globpr=0; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
 /*************** linmin ************************/  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 int ncom;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 double *pcom,*xicom;  FILE *ficresilk;
 double (*nrfunc)(double []);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    FILE *ficresprobmorprev;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  FILE *fichtm, *fichtmcov; /* Html File */
 {  FILE *ficreseij;
   double brent(double ax, double bx, double cx,  char filerese[FILENAMELENGTH];
                double (*f)(double), double tol, double *xmin);  FILE *ficresstdeij;
   double f1dim(double x);  char fileresstde[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  FILE *ficrescveij;
               double *fc, double (*func)(double));  char filerescve[FILENAMELENGTH];
   int j;  FILE  *ficresvij;
   double xx,xmin,bx,ax;  char fileresv[FILENAMELENGTH];
   double fx,fb,fa;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
   ncom=n;  char title[MAXLINE];
   pcom=vector(1,n);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   xicom=vector(1,n);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   nrfunc=func;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   for (j=1;j<=n;j++) {  char command[FILENAMELENGTH];
     pcom[j]=p[j];  int  outcmd=0;
     xicom[j]=xi[j];  
   }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   ax=0.0;  
   xx=1.0;  char filelog[FILENAMELENGTH]; /* Log file */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char filerest[FILENAMELENGTH];
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char fileregp[FILENAMELENGTH];
 #ifdef DEBUG  char popfile[FILENAMELENGTH];
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #endif  
   for (j=1;j<=n;j++) {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     xi[j] *= xmin;  struct timezone tzp;
     p[j] += xi[j];  extern int gettimeofday();
   }  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free_vector(xicom,1,n);  long time_value;
   free_vector(pcom,1,n);  extern long time();
 }  char strcurr[80], strfor[80];
   
 /*************** powell ************************/  char *endptr;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  long lval;
             double (*func)(double []))  double dval;
 {  
   void linmin(double p[], double xi[], int n, double *fret,  #define NR_END 1
               double (*func)(double []));  #define FREE_ARG char*
   int i,ibig,j;  #define FTOL 1.0e-10
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  #define NRANSI 
   double *xits;  #define ITMAX 200 
   pt=vector(1,n);  
   ptt=vector(1,n);  #define TOL 2.0e-4 
   xit=vector(1,n);  
   xits=vector(1,n);  #define CGOLD 0.3819660 
   *fret=(*func)(p);  #define ZEPS 1.0e-10 
   for (j=1;j<=n;j++) pt[j]=p[j];  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  #define GOLD 1.618034 
     ibig=0;  #define GLIMIT 100.0 
     del=0.0;  #define TINY 1.0e-20 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  static double maxarg1,maxarg2;
     for (i=1;i<=n;i++)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       printf(" %d %.12f",i, p[i]);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     fprintf(ficlog," %d %.12f",i, p[i]);    
     printf("\n");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     fprintf(ficlog,"\n");  #define rint(a) floor(a+0.5)
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  static double sqrarg;
       fptt=(*fret);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #ifdef DEBUG  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       printf("fret=%lf \n",*fret);  int agegomp= AGEGOMP;
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif  int imx; 
       printf("%d",i);fflush(stdout);  int stepm=1;
       fprintf(ficlog,"%d",i);fflush(ficlog);  /* Stepm, step in month: minimum step interpolation*/
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  int estepm;
         del=fabs(fptt-(*fret));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         ibig=i;  
       }  int m,nb;
 #ifdef DEBUG  long *num;
       printf("%d %.12e",i,(*fret));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fprintf(ficlog,"%d %.12e",i,(*fret));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       for (j=1;j<=n;j++) {  double **pmmij, ***probs;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double *ageexmed,*agecens;
         printf(" x(%d)=%.12e",j,xit[j]);  double dateintmean=0;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  double *weight;
       for(j=1;j<=n;j++) {  int **s; /* Status */
         printf(" p=%.12e",p[j]);  double *agedc;
         fprintf(ficlog," p=%.12e",p[j]);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       }                    * covar=matrix(0,NCOVMAX,1,n); 
       printf("\n");                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       fprintf(ficlog,"\n");  double  idx; 
 #endif  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     }  int *Ndum; /** Freq of modality (tricode */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 #ifdef DEBUG  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       int k[2],l;  double *lsurv, *lpop, *tpop;
       k[0]=1;  
       k[1]=-1;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       printf("Max: %.12e",(*func)(p));  double ftolhess; /**< Tolerance for computing hessian */
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  /**************** split *************************/
         printf(" %.12e",p[j]);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         fprintf(ficlog," %.12e",p[j]);  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       printf("\n");       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       fprintf(ficlog,"\n");    */ 
       for(l=0;l<=1;l++) {    char  *ss;                            /* pointer */
         for (j=1;j<=n;j++) {    int   l1, l2;                         /* length counters */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    l1 = strlen(path );                   /* length of path */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 #endif        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
       free_vector(xit,1,n);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       free_vector(xits,1,n);        return( GLOCK_ERROR_GETCWD );
       free_vector(ptt,1,n);      }
       free_vector(pt,1,n);      /* got dirc from getcwd*/
       return;      printf(" DIRC = %s \n",dirc);
     }    } else {                              /* strip direcotry from path */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      ss++;                               /* after this, the filename */
     for (j=1;j<=n;j++) {      l2 = strlen( ss );                  /* length of filename */
       ptt[j]=2.0*p[j]-pt[j];      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       xit[j]=p[j]-pt[j];      strcpy( name, ss );         /* save file name */
       pt[j]=p[j];      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     }      dirc[l1-l2] = 0;                    /* add zero */
     fptt=(*func)(ptt);      printf(" DIRC2 = %s \n",dirc);
     if (fptt < fp) {    }
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    /* We add a separator at the end of dirc if not exists */
       if (t < 0.0) {    l1 = strlen( dirc );                  /* length of directory */
         linmin(p,xit,n,fret,func);    if( dirc[l1-1] != DIRSEPARATOR ){
         for (j=1;j<=n;j++) {      dirc[l1] =  DIRSEPARATOR;
           xi[j][ibig]=xi[j][n];      dirc[l1+1] = 0; 
           xi[j][n]=xit[j];      printf(" DIRC3 = %s \n",dirc);
         }    }
 #ifdef DEBUG    ss = strrchr( name, '.' );            /* find last / */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (ss >0){
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      ss++;
         for(j=1;j<=n;j++){      strcpy(ext,ss);                     /* save extension */
           printf(" %.12e",xit[j]);      l1= strlen( name);
           fprintf(ficlog," %.12e",xit[j]);      l2= strlen(ss)+1;
         }      strncpy( finame, name, l1-l2);
         printf("\n");      finame[l1-l2]= 0;
         fprintf(ficlog,"\n");    }
 #endif  
       }    return( 0 );                          /* we're done */
     }  }
   }  
 }  
   /******************************************/
 /**** Prevalence limit ****************/  
   void replace_back_to_slash(char *s, char*t)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    int i;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    int lg=0;
      matrix by transitions matrix until convergence is reached */    i=0;
     lg=strlen(t);
   int i, ii,j,k;    for(i=0; i<= lg; i++) {
   double min, max, maxmin, maxmax,sumnew=0.;      (s[i] = t[i]);
   double **matprod2();      if (t[i]== '\\') s[i]='/';
   double **out, cov[NCOVMAX], **pmij();    }
   double **newm;  }
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   char *trimbb(char *out, char *in)
   for (ii=1;ii<=nlstate+ndeath;ii++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     for (j=1;j<=nlstate+ndeath;j++){    char *s;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    s=out;
     }    while (*in != '\0'){
       while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
    cov[1]=1.;        in++;
        }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      *out++ = *in++;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    }
     newm=savm;    *out='\0';
     /* Covariates have to be included here again */    return s;
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  char *cutl(char *blocc, char *alocc, char *in, char occ)
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       gives blocc="abcdef2ghi" and alocc="j".
       for (k=1; k<=cptcovprod;k++)       If occ is not found blocc is null and alocc is equal to in. Returns blocc
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    */
     char *s, *t, *bl;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    t=in;s=in;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    while ((*in != occ) && (*in != '\0')){
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      *alocc++ = *in++;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    }
     if( *in == occ){
     savm=oldm;      *(alocc)='\0';
     oldm=newm;      s=++in;
     maxmax=0.;    }
     for(j=1;j<=nlstate;j++){   
       min=1.;    if (s == t) {/* occ not found */
       max=0.;      *(alocc-(in-s))='\0';
       for(i=1; i<=nlstate; i++) {      in=s;
         sumnew=0;    }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    while ( *in != '\0'){
         prlim[i][j]= newm[i][j]/(1-sumnew);      *blocc++ = *in++;
         max=FMAX(max,prlim[i][j]);    }
         min=FMIN(min,prlim[i][j]);  
       }    *blocc='\0';
       maxmin=max-min;    return t;
       maxmax=FMAX(maxmax,maxmin);  }
     }  char *cutv(char *blocc, char *alocc, char *in, char occ)
     if(maxmax < ftolpl){  {
       return prlim;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   }       gives blocc="abcdef2ghi" and alocc="j".
 }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     */
 /*************** transition probabilities ***************/    char *s, *t;
     t=in;s=in;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    while (*in != '\0'){
 {      while( *in == occ){
   double s1, s2;        *blocc++ = *in++;
   /*double t34;*/        s=in;
   int i,j,j1, nc, ii, jj;      }
       *blocc++ = *in++;
     for(i=1; i<= nlstate; i++){    }
     for(j=1; j<i;j++){    if (s == t) /* occ not found */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      *(blocc-(in-s))='\0';
         /*s2 += param[i][j][nc]*cov[nc];*/    else
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *(blocc-(in-s)-1)='\0';
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    in=s;
       }    while ( *in != '\0'){
       ps[i][j]=s2;      *alocc++ = *in++;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){    *alocc='\0';
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    return s;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  int nbocc(char *s, char occ)
       ps[i][j]=s2;  {
     }    int i,j=0;
   }    int lg=20;
     /*ps[3][2]=1;*/    i=0;
     lg=strlen(s);
   for(i=1; i<= nlstate; i++){    for(i=0; i<= lg; i++) {
      s1=0;    if  (s[i] == occ ) j++;
     for(j=1; j<i; j++)    }
       s1+=exp(ps[i][j]);    return j;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  /* void cutv(char *u,char *v, char*t, char occ) */
     for(j=1; j<i; j++)  /* { */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*      gives u="abcdef2ghi" and v="j" *\/ */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*   int i,lg,j,p=0; */
   } /* end i */  /*   i=0; */
   /*   lg=strlen(t); */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*   for(j=0; j<=lg-1; j++) { */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       ps[ii][jj]=0;  /*   } */
       ps[ii][ii]=1;  
     }  /*   for(j=0; j<p; j++) { */
   }  /*     (u[j] = t[j]); */
   /*   } */
   /*      u[p]='\0'; */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*    for(j=0; j<= lg; j++) { */
      printf("%lf ",ps[ii][jj]);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
    }  /*   } */
     printf("\n ");  /* } */
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  /********************** nrerror ********************/
 /*  
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  void nrerror(char error_text[])
   goto end;*/  {
     return ps;    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /**************** Product of 2 matrices ******************/  }
   /*********************** vector *******************/
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double *vector(int nl, int nh)
 {  {
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double *v;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* in, b, out are matrice of pointers which should have been initialized    if (!v) nrerror("allocation failure in vector");
      before: only the contents of out is modified. The function returns    return v-nl+NR_END;
      a pointer to pointers identical to out */  }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /************************ free vector ******************/
     for(k=ncolol; k<=ncoloh; k++)  void free_vector(double*v, int nl, int nh)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  {
         out[i][k] +=in[i][j]*b[j][k];    free((FREE_ARG)(v+nl-NR_END));
   }
   return out;  
 }  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   {
 /************* Higher Matrix Product ***************/    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    if (!v) nrerror("allocation failure in ivector");
 {    return v-nl+NR_END;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /******************free ivector **************************/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  void free_ivector(int *v, long nl, long nh)
      (typically every 2 years instead of every month which is too big).  {
      Model is determined by parameters x and covariates have to be    free((FREE_ARG)(v+nl-NR_END));
      included manually here.  }
   
