Diff for /imach/src/imach.c between versions 1.51 and 1.161

version 1.51, 2002/07/19 12:22:25 version 1.161, 2014/09/15 20:41:41
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.160  2014/09/02 09:24:05  brouard
   first survey ("cross") where individuals from different ages are    *** empty log message ***
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.159  2014/09/01 10:34:10  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: WIN32
   (if any) in individual health status.  Health expectancies are    Author: Brouard
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.158  2014/08/27 17:11:51  brouard
   Maximum Likelihood of the parameters involved in the model.  The    *** empty log message ***
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.157  2014/08/27 16:26:55  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Preparing windows Visual studio version
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Author: Brouard
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    In order to compile on Visual studio, time.h is now correct and time_t
   where the markup *Covariates have to be included here again* invites    and tm struct should be used. difftime should be used but sometimes I
   you to do it.  More covariates you add, slower the    just make the differences in raw time format (time(&now).
   convergence.    Trying to suppress #ifdef LINUX
     Add xdg-open for __linux in order to open default browser.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.156  2014/08/25 20:10:10  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
   hPijx is the probability to be observed in state i at age x+h    Author: Brouard
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.154  2014/06/20 17:32:08  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: Outputs now all graphs of convergence to period prevalence
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.153  2014/06/20 16:45:46  brouard
   and the contribution of each individual to the likelihood is simply    Summary: If 3 live state, convergence to period prevalence on same graph
   hPijx.    Author: Brouard
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.152  2014/06/18 17:54:09  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: open browser, use gnuplot on same dir than imach if not found in the path
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.151  2014/06/18 16:43:30  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.150  2014/06/18 16:42:35  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   software can be distributed freely for non commercial use. Latest version    Author: brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.149  2014/06/18 15:51:14  brouard
      Summary: Some fixes in parameter files errors
 #include <math.h>    Author: Nicolas Brouard
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.148  2014/06/17 17:38:48  brouard
 #include <unistd.h>    Summary: Nothing new
     Author: Brouard
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Just a new packaging for OS/X version 0.98nS
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.147  2014/06/16 10:33:11  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.146  2014/06/16 10:20:28  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Merge
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Merge, before building revised version.
   
 #define NINTERVMAX 8    Revision 1.145  2014/06/10 21:23:15  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Debugging with valgrind
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Author: Nicolas Brouard
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Lot of changes in order to output the results with some covariates
 #define YEARM 12. /* Number of months per year */    After the Edimburgh REVES conference 2014, it seems mandatory to
 #define AGESUP 130    improve the code.
 #define AGEBASE 40    No more memory valgrind error but a lot has to be done in order to
 #ifdef windows    continue the work of splitting the code into subroutines.
 #define DIRSEPARATOR '\\'    Also, decodemodel has been improved. Tricode is still not
 #define ODIRSEPARATOR '/'    optimal. nbcode should be improved. Documentation has been added in
 #else    the source code.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.143  2014/01/26 09:45:38  brouard
 #endif    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int erreur; /* Error number */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.142  2014/01/26 03:57:36  brouard
 int npar=NPARMAX;    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.140  2011/09/02 10:37:54  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    Summary: times.h is ok with mingw32 now.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.139  2010/06/14 07:50:17  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 double jmean; /* Mean space between 2 waves */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.138  2010/04/30 18:19:40  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.137  2010/04/29 18:11:38  brouard
 FILE *ficresprobmorprev;    (Module): Checking covariates for more complex models
 FILE *fichtm; /* Html File */    than V1+V2. A lot of change to be done. Unstable.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.136  2010/04/26 20:30:53  brouard
 FILE  *ficresvij;    (Module): merging some libgsl code. Fixing computation
 char fileresv[FILENAMELENGTH];    of likelione (using inter/intrapolation if mle = 0) in order to
 FILE  *ficresvpl;    get same likelihood as if mle=1.
 char fileresvpl[FILENAMELENGTH];    Some cleaning of code and comments added.
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.135  2009/10/29 15:33:14  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.134  2009/10/29 13:18:53  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.133  2009/07/06 10:21:25  brouard
 char popfile[FILENAMELENGTH];    just nforces
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.131  2009/06/20 16:22:47  brouard
 #define FTOL 1.0e-10    Some dimensions resccaled
   
 #define NRANSI    Revision 1.130  2009/05/26 06:44:34  brouard
 #define ITMAX 200    (Module): Max Covariate is now set to 20 instead of 8. A
     lot of cleaning with variables initialized to 0. Trying to make
 #define TOL 2.0e-4    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 #define CGOLD 0.3819660    Revision 1.129  2007/08/31 13:49:27  lievre
 #define ZEPS 1.0e-10    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.128  2006/06/30 13:02:05  brouard
 #define GOLD 1.618034    (Module): Clarifications on computing e.j
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 static double maxarg1,maxarg2;    imach-114 because nhstepm was no more computed in the age
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    loop. Now we define nhstepma in the age loop.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): In order to speed up (in case of numerous covariates) we
      compute health expectancies (without variances) in a first step
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    and then all the health expectancies with variances or standard
 #define rint(a) floor(a+0.5)    deviation (needs data from the Hessian matrices) which slows the
     computation.
 static double sqrarg;    In the future we should be able to stop the program is only health
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    expectancies and graph are needed without standard deviations.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.126  2006/04/28 17:23:28  brouard
 int imx;    (Module): Yes the sum of survivors was wrong since
 int stepm;    imach-114 because nhstepm was no more computed in the age
 /* Stepm, step in month: minimum step interpolation*/    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 int m,nb;    Forecasting file added.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.124  2006/03/22 17:13:53  lievre
 double **pmmij, ***probs, ***mobaverage;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 double dateintmean=0;    The log-likelihood is printed in the log file
   
 double *weight;    Revision 1.123  2006/03/20 10:52:43  brouard
 int **s; /* Status */    * imach.c (Module): <title> changed, corresponds to .htm file
 double *agedc, **covar, idx;    name. <head> headers where missing.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     * imach.c (Module): Weights can have a decimal point as for
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    English (a comma might work with a correct LC_NUMERIC environment,
 double ftolhess; /* Tolerance for computing hessian */    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 /**************** split *************************/    1.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Version 0.98g
 {  
    char *s;                             /* pointer */    Revision 1.122  2006/03/20 09:45:41  brouard
    int  l1, l2;                         /* length counters */    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
    l1 = strlen( path );                 /* length of path */    otherwise the weight is truncated).
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Modification of warning when the covariates values are not 0 or
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    1.
    if ( s == NULL ) {                   /* no directory, so use current */    Version 0.98g
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.121  2006/03/16 17:45:01  lievre
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Module): Comments concerning covariates added
       extern char       *getwd( );  
     * imach.c (Module): refinements in the computation of lli if
       if ( getwd( dirc ) == NULL ) {    status=-2 in order to have more reliable computation if stepm is
 #else    not 1 month. Version 0.98f
       extern char       *getcwd( );  
     Revision 1.120  2006/03/16 15:10:38  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): refinements in the computation of lli if
 #endif    status=-2 in order to have more reliable computation if stepm is
          return( GLOCK_ERROR_GETCWD );    not 1 month. Version 0.98f
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.119  2006/03/15 17:42:26  brouard
    } else {                             /* strip direcotry from path */    (Module): Bug if status = -2, the loglikelihood was
       s++;                              /* after this, the filename */    computed as likelihood omitting the logarithm. Version O.98e
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.118  2006/03/14 18:20:07  brouard
       strcpy( name, s );                /* save file name */    (Module): varevsij Comments added explaining the second
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    table of variances if popbased=1 .
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    }    (Module): Function pstamp added
    l1 = strlen( dirc );                 /* length of directory */    (Module): Version 0.98d
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.117  2006/03/14 17:16:22  brouard
 #else    (Module): varevsij Comments added explaining the second
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    table of variances if popbased=1 .
 #endif    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    s = strrchr( name, '.' );            /* find last / */    (Module): Function pstamp added
    s++;    (Module): Version 0.98d
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.116  2006/03/06 10:29:27  brouard
    l2= strlen( s)+1;    (Module): Variance-covariance wrong links and
    strncpy( finame, name, l1-l2);    varian-covariance of ej. is needed (Saito).
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
     Revision 1.114  2006/02/26 12:57:58  brouard
 /******************************************/    (Module): Some improvements in processing parameter
     filename with strsep.
 void replace(char *s, char*t)  
 {    Revision 1.113  2006/02/24 14:20:24  brouard
   int i;    (Module): Memory leaks checks with valgrind and:
   int lg=20;    datafile was not closed, some imatrix were not freed and on matrix
   i=0;    allocation too.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.112  2006/01/30 09:55:26  brouard
     (s[i] = t[i]);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.111  2006/01/25 20:38:18  brouard
 }    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 int nbocc(char *s, char occ)    can be a simple dot '.'.
 {  
   int i,j=0;    Revision 1.110  2006/01/25 00:51:50  brouard
   int lg=20;    (Module): Lots of cleaning and bugs added (Gompertz)
   i=0;  
   lg=strlen(s);    Revision 1.109  2006/01/24 19:37:15  brouard
   for(i=0; i<= lg; i++) {    (Module): Comments (lines starting with a #) are allowed in data.
   if  (s[i] == occ ) j++;  
   }    Revision 1.108  2006/01/19 18:05:42  lievre
   return j;    Gnuplot problem appeared...