      */  /************************lvector *******************************/
   long *lvector(long nl,long nh)
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    long *v;
   double **newm;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
   /* Hstepm could be zero and should return the unit matrix */    return v-nl+NR_END;
   for (i=1;i<=nlstate+ndeath;i++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /******************free lvector **************************/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  void free_lvector(long *v, long nl, long nh)
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    free((FREE_ARG)(v+nl-NR_END));
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /******************* imatrix *******************************/
       /* Covariates have to be included here again */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       cov[1]=1.;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  { 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       for (k=1; k<=cptcovage;k++)    int **m; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    
       for (k=1; k<=cptcovprod;k++)    /* allocate pointers to rows */ 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    m -= nrl; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    /* allocate rows and set pointers to them */ 
       savm=oldm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       oldm=newm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
     for(i=1; i<=nlstate+ndeath; i++)    m[nrl] -= ncl; 
       for(j=1;j<=nlstate+ndeath;j++) {    
         po[i][j][h]=newm[i][j];    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    
          */    /* return pointer to array of pointers to rows */ 
       }    return m; 
   } /* end h */  } 
   return po;  
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
 /*************** log-likelihood *************/        long nch,ncl,nrh,nrl; 
 double func( double *x)       /* free an int matrix allocated by imatrix() */ 
 {  { 
   int i, ii, j, k, mi, d, kk;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    free((FREE_ARG) (m+nrl-NR_END)); 
   double **out;  } 
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  /******************* matrix *******************************/
   long ipmx;  double **matrix(long nrl, long nrh, long ncl, long nch)
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    double **m;
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   */    if (!m) nrerror("allocation failure 1 in matrix()");
   cov[1]=1.;    m += NR_END;
     m -= nrl;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     for(mi=1; mi<= wav[i]-1; mi++){    m[nrl] += NR_END;
       for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl] -= ncl;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         newm=savm;    return m;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         for (kk=1; kk<=cptcovage;kk++) {  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         }     */
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************************free matrix ************************/
         savm=oldm;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         oldm=newm;  {
            free((FREE_ARG)(m[nrl]+ncl-NR_END));
            free((FREE_ARG)(m+nrl-NR_END));
       } /* end mult */  }
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /******************* ma3x *******************************/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       ipmx +=1;  {
       sw += weight[i];    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double ***m;
     } /* end of wave */  
   } /* end of individual */    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    m += NR_END;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    m -= nrl;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
     m[nrl] -= ncl;
 /*********** Maximum Likelihood Estimation ***************/  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   int i,j, iter;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double **xi,*delti;    m[nrl][ncl] += NR_END;
   double fret;    m[nrl][ncl] -= nll;
   xi=matrix(1,npar,1,npar);    for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=npar;i++)      m[nrl][j]=m[nrl][j-1]+nlay;
     for (j=1;j<=npar;j++)    
       xi[i][j]=(i==j ? 1.0 : 0.0);    for (i=nrl+1; i<=nrh; i++) {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   powell(p,xi,npar,ftol,&iter,&fret,func);      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return m; 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double  **a,**y,*x,pd;  {
   double **hess;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   int i, j,jk;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int *indx;    free((FREE_ARG)(m+nrl-NR_END));
   }
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);  /*************** function subdirf ***********/
   void lubksb(double **a, int npar, int *indx, double b[]) ;  char *subdirf(char fileres[])
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     /* Caution optionfilefiname is hidden */
   hess=matrix(1,npar,1,npar);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
   printf("\nCalculation of the hessian matrix. Wait...\n");    strcat(tmpout,fileres);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    return tmpout;
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);  /*************** function subdirf2 ***********/
     hess[i][i]=hessii(p,ftolhess,i,delti);  char *subdirf2(char fileres[], char *preop)
     /*printf(" %f ",p[i]);*/  {
     /*printf(" %lf ",hess[i][i]);*/    
   }    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++) {    strcat(tmpout,"/");
     for (j=1;j<=npar;j++)  {    strcat(tmpout,preop);
       if (j>i) {    strcat(tmpout,fileres);
         printf(".%d%d",i,j);fflush(stdout);    return tmpout;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  }
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      /*************** function subdirf3 ***********/
         /*printf(" %lf ",hess[i][j]);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
       }  {
     }    
   }    /* Caution optionfilefiname is hidden */
   printf("\n");    strcpy(tmpout,optionfilefiname);
   fprintf(ficlog,"\n");    strcat(tmpout,"/");
     strcat(tmpout,preop);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    strcat(tmpout,preop2);
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    strcat(tmpout,fileres);
      return tmpout;
   a=matrix(1,npar,1,npar);  }
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /***************** f1dim *************************/
   indx=ivector(1,npar);  extern int ncom; 
   for (i=1;i<=npar;i++)  extern double *pcom,*xicom;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  extern double (*nrfunc)(double []); 
   ludcmp(a,npar,indx,&pd);   
   double f1dim(double x) 
   for (j=1;j<=npar;j++) {  { 
     for (i=1;i<=npar;i++) x[i]=0;    int j; 
     x[j]=1;    double f;
     lubksb(a,npar,indx,x);    double *xt; 
     for (i=1;i<=npar;i++){   
       matcov[i][j]=x[i];    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   }    f=(*nrfunc)(xt); 
     free_vector(xt,1,ncom); 
   printf("\n#Hessian matrix#\n");    return f; 
   fprintf(ficlog,"\n#Hessian matrix#\n");  } 
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /*****************brent *************************/
       printf("%.3e ",hess[i][j]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       fprintf(ficlog,"%.3e ",hess[i][j]);  { 
     }    int iter; 
     printf("\n");    double a,b,d,etemp;
     fprintf(ficlog,"\n");    double fu,fv,fw,fx;
   }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   /* Recompute Inverse */    double e=0.0; 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    a=(ax < cx ? ax : cx); 
   ludcmp(a,npar,indx,&pd);    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
   /*  printf("\n#Hessian matrix recomputed#\n");    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
   for (j=1;j<=npar;j++) {      xm=0.5*(a+b); 
     for (i=1;i<=npar;i++) x[i]=0;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     x[j]=1;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     lubksb(a,npar,indx,x);      printf(".");fflush(stdout);
     for (i=1;i<=npar;i++){      fprintf(ficlog,".");fflush(ficlog);
       y[i][j]=x[i];  #ifdef DEBUG
       printf("%.3e ",y[i][j]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"%.3e ",y[i][j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     printf("\n");  #endif
     fprintf(ficlog,"\n");      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   }        *xmin=x; 
   */        return fx; 
       } 
   free_matrix(a,1,npar,1,npar);      ftemp=fu;
   free_matrix(y,1,npar,1,npar);      if (fabs(e) > tol1) { 
   free_vector(x,1,npar);        r=(x-w)*(fx-fv); 
   free_ivector(indx,1,npar);        q=(x-v)*(fx-fw); 
   free_matrix(hess,1,npar,1,npar);        p=(x-v)*q-(x-w)*r; 
         q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 }        q=fabs(q); 
         etemp=e; 
 /*************** hessian matrix ****************/        e=d; 
 double hessii( double x[], double delta, int theta, double delti[])        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   int i;        else { 
   int l=1, lmax=20;          d=p/q; 
   double k1,k2;          u=x+d; 
   double p2[NPARMAX+1];          if (u-a < tol2 || b-u < tol2) 
   double res;            d=SIGN(tol1,xm-x); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        } 
   double fx;      } else { 
   int k=0,kmax=10;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double l1;      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   fx=func(x);      fu=(*f)(u); 
   for (i=1;i<=npar;i++) p2[i]=x[i];      if (fu <= fx) { 
   for(l=0 ; l <=lmax; l++){        if (u >= x) a=x; else b=x; 
     l1=pow(10,l);        SHFT(v,w,x,u) 
     delts=delt;          SHFT(fv,fw,fx,fu) 
     for(k=1 ; k <kmax; k=k+1){          } else { 
       delt = delta*(l1*k);            if (u < x) a=u; else b=u; 
       p2[theta]=x[theta] +delt;            if (fu <= fw || w == x) { 
       k1=func(p2)-fx;              v=w; 
       p2[theta]=x[theta]-delt;              w=u; 
       k2=func(p2)-fx;              fv=fw; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */              fw=fu; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            } else if (fu <= fv || v == x || v == w) { 
                    v=u; 
 #ifdef DEBUG              fv=fu; 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            } 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          } 
 #endif    } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    nrerror("Too many iterations in brent"); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    *xmin=x; 
         k=kmax;    return fx; 
       }  } 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /****************** mnbrak ***********************/
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         delts=delt;              double (*func)(double)) 
       }  { 
     }    double ulim,u,r,q, dum;
   }    double fu; 
   delti[theta]=delts;   
   return res;    *fa=(*func)(*ax); 
      *fb=(*func)(*bx); 
 }    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
 double hessij( double x[], double delti[], int thetai,int thetaj)        SHFT(dum,*fb,*fa,dum) 
 {        } 
   int i;    *cx=(*bx)+GOLD*(*bx-*ax); 
   int l=1, l1, lmax=20;    *fc=(*func)(*cx); 
   double k1,k2,k3,k4,res,fx;    while (*fb > *fc) { 
   double p2[NPARMAX+1];      r=(*bx-*ax)*(*fb-*fc); 
   int k;      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   fx=func(x);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for (k=1; k<=2; k++) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for (i=1;i<=npar;i++) p2[i]=x[i];      if ((*bx-u)*(u-*cx) > 0.0) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        fu=(*func)(u); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     k1=func(p2)-fx;        fu=(*func)(u); 
          if (fu < *fc) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            SHFT(*fb,*fc,fu,(*func)(u)) 
     k2=func(p2)-fx;            } 
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;        u=ulim; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fu=(*func)(u); 
     k3=func(p2)-fx;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        fu=(*func)(u); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      } 
     k4=func(p2)-fx;      SHFT(*ax,*bx,*cx,u) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        SHFT(*fa,*fb,*fc,fu) 
 #ifdef DEBUG        } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  } 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /*************** linmin ************************/
   }  
   return res;  int ncom; 
 }  double *pcom,*xicom;
   double (*nrfunc)(double []); 
 /************** Inverse of matrix **************/   
 void ludcmp(double **a, int n, int *indx, double *d)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 {  { 
   int i,imax,j,k;    double brent(double ax, double bx, double cx, 
   double big,dum,sum,temp;                 double (*f)(double), double tol, double *xmin); 
   double *vv;    double f1dim(double x); 
      void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   vv=vector(1,n);                double *fc, double (*func)(double)); 
   *d=1.0;    int j; 
   for (i=1;i<=n;i++) {    double xx,xmin,bx,ax; 
     big=0.0;    double fx,fb,fa;
     for (j=1;j<=n;j++)   
       if ((temp=fabs(a[i][j])) > big) big=temp;    ncom=n; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    pcom=vector(1,n); 
     vv[i]=1.0/big;    xicom=vector(1,n); 
   }    nrfunc=func; 
   for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
     for (i=1;i<j;i++) {      pcom[j]=p[j]; 
       sum=a[i][j];      xicom[j]=xi[j]; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    } 
       a[i][j]=sum;    ax=0.0; 
     }    xx=1.0; 
     big=0.0;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (i=j;i<=n;i++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       sum=a[i][j];  #ifdef DEBUG
       for (k=1;k<j;k++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         sum -= a[i][k]*a[k][j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       a[i][j]=sum;  #endif
       if ( (dum=vv[i]*fabs(sum)) >= big) {    for (j=1;j<=n;j++) { 
         big=dum;      xi[j] *= xmin; 
         imax=i;      p[j] += xi[j]; 
       }    } 
     }    free_vector(xicom,1,n); 
     if (j != imax) {    free_vector(pcom,1,n); 
       for (k=1;k<=n;k++) {  } 
         dum=a[imax][k];  
         a[imax][k]=a[j][k];  char *asc_diff_time(long time_sec, char ascdiff[])
         a[j][k]=dum;  {
       }    long sec_left, days, hours, minutes;
       *d = -(*d);    days = (time_sec) / (60*60*24);
       vv[imax]=vv[j];    sec_left = (time_sec) % (60*60*24);
     }    hours = (sec_left) / (60*60) ;
     indx[j]=imax;    sec_left = (sec_left) %(60*60);
     if (a[j][j] == 0.0) a[j][j]=TINY;    minutes = (sec_left) /60;
     if (j != n) {    sec_left = (sec_left) % (60);
       dum=1.0/(a[j][j]);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    return ascdiff;
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /*************** powell ************************/
 ;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
 void lubksb(double **a, int n, int *indx, double b[])    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   int i,ii=0,ip,j;    int i,ibig,j; 
   double sum;    double del,t,*pt,*ptt,*xit;
      double fp,fptt;
   for (i=1;i<=n;i++) {    double *xits;
     ip=indx[i];    int niterf, itmp;
     sum=b[ip];  
     b[ip]=b[i];    pt=vector(1,n); 
     if (ii)    ptt=vector(1,n); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    xit=vector(1,n); 
     else if (sum) ii=i;    xits=vector(1,n); 
     b[i]=sum;    *fret=(*func)(p); 
   }    for (j=1;j<=n;j++) pt[j]=p[j]; 
   for (i=n;i>=1;i--) {    for (*iter=1;;++(*iter)) { 
     sum=b[i];      fp=(*fret); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      ibig=0; 
     b[i]=sum/a[i][i];      del=0.0; 
   }      last_time=curr_time;
 }      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 /************ Frequencies ********************/      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 {  /* Some frequencies */     for (i=1;i<=n;i++) {
          printf(" %d %.12f",i, p[i]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        fprintf(ficlog," %d %.12lf",i, p[i]);
   int first;        fprintf(ficrespow," %.12lf", p[i]);
   double ***freq; /* Frequencies */      }
   double *pp;      printf("\n");
   double pos, k2, dateintsum=0,k2cpt=0;      fprintf(ficlog,"\n");
   FILE *ficresp;      fprintf(ficrespow,"\n");fflush(ficrespow);
   char fileresp[FILENAMELENGTH];      if(*iter <=3){
          tm = *localtime(&curr_time.tv_sec);
   pp=vector(1,nlstate);        strcpy(strcurr,asctime(&tm));
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*       asctime_r(&tm,strcurr); */
   strcpy(fileresp,"p");        forecast_time=curr_time; 
   strcat(fileresp,fileres);        itmp = strlen(strcurr);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     printf("Problem with prevalence resultfile: %s\n", fileresp);          strcurr[itmp-1]='\0';
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     exit(0);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   }        for(niterf=10;niterf<=30;niterf+=10){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   j1=0;          tmf = *localtime(&forecast_time.tv_sec);
    /*      asctime_r(&tmf,strfor); */
   j=cptcoveff;          strcpy(strfor,asctime(&tmf));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   first=1;          strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   for(k1=1; k1<=j;k1++){          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(i1=1; i1<=ncodemax[k1];i1++){        }
       j1++;      }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for (i=1;i<=n;i++) { 
         scanf("%d", i);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       for (i=-1; i<=nlstate+ndeath; i++)          fptt=(*fret); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUG
           for(m=agemin; m <= agemax+3; m++)        printf("fret=%lf \n",*fret);
             freq[i][jk][m]=0;        fprintf(ficlog,"fret=%lf \n",*fret);
        #endif
       dateintsum=0;        printf("%d",i);fflush(stdout);
       k2cpt=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
       for (i=1; i<=imx; i++) {        linmin(p,xit,n,fret,func); 
         bool=1;        if (fabs(fptt-(*fret)) > del) { 
         if  (cptcovn>0) {          del=fabs(fptt-(*fret)); 
           for (z1=1; z1<=cptcoveff; z1++)          ibig=i; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        } 
               bool=0;  #ifdef DEBUG
         }        printf("%d %.12e",i,(*fret));
         if (bool==1) {        fprintf(ficlog,"%d %.12e",i,(*fret));
           for(m=firstpass; m<=lastpass; m++){        for (j=1;j<=n;j++) {
             k2=anint[m][i]+(mint[m][i]/12.);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          printf(" x(%d)=%.12e",j,xit[j]);
               if(agev[m][i]==0) agev[m][i]=agemax+1;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        }
               if (m<lastpass) {        for(j=1;j<=n;j++) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          printf(" p=%.12e",p[j]);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          fprintf(ficlog," p=%.12e",p[j]);
               }        }
                      printf("\n");
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        fprintf(ficlog,"\n");
                 dateintsum=dateintsum+k2;  #endif
                 k2cpt++;      } 
               }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             }  #ifdef DEBUG
           }        int k[2],l;
         }        k[0]=1;
       }        k[1]=-1;
                printf("Max: %.12e",(*func)(p));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
       if  (cptcovn>0) {          printf(" %.12e",p[j]);
         fprintf(ficresp, "\n#********** Variable ");          fprintf(ficlog," %.12e",p[j]);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresp, "**********\n#");        printf("\n");
       }        fprintf(ficlog,"\n");
       for(i=1; i<=nlstate;i++)        for(l=0;l<=1;l++) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          for (j=1;j<=n;j++) {
       fprintf(ficresp, "\n");            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                  printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         if(i==(int)agemax+3){          }
           fprintf(ficlog,"Total");          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }else{          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           if(first==1){        }
             first=0;  #endif
             printf("See log file for details...\n");  
           }  
           fprintf(ficlog,"Age %d", i);        free_vector(xit,1,n); 
         }        free_vector(xits,1,n); 
         for(jk=1; jk <=nlstate ; jk++){        free_vector(ptt,1,n); 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        free_vector(pt,1,n); 
             pp[jk] += freq[jk][m][i];        return; 
         }      } 
         for(jk=1; jk <=nlstate ; jk++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           for(m=-1, pos=0; m <=0 ; m++)      for (j=1;j<=n;j++) { 
             pos += freq[jk][m][i];        ptt[j]=2.0*p[j]-pt[j]; 
           if(pp[jk]>=1.e-10){        xit[j]=p[j]-pt[j]; 
             if(first==1){        pt[j]=p[j]; 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      } 
             }      fptt=(*func)(ptt); 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      if (fptt < fp) { 
           }else{        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             if(first==1)        if (t < 0.0) { 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          linmin(p,xit,n,fret,func); 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          for (j=1;j<=n;j++) { 
           }            xi[j][ibig]=xi[j][n]; 
         }            xi[j][n]=xit[j]; 
           }
         for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             pp[jk] += freq[jk][m][i];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         }          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
         for(jk=1,pos=0; jk <=nlstate ; jk++)            fprintf(ficlog," %.12e",xit[j]);
           pos += pp[jk];          }
         for(jk=1; jk <=nlstate ; jk++){          printf("\n");
           if(pos>=1.e-5){          fprintf(ficlog,"\n");
             if(first==1)  #endif
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      } 
           }else{    } 
             if(first==1)  } 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /**** Prevalence limit (stable or period prevalence)  ****************/
           }  
           if( i <= (int) agemax){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             if(pos>=1.e-5){  {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
               probs[i][jk][j1]= pp[jk]/pos;       matrix by transitions matrix until convergence is reached */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }    int i, ii,j,k;
             else    double min, max, maxmin, maxmax,sumnew=0.;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    /* double **matprod2(); */ /* test */
           }    double **out, cov[NCOVMAX+1], **pmij();
         }    double **newm;
            double agefin, delaymax=50 ; /* Max number of years to converge */
         for(jk=-1; jk <=nlstate+ndeath; jk++)  
           for(m=-1; m <=nlstate+ndeath; m++)    for (ii=1;ii<=nlstate+ndeath;ii++)
             if(freq[jk][m][i] !=0 ) {      for (j=1;j<=nlstate+ndeath;j++){
             if(first==1)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      }
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  
             }     cov[1]=1.;
         if(i <= (int) agemax)   
           fprintf(ficresp,"\n");   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if(first==1)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           printf("Others in log...\n");      newm=savm;
         fprintf(ficlog,"\n");      /* Covariates have to be included here again */
       }      cov[2]=agefin;
     }      
   }      for (k=1; k<=cptcovn;k++) {
   dateintmean=dateintsum/k2cpt;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
          /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   fclose(ficresp);      }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   free_vector(pp,1,nlstate);      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
        /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   /* End of Freq */      
 }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /************ Prevalence ********************/      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 {  /* Some frequencies */      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      
   double ***freq; /* Frequencies */      savm=oldm;
   double *pp;      oldm=newm;
   double pos, k2;      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   pp=vector(1,nlstate);        min=1.;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        max=0.;
          for(i=1; i<=nlstate; i++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          sumnew=0;
   j1=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   j=cptcoveff;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   for(k1=1; k1<=j;k1++){        }
     for(i1=1; i1<=ncodemax[k1];i1++){        maxmin=max-min;
       j1++;        maxmax=FMAX(maxmax,maxmin);
            }
       for (i=-1; i<=nlstate+ndeath; i++)        if(maxmax < ftolpl){
         for (jk=-1; jk<=nlstate+ndeath; jk++)          return prlim;
           for(m=agemin; m <= agemax+3; m++)      }
             freq[i][jk][m]=0;    }
        }
       for (i=1; i<=imx; i++) {  
         bool=1;  /*************** transition probabilities ***************/ 
         if  (cptcovn>0) {  
           for (z1=1; z1<=cptcoveff; z1++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  {
               bool=0;    /* According to parameters values stored in x and the covariate's values stored in cov,
         }       computes the probability to be observed in state j being in state i by appying the
         if (bool==1) {       model to the ncovmodel covariates (including constant and age).
           for(m=firstpass; m<=lastpass; m++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             k2=anint[m][i]+(mint[m][i]/12.);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       ncth covariate in the global vector x is given by the formula:
               if(agev[m][i]==0) agev[m][i]=agemax+1;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
               if(agev[m][i]==1) agev[m][i]=agemax+2;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
               if (m<lastpass) {       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                 if (calagedate>0)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];       Outputs ps[i][j] the probability to be observed in j being in j according to
                 else       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];    double s1, lnpijopii;
               }    /*double t34;*/
             }    int i,j,j1, nc, ii, jj;
           }  
         }      for(i=1; i<= nlstate; i++){
       }        for(j=1; j<i;j++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         for(jk=1; jk <=nlstate ; jk++){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
             pp[jk] += freq[jk][m][i];  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }          }
         for(jk=1; jk <=nlstate ; jk++){          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           for(m=-1, pos=0; m <=0 ; m++)  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             pos += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
                  for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         for(jk=1; jk <=nlstate ; jk++){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             pp[jk] += freq[jk][m][i];  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         }          }
                  ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        }
              }
         for(jk=1; jk <=nlstate ; jk++){          
           if( i <= (int) agemax){      for(i=1; i<= nlstate; i++){
             if(pos>=1.e-5){        s1=0;
               probs[i][jk][j1]= pp[jk]/pos;        for(j=1; j<i; j++){
             }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }/* end jk */        }
       }/* end i */        for(j=i+1; j<=nlstate+ndeath; j++){
     } /* end i1 */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   } /* end k1 */          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
          /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        ps[i][i]=1./(s1+1.);
   free_vector(pp,1,nlstate);        /* Computing other pijs */
          for(j=1; j<i; j++)
 }  /* End of Freq */          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
 /************* Waves Concatenation ***************/          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      } /* end i */
 {      
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
      Death is a valid wave (if date is known).        for(jj=1; jj<= nlstate+ndeath; jj++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          ps[ii][jj]=0;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          ps[ii][ii]=1;
      and mw[mi+1][i]. dh depends on stepm.        }
      */      }
       