 }    To be fixed
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.107  2006/01/19 16:20:37  brouard
 {    Test existence of gnuplot in imach path
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Revision 1.106  2006/01/19 13:24:36  brouard
      gives u="abcedf" and v="ghi2j" */    Some cleaning and links added in html output
   int i,lg,j,p=0;  
   i=0;    Revision 1.105  2006/01/05 20:23:19  lievre
   for(j=0; j<=strlen(t)-1; j++) {    *** empty log message ***
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
   lg=strlen(t);    (Module): If the status is missing at the last wave but we know
   for(j=0; j<p; j++) {    that the person is alive, then we can code his/her status as -2
     (u[j] = t[j]);    (instead of missing=-1 in earlier versions) and his/her
   }    contributions to the likelihood is 1 - Prob of dying from last
      u[p]='\0';    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.103  2005/09/30 15:54:49  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
 }  
     Revision 1.102  2004/09/15 17:31:30  brouard
 /********************** nrerror ********************/    Add the possibility to read data file including tab characters.
   
 void nrerror(char error_text[])    Revision 1.101  2004/09/15 10:38:38  brouard
 {    Fix on curr_time
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.100  2004/07/12 18:29:06  brouard
   exit(1);    Add version for Mac OS X. Just define UNIX in Makefile
 }  
 /*********************** vector *******************/    Revision 1.99  2004/06/05 08:57:40  brouard
 double *vector(int nl, int nh)    *** empty log message ***
 {  
   double *v;    Revision 1.98  2004/05/16 15:05:56  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    New version 0.97 . First attempt to estimate force of mortality
   if (!v) nrerror("allocation failure in vector");    directly from the data i.e. without the need of knowing the health
   return v-nl+NR_END;    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 /************************ free vector ******************/    cross-longitudinal survey is different from the mortality estimated
 void free_vector(double*v, int nl, int nh)    from other sources like vital statistic data.
 {  
   free((FREE_ARG)(v+nl-NR_END));    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 /************************ivector *******************************/    former routines in order to include the new code within the former code.
 int *ivector(long nl,long nh)  
 {    The output is very simple: only an estimate of the intercept and of
   int *v;    the slope with 95% confident intervals.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Current limitations:
   return v-nl+NR_END;    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.97  2004/02/20 13:25:42  lievre
 {    Version 0.96d. Population forecasting command line is (temporarily)
   free((FREE_ARG)(v+nl-NR_END));    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /******************* imatrix *******************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 int **imatrix(long nrl, long nrh, long ncl, long nch)    rewritten within the same printf. Workaround: many printfs.
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.95  2003/07/08 07:54:34  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    * imach.c (Repository):
   int **m;    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.94  2003/06/27 13:00:02  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Just cleaning
   m += NR_END;  
   m -= nrl;    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   /* allocate rows and set pointers to them */    (Module): Version 0.96b
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.92  2003/06/25 16:30:45  brouard
   m[nrl] += NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl] -= ncl;    exist so I changed back to asctime which exists.
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
   /* return pointer to array of pointers to rows */    (Repository): Elapsed time after each iteration is now output. It
   return m;    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.90  2003/06/24 12:34:15  brouard
       int **m;    (Module): Some bugs corrected for windows. Also, when
       long nch,ncl,nrh,nrl;    mle=-1 a template is output in file "or"mypar.txt with the design
      /* free an int matrix allocated by imatrix() */    of the covariance matrix to be input.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.89  2003/06/24 12:30:52  brouard
   free((FREE_ARG) (m+nrl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.86  2003/06/17 20:04:08  brouard
   m += NR_END;    (Module): Change position of html and gnuplot routines and added
   m -= nrl;    routine fileappend.
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.85  2003/06/17 13:12:43  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Repository): Check when date of death was earlier that
   m[nrl] += NR_END;    current date of interview. It may happen when the death was just
   m[nrl] -= ncl;    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    assuming that the date of death was just one stepm after the
   return m;    interview.
 }    (Repository): Because some people have very long ID (first column)
     we changed int to long in num[] and we added a new lvector for
 /*************************free matrix ************************/    memory allocation. But we also truncated to 8 characters (left
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    truncation)
 {    (Repository): No more line truncation errors.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.84  2003/06/13 21:44:43  brouard
 }    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
 /******************* ma3x *******************************/    many times. Probs is memory consuming and must be used with
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    parcimony.
 {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.82  2003/06/05 15:57:20  brouard
   m += NR_END;    Add log in  imach.c and  fullversion number is now printed.
   m -= nrl;  
   */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /*
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");     Interpolated Markov Chain
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Short summary of the programme:
     
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    first survey ("cross") where individuals from different ages are
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    interviewed on their health status or degree of disability (in the
   m[nrl][ncl] += NR_END;    case of a health survey which is our main interest) -2- at least a
   m[nrl][ncl] -= nll;    second wave of interviews ("longitudinal") which measure each change
   for (j=ncl+1; j<=nch; j++)    (if any) in individual health status.  Health expectancies are
     m[nrl][j]=m[nrl][j-1]+nlay;    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
   for (i=nrl+1; i<=nrh; i++) {    Maximum Likelihood of the parameters involved in the model.  The
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    simplest model is the multinomial logistic model where pij is the
     for (j=ncl+1; j<=nch; j++)    probability to be observed in state j at the second wave
       m[i][j]=m[i][j-1]+nlay;    conditional to be observed in state i at the first wave. Therefore
   }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   return m;    'age' is age and 'sex' is a covariate. If you want to have a more
 }    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 /*************************free ma3x ************************/    you to do it.  More covariates you add, slower the
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    convergence.
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    The advantage of this computer programme, compared to a simple
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    multinomial logistic model, is clear when the delay between waves is not
   free((FREE_ARG)(m+nrl-NR_END));    identical for each individual. Also, if a individual missed an
 }    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 /***************** f1dim *************************/  
 extern int ncom;    hPijx is the probability to be observed in state i at age x+h
 extern double *pcom,*xicom;    conditional to the observed state i at age x. The delay 'h' can be
 extern double (*nrfunc)(double []);    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
 double f1dim(double x)    semester or year) is modelled as a multinomial logistic.  The hPx
 {    matrix is simply the matrix product of nh*stepm elementary matrices
   int j;    and the contribution of each individual to the likelihood is simply
   double f;    hPijx.
   double *xt;  
      Also this programme outputs the covariance matrix of the parameters but also
   xt=vector(1,ncom);    of the life expectancies. It also computes the period (stable) prevalence. 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    
   f=(*nrfunc)(xt);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   free_vector(xt,1,ncom);             Institut national d'études démographiques, Paris.
   return f;    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /*****************brent *************************/    software can be distributed freely for non commercial use. Latest version
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   int iter;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   double a,b,d,etemp;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   double fu,fv,fw,fx;    
   double ftemp;    **********************************************************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  /*
   double e=0.0;    main
      read parameterfile
   a=(ax < cx ? ax : cx);    read datafile
   b=(ax > cx ? ax : cx);    concatwav
   x=w=v=bx;    freqsummary
   fw=fv=fx=(*f)(x);    if (mle >= 1)
   for (iter=1;iter<=ITMAX;iter++) {      mlikeli
     xm=0.5*(a+b);    print results files
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    if mle==1 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/       computes hessian
     printf(".");fflush(stdout);    read end of parameter file: agemin, agemax, bage, fage, estepm
     fprintf(ficlog,".");fflush(ficlog);        begin-prev-date,...
 #ifdef DEBUG    open gnuplot file
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    open html file
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 #endif                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      freexexit2 possible for memory heap.