   int i, mi, m;      
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
      double sum=0., jmean=0.;*/      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int first;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   int j, k=0,jk, ju, jl;      /*   } */
   double sum=0.;      /*   printf("\n "); */
   first=0;      /* } */
   jmin=1e+5;      /* printf("\n ");printf("%lf ",cov[2]);*/
   jmax=-1;      /*
   jmean=0.;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   for(i=1; i<=imx; i++){        goto end;*/
     mi=0;      return ps;
     m=firstpass;  }
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)  /**************** Product of 2 matrices ******************/
         mw[++mi][i]=m;  
       if(m >=lastpass)  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         break;  {
       else    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         m++;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     }/* end while */    /* in, b, out are matrice of pointers which should have been initialized 
     if (s[m][i] > nlstate){       before: only the contents of out is modified. The function returns
       mi++;     /* Death is another wave */       a pointer to pointers identical to out */
       /* if(mi==0)  never been interviewed correctly before death */    int i, j, k;
          /* Only death is a correct wave */    for(i=nrl; i<= nrh; i++)
       mw[mi][i]=m;      for(k=ncolol; k<=ncoloh; k++){
     }        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
     wav[i]=mi;          out[i][k] +=in[i][j]*b[j][k];
     if(mi==0){      }
       if(first==0){    return out;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);  }
         first=1;  
       }  
       if(first==1){  /************* Higher Matrix Product ***************/
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     } /* end mi==0 */  {
   }    /* Computes the transition matrix starting at age 'age' over 
        'nhstepm*hstepm*stepm' months (i.e. until
   for(i=1; i<=imx; i++){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     for(mi=1; mi<wav[i];mi++){       nhstepm*hstepm matrices. 
       if (stepm <=0)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         dh[mi][i]=1;       (typically every 2 years instead of every month which is too big 
       else{       for the memory).
         if (s[mw[mi+1][i]][i] > nlstate) {       Model is determined by parameters x and covariates have to be 
           if (agedc[i] < 2*AGESUP) {       included manually here. 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */       */
           k=k+1;  
           if (j >= jmax) jmax=j;    int i, j, d, h, k;
           if (j <= jmin) jmin=j;    double **out, cov[NCOVMAX+1];
           sum=sum+j;    double **newm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }    /* Hstepm could be zero and should return the unit matrix */
         }    for (i=1;i<=nlstate+ndeath;i++)
         else{      for (j=1;j<=nlstate+ndeath;j++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        oldm[i][j]=(i==j ? 1.0 : 0.0);
           k=k+1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
           if (j >= jmax) jmax=j;      }
           else if (j <= jmin)jmin=j;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    for(h=1; h <=nhstepm; h++){
           sum=sum+j;      for(d=1; d <=hstepm; d++){
         }        newm=savm;
         jk= j/stepm;        /* Covariates have to be included here again */
         jl= j -jk*stepm;        cov[1]=1.;
         ju= j -(jk+1)*stepm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         if(jl <= -ju)        for (k=1; k<=cptcovn;k++) 
           dh[mi][i]=jk;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         else        for (k=1; k<=cptcovage;k++)
           dh[mi][i]=jk+1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if(dh[mi][i]==0)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           dh[mi][i]=1; /* At least one step */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }  
     }  
   }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   jmean=sum/k;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
  }        savm=oldm;
         oldm=newm;
 /*********** Tricode ****************************/      }
 void tricode(int *Tvar, int **nbcode, int imx)      for(i=1; i<=nlstate+ndeath; i++)
 {        for(j=1;j<=nlstate+ndeath;j++) {
   int Ndum[20],ij=1, k, j, i;          po[i][j][h]=newm[i][j];
   int cptcode=0;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   cptcoveff=0;        }
        /*printf("h=%d ",h);*/
   for (k=0; k<19; k++) Ndum[k]=0;    } /* end h */
   for (k=1; k<=7; k++) ncodemax[k]=0;  /*     printf("\n H=%d \n",h); */
     return po;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  }
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;  /*************** log-likelihood *************/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  double func( double *x)
       if (ij > cptcode) cptcode=ij;  {
     }    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for (i=0; i<=cptcode; i++) {    double **out;
       if(Ndum[i]!=0) ncodemax[j]++;    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     ij=1;    int s1, s2;
     double bbh, survp;
     long ipmx;
     for (i=1; i<=ncodemax[j]; i++) {    /*extern weight */
       for (k=0; k<=19; k++) {    /* We are differentiating ll according to initial status */
         if (Ndum[k] != 0) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           nbcode[Tvar[j]][ij]=k;    /*for(i=1;i<imx;i++) 
                printf(" %d\n",s[4][i]);
           ij++;    */
         }    cov[1]=1.;
         if (ij > ncodemax[j]) break;  
       }      for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
   }      if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
  for (k=0; k<19; k++) Ndum[k]=0;        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
  for (i=1; i<=ncovmodel-2; i++) {           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
    ij=Tvar[i];           to be observed in j being in i according to the model.
    Ndum[ij]++;         */
  }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           cov[2+k]=covar[Tvar[k]][i];
  ij=1;        }
  for (i=1; i<=10; i++) {        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
    if((Ndum[i]!=0) && (i<=ncovcol)){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
      Tvaraff[ij]=i;           has been calculated etc */
      ij++;        for(mi=1; mi<= wav[i]-1; mi++){
    }          for (ii=1;ii<=nlstate+ndeath;ii++)
  }            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  cptcoveff=ij-1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 /*********** Health Expectancies ****************/            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
 {            }
   /* Health expectancies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double age, agelim, hf;            savm=oldm;
   double ***p3mat,***varhe;            oldm=newm;
   double **dnewm,**doldm;          } /* end mult */
   double *xp;        
   double **gp, **gm;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double ***gradg, ***trgradg;          /* But now since version 0.9 we anticipate for bias at large stepm.
   int theta;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);           * the nearest (and in case of equal distance, to the lowest) interval but now
   xp=vector(1,npar);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   dnewm=matrix(1,nlstate*2,1,npar);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   doldm=matrix(1,nlstate*2,1,nlstate*2);           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   fprintf(ficreseij,"# Health expectancies\n");           * -stepm/2 to stepm/2 .
   fprintf(ficreseij,"# Age");           * For stepm=1 the results are the same as for previous versions of Imach.
   for(i=1; i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
     for(j=1; j<=nlstate;j++)           */
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          s1=s[mw[mi][i]][i];
   fprintf(ficreseij,"\n");          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   if(estepm < stepm){          /* bias bh is positive if real duration
     printf ("Problem %d lower than %d\n",estepm, stepm);           * is higher than the multiple of stepm and negative otherwise.
   }           */
   else  hstepm=estepm;            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /* We compute the life expectancy from trapezoids spaced every estepm months          if( s2 > nlstate){ 
    * This is mainly to measure the difference between two models: for example            /* i.e. if s2 is a death state and if the date of death is known 
    * if stepm=24 months pijx are given only every 2 years and by summing them               then the contribution to the likelihood is the probability to 
    * we are calculating an estimate of the Life Expectancy assuming a linear               die between last step unit time and current  step unit time, 
    * progression inbetween and thus overestimating or underestimating according               which is also equal to probability to die before dh 
    * to the curvature of the survival function. If, for the same date, we               minus probability to die before dh-stepm . 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months               In version up to 0.92 likelihood was computed
    * to compare the new estimate of Life expectancy with the same linear          as if date of death was unknown. Death was treated as any other
    * hypothesis. A more precise result, taking into account a more precise          health state: the date of the interview describes the actual state
    * curvature will be obtained if estepm is as small as stepm. */          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
   /* For example we decided to compute the life expectancy with the smallest unit */          (healthy, disable or death) and IMaCh was corrected; but when we
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          introduced the exact date of death then we should have modified
      nhstepm is the number of hstepm from age to agelim          the contribution of an exact death to the likelihood. This new
      nstepm is the number of stepm from age to agelin.          contribution is smaller and very dependent of the step unit
      Look at hpijx to understand the reason of that which relies in memory size          stepm. It is no more the probability to die between last interview
      and note for a fixed period like estepm months */          and month of death but the probability to survive from last
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          interview up to one month before death multiplied by the
      survival function given by stepm (the optimization length). Unfortunately it          probability to die within a month. Thanks to Chris
      means that if the survival funtion is printed only each two years of age and if          Jackson for correcting this bug.  Former versions increased
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          mortality artificially. The bad side is that we add another loop
      results. So we changed our mind and took the option of the best precision.          which slows down the processing. The difference can be up to 10%
   */          lower mortality.
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            */
             lli=log(out[s1][s2] - savm[s1][s2]);
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     /* nhstepm age range expressed in number of stepm */          } else if  (s2==-2) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            for (j=1,survp=0. ; j<=nlstate; j++) 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* if (stepm >= YEARM) hstepm=1;*/            /*survp += out[s1][j]; */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            lli= log(survp);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          
     gp=matrix(0,nhstepm,1,nlstate*2);          else if  (s2==-4) { 
     gm=matrix(0,nhstepm,1,nlstate*2);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            lli= log(survp); 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
            else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
     /* Computing Variances of health expectancies */          } 
           