       *xmin=x;  
       return fx;    h Pij x                         | pij_nom  ficrestpij
     }     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     ftemp=fu;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     if (fabs(e) > tol1) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       p=(x-v)*q-(x-w)*r;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       q=2.0*(q-r);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       if (q > 0.0) p = -p;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       q=fabs(q);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       etemp=e;  
       e=d;    forecasting if prevfcast==1 prevforecast call prevalence()
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    health expectancies
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Variance-covariance of DFLE
       else {    prevalence()
         d=p/q;     movingaverage()
         u=x+d;    varevsij() 
         if (u-a < tol2 || b-u < tol2)    if popbased==1 varevsij(,popbased)
           d=SIGN(tol1,xm-x);    total life expectancies
       }    Variance of period (stable) prevalence
     } else {   end
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  */
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);  
     if (fu <= fx) {   
       if (u >= x) a=x; else b=x;  #include <math.h>
       SHFT(v,w,x,u)  #include <stdio.h>
         SHFT(fv,fw,fx,fu)  #include <stdlib.h>
         } else {  #include <string.h>
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #ifdef _WIN32
             v=w;  #include <io.h>
             w=u;  #else
             fv=fw;  #include <unistd.h>
             fw=fu;  #endif
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #include <limits.h>
             fv=fu;  #include <sys/types.h>
           }  #include <sys/stat.h>
         }  #include <errno.h>
   }  /* extern int errno; */
   nrerror("Too many iterations in brent");  
   *xmin=x;  /* #ifdef LINUX */
   return fx;  /* #include <time.h> */
 }  /* #include "timeval.h" */
   /* #else */
 /****************** mnbrak ***********************/  /* #include <sys/time.h> */
   /* #endif */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  #include <time.h>
 {  
   double ulim,u,r,q, dum;  #ifdef GSL
   double fu;  #include <gsl/gsl_errno.h>
    #include <gsl/gsl_multimin.h>
   *fa=(*func)(*ax);  #endif
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  /* #include <libintl.h> */
     SHFT(dum,*ax,*bx,dum)  /* #define _(String) gettext (String) */
       SHFT(dum,*fb,*fa,dum)  
       }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #define GNUPLOTPROGRAM "gnuplot"
   while (*fb > *fc) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     r=(*bx-*ax)*(*fb-*fc);  #define FILENAMELENGTH 132
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       fu=(*func)(u);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  #define NINTERVMAX 8
       if (fu < *fc) {  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
           SHFT(*fb,*fc,fu,(*func)(u))  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
           }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define MAXN 20000
       u=ulim;  #define YEARM 12. /**< Number of months per year */
       fu=(*func)(u);  #define AGESUP 130
     } else {  #define AGEBASE 40
       u=(*cx)+GOLD*(*cx-*bx);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
       fu=(*func)(u);  #ifdef _WIN32
     }  #define DIRSEPARATOR '\\'
     SHFT(*ax,*bx,*cx,u)  #define CHARSEPARATOR "\\"
       SHFT(*fa,*fb,*fc,fu)  #define ODIRSEPARATOR '/'
       }  #else
 }  #define DIRSEPARATOR '/'
   #define CHARSEPARATOR "/"
 /*************** linmin ************************/  #define ODIRSEPARATOR '\\'
   #endif
 int ncom;  
 double *pcom,*xicom;  /* $Id$ */
 double (*nrfunc)(double []);  /* $State$ */
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
 {  char fullversion[]="$Revision$ $Date$"; 
   double brent(double ax, double bx, double cx,  char strstart[80];
                double (*f)(double), double tol, double *xmin);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   double f1dim(double x);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int nvar=0, nforce=0; /* Number of variables, number of forces */
               double *fc, double (*func)(double));  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   int j;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   double xx,xmin,bx,ax;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   double fx,fb,fa;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
    int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   ncom=n;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   pcom=vector(1,n);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   xicom=vector(1,n);  int cptcov=0; /* Working variable */
   nrfunc=func;  int npar=NPARMAX;
   for (j=1;j<=n;j++) {  int nlstate=2; /* Number of live states */
     pcom[j]=p[j];  int ndeath=1; /* Number of dead states */
     xicom[j]=xi[j];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   }  int popbased=0;
   ax=0.0;  
   xx=1.0;  int *wav; /* Number of waves for this individuual 0 is possible */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int maxwav=0; /* Maxim number of waves */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 #ifdef DEBUG  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);                     to the likelihood and the sum of weights (done by funcone)*/
 #endif  int mle=1, weightopt=0;
   for (j=1;j<=n;j++) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     xi[j] *= xmin;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     p[j] += xi[j];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   free_vector(xicom,1,n);  double jmean=1; /* Mean space between 2 waves */
   free_vector(pcom,1,n);  double **matprod2(); /* test */
 }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 /*************** powell ************************/  /*FILE *fic ; */ /* Used in readdata only */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
             double (*func)(double []))  FILE *ficlog, *ficrespow;
 {  int globpr=0; /* Global variable for printing or not */
   void linmin(double p[], double xi[], int n, double *fret,  double fretone; /* Only one call to likelihood */
               double (*func)(double []));  long ipmx=0; /* Number of contributions */
   int i,ibig,j;  double sw; /* Sum of weights */
   double del,t,*pt,*ptt,*xit;  char filerespow[FILENAMELENGTH];
   double fp,fptt;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   double *xits;  FILE *ficresilk;
   pt=vector(1,n);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   ptt=vector(1,n);  FILE *ficresprobmorprev;
   xit=vector(1,n);  FILE *fichtm, *fichtmcov; /* Html File */
   xits=vector(1,n);  FILE *ficreseij;
   *fret=(*func)(p);  char filerese[FILENAMELENGTH];
   for (j=1;j<=n;j++) pt[j]=p[j];  FILE *ficresstdeij;
   for (*iter=1;;++(*iter)) {  char fileresstde[FILENAMELENGTH];
     fp=(*fret);  FILE *ficrescveij;
     ibig=0;  char filerescve[FILENAMELENGTH];
     del=0.0;  FILE  *ficresvij;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char fileresv[FILENAMELENGTH];
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  FILE  *ficresvpl;
     for (i=1;i<=n;i++)  char fileresvpl[FILENAMELENGTH];
       printf(" %d %.12f",i, p[i]);  char title[MAXLINE];
     fprintf(ficlog," %d %.12f",i, p[i]);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     printf("\n");  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     fprintf(ficlog,"\n");  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     for (i=1;i<=n;i++) {  char command[FILENAMELENGTH];
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int  outcmd=0;
       fptt=(*fret);  
 #ifdef DEBUG  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  char filelog[FILENAMELENGTH]; /* Log file */
 #endif  char filerest[FILENAMELENGTH];
       printf("%d",i);fflush(stdout);  char fileregp[FILENAMELENGTH];
       fprintf(ficlog,"%d",i);fflush(ficlog);  char popfile[FILENAMELENGTH];
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         del=fabs(fptt-(*fret));  
         ibig=i;  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       }  /* struct timezone tzp; */
 #ifdef DEBUG  /* extern int gettimeofday(); */
       printf("%d %.12e",i,(*fret));  struct tm tml, *gmtime(), *localtime();
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  extern time_t time();
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  struct tm start_time, end_time, curr_time, last_time, forecast_time;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       }  struct tm tm;
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  char strcurr[80], strfor[80];
         fprintf(ficlog," p=%.12e",p[j]);  
       }  char *endptr;
       printf("\n");  long lval;
       fprintf(ficlog,"\n");  double dval;
 #endif  
     }  #define NR_END 1
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define FREE_ARG char*
 #ifdef DEBUG  #define FTOL 1.0e-10
       int k[2],l;  
       k[0]=1;  #define NRANSI 
       k[1]=-1;  #define ITMAX 200 
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define TOL 2.0e-4 
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);  #define CGOLD 0.3819660 
         fprintf(ficlog," %.12e",p[j]);  #define ZEPS 1.0e-10 
       }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       printf("\n");  
       fprintf(ficlog,"\n");  #define GOLD 1.618034 
       for(l=0;l<=1;l++) {  #define GLIMIT 100.0 
         for (j=1;j<=n;j++) {  #define TINY 1.0e-20 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  static double maxarg1,maxarg2;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       }  #define rint(a) floor(a+0.5)
 #endif  
   static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       free_vector(xit,1,n);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       free_vector(xits,1,n);  int agegomp= AGEGOMP;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  int imx; 
       return;  int stepm=1;
     }  /* Stepm, step in month: minimum step interpolation*/
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  int estepm;
       ptt[j]=2.0*p[j]-pt[j];  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  int m,nb;
     }  long *num;
     fptt=(*func)(ptt);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     if (fptt < fp) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double **pmmij, ***probs;
       if (t < 0.0) {  double *ageexmed,*agecens;
         linmin(p,xit,n,fret,func);  double dateintmean=0;
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  double *weight;
           xi[j][n]=xit[j];  int **s; /* Status */
         }  double *agedc;
 #ifdef DEBUG  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                    * covar=matrix(0,NCOVMAX,1,n); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         for(j=1;j<=n;j++){  double  idx; 
           printf(" %.12e",xit[j]);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
           fprintf(ficlog," %.12e",xit[j]);  int *Ndum; /** Freq of modality (tricode */
         }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         printf("\n");  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         fprintf(ficlog,"\n");  double *lsurv, *lpop, *tpop;
 #endif  
       }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     }  double ftolhess; /**< Tolerance for computing hessian */
   }  
 }  /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /**** Prevalence limit ****************/  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 {    */ 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    char  *ss;                            /* pointer */
      matrix by transitions matrix until convergence is reached */    int   l1, l2;                         /* length counters */
   
   int i, ii,j,k;    l1 = strlen(path );                   /* length of path */
   double min, max, maxmin, maxmax,sumnew=0.;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   double **matprod2();    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   double **out, cov[NCOVMAX], **pmij();    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double **newm;      strcpy( name, path );               /* we got the fullname name because no directory */
   double agefin, delaymax=50 ; /* Max number of years to converge */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (ii=1;ii<=nlstate+ndeath;ii++)      /* get current working directory */
     for (j=1;j<=nlstate+ndeath;j++){      /*    extern  char* getcwd ( char *buf , int len);*/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     }        return( GLOCK_ERROR_GETCWD );
       }
    cov[1]=1.;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } else {                              /* strip direcotry from path */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      ss++;                               /* after this, the filename */