      for(theta=1; theta <=npar; theta++){          else{
       for(i=1; i<=npar; i++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       }          } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
       cptj=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(j=1; j<= nlstate; j++){          ipmx +=1;
         for(i=1; i<=nlstate; i++){          sw += weight[i];
           cptj=cptj+1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        } /* end of wave */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      } /* end of individual */
           }    }  else if(mle==2){
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
              for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++)            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                savm[ii][j]=(ii==j ? 1.0 : 0.0);
                  }
       cptj=0;          for(d=0; d<=dh[mi][i]; d++){
       for(j=1; j<= nlstate; j++){            newm=savm;
         for(i=1;i<=nlstate;i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           cptj=cptj+1;            for (kk=1; kk<=cptcovage;kk++) {
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            }
           }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       for(j=1; j<= nlstate*2; j++)            oldm=newm;
         for(h=0; h<=nhstepm-1; h++){          } /* end mult */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        
         }          s1=s[mw[mi][i]][i];
      }          s2=s[mw[mi+1][i]][i];
              bbh=(double)bh[mi][i]/(double)stepm; 
 /* End theta */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      for(h=0; h<=nhstepm-1; h++)        } /* end of wave */
       for(j=1; j<=nlstate*2;j++)      } /* end of individual */
         for(theta=1; theta <=npar; theta++)    }  else if(mle==3){  /* exponential inter-extrapolation */
           trgradg[h][j][theta]=gradg[h][theta][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
      for(i=1;i<=nlstate*2;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1;j<=nlstate*2;j++)            for (j=1;j<=nlstate+ndeath;j++){
         varhe[i][j][(int)age] =0.;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
      printf("%d|",(int)age);fflush(stdout);            }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          for(d=0; d<dh[mi][i]; d++){
      for(h=0;h<=nhstepm-1;h++){            newm=savm;
       for(k=0;k<=nhstepm-1;k++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            for (kk=1; kk<=cptcovage;kk++) {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=1;i<=nlstate*2;i++)            }
           for(j=1;j<=nlstate*2;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
     /* Computing expectancies */          } /* end mult */
     for(i=1; i<=nlstate;i++)        
       for(j=1; j<=nlstate;j++)          s1=s[mw[mi][i]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          s2=s[mw[mi+1][i]][i];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          bbh=(double)bh[mi][i]/(double)stepm; 
                    lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          ipmx +=1;
           sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     fprintf(ficreseij,"%3.0f",age );      } /* end of individual */
     cptj=0;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         cptj++;        for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficreseij,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_matrix(gm,0,nhstepm,1,nlstate*2);            }
     free_matrix(gp,0,nhstepm,1,nlstate*2);          for(d=0; d<dh[mi][i]; d++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            newm=savm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("\n");            }
   fprintf(ficlog,"\n");          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(xp,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(dnewm,1,nlstate*2,1,npar);            savm=oldm;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            oldm=newm;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          } /* end mult */
 }        
           s1=s[mw[mi][i]][i];
 /************ Variance ******************/          s2=s[mw[mi+1][i]][i];
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          if( s2 > nlstate){ 
 {            lli=log(out[s1][s2] - savm[s1][s2]);
   /* Variance of health expectancies */          }else{
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   /* double **newm;*/          }
   double **dnewm,**doldm;          ipmx +=1;
   double **dnewmp,**doldmp;          sw += weight[i];
   int i, j, nhstepm, hstepm, h, nstepm ;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int k, cptcode;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double *xp;        } /* end of wave */
   double **gp, **gm;  /* for var eij */      } /* end of individual */
   double ***gradg, ***trgradg; /*for var eij */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double **gradgp, **trgradgp; /* for var p point j */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *gpp, *gmp; /* for var p point j */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        for(mi=1; mi<= wav[i]-1; mi++){
   double ***p3mat;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double age,agelim, hf;            for (j=1;j<=nlstate+ndeath;j++){
   int theta;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   char digit[4];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   char digitp[16];            }
           for(d=0; d<dh[mi][i]; d++){
   char fileresprobmorprev[FILENAMELENGTH];            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if(popbased==1)            for (kk=1; kk<=cptcovage;kk++) {
     strcpy(digitp,"-populbased-");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   else            }
     strcpy(digitp,"-stablbased-");          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(fileresprobmorprev,"prmorprev");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   sprintf(digit,"%-d",ij);            savm=oldm;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            oldm=newm;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          } /* end mult */
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        
   strcat(fileresprobmorprev,fileres);          s1=s[mw[mi][i]][i];
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          s2=s[mw[mi+1][i]][i];
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          ipmx +=1;
   }          sw += weight[i];
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        } /* end of wave */
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);      } /* end of individual */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    } /* End of if */
     fprintf(ficresprobmorprev," p.%-d SE",j);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     for(i=1; i<=nlstate;i++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }      return -l;
   fprintf(ficresprobmorprev,"\n");  }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  /*************** log-likelihood *************/
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  double funcone( double *x)
     exit(0);  {
   }    /* Same as likeli but slower because of a lot of printf and if */
   else{    int i, ii, j, k, mi, d, kk;
     fprintf(ficgp,"\n# Routine varevsij");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   }    double **out;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double lli; /* Individual log likelihood */
     printf("Problem with html file: %s\n", optionfilehtm);    double llt;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    int s1, s2;
     exit(0);    double bbh, survp;
   }    /*extern weight */
   else{    /* We are differentiating ll according to initial status */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf(" %d\n",s[4][i]);
     */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    cov[1]=1.;
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvij,"\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate,1,npar);          for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate,1,nlstate);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          }
         for(d=0; d<dh[mi][i]; d++){
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          newm=savm;
   gpp=vector(nlstate+1,nlstate+ndeath);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   gmp=vector(nlstate+1,nlstate+ndeath);          for (kk=1; kk<=cptcovage;kk++) {
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
   if(estepm < stepm){          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     printf ("Problem %d lower than %d\n",estepm, stepm);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else  hstepm=estepm;            /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   /* For example we decided to compute the life expectancy with the smallest unit */          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          savm=oldm;
      nhstepm is the number of hstepm from age to agelim          oldm=newm;
      nstepm is the number of stepm from age to agelin.        } /* end mult */
      Look at hpijx to understand the reason of that which relies in memory size        
      and note for a fixed period like k years */        s1=s[mw[mi][i]][i];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        s2=s[mw[mi+1][i]][i];
      survival function given by stepm (the optimization length). Unfortunately it        bbh=(double)bh[mi][i]/(double)stepm; 
      means that if the survival funtion is printed only each two years of age and if        /* bias is positive if real duration
      you sum them up and add 1 year (area under the trapezoids) you won't get the same         * is higher than the multiple of stepm and negative otherwise.
      results. So we changed our mind and took the option of the best precision.         */
   */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          lli=log(out[s1][s2] - savm[s1][s2]);
   agelim = AGESUP;        } else if  (s2==-2) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (j=1,survp=0. ; j<=nlstate; j++) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          lli= log(survp);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }else if (mle==1){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gp=matrix(0,nhstepm,1,nlstate);        } else if(mle==2){
     gm=matrix(0,nhstepm,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(theta=1; theta <=npar; theta++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */          lli=log(out[s1][s2]); /* Original formula */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } else{  /* mle=0 back to 1 */
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*lli=log(out[s1][s2]); */ /* Original formula */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } /* End of if */
         ipmx +=1;
       if (popbased==1) {        sw += weight[i];
         for(i=1; i<=nlstate;i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           prlim[i][i]=probs[(int)age][i][ij];        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        if(globpr){
            fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(j=1; j<= nlstate; j++){   %11.6f %11.6f %11.6f ", \
         for(h=0; h<=nhstepm; h++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         }            llt +=ll[k]*gipmx/gsw;
       }            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       /* This for computing forces of mortality (h=1)as a weighted average */          }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          fprintf(ficresilk," %10.6f\n", -llt);
         for(i=1; i<= nlstate; i++)        }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      } /* end of wave */
       }        } /* end of individual */
       /* end force of mortality */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(i=1; i<=npar; i++) /* Computes gradient */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if(globpr==0){ /* First time we count the contributions and weights */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        gipmx=ipmx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      gsw=sw;
      }
       if (popbased==1) {    return -l;
         for(i=1; i<=nlstate;i++)  }
           prlim[i][i]=probs[(int)age][i][ij];  
       }  
   /*************** function likelione ***********/
       for(j=1; j<= nlstate; j++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         for(h=0; h<=nhstepm; h++){  {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    /* This routine should help understanding what is done with 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
       }       Plotting could be done.
       /* This for computing force of mortality (h=1)as a weighted average */     */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    int k;
         for(i=1; i<= nlstate; i++)  
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    if(*globpri !=0){ /* Just counts and sums, no printings */
       }          strcpy(fileresilk,"ilk"); 
       /* end force of mortality */      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<= nlstate; j++) /* vareij */        printf("Problem with resultfile: %s\n", fileresilk);
         for(h=0; h<=nhstepm; h++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     } /* End theta */      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
     *fretone=(*funcone)(p);
     for(h=0; h<=nhstepm; h++) /* veij */    if(*globpri !=0){
       for(j=1; j<=nlstate;j++)      fclose(ficresilk);
         for(theta=1; theta <=npar; theta++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           trgradg[h][j][theta]=gradg[h][theta][j];      fflush(fichtm); 
     } 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    return;
       for(theta=1; theta <=npar; theta++)  }
         trgradgp[j][theta]=gradgp[theta][j];  
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*********** Maximum Likelihood Estimation ***************/
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         vareij[i][j][(int)age] =0.;  {
     int i,j, iter;
     for(h=0;h<=nhstepm;h++){    double **xi;
       for(k=0;k<=nhstepm;k++){    double fret;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double fretone; /* Only one call to likelihood */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /*  char filerespow[FILENAMELENGTH];*/
         for(i=1;i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
           for(j=1;j<=nlstate;j++)    for (i=1;i<=npar;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for (j=1;j<=npar;j++)
       }        xi[i][j]=(i==j ? 1.0 : 0.0);
     }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     /* pptj */    strcat(filerespow,fileres);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      printf("Problem with resultfile: %s\n", filerespow);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    }
         varppt[j][i]=doldmp[j][i];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /* end ppptj */    for (i=1;i<=nlstate;i++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        for(j=1;j<=nlstate+ndeath;j++)
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
      fprintf(ficrespow,"\n");
     if (popbased==1) {  
       for(i=1; i<=nlstate;i++)    powell(p,xi,npar,ftol,&iter,&fret,func);
         prlim[i][i]=probs[(int)age][i][ij];  
     }    free_matrix(xi,1,npar,1,npar);
        fclose(ficrespow);
     /* This for computing force of mortality (h=1)as a weighted average */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1; i<= nlstate; i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  
     }      }
     /* end force of mortality */  
   /**** Computes Hessian and covariance matrix ***/
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  {
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    double  **a,**y,*x,pd;
       for(i=1; i<=nlstate;i++){    double **hess;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    int i, j,jk;
       }    int *indx;
     }  
     fprintf(ficresprobmorprev,"\n");    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fprintf(ficresvij,"%.0f ",age );    void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(i=1; i<=nlstate;i++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(j=1; j<=nlstate;j++){    double gompertz(double p[]);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    hess=matrix(1,npar,1,npar);
       }  
     fprintf(ficresvij,"\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     free_matrix(gp,0,nhstepm,1,nlstate);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      printf("%d",i);fflush(stdout);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     
   } /* End age */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_vector(gpp,nlstate+1,nlstate+ndeath);      
   free_vector(gmp,nlstate+1,nlstate+ndeath);      /*  printf(" %f ",p[i]);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    for (i=1;i<=npar;i++) {
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      for (j=1;j<=npar;j++)  {
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);        if (j>i) { 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          printf(".%d%d",i,j);fflush(stdout);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
   free_vector(xp,1,npar);        }
   free_matrix(doldm,1,nlstate,1,nlstate);      }
   free_matrix(dnewm,1,nlstate,1,npar);    }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    printf("\n");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    fprintf(ficlog,"\n");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   fclose(ficresprobmorprev);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fclose(ficgp);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fclose(fichtm);    
     a=matrix(1,npar,1,npar);
 }    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
 /************ Variance of prevlim ******************/    indx=ivector(1,npar);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    for (i=1;i<=npar;i++)
 {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   /* Variance of prevalence limit */    ludcmp(a,npar,indx,&pd);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    for (j=1;j<=npar;j++) {
   double **dnewm,**doldm;      for (i=1;i<=npar;i++) x[i]=0;
   int i, j, nhstepm, hstepm;      x[j]=1;
   int k, cptcode;      lubksb(a,npar,indx,x);
   double *xp;      for (i=1;i<=npar;i++){ 
   double *gp, *gm;        matcov[i][j]=x[i];
   double **gradg, **trgradg;      }
   double age,agelim;    }
   int theta;  
        printf("\n#Hessian matrix#\n");
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    fprintf(ficlog,"\n#Hessian matrix#\n");
   fprintf(ficresvpl,"# Age");    for (i=1;i<=npar;i++) { 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
       fprintf(ficresvpl," %1d-%1d",i,i);        printf("%.3e ",hess[i][j]);
   fprintf(ficresvpl,"\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
   xp=vector(1,npar);      printf("\n");
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate,1,nlstate);    }
    
   hstepm=1*YEARM; /* Every year of age */    /* Recompute Inverse */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (i=1;i<=npar;i++)
   agelim = AGESUP;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    ludcmp(a,npar,indx,&pd);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
     if (stepm >= YEARM) hstepm=1;    /*  printf("\n#Hessian matrix recomputed#\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    for (j=1;j<=npar;j++) {
     gp=vector(1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     gm=vector(1,nlstate);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(theta=1; theta <=npar; theta++){      for (i=1;i<=npar;i++){ 
       for(i=1; i<=npar; i++){ /* Computes gradient */        y[i][j]=x[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      }
       for(i=1;i<=nlstate;i++)      printf("\n");
         gp[i] = prlim[i][i];      fprintf(ficlog,"\n");
        }
       for(i=1; i<=npar; i++) /* Computes gradient */    */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_matrix(a,1,npar,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
         gm[i] = prlim[i][i];    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  
   }
     trgradg =matrix(1,nlstate,1,npar);  
   /*************** hessian matrix ****************/
     for(j=1; j<=nlstate;j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       for(theta=1; theta <=npar; theta++)  {
         trgradg[j][theta]=gradg[theta][j];    int i;
     int l=1, lmax=20;
     for(i=1;i<=nlstate;i++)    double k1,k2;
       varpl[i][(int)age] =0.;    double p2[MAXPARM+1]; /* identical to x */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double res;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     for(i=1;i<=nlstate;i++)    double fx;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    int k=0,kmax=10;
     double l1;
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    fx=func(x);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficresvpl,"\n");    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     free_vector(gp,1,nlstate);      l1=pow(10,l);
     free_vector(gm,1,nlstate);      delts=delt;
     free_matrix(gradg,1,npar,1,nlstate);      for(k=1 ; k <kmax; k=k+1){
     free_matrix(trgradg,1,nlstate,1,npar);        delt = delta*(l1*k);
   } /* End age */        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   free_vector(xp,1,npar);        p2[theta]=x[theta]-delt;
   free_matrix(doldm,1,nlstate,1,npar);        k2=func(p2)-fx;
   free_matrix(dnewm,1,nlstate,1,nlstate);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 }        
   #ifdef DEBUGHESS
 /************ Variance of one-step probabilities  ******************/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {  #endif
   int i, j=0,  i1, k1, l1, t, tj;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int k2, l2, j1,  z1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int k=0,l, cptcode;          k=kmax;
   int first=1, first1;        }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   double **dnewm,**doldm;          k=kmax; l=lmax*10.;
   double *xp;        }
   double *gp, *gm;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **gradg, **trgradg;          delts=delt;
   double **mu;        }
   double age,agelim, cov[NCOVMAX];      }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    }
   int theta;    delti[theta]=delts;
   char fileresprob[FILENAMELENGTH];    return res; 
   char fileresprobcov[FILENAMELENGTH];    
   char fileresprobcor[FILENAMELENGTH];  }
   
   double ***varpij;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   strcpy(fileresprob,"prob");    int i;
   strcat(fileresprob,fileres);    int l=1, l1, lmax=20;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double k1,k2,k3,k4,res,fx;
     printf("Problem with resultfile: %s\n", fileresprob);    double p2[MAXPARM+1];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    int k;
   }  
   strcpy(fileresprobcov,"probcov");    fx=func(x);
   strcat(fileresprobcov,fileres);    for (k=1; k<=2; k++) {
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("Problem with resultfile: %s\n", fileresprobcov);      p2[thetai]=x[thetai]+delti[thetai]/k;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
   strcpy(fileresprobcor,"probcor");    
   strcat(fileresprobcor,fileres);      p2[thetai]=x[thetai]+delti[thetai]/k;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("Problem with resultfile: %s\n", fileresprobcor);      k2=func(p2)-fx;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      k3=func(p2)-fx;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      p2[thetai]=x[thetai]-delti[thetai]/k;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  #ifdef DEBUG
   fprintf(ficresprob,"# Age");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprobcov,"# Age");  #endif
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    }
   fprintf(ficresprobcov,"# Age");    return res;
   }
   
   for(i=1; i<=nlstate;i++)  /************** Inverse of matrix **************/
     for(j=1; j<=(nlstate+ndeath);j++){  void ludcmp(double **a, int n, int *indx, double *d) 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  { 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    int i,imax,j,k; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double big,dum,sum,temp; 
     }      double *vv; 
   fprintf(ficresprob,"\n");   
   fprintf(ficresprobcov,"\n");    vv=vector(1,n); 
   fprintf(ficresprobcor,"\n");    *d=1.0; 
   xp=vector(1,npar);    for (i=1;i<=n;i++) { 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      big=0.0; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      for (j=1;j<=n;j++) 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   first=1;      vv[i]=1.0/big; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    } 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    for (j=1;j<=n;j++) { 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      for (i=1;i<j;i++) { 
     exit(0);        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   else{        a[i][j]=sum; 
     fprintf(ficgp,"\n# Routine varprob");      } 
   }      big=0.0; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      for (i=j;i<=n;i++) { 
     printf("Problem with html file: %s\n", optionfilehtm);        sum=a[i][j]; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        for (k=1;k<j;k++) 
     exit(0);          sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   else{        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          big=dum; 
     fprintf(fichtm,"\n");          imax=i; 
         } 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      } 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if (j != imax) { 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        for (k=1;k<=n;k++) { 
           dum=a[imax][k]; 
   }          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
          } 
   cov[1]=1;        *d = -(*d); 
   tj=cptcoveff;        vv[imax]=vv[j]; 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      } 
   j1=0;      indx[j]=imax; 
   for(t=1; t<=tj;t++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     for(i1=1; i1<=ncodemax[t];i1++){      if (j != n) { 
       j1++;        dum=1.0/(a[j][j]); 
              for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       if  (cptcovn>0) {      } 
         fprintf(ficresprob, "\n#********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_vector(vv,1,n);  /* Doesn't work */
         fprintf(ficresprob, "**********\n#");  ;
         fprintf(ficresprobcov, "\n#********** Variable ");  } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#");  void lubksb(double **a, int n, int *indx, double b[]) 
          { 
         fprintf(ficgp, "\n#********** Variable ");    int i,ii=0,ip,j; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double sum; 
         fprintf(ficgp, "**********\n#");   
            for (i=1;i<=n;i++) { 
              ip=indx[i]; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      sum=b[ip]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      b[ip]=b[i]; 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      if (ii) 
                for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresprobcor, "\n#********** Variable ");          else if (sum) ii=i; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      b[i]=sum; 
         fprintf(ficgp, "**********\n#");        } 
       }    for (i=n;i>=1;i--) { 
            sum=b[i]; 
       for (age=bage; age<=fage; age ++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         cov[2]=age;      b[i]=sum/a[i][i]; 
         for (k=1; k<=cptcovn;k++) {    } 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  } 
         }  
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  void pstamp(FILE *fichier)
         for (k=1; k<=cptcovprod;k++)  {
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
          }
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /************ Frequencies ********************/
         gp=vector(1,(nlstate)*(nlstate+ndeath));  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         gm=vector(1,(nlstate)*(nlstate+ndeath));  {  /* Some frequencies */
        
         for(theta=1; theta <=npar; theta++){    int i, m, jk, k1,i1, j1, bool, z1,j;
           for(i=1; i<=npar; i++)    int first;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double ***freq; /* Frequencies */
              double *pp, **prop;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
              char fileresp[FILENAMELENGTH];
           k=0;    
           for(i=1; i<= (nlstate); i++){    pp=vector(1,nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
               k=k+1;    strcpy(fileresp,"p");
               gp[k]=pmmij[i][j];    strcat(fileresp,fileres);
             }    if((ficresp=fopen(fileresp,"w"))==NULL) {
           }      printf("Problem with prevalence resultfile: %s\n", fileresp);
                fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           for(i=1; i<=npar; i++)      exit(0);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
        freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    j1=0;
           k=0;    
           for(i=1; i<=(nlstate); i++){    j=cptcoveff;
             for(j=1; j<=(nlstate+ndeath);j++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               k=k+1;  
               gm[k]=pmmij[i][j];    first=1;
             }  
           }    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
          /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    /*    j1++;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    */
         }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          scanf("%d", i);*/
           for(theta=1; theta <=npar; theta++)        for (i=-5; i<=nlstate+ndeath; i++)  
             trgradg[j][theta]=gradg[theta][j];          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                    for(m=iagemin; m <= iagemax+3; m++)
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);              freq[i][jk][m]=0;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        
                for (i=1; i<=nlstate; i++)  
         pmij(pmmij,cov,ncovmodel,x,nlstate);          for(m=iagemin; m <= iagemax+3; m++)
                    prop[i][m]=0;
         k=0;        
         for(i=1; i<=(nlstate); i++){        dateintsum=0;
           for(j=1; j<=(nlstate+ndeath);j++){        k2cpt=0;
             k=k+1;        for (i=1; i<=imx; i++) {
             mu[k][(int) age]=pmmij[i][j];          bool=1;
           }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         }            for (z1=1; z1<=cptcoveff; z1++)       
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
             varpij[i][j][(int)age] = doldm[i][j];                bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         /*printf("\n%d ",(int)age);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));              } 
      }*/          }
    
         fprintf(ficresprob,"\n%d ",(int)age);          if (bool==1){
         fprintf(ficresprobcov,"\n%d ",(int)age);            for(m=firstpass; m<=lastpass; m++){
         fprintf(ficresprobcor,"\n%d ",(int)age);              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                if (m<lastpass) {
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         i=0;                }
         for (k=1; k<=(nlstate);k++){                
           for (l=1; l<=(nlstate+ndeath);l++){                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             i=i++;                  dateintsum=dateintsum+k2;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);                  k2cpt++;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                }
             for (j=1; j<=i;j++){                /*}*/
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            }
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          }
             }        } /* end i */
           }         
         }/* end of loop for state */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       } /* end of loop for age */        pstamp(ficresp);
         if  (cptcovn>0) {
       /* Confidence intervalle of pij  */          fprintf(ficresp, "\n#********** Variable "); 
       /*          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,"\nset noparametric;unset label");          fprintf(ficresp, "**********\n#");
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          fprintf(ficlog, "\n#********** Variable "); 
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          fprintf(ficlog, "**********\n#");
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        }
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        for(i=1; i<=nlstate;i++) 
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       */        fprintf(ficresp, "\n");
         
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/        for(i=iagemin; i <= iagemax+3; i++){
       first1=1;          if(i==iagemax+3){
       for (k2=1; k2<=(nlstate);k2++){            fprintf(ficlog,"Total");
         for (l2=1; l2<=(nlstate+ndeath);l2++){          }else{
           if(l2==k2) continue;            if(first==1){
           j=(k2-1)*(nlstate+ndeath)+l2;              first=0;
           for (k1=1; k1<=(nlstate);k1++){              printf("See log file for details...\n");
             for (l1=1; l1<=(nlstate+ndeath);l1++){            }
               if(l1==k1) continue;            fprintf(ficlog,"Age %d", i);
               i=(k1-1)*(nlstate+ndeath)+l1;          }
               if(i<=j) continue;          for(jk=1; jk <=nlstate ; jk++){
               for (age=bage; age<=fage; age ++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                 if ((int)age %5==0){              pp[jk] += freq[jk][m][i]; 
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          for(jk=1; jk <=nlstate ; jk++){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            for(m=-1, pos=0; m <=0 ; m++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;              pos += freq[jk][m][i];
                   mu2=mu[j][(int) age]/stepm*YEARM;            if(pp[jk]>=1.e-10){
                   c12=cv12/sqrt(v1*v2);              if(first==1){
                   /* Computing eigen value of matrix of covariance */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   /* Eigen vectors */            }else{
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              if(first==1)
                   /*v21=sqrt(1.-v11*v11); *//* error */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   v21=(lc1-v1)/cv12*v11;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   v12=-v21;            }
                   v22=v11;          }
                   tnalp=v21/v11;  
                   if(first1==1){          for(jk=1; jk <=nlstate ; jk++){
                     first1=0;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              pp[jk] += freq[jk][m][i];
                   }          }       
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   /*printf(fignu*/            pos += pp[jk];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            posprop += prop[jk][i];
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          }
                   if(first==1){          for(jk=1; jk <=nlstate ; jk++){
                     first=0;            if(pos>=1.e-5){
                     fprintf(ficgp,"\nset parametric;unset label");              if(first==1)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            }else{
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);              if(first==1)
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            if( i <= iagemax){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\              if(pos>=1.e-5){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   }else{                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     first=0;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);              }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              else
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          }
                   }/* if first */          
                 } /* age mod 5 */          for(jk=-1; jk <=nlstate+ndeath; jk++)
               } /* end loop age */            for(m=-1; m <=nlstate+ndeath; m++)
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);              if(freq[jk][m][i] !=0 ) {
               first=1;              if(first==1)
             } /*l12 */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           } /* k12 */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         } /*l1 */              }
       }/* k1 */          if(i <= iagemax)
     } /* loop covariates */            fprintf(ficresp,"\n");
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);          if(first==1)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            printf("Others in log...\n");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          fprintf(ficlog,"\n");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /*}*/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    }
   }    dateintmean=dateintsum/k2cpt; 
   free_vector(xp,1,npar);   
   fclose(ficresprob);    fclose(ficresp);
   fclose(ficresprobcov);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   fclose(ficresprobcor);    free_vector(pp,1,nlstate);
   fclose(ficgp);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fclose(fichtm);    /* End of Freq */
 }  }
   
   /************ Prevalence ********************/
 /******************* Printing html file ***********/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  {  
                   int lastpass, int stepm, int weightopt, char model[],\    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\       in each health status at the date of interview (if between dateprev1 and dateprev2).
                   int popforecast, int estepm ,\       We still use firstpass and lastpass as another selection.
                   double jprev1, double mprev1,double anprev1, \    */
                   double jprev2, double mprev2,double anprev2){   
   int jj1, k1, i1, cpt;    int i, m, jk, k1, i1, j1, bool, z1,j;
   /*char optionfilehtm[FILENAMELENGTH];*/    double ***freq; /* Frequencies */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    double *pp, **prop;
     printf("Problem with %s \n",optionfilehtm), exit(0);    double pos,posprop; 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    iagemin= (int) agemin;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    iagemax= (int) agemax;
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    /*pp=vector(1,nlstate);*/
  - Life expectancies by age and initial health status (estepm=%2d months):    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    j1=0;
     
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
  m=cptcoveff;    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  jj1=0;      /*for(i1=1; i1<=ncodemax[k1];i1++){
  for(k1=1; k1<=m;k1++){        j1++;*/
    for(i1=1; i1<=ncodemax[k1];i1++){        
      jj1++;        for (i=1; i<=nlstate; i++)  
      if (cptcovn > 0) {          for(m=iagemin; m <= iagemax+3; m++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            prop[i][m]=0.0;
        for (cpt=1; cpt<=cptcoveff;cpt++)       
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for (i=1; i<=imx; i++) { /* Each individual */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          bool=1;
      }          if  (cptcovn>0) {
      /* Pij */            for (z1=1; z1<=cptcoveff; z1++) 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    bool=0;
      /* Quasi-incidences */          } 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          if (bool==1) { 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        /* Stable prevalence in each health state */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
        for(cpt=1; cpt<nlstate;cpt++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      for(cpt=1; cpt<=nlstate;cpt++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      }                  prop[s[m][i]][iagemax+3] += weight[i]; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                } 
 health expectancies in states (1) and (2): e%s%d.png<br>              }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            } /* end selection of waves */
    } /* end i1 */          }
  }/* End k1 */        }
  fprintf(fichtm,"</ul>");        for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          } 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n          
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          for(jk=1; jk <=nlstate ; jk++){     
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            if( i <=  iagemax){ 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n              if(posprop>=1.e-5){ 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                probs[i][jk][j1]= prop[jk][i]/posprop;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n              } else{
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                if(first==1){
                   first=0;
  if(popforecast==1) fprintf(fichtm,"\n                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n                }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              }
         <br>",fileres,fileres,fileres,fileres);            } 
  else          }/* end jk */ 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        }/* end i */ 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      /*} *//* end i1 */
     } /* end j1 */
  m=cptcoveff;    
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  jj1=0;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  for(k1=1; k1<=m;k1++){  }  /* End of prevalence */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;  /************* Waves Concatenation ***************/
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
        for (cpt=1; cpt<=cptcoveff;cpt++)  {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       Death is a valid wave (if date is known).
      }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      for(cpt=1; cpt<=nlstate;cpt++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident       and mw[mi+1][i]. dh depends on stepm.
 interval) in state (%d): v%s%d%d.png <br>       */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }    int i, mi, m;
    } /* end i1 */    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  }/* End k1 */       double sum=0., jmean=0.;*/
  fprintf(fichtm,"</ul>");    int first;
 fclose(fichtm);    int j, k=0,jk, ju, jl;
 }    double sum=0.;
     first=0;
 /******************* Gnuplot file **************/    jmin=1e+5;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    jmax=-1;
     jmean=0.;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    for(i=1; i<=imx; i++){
   int ng;      mi=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      m=firstpass;
     printf("Problem with file %s",optionfilegnuplot);      while(s[m][i] <= nlstate){
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   }          mw[++mi][i]=m;
         if(m >=lastpass)
 #ifdef windows          break;
     fprintf(ficgp,"cd \"%s\" \n",pathc);        else
 #endif          m++;
 m=pow(2,cptcoveff);      }/* end while */
        if (s[m][i] > nlstate){
  /* 1eme*/        mi++;     /* Death is another wave */
   for (cpt=1; cpt<= nlstate ; cpt ++) {        /* if(mi==0)  never been interviewed correctly before death */
    for (k1=1; k1<= m ; k1 ++) {           /* Only death is a correct wave */
         mw[mi][i]=m;
 #ifdef windows      }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      wav[i]=mi;
 #endif      if(mi==0){
 #ifdef unix        nbwarn++;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if(first==0){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #endif          first=1;
         }
 for (i=1; i<= nlstate ; i ++) {        if(first==1){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }      } /* end mi==0 */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    } /* End individuals */
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(mi=1; mi<wav[i];mi++){
 }        if (stepm <=0)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          dh[mi][i]=1;
      for (i=1; i<= nlstate ; i ++) {        else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (agedc[i] < 2*AGESUP) {
 }                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if(j==0) j=1;  /* Survives at least one month after exam */
 #ifdef unix              else if(j<0){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                nberr++;
 #endif                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }                j=1; /* Temporary Dangerous patch */
   }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   /*2 eme*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   for (k1=1; k1<= m ; k1 ++) {              }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              k=k+1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              if (j >= jmax){
                    jmax=j;
     for (i=1; i<= nlstate+1 ; i ++) {                ijmax=i;
       k=2*i;              }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if (j <= jmin){
       for (j=1; j<= nlstate+1 ; j ++) {                jmin=j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                ijmin=i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                sum=sum+j;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            }
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          else{
         else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            k=k+1;
       for (j=1; j<= nlstate+1 ; j ++) {            if (j >= jmax) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              jmax=j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              ijmax=i;
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            else if (j <= jmin){
       else fprintf(ficgp,"\" t\"\" w l 0,");              jmin=j;
     }              ijmin=i;
   }            }
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   /*3eme*/            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   for (k1=1; k1<= m ; k1 ++) {              nberr++;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       k=2+nlstate*(2*cpt-2);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            sum=sum+j;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          jk= j/stepm;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          jl= j -jk*stepm;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          ju= j -(jk+1)*stepm;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(jl==0){
               dh[mi][i]=jk;
 */              bh[mi][i]=0;
       for (i=1; i< nlstate ; i ++) {            }else{ /* We want a negative bias in order to only have interpolation ie
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                    * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     }            }
   }          }else{
              if(jl <= -ju){
   /* CV preval stat */              dh[mi][i]=jk;
     for (k1=1; k1<= m ; k1 ++) {              bh[mi][i]=jl;       /* bias is positive if real duration
     for (cpt=1; cpt<nlstate ; cpt ++) {                                   * is higher than the multiple of stepm and negative otherwise.
       k=3;                                   */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            else{
               dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++)              bh[mi][i]=ju;
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            if(dh[mi][i]==0){
                    dh[mi][i]=1; /* At least one step */
       l=3+(nlstate+ndeath)*cpt;              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       for (i=1; i< nlstate ; i ++) {            }
         l=3+(nlstate+ndeath)*cpt;          } /* end if mle */
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      } /* end wave */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      }
     }    jmean=sum/k;
   }      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   /* proba elementaires */   }
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){  /*********** Tricode ****************************/
       if (k != i) {  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         for(j=1; j <=ncovmodel; j++){  {
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           jk++;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
           fprintf(ficgp,"\n");    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
         }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       }    /* nbcode[Tvar[j]][1]= 
     }    */
    }  
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    int modmaxcovj=0; /* Modality max of covariates j */
      for(jk=1; jk <=m; jk++) {    int cptcode=0; /* Modality max of covariates j */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    int modmincovj=0; /* Modality min of covariates j */
        if (ng==2)  
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else    cptcoveff=0; 
          fprintf(ficgp,"\nset title \"Probability\"\n");   
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
        i=1;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
        for(k2=1; k2<=nlstate; k2++) {  
          k3=i;    /* Loop on covariates without age and products */
          for(k=1; k<=(nlstate+ndeath); k++) {    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
            if (k != k2){      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
              if(ng==2)                                 modality of this covariate Vj*/ 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
              else                                      * If product of Vn*Vm, still boolean *:
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
              ij=1;                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
              for(j=3; j <=ncovmodel; j++) {        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                                        modality of the nth covariate of individual i. */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        if (ij > modmaxcovj)
                  ij++;          modmaxcovj=ij; 
                }        else if (ij < modmincovj) 
                else          modmincovj=ij; 
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if ((ij < -1) && (ij > NCOVMAX)){
              }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
              fprintf(ficgp,")/(1");          exit(1);
                      }else
              for(k1=1; k1 <=nlstate; k1++){          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                ij=1;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                for(j=3; j <=ncovmodel; j++){        /* getting the maximum value of the modality of the covariate
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);           female is 1, then modmaxcovj=1.*/
                    ij++;      }
                  }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                  else      cptcode=modmaxcovj;
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                }     /*for (i=0; i<=cptcode; i++) {*/
                fprintf(ficgp,")");      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
              }        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
              i=i+ncovmodel;        }
            }        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
          } /* end k */           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
        } /* end k2 */      } /* Ndum[-1] number of undefined modalities */
      } /* end jk */  
    } /* end ng */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
    fclose(ficgp);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
 }  /* end gnuplot */      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 /*************** Moving average **************/         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){         variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
   int i, cpt, cptcod;         nbcode[Tvar[j]][1]=0;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)         nbcode[Tvar[j]][2]=1;
       for (i=1; i<=nlstate;i++)         nbcode[Tvar[j]][3]=2;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      */
           mobaverage[(int)agedeb][i][cptcod]=0.;      ij=1; /* ij is similar to i but can jumps over null modalities */
          for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
       for (i=1; i<=nlstate;i++){          /*recode from 0 */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           for (cpt=0;cpt<=4;cpt++){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                                       k is a modality. If we have model=V1+V1*sex 
           }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            ij++;
         }          }
       }          if (ij > ncodemax[j]) break; 
     }        }  /* end of loop on */
          } /* end of loop on modality */ 
 }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 /************** Forecasting ******************/    
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   int *popage;     Ndum[ij]++; 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   } 
   double *popeffectif,*popcount;  
   double ***p3mat;   ij=1;
   char fileresf[FILENAMELENGTH];   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
  agelim=AGESUP;     if((Ndum[i]!=0) && (i<=ncovcol)){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       ij++;
       }else
           Tvaraff[ij]=0;
   strcpy(fileresf,"f");   }
   strcat(fileresf,fileres);   ij--;
   if((ficresf=fopen(fileresf,"w"))==NULL) {   cptcoveff=ij; /*Number of total covariates*/
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  }
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  /*********** Health Expectancies ****************/
   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   if (mobilav==1) {  {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Health expectancies, no variances */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***p3mat;
   if (stepm<=12) stepsize=1;    double eip;
    