     newm=savm;      l2 = strlen( ss );                  /* length of filename */
     /* Covariates have to be included here again */      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
      cov[2]=agefin;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
       for (k=1; k<=cptcovn;k++) {      dirc[l1-l2] = 0;                    /* add zero */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      printf(" DIRC2 = %s \n",dirc);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    }
       }    /* We add a separator at the end of dirc if not exists */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    l1 = strlen( dirc );                  /* length of directory */
       for (k=1; k<=cptcovprod;k++)    if( dirc[l1-1] != DIRSEPARATOR ){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      printf(" DIRC3 = %s \n",dirc);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    ss = strrchr( name, '.' );            /* find last / */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (ss >0){
       ss++;
     savm=oldm;      strcpy(ext,ss);                     /* save extension */
     oldm=newm;      l1= strlen( name);
     maxmax=0.;      l2= strlen(ss)+1;
     for(j=1;j<=nlstate;j++){      strncpy( finame, name, l1-l2);
       min=1.;      finame[l1-l2]= 0;
       max=0.;    }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;    return( 0 );                          /* we're done */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  /******************************************/
       }  
       maxmin=max-min;  void replace_back_to_slash(char *s, char*t)
       maxmax=FMAX(maxmax,maxmin);  {
     }    int i;
     if(maxmax < ftolpl){    int lg=0;
       return prlim;    i=0;
     }    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /*************** transition probabilities ***************/    }
   }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  char *trimbb(char *out, char *in)
   double s1, s2;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /*double t34;*/    char *s;
   int i,j,j1, nc, ii, jj;    s=out;
     while (*in != '\0'){
     for(i=1; i<= nlstate; i++){      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for(j=1; j<i;j++){        in++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      }
         /*s2 += param[i][j][nc]*cov[nc];*/      *out++ = *in++;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    }
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    *out='\0';
       }    return s;
       ps[i][j]=s2;  }
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  char *cutl(char *blocc, char *alocc, char *in, char occ)
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/       gives blocc="abcdef2ghi" and alocc="j".
       }       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       ps[i][j]=s2;    */
     }    char *s, *t;
   }    t=in;s=in;
     /*ps[3][2]=1;*/    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
   for(i=1; i<= nlstate; i++){    }
      s1=0;    if( *in == occ){
     for(j=1; j<i; j++)      *(alocc)='\0';
       s1+=exp(ps[i][j]);      s=++in;
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       s1+=exp(ps[i][j]);   
     ps[i][i]=1./(s1+1.);    if (s == t) {/* occ not found */
     for(j=1; j<i; j++)      *(alocc-(in-s))='\0';
       ps[i][j]= exp(ps[i][j])*ps[i][i];      in=s;
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       ps[i][j]= exp(ps[i][j])*ps[i][i];    while ( *in != '\0'){
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      *blocc++ = *in++;
   } /* end i */    }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    *blocc='\0';
     for(jj=1; jj<= nlstate+ndeath; jj++){    return t;
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  char *cutv(char *blocc, char *alocc, char *in, char occ)
     }  {
   }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for(jj=1; jj<= nlstate+ndeath; jj++){    */
      printf("%lf ",ps[ii][jj]);    char *s, *t;
    }    t=in;s=in;
     printf("\n ");    while (*in != '\0'){
     }      while( *in == occ){
     printf("\n ");printf("%lf ",cov[2]);*/        *blocc++ = *in++;
 /*        s=in;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      }
   goto end;*/      *blocc++ = *in++;
     return ps;    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /**************** Product of 2 matrices ******************/    else
       *(blocc-(in-s)-1)='\0';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    in=s;
 {    while ( *in != '\0'){
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      *alocc++ = *in++;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns    *alocc='\0';
      a pointer to pointers identical to out */    return s;
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  int nbocc(char *s, char occ)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  {
         out[i][k] +=in[i][j]*b[j][k];    int i,j=0;
     int lg=20;
   return out;    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
 /************* Higher Matrix Product ***************/    }
     return j;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /* void cutv(char *u,char *v, char*t, char occ) */
      duration (i.e. until  /* { */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
      (typically every 2 years instead of every month which is too big).  /*      gives u="abcdef2ghi" and v="j" *\/ */
      Model is determined by parameters x and covariates have to be  /*   int i,lg,j,p=0; */
      included manually here.  /*   i=0; */
   /*   lg=strlen(t); */
      */  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   int i, j, d, h, k;  /*   } */
   double **out, cov[NCOVMAX];  
   double **newm;  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
   /* Hstepm could be zero and should return the unit matrix */  /*   } */
   for (i=1;i<=nlstate+ndeath;i++)  /*      u[p]='\0'; */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*    for(j=0; j<= lg; j++) { */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
     }  /*   } */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* } */
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  #ifdef _WIN32
       newm=savm;  char * strsep(char **pp, const char *delim)
       /* Covariates have to be included here again */  {
       cov[1]=1.;    char *p, *q;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;           
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if ((p = *pp) == NULL)