   agelim=AGESUP;    pstamp(ficreseij);
      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   hstepm=1;    fprintf(ficreseij,"# Age");
   hstepm=hstepm/stepm;    for(i=1; i<=nlstate;i++){
   yp1=modf(dateintmean,&yp);      for(j=1; j<=nlstate;j++){
   anprojmean=yp;        fprintf(ficreseij," e%1d%1d ",i,j);
   yp2=modf((yp1*12),&yp);      }
   mprojmean=yp;      fprintf(ficreseij," e%1d. ",i);
   yp1=modf((yp2*30.5),&yp);    }
   jprojmean=yp;    fprintf(ficreseij,"\n");
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    
      if(estepm < stepm){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   for(cptcov=1;cptcov<=i2;cptcov++){    else  hstepm=estepm;   
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       k=k+1;     * This is mainly to measure the difference between two models: for example
       fprintf(ficresf,"\n#******");     * if stepm=24 months pijx are given only every 2 years and by summing them
       for(j=1;j<=cptcoveff;j++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficresf,"******\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficresf,"# StartingAge FinalAge");     * to compare the new estimate of Life expectancy with the same linear 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);     * hypothesis. A more precise result, taking into account a more precise
           * curvature will be obtained if estepm is as small as stepm. */
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    /* For example we decided to compute the life expectancy with the smallest unit */
         fprintf(ficresf,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       Look at hpijx to understand the reason of that which relies in memory size
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       and note for a fixed period like estepm months */
           nhstepm = nhstepm/hstepm;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 survival function given by stepm (the optimization length). Unfortunately it
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       means that if the survival funtion is printed only each two years of age and if
           oldm=oldms;savm=savms;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         results. So we changed our mind and took the option of the best precision.
            */
           for (h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    agelim=AGESUP;
             }    /* If stepm=6 months */
             for(j=1; j<=nlstate+ndeath;j++) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               kk1=0.;kk2=0;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
               for(i=1; i<=nlstate;i++) {                    
                 if (mobilav==1)  /* nhstepm age range expressed in number of stepm */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                 else {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* if (stepm >= YEARM) hstepm=1;*/
                 }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }  
               if (h==(int)(calagedate+12*cpt)){    for (age=bage; age<=fage; age ++){ 
                 fprintf(ficresf," %.3f", kk1);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                              /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               }      /* if (stepm >= YEARM) hstepm=1;*/
             }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
       }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     }      
   }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   fclose(ficresf);      printf("%d|",(int)age);fflush(stdout);
 }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 /************** Forecasting ******************/      
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=1; j<=nlstate;j++)
   int *popage;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   double *popeffectif,*popcount;            
   double ***p3mat,***tabpop,***tabpopprev;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char filerespop[FILENAMELENGTH];  
           }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficreseij,"%3.0f",age );
   agelim=AGESUP;      for(i=1; i<=nlstate;i++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        eip=0;
          for(j=1; j<=nlstate;j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          eip +=eij[i][j][(int)age];
            fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
   strcpy(filerespop,"pop");        fprintf(ficreseij,"%9.4f", eip );
   strcat(filerespop,fileres);      }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(ficreseij,"\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);      
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    printf("\n");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficlog,"\n");
     
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  }
   
   if (mobilav==1) {  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);  {
   }    /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
   stepsize=(int) (stepm+YEARM-1)/YEARM;    */
   if (stepm<=12) stepsize=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
      int nhstepma, nstepma; /* Decreasing with age */
   agelim=AGESUP;    double age, agelim, hf;
      double ***p3matp, ***p3matm, ***varhe;
   hstepm=1;    double **dnewm,**doldm;
   hstepm=hstepm/stepm;    double *xp, *xm;
      double **gp, **gm;
   if (popforecast==1) {    double ***gradg, ***trgradg;
     if((ficpop=fopen(popfile,"r"))==NULL) {    int theta;
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    double eip, vip;
     }  
     popage=ivector(0,AGESUP);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     popeffectif=vector(0,AGESUP);    xp=vector(1,npar);
     popcount=vector(0,AGESUP);    xm=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     i=1;      doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    
        pstamp(ficresstdeij);
     imx=i;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    fprintf(ficresstdeij,"# Age");
   }    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
   for(cptcov=1;cptcov<=i2;cptcov++){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficresstdeij," e%1d. ",i);
       k=k+1;    }
       fprintf(ficrespop,"\n#******");    fprintf(ficresstdeij,"\n");
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    pstamp(ficrescveij);
       }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       fprintf(ficrespop,"******\n");    fprintf(ficrescveij,"# Age");
       fprintf(ficrespop,"# Age");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      for(j=1; j<=nlstate;j++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");        cptj= (j-1)*nlstate+i;
              for(i2=1; i2<=nlstate;i2++)
       for (cpt=0; cpt<=0;cpt++) {          for(j2=1; j2<=nlstate;j2++){
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              cptj2= (j2-1)*nlstate+i2;
                    if(cptj2 <= cptj)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;      }
              fprintf(ficrescveij,"\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    if(estepm < stepm){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf ("Problem %d lower than %d\n",estepm, stepm);
            }
           for (h=0; h<=nhstepm; h++){    else  hstepm=estepm;   
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We compute the life expectancy from trapezoids spaced every estepm months
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * This is mainly to measure the difference between two models: for example
             }     * if stepm=24 months pijx are given only every 2 years and by summing them
             for(j=1; j<=nlstate+ndeath;j++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
               kk1=0.;kk2=0;     * progression in between and thus overestimating or underestimating according
               for(i=1; i<=nlstate;i++) {                   * to the curvature of the survival function. If, for the same date, we 
                 if (mobilav==1)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];     * to compare the new estimate of Life expectancy with the same linear 
                 else {     * hypothesis. A more precise result, taking into account a more precise
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];     * curvature will be obtained if estepm is as small as stepm. */
                 }  
               }    /* For example we decided to compute the life expectancy with the smallest unit */
               if (h==(int)(calagedate+12*cpt)){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       nhstepm is the number of hstepm from age to agelim 
                   /*fprintf(ficrespop," %.3f", kk1);       nstepm is the number of stepm from age to agelin. 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       Look at hpijx to understand the reason of that which relies in memory size
               }       and note for a fixed period like estepm months */
             }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             for(i=1; i<=nlstate;i++){       survival function given by stepm (the optimization length). Unfortunately it
               kk1=0.;       means that if the survival funtion is printed only each two years of age and if
                 for(j=1; j<=nlstate;j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];       results. So we changed our mind and took the option of the best precision.
                 }    */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             }  
     /* If stepm=6 months */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* nhstepm age range expressed in number of stepm */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    agelim=AGESUP;
           }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }    /* if (stepm >= YEARM) hstepm=1;*/
       }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      
   /******/    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           nhstepm = nhstepm/hstepm;  
              for (age=bage; age<=fage; age ++){ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           oldm=oldms;savm=savms;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* if (stepm >= YEARM) hstepm=1;*/
           for (h=0; h<=nhstepm; h++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* If stepm=6 months */
             }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             for(j=1; j<=nlstate+ndeath;j++) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               kk1=0.;kk2=0;      
               for(i=1; i<=nlstate;i++) {                    hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      /* Computing  Variances of health expectancies */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             }         decrease memory allocation */
           }      for(theta=1; theta <=npar; theta++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(i=1; i<=npar; i++){ 
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
    }        }
   }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
          hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    
         for(j=1; j<= nlstate; j++){
   if (popforecast==1) {          for(i=1; i<=nlstate; i++){
     free_ivector(popage,0,AGESUP);            for(h=0; h<=nhstepm-1; h++){
     free_vector(popeffectif,0,AGESUP);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
     free_vector(popcount,0,AGESUP);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   }            }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }
   fclose(ficrespop);       
 }        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
 /***********************************************/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 /**************** Main Program *****************/          }
 /***********************************************/      }/* End theta */
       
 int main(int argc, char *argv[])      
 {      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for(theta=1; theta <=npar; theta++)
   double agedeb, agefin,hf;            trgradg[h][j][theta]=gradg[h][theta][j];
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      
   
   double fret;       for(ij=1;ij<=nlstate*nlstate;ij++)
   double **xi,tmp,delta;        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   double dum; /* Dummy variable */  
   double ***p3mat;       printf("%d|",(int)age);fflush(stdout);
   int *indx;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   char line[MAXLINE], linepar[MAXLINE];       for(h=0;h<=nhstepm-1;h++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        for(k=0;k<=nhstepm-1;k++){
   int firstobs=1, lastobs=10;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   int sdeb, sfin; /* Status at beginning and end */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   int c,  h , cpt,l;          for(ij=1;ij<=nlstate*nlstate;ij++)
   int ju,jl, mi;            for(ji=1;ji<=nlstate*nlstate;ji++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
   int mobilav=0,popforecast=0;      }
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   double bage, fage, age, agelim, agebase;      for(i=1; i<=nlstate;i++)
   double ftolpl=FTOL;        for(j=1; j<=nlstate;j++)
   double **prlim;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double *severity;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double ***param; /* Matrix of parameters */            
   double  *p;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */          }
   double *delti; /* Scale */  
   double ***eij, ***vareij;      fprintf(ficresstdeij,"%3.0f",age );
   double **varpl; /* Variances of prevalence limits by age */      for(i=1; i<=nlstate;i++){
   double *epj, vepp;        eip=0.;
   double kk1, kk2;        vip=0.;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(j=1; j<=nlstate;j++){
            eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   char *alph[]={"a","a","b","c","d","e"}, str[4];            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
   char z[1]="c", occ;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
 #include <sys/time.h>      }
 #include <time.h>      fprintf(ficresstdeij,"\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
        fprintf(ficrescveij,"%3.0f",age );
   /* long total_usecs;      for(i=1; i<=nlstate;i++)
   struct timeval start_time, end_time;        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          for(i2=1; i2<=nlstate;i2++)
   getcwd(pathcd, size);            for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
   printf("\n%s",version);              if(cptj2 <= cptj)
   if(argc <=1){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     printf("\nEnter the parameter file name: ");            }
     scanf("%s",pathtot);        }
   }      fprintf(ficrescveij,"\n");
   else{     
     strcpy(pathtot,argv[1]);    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /*cygwin_split_path(pathtot,path,optionfile);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    printf("\n");
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    fprintf(ficlog,"\n");
   chdir(path);  
   replace(pathc,path);    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
 /*-------- arguments in the command line --------*/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* Log file */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   strcat(filelog, optionfilefiname);  }
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {  /************ Variance ******************/
     printf("Problem with logfile %s\n",filelog);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     goto end;  {
   }    /* Variance of health expectancies */
   fprintf(ficlog,"Log filename:%s\n",filelog);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   fprintf(ficlog,"\n%s",version);    /* double **newm;*/
   fprintf(ficlog,"\nEnter the parameter file name: ");    double **dnewm,**doldm;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double **dnewmp,**doldmp;
   fflush(ficlog);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   /* */    double *xp;
   strcpy(fileres,"r");    double **gp, **gm;  /* for var eij */
   strcat(fileres, optionfilefiname);    double ***gradg, ***trgradg; /*for var eij */
   strcat(fileres,".txt");    /* Other files have txt extension */    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   /*---------arguments file --------*/    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    double age,agelim, hf;
     printf("Problem with optionfile %s\n",optionfile);    double ***mobaverage;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    int theta;
     goto end;    char digit[4];
   }    char digitp[25];
   
   strcpy(filereso,"o");    char fileresprobmorprev[FILENAMELENGTH];
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    if(popbased==1){
     printf("Problem with Output resultfile: %s\n", filereso);      if(mobilav!=0)
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        strcpy(digitp,"-populbased-mobilav-");
     goto end;      else strcpy(digitp,"-populbased-nomobil-");
   }    }
     else 
   /* Reads comments: lines beginning with '#' */      strcpy(digitp,"-stablbased-");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    if (mobilav!=0) {
     fgets(line, MAXLINE, ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     puts(line);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fputs(line,ficparo);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   ungetc(c,ficpar);      }
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    strcpy(fileresprobmorprev,"prmorprev"); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    sprintf(digit,"%-d",ij);
 while((c=getc(ficpar))=='#' && c!= EOF){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     puts(line);    strcat(fileresprobmorprev,fileres);
     fputs(line,ficparo);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
        printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   covar=matrix(0,NCOVMAX,1,n);   
   cptcovn=0;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   ncovmodel=2+cptcovn;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
   /* Read guess parameters */      for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   while((c=getc(ficpar))=='#' && c!= EOF){    }  
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"\n");
     fgets(line, MAXLINE, ficpar);    fprintf(ficgp,"\n# Routine varevsij");
     puts(line);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   }    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   ungetc(c,ficpar);  /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    pstamp(ficresvij);
     for(i=1; i <=nlstate; i++)    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     for(j=1; j <=nlstate+ndeath-1; j++){    if(popbased==1)
       fscanf(ficpar,"%1d%1d",&i1,&j1);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       fprintf(ficparo,"%1d%1d",i1,j1);    else
       if(mle==1)      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         printf("%1d%1d",i,j);    fprintf(ficresvij,"# Age");
       fprintf(ficlog,"%1d%1d",i,j);    for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){      for(j=1; j<=nlstate;j++)
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         if(mle==1){    fprintf(ficresvij,"\n");
           printf(" %lf",param[i][j][k]);  
           fprintf(ficlog," %lf",param[i][j][k]);    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         else    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficlog," %lf",param[i][j][k]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficparo," %lf",param[i][j][k]);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }  
       fscanf(ficpar,"\n");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       if(mle==1)    gpp=vector(nlstate+1,nlstate+ndeath);
         printf("\n");    gmp=vector(nlstate+1,nlstate+ndeath);
       fprintf(ficlog,"\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficparo,"\n");    
     }    if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    }
     else  hstepm=estepm;   
   p=param[1][1];    /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* Reads comments: lines beginning with '#' */       nhstepm is the number of hstepm from age to agelim 
   while((c=getc(ficpar))=='#' && c!= EOF){       nstepm is the number of stepm from age to agelin. 
     ungetc(c,ficpar);       Look at function hpijx to understand why (it is linked to memory size questions) */
     fgets(line, MAXLINE, ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     puts(line);       survival function given by stepm (the optimization length). Unfortunately it
     fputs(line,ficparo);       means that if the survival funtion is printed every two years of age and if
   }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   ungetc(c,ficpar);       results. So we changed our mind and took the option of the best precision.
     */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    agelim = AGESUP;
   for(i=1; i <=nlstate; i++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(j=1; j <=nlstate+ndeath-1; j++){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       printf("%1d%1d",i,j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficparo,"%1d%1d",i1,j1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       for(k=1; k<=ncovmodel;k++){      gp=matrix(0,nhstepm,1,nlstate);
         fscanf(ficpar,"%le",&delti3[i][j][k]);      gm=matrix(0,nhstepm,1,nlstate);
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }      for(theta=1; theta <=npar; theta++){
       fscanf(ficpar,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
       printf("\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficparo,"\n");        }
     }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   delti=delti3[1][1];  
          if (popbased==1) {
   /* Reads comments: lines beginning with '#' */          if(mobilav ==0){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }else{ /* mobilav */ 
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   ungetc(c,ficpar);        }
      
   matcov=matrix(1,npar,1,npar);        for(j=1; j<= nlstate; j++){
   for(i=1; i <=npar; i++){          for(h=0; h<=nhstepm; h++){
     fscanf(ficpar,"%s",&str);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     if(mle==1)              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       printf("%s",str);          }
     fprintf(ficlog,"%s",str);        }
     fprintf(ficparo,"%s",str);        /* This for computing probability of death (h=1 means
     for(j=1; j <=i; j++){           computed over hstepm matrices product = hstepm*stepm months) 
       fscanf(ficpar," %le",&matcov[i][j]);           as a weighted average of prlim.
       if(mle==1){        */
         printf(" %.5le",matcov[i][j]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficlog," %.5le",matcov[i][j]);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       else        }    
         fprintf(ficlog," %.5le",matcov[i][j]);        /* end probability of death */
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fscanf(ficpar,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     if(mle==1)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficlog,"\n");   
     fprintf(ficparo,"\n");        if (popbased==1) {
   }          if(mobilav ==0){
   for(i=1; i <=npar; i++)            for(i=1; i<=nlstate;i++)
     for(j=i+1;j<=npar;j++)              prlim[i][i]=probs[(int)age][i][ij];
       matcov[i][j]=matcov[j][i];          }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
   if(mle==1)              prlim[i][i]=mobaverage[(int)age][i][ij];
     printf("\n");          }
   fprintf(ficlog,"\n");        }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     /*-------- Rewriting paramater file ----------*/          for(h=0; h<=nhstepm; h++){
      strcpy(rfileres,"r");    /* "Rparameterfile */            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      strcat(rfileres,".");    /* */          }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        }
     if((ficres =fopen(rfileres,"w"))==NULL) {        /* This for computing probability of death (h=1 means
       printf("Problem writing new parameter file: %s\n", fileres);goto end;           computed over hstepm matrices product = hstepm*stepm months) 
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;           as a weighted average of prlim.
     }        */
     fprintf(ficres,"#%s\n",version);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
     /*-------- data file ----------*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     if((fic=fopen(datafile,"r"))==NULL)    {        }    
       printf("Problem with datafile: %s\n", datafile);goto end;        /* end probability of death */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
     }        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
     n= lastobs;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     moisnais=vector(1,n);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     annais=vector(1,n);        }
     moisdc=vector(1,n);  
     andc=vector(1,n);      } /* End theta */
     agedc=vector(1,n);  
     cod=ivector(1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      for(h=0; h<=nhstepm; h++) /* veij */
     mint=matrix(1,maxwav,1,n);        for(j=1; j<=nlstate;j++)
     anint=matrix(1,maxwav,1,n);          for(theta=1; theta <=npar; theta++)
     s=imatrix(1,maxwav+1,1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     ncodemax=ivector(1,8);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     i=1;    
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){        for(j=1;j<=nlstate;j++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          vareij[i][j][(int)age] =0.;
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(h=0;h<=nhstepm;h++){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(k=0;k<=nhstepm;k++){
         }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                  matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }
     
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      /* pptj */
         for (j=ncovcol;j>=1;j--){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         num[i]=atol(stra);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                  varppt[j][i]=doldmp[j][i];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      /* end ppptj */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         i=i+1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       }   
     }      if (popbased==1) {
     /* printf("ii=%d", ij);        if(mobilav ==0){
        scanf("%d",i);*/          for(i=1; i<=nlstate;i++)
   imx=i-1; /* Number of individuals */            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
   /* for (i=1; i<=imx; i++){          for(i=1; i<=nlstate;i++)
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            prlim[i][i]=mobaverage[(int)age][i][ij];
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      }
     }*/               
    /*  for (i=1; i<=imx; i++){      /* This for computing probability of death (h=1 means
      if (s[4][i]==9)  s[4][i]=-1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/         as a weighted average of prlim.
        */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* Calculation of the number of parameter from char model*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   Tprod=ivector(1,15);      }    
   Tvaraff=ivector(1,15);      /* end probability of death */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);            fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
          for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   if (strlen(model) >1){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     j=0, j1=0, k1=1, k2=1;        for(i=1; i<=nlstate;i++){
     j=nbocc(model,'+');          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     j1=nbocc(model,'*');        }
     cptcovn=j+1;      } 
     cptcovprod=j1;      fprintf(ficresprobmorprev,"\n");
      
     strcpy(modelsav,model);      fprintf(ficresvij,"%.0f ",age );
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      for(i=1; i<=nlstate;i++)
       printf("Error. Non available option model=%s ",model);        for(j=1; j<=nlstate;j++){
       fprintf(ficlog,"Error. Non available option model=%s ",model);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       goto end;        }
     }      fprintf(ficresvij,"\n");
          free_matrix(gp,0,nhstepm,1,nlstate);
     for(i=(j+1); i>=1;i--){      free_matrix(gm,0,nhstepm,1,nlstate);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       /*scanf("%d",i);*/    } /* End age */
       if (strchr(strb,'*')) {  /* Model includes a product */    free_vector(gpp,nlstate+1,nlstate+ndeath);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
         if (strcmp(strc,"age")==0) { /* Vn*age */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           cptcovprod--;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cutv(strb,stre,strd,'V');    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           cptcovage++;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             Tage[cptcovage]=i;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             /*printf("stre=%s ", stre);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
           cptcovprod--;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
           cutv(strb,stre,strc,'V');    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
           Tvar[i]=atoi(stre);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cptcovage++;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tage[cptcovage]=i;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         }  */
         else {  /* Age is not in the model */  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    free_vector(xp,1,npar);
           Tprod[k1]=i;    free_matrix(doldm,1,nlstate,1,nlstate);
           Tvard[k1][1]=atoi(strc); /* m*/    free_matrix(dnewm,1,nlstate,1,npar);
           Tvard[k1][2]=atoi(stre); /* n */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvar[cptcovn+k2]=Tvard[k1][1];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for (k=1; k<=lastobs;k++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fclose(ficresprobmorprev);
           k1++;    fflush(ficgp);
           k2=k2+2;    fflush(fichtm); 
         }  }  /* end varevsij */
       }  
       else { /* no more sum */  /************ Variance of prevlim ******************/
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        /*  scanf("%d",i);*/  {
       cutv(strd,strc,strb,'V');    /* Variance of prevalence limit */
       Tvar[i]=atoi(strc);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       }    double **newm;
       strcpy(modelsav,stra);      double **dnewm,**doldm;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    int i, j, nhstepm, hstepm;
         scanf("%d",i);*/    int k, cptcode;
     } /* end of loop + */    double *xp;
   } /* end model */    double *gp, *gm;
      double **gradg, **trgradg;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double age,agelim;
   printf("cptcovprod=%d ", cptcovprod);    int theta;
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    
   scanf("%d ",i);*/    pstamp(ficresvpl);
     fclose(fic);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     /*  if(mle==1){*/    for(i=1; i<=nlstate;i++)
     if (weightopt != 1) { /* Maximisation without weights*/        fprintf(ficresvpl," %1d-%1d",i,i);
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficresvpl,"\n");
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    xp=vector(1,npar);
     agev=matrix(1,maxwav,1,imx);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     for (i=1; i<=imx; i++) {    
       for(m=2; (m<= maxwav); m++) {    hstepm=1*YEARM; /* Every year of age */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
          anint[m][i]=9999;    agelim = AGESUP;
          s[m][i]=-1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      if (stepm >= YEARM) hstepm=1;
       }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
     for (i=1; i<=imx; i++)  {      gm=vector(1,nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){      for(theta=1; theta <=npar; theta++){
         if(s[m][i] >0){        for(i=1; i<=npar; i++){ /* Computes gradient */
           if (s[m][i] >= nlstate+1) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             if(agedc[i]>0)        }
               if(moisdc[i]!=99 && andc[i]!=9999)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 agev[m][i]=agedc[i];        for(i=1;i<=nlstate;i++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          gp[i] = prlim[i][i];
            else {      
               if (andc[i]!=9999){        for(i=1; i<=npar; i++) /* Computes gradient */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               agev[m][i]=-1;        for(i=1;i<=nlstate;i++)
               }          gm[i] = prlim[i][i];
             }  
           }        for(i=1;i<=nlstate;i++)
           else if(s[m][i] !=9){ /* Should no more exist */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      } /* End theta */
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;      trgradg =matrix(1,nlstate,1,npar);
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      for(j=1; j<=nlstate;j++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        for(theta=1; theta <=npar; theta++)
             }          trgradg[j][theta]=gradg[theta][j];
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];      for(i=1;i<=nlstate;i++)
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        varpl[i][(int)age] =0.;
             }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             /*agev[m][i]=anint[m][i]-annais[i];*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             /*   agev[m][i] = age[i]+2*m;*/      for(i=1;i<=nlstate;i++)
           }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
           else { /* =9 */  
             agev[m][i]=1;      fprintf(ficresvpl,"%.0f ",age );
             s[m][i]=-1;      for(i=1; i<=nlstate;i++)
           }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
         }      fprintf(ficresvpl,"\n");
         else /*= 0 Unknown */      free_vector(gp,1,nlstate);
           agev[m][i]=1;      free_vector(gm,1,nlstate);
       }      free_matrix(gradg,1,npar,1,nlstate);
          free_matrix(trgradg,1,nlstate,1,npar);
     }    } /* End age */
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    free_vector(xp,1,npar);
         if (s[m][i] > (nlstate+ndeath)) {    free_matrix(doldm,1,nlstate,1,npar);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      free_matrix(dnewm,1,nlstate,1,nlstate);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;  }
         }  
       }  /************ Variance of one-step probabilities  ******************/
     }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int i, j=0,  i1, k1, l1, t, tj;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     free_vector(severity,1,maxwav);    int first=1, first1, first2;
     free_imatrix(outcome,1,maxwav+1,1,n);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     free_vector(moisnais,1,n);    double **dnewm,**doldm;
     free_vector(annais,1,n);    double *xp;
     /* free_matrix(mint,1,maxwav,1,n);    double *gp, *gm;
        free_matrix(anint,1,maxwav,1,n);*/    double **gradg, **trgradg;
     free_vector(moisdc,1,n);    double **mu;
     free_vector(andc,1,n);    double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        int theta;
     wav=ivector(1,imx);    char fileresprob[FILENAMELENGTH];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    char fileresprobcov[FILENAMELENGTH];
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    char fileresprobcor[FILENAMELENGTH];
        double ***varpij;
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       Tcode=ivector(1,100);      printf("Problem with resultfile: %s\n", fileresprob);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       ncodemax[1]=1;    }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    strcpy(fileresprobcov,"probcov"); 
          strcat(fileresprobcov,fileres);
    codtab=imatrix(1,100,1,10);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
    h=0;      printf("Problem with resultfile: %s\n", fileresprobcov);
    m=pow(2,cptcoveff);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
    for(k=1;k<=cptcoveff; k++){    strcpy(fileresprobcor,"probcor"); 
      for(i=1; i <=(m/pow(2,k));i++){    strcat(fileresprobcor,fileres);
        for(j=1; j <= ncodemax[k]; j++){    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      printf("Problem with resultfile: %s\n", fileresprobcor);
            h++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    }
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          }    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        }    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       codtab[1][2]=1;codtab[2][2]=2; */    pstamp(ficresprob);
    /* for(i=1; i <=m ;i++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       for(k=1; k <=cptcovn; k++){    fprintf(ficresprob,"# Age");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    pstamp(ficresprobcov);
       }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       printf("\n");    fprintf(ficresprobcov,"# Age");
       }    pstamp(ficresprobcor);
       scanf("%d",i);*/    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
        fprintf(ficresprobcor,"# Age");
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */  
     for(i=1; i<=nlstate;i++)
          for(j=1; j<=(nlstate+ndeath);j++){
            fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* fprintf(ficresprob,"\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresprobcov,"\n");
          fprintf(ficresprobcor,"\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]   */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    xp=vector(1,npar);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     if(mle==1){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     }    first=1;
        fprintf(ficgp,"\n# Routine varprob");
     /*--------- results files --------------*/    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(fichtm,"\n");
    
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    jk=1;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    file %s<br>\n",optionfilehtmcov);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  and drawn. It helps understanding how is the covariance between two incidences.\
    for(i=1,jk=1; i <=nlstate; i++){   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
        if (k != i)  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          {  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
            printf("%d%d ",i,k);  standard deviations wide on each axis. <br>\
            fprintf(ficlog,"%d%d ",i,k);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
            fprintf(ficres,"%1d%1d ",i,k);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
            for(j=1; j <=ncovmodel; j++){  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
              printf("%f ",p[jk]);  
              fprintf(ficlog,"%f ",p[jk]);    cov[1]=1;
              fprintf(ficres,"%f ",p[jk]);    /* tj=cptcoveff; */
              jk++;    tj = (int) pow(2,cptcoveff);
            }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
            printf("\n");    j1=0;
            fprintf(ficlog,"\n");    for(j1=1; j1<=tj;j1++){
            fprintf(ficres,"\n");      /*for(i1=1; i1<=ncodemax[t];i1++){ */
          }      /*j1++;*/
      }        if  (cptcovn>0) {
    }          fprintf(ficresprob, "\n#********** Variable "); 
    if(mle==1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      /* Computing hessian and covariance matrix */          fprintf(ficresprob, "**********\n#\n");
      ftolhess=ftol; /* Usually correct */          fprintf(ficresprobcov, "\n#********** Variable "); 
      hesscov(matcov, p, npar, delti, ftolhess, func);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    }          fprintf(ficresprobcov, "**********\n#\n");
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          
    printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficgp, "\n#********** Variable "); 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(ficgp, "**********\n#\n");
      for(j=1; j <=nlstate+ndeath; j++){          
        if (j!=i) {          
          fprintf(ficres,"%1d%1d",i,j);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
          printf("%1d%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(ficlog,"%1d%1d",i,j);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          for(k=1; k<=ncovmodel;k++){          
            printf(" %.5e",delti[jk]);          fprintf(ficresprobcor, "\n#********** Variable ");    
            fprintf(ficlog," %.5e",delti[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresprobcor, "**********\n#");    
            jk++;        }
          }        
          printf("\n");        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
          fprintf(ficlog,"\n");        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          fprintf(ficres,"\n");        gp=vector(1,(nlstate)*(nlstate+ndeath));
        }        gm=vector(1,(nlstate)*(nlstate+ndeath));
      }        for (age=bage; age<=fage; age ++){ 
    }          cov[2]=age;
              for (k=1; k<=cptcovn;k++) {
    k=1;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                                                           * 1  1 1 1 1
    if(mle==1)                                                           * 2  2 1 1 1
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                                                           * 3  1 2 1 1
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                                                           */
    for(i=1;i<=npar;i++){            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
      /*  if (k>nlstate) k=1;          }
          i1=(i-1)/(ncovmodel*nlstate)+1;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          for (k=1; k<=cptcovprod;k++)
          printf("%s%d%d",alph[k],i1,tab[i]);*/            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      fprintf(ficres,"%3d",i);          
      if(mle==1)      
        printf("%3d",i);          for(theta=1; theta <=npar; theta++){
      fprintf(ficlog,"%3d",i);            for(i=1; i<=npar; i++)
      for(j=1; j<=i;j++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        fprintf(ficres," %.5e",matcov[i][j]);            
        if(mle==1)            pmij(pmmij,cov,ncovmodel,xp,nlstate);
          printf(" %.5e",matcov[i][j]);            
        fprintf(ficlog," %.5e",matcov[i][j]);            k=0;
      }            for(i=1; i<= (nlstate); i++){
      fprintf(ficres,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
      if(mle==1)                k=k+1;
        printf("\n");                gp[k]=pmmij[i][j];
      fprintf(ficlog,"\n");              }
      k++;            }
    }            
                for(i=1; i<=npar; i++)
    while((c=getc(ficpar))=='#' && c!= EOF){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      ungetc(c,ficpar);      
      fgets(line, MAXLINE, ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      puts(line);            k=0;
      fputs(line,ficparo);            for(i=1; i<=(nlstate); i++){
    }              for(j=1; j<=(nlstate+ndeath);j++){
    ungetc(c,ficpar);                k=k+1;
    estepm=0;                gm[k]=pmmij[i][j];
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);              }
    if (estepm==0 || estepm < stepm) estepm=stepm;            }
    if (fage <= 2) {       
      bage = ageminpar;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
      fage = agemaxpar;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    }          }
      
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for(theta=1; theta <=npar; theta++)
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              trgradg[j][theta]=gradg[theta][j];
              
    while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      ungetc(c,ficpar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      fgets(line, MAXLINE, ficpar);  
      puts(line);          pmij(pmmij,cov,ncovmodel,x,nlstate);
      fputs(line,ficparo);          
    }          k=0;
    ungetc(c,ficpar);          for(i=1; i<=(nlstate); i++){
              for(j=1; j<=(nlstate+ndeath);j++){
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);              k=k+1;
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              mu[k][(int) age]=pmmij[i][j];
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }
              }
    while((c=getc(ficpar))=='#' && c!= EOF){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      ungetc(c,ficpar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      fgets(line, MAXLINE, ficpar);              varpij[i][j][(int)age] = doldm[i][j];
      puts(line);  
      fputs(line,ficparo);          /*printf("\n%d ",(int)age);
    }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    ungetc(c,ficpar);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficresprobcor,"\n%d ",(int)age);
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     ungetc(c,ficpar);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     fgets(line, MAXLINE, ficpar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     puts(line);          }
     fputs(line,ficparo);          i=0;
   }          for (k=1; k<=(nlstate);k++){
   ungetc(c,ficpar);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 while((c=getc(ficpar))=='#' && c!= EOF){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }/* end of loop for state */
     fputs(line,ficparo);        } /* end of loop for age */
   }        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   ungetc(c,ficpar);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        /* Confidence intervalle of pij  */
         /*
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 /*------------ gnuplot -------------*/          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   strcat(optionfilegnuplot,".gp");          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   }        */
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 /*--------- index.htm --------*/        first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
   strcpy(optionfilehtm,optionfile);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   strcat(optionfilehtm,".htm");            if(l2==k2) continue;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            j=(k2-1)*(nlstate+ndeath)+l2;
     printf("Problem with %s \n",optionfilehtm), exit(0);            for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                i=(k1-1)*(nlstate+ndeath)+l1;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                if(i<=j) continue;
 \n                for (age=bage; age<=fage; age ++){ 
 Total number of observations=%d <br>\n                  if ((int)age %5==0){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 <hr  size=\"2\" color=\"#EC5E5E\">                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  <ul><li><h4>Parameter files</h4>\n                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                    mu1=mu[i][(int) age]/stepm*YEARM ;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                    mu2=mu[j][(int) age]/stepm*YEARM;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                    c12=cv12/sqrt(v1*v2);
   fclose(fichtm);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      if ((lc2 <0) || (lc1 <0) ){
 /*------------ free_vector  -------------*/                      if(first2==1){
  chdir(path);                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
  free_ivector(wav,1,imx);                      }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                        /* lc1=fabs(lc1); */ /* If we want to have them positive */
  free_ivector(num,1,n);                      /* lc2=fabs(lc2); */
  free_vector(agedc,1,n);                    }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);                    /* Eigen vectors */
  fclose(ficres);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
   /*--------------- Prevalence limit --------------*/                    v12=-v21;
                      v22=v11;
   strcpy(filerespl,"pl");                    tnalp=v21/v11;
   strcat(filerespl,fileres);                    if(first1==1){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      first1=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    }
   }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    /*printf(fignu*/
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   fprintf(ficrespl,"#Prevalence limit\n");                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   fprintf(ficrespl,"#Age ");                    if(first==1){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                      first=0;
   fprintf(ficrespl,"\n");                      fprintf(ficgp,"\nset parametric;unset label");
                        fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   prlim=matrix(1,nlstate,1,nlstate);                      fprintf(ficgp,"\nset ter png small size 320, 240");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   k=0;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   agebase=ageminpar;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   agelim=agemaxpar;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   ftolpl=1.e-10;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   i1=cptcoveff;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   if (cptcovn < 1){i1=1;}                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   for(cptcov=1;cptcov<=i1;cptcov++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    }else{
         k=k+1;                      first=0;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
         fprintf(ficrespl,"\n#******");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         printf("\n#******");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficlog,"\n#******");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         for(j=1;j<=cptcoveff;j++) {                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    }/* if first */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  } /* age mod 5 */
         }                } /* end loop age */
         fprintf(ficrespl,"******\n");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         printf("******\n");                first=1;
         fprintf(ficlog,"******\n");              } /*l12 */
                    } /* k12 */
         for (age=agebase; age<=agelim; age++){          } /*l1 */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }/* k1 */
           fprintf(ficrespl,"%.0f",age );        /* } /* loop covariates */
           for(i=1; i<=nlstate;i++)    }
           fprintf(ficrespl," %.5f", prlim[i][i]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           fprintf(ficrespl,"\n");    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       }    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     }    free_vector(xp,1,npar);
   fclose(ficrespl);    fclose(ficresprob);
     fclose(ficresprobcov);
   /*------------- h Pij x at various ages ------------*/    fclose(ficresprobcor);
      fflush(ficgp);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fflush(fichtmcov);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }  /******************* Printing html file ***********/
   printf("Computing pij: result on file '%s' \n", filerespij);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                    int lastpass, int stepm, int weightopt, char model[],\
                      int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    int popforecast, int estepm ,\
   /*if (stepm<=24) stepsize=2;*/                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   agelim=AGESUP;    int jj1, k1, i1, cpt;
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   /* hstepm=1;   aff par mois*/  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   k=0;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   for(cptcov=1;cptcov<=i1;cptcov++){             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fprintf(fichtm,"\
       k=k+1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
         fprintf(ficrespij,"\n#****** ");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
         for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficrespij,"******\n");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
             fprintf(fichtm,"\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     <a href=\"%s\">%s</a> <br>\n",
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
           /*      nhstepm=nhstepm*YEARM; aff par mois*/   - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");   m=pow(2,cptcoveff);
           for(i=1; i<=nlstate;i++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);   jj1=0;
           fprintf(ficrespij,"\n");   for(k1=1; k1<=m;k1++){
            for (h=0; h<=nhstepm; h++){     for(i1=1; i1<=ncodemax[k1];i1++){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       jj1++;
             for(i=1; i<=nlstate;i++)       if (cptcovn > 0) {
               for(j=1; j<=nlstate+ndeath;j++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(ficrespij,"\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
              }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       }
           fprintf(ficrespij,"\n");       /* Pij */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
     }  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   fclose(ficrespij);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   /*---------- Forecasting ------------------*/  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
   if((stepm == 1) && (strcmp(model,".")==0)){         }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       for(cpt=1; cpt<=nlstate;cpt++) {
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   else{       }
     erreur=108;     } /* end i1 */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   }/* End k1 */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   fprintf(fichtm,"</ul>");
   }  
    
    fprintf(fichtm,"\
   /*---------- Health expectancies and variances ------------*/  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   strcpy(filerest,"t");  
   strcat(filerest,fileres);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if((ficrest=fopen(filerest,"w"))==NULL) {           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   fprintf(fichtm,"\
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   strcpy(filerese,"e");   fprintf(fichtm,"\
   strcat(filerese,fileres);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   if((ficreseij=fopen(filerese,"w"))==NULL) {     <a href=\"%s\">%s</a> <br>\n</li>",
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fprintf(fichtm,"\
   }   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     <a href=\"%s\">%s</a> <br>\n</li>",
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
   strcpy(fileresv,"v");   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   strcat(fileresv,fileres);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   }   fprintf(fichtm,"\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   calagedate=-1;  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   k=0;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   for(cptcov=1;cptcov<=i1;cptcov++){  /*      <br>",fileres,fileres,fileres,fileres); */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /*  else  */
       k=k+1;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fprintf(ficrest,"\n#****** ");   fflush(fichtm);
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");   m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)   jj1=0;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   for(k1=1; k1<=m;k1++){
       fprintf(ficreseij,"******\n");     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
       fprintf(ficresvij,"\n#****** ");       if (cptcovn > 0) {
       for(j=1;j<=cptcoveff;j++)         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       fprintf(ficresvij,"******\n");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       }
       oldm=oldms;savm=savms;       for(cpt=1; cpt<=nlstate;cpt++) {
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);           fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       oldm=oldms;savm=savms;       }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       if(popbased==1){  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  true period expectancies (those weighted with period prevalences are also\
        }   drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
    <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     } /* end i1 */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);   }/* End k1 */
       fprintf(ficrest,"\n");   fprintf(fichtm,"</ul>");
    fflush(fichtm);
       epj=vector(1,nlstate+1);  }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /******************* Gnuplot file **************/
         if (popbased==1) {  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    char dirfileres[132],optfileres[132];
         }    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
            int ng=0;
         fprintf(ficrest," %4.0f",age);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*     printf("Problem with file %s",optionfilegnuplot); */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /*   } */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }    /*#ifdef windows */
           epj[nlstate+1] +=epj[j];    fprintf(ficgp,"cd \"%s\" \n",pathc);
         }      /*#endif */
     m=pow(2,cptcoveff);
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    strcpy(dirfileres,optionfilefiname);
             vepp += vareij[i][j][(int)age];    strcpy(optfileres,"vpl");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   /* 1eme*/
         for(j=1;j <=nlstate;j++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         }       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficrest,"\n");       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
       }       fprintf(ficgp,"set xlabel \"Age\" \n\
     }  set ylabel \"Probability\" \n\
   }  set ter png small size 320, 240\n\
 free_matrix(mint,1,maxwav,1,n);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);       for (i=1; i<= nlstate ; i ++) {
   fclose(ficreseij);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficresvij);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficrest);       }
   fclose(ficpar);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_vector(epj,1,nlstate+1);       for (i=1; i<= nlstate ; i ++) {
           if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   /*------- Variance limit prevalence------*/           else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
   strcpy(fileresvpl,"vpl");       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   strcat(fileresvpl,fileres);       for (i=1; i<= nlstate ; i ++) {
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     exit(0);       }  
   }       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     }
     }
   k=0;    /*2 eme*/
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for (k1=1; k1<= m ; k1 ++) { 
       k=k+1;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficresvpl,"\n#****** ");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       for(j=1;j<=cptcoveff;j++)      
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for (i=1; i<= nlstate+1 ; i ++) {
       fprintf(ficresvpl,"******\n");        k=2*i;
              fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (j=1; j<= nlstate+1 ; j ++) {
       oldm=oldms;savm=savms;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     }        }   
  }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   fclose(ficresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   /*---------- End : free ----------------*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\" t\"\" w l lt 0,");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }   
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        else fprintf(ficgp,"\" t\"\" w l lt 0,");
        }
   free_matrix(matcov,1,npar,1,npar);    }
   free_vector(delti,1,npar);    
   free_matrix(agev,1,maxwav,1,imx);    /*3eme*/
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    
     for (k1=1; k1<= m ; k1 ++) { 
   fprintf(fichtm,"\n</body>");      for (cpt=1; cpt<= nlstate ; cpt ++) {
   fclose(fichtm);        /*       k=2+nlstate*(2*cpt-2); */
   fclose(ficgp);        k=2+(nlstate+1)*(cpt-1);
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   if(erreur >0){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     printf("End of Imach with error or warning %d\n",erreur);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }else{          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    printf("End of Imach\n");          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
    fprintf(ficlog,"End of Imach\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   printf("See log file on %s\n",filelog);          
   fclose(ficlog);        */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/          
   /*------ End -----------*/        } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
  end:    }
 #ifdef windows    
   /* chdir(pathcd);*/    /* CV preval stable (period) */
 #endif    for (k1=1; k1<= m ; k1 ++) { 
  /*system("wgnuplot graph.plt");*/      for (cpt=1; cpt<=nlstate ; cpt ++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/        k=3;
  /*system("cd ../gp37mgw");*/        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  strcpy(plotcmd,GNUPLOTPROGRAM);  set ter png small size 320, 240\n\
  strcat(plotcmd," ");  unset log y\n\
  strcat(plotcmd,optionfilegnuplot);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  system(plotcmd);        
         for (i=1; i< nlstate ; i ++)
 #ifdef windows          fprintf(ficgp,"+$%d",k+i+1);
   while (z[0] != 'q') {        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     /* chdir(path); */        
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        l=3+(nlstate+ndeath)*cpt;
     scanf("%s",z);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     if (z[0] == 'c') system("./imach");        for (i=1; i< nlstate ; i ++) {
     else if (z[0] == 'e') system(optionfilehtm);          l=3+(nlstate+ndeath)*cpt;
     else if (z[0] == 'g') system(plotcmd);          fprintf(ficgp,"+$%d",l+i+1);
     else if (z[0] == 'q') exit(0);        }
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
 #endif      } 
 }    }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s\n", plotcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"./gnuplot %s", optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s\n", plotcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.151


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>