       for (k=1; k<=cptcovage;k++)      return 0;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if ((q = strpbrk (p, delim)) != NULL)
       for (k=1; k<=cptcovprod;k++)    {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      *pp = q + 1;
       *q = '\0';
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    else
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      *pp = 0;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    return p;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  #endif
       oldm=newm;  
     }  /********************** nrerror ********************/
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  void nrerror(char error_text[])
         po[i][j][h]=newm[i][j];  {
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    fprintf(stderr,"ERREUR ...\n");
          */    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
   } /* end h */  }
   return po;  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
     double *v;
 /*************** log-likelihood *************/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 double func( double *x)    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /************************ free vector ******************/
   double sw; /* Sum of weights */  void free_vector(double*v, int nl, int nh)
   double lli; /* Individual log likelihood */  {
   long ipmx;    free((FREE_ARG)(v+nl-NR_END));
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /************************ivector *******************************/
   /*for(i=1;i<imx;i++)  int *ivector(long nl,long nh)
     printf(" %d\n",s[4][i]);  {
   */    int *v;
   cov[1]=1.;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return v-nl+NR_END;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /******************free ivector **************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  void free_ivector(int *v, long nl, long nh)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    free((FREE_ARG)(v+nl-NR_END));
         newm=savm;  }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  /************************lvector *******************************/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  long *lvector(long nl,long nh)
         }  {
            long *v;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if (!v) nrerror("allocation failure in ivector");
         savm=oldm;    return v-nl+NR_END;
         oldm=newm;  }
          
          /******************free lvector **************************/
       } /* end mult */  void free_lvector(long *v, long nl, long nh)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    free((FREE_ARG)(v+nl-NR_END));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  }
       ipmx +=1;  
       sw += weight[i];  /******************* imatrix *******************************/
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     } /* end of wave */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   } /* end of individual */  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    int **m; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* allocate pointers to rows */ 
   return -l;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
     m -= nrl; 
 /*********** Maximum Likelihood Estimation ***************/    
     
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   int i,j, iter;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double **xi,*delti;    m[nrl] += NR_END; 
   double fret;    m[nrl] -= ncl; 
   xi=matrix(1,npar,1,npar);    
   for (i=1;i<=npar;i++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for (j=1;j<=npar;j++)    
       xi[i][j]=(i==j ? 1.0 : 0.0);    /* return pointer to array of pointers to rows */ 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    return m; 
   powell(p,xi,npar,ftol,&iter,&fret,func);  } 
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /****************** free_imatrix *************************/
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  void free_imatrix(m,nrl,nrh,ncl,nch)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        int **m;
         long nch,ncl,nrh,nrl; 
 }       /* free an int matrix allocated by imatrix() */ 
   { 
 /**** Computes Hessian and covariance matrix ***/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   double  **a,**y,*x,pd;  
   double **hess;  /******************* matrix *******************************/
   int i, j,jk;  double **matrix(long nrl, long nrh, long ncl, long nch)
   int *indx;  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   double hessii(double p[], double delta, int theta, double delti[]);    double **m;
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   void ludcmp(double **a, int npar, int *indx, double *d) ;    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   hess=matrix(1,npar,1,npar);    m -= nrl;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for (i=1;i<=npar;i++){    m[nrl] += NR_END;
     printf("%d",i);fflush(stdout);    m[nrl] -= ncl;
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     /*printf(" %f ",p[i]);*/    return m;
     /*printf(" %lf ",hess[i][i]);*/    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
    that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   for (i=1;i<=npar;i++) {     */
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************************free matrix ************************/
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        free((FREE_ARG)(m[nrl]+ncl-NR_END));
         /*printf(" %lf ",hess[i][j]);*/    free((FREE_ARG)(m+nrl-NR_END));
       }  }
     }  
   }  /******************* ma3x *******************************/
   printf("\n");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   fprintf(ficlog,"\n");  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    double ***m;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
      m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   a=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   y=matrix(1,npar,1,npar);    m += NR_END;
   x=vector(1,npar);    m -= nrl;
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   ludcmp(a,npar,indx,&pd);    m[nrl] += NR_END;
     m[nrl] -= ncl;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     x[j]=1;  
     lubksb(a,npar,indx,x);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     for (i=1;i<=npar;i++){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       matcov[i][j]=x[i];    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
   printf("\n#Hessian matrix#\n");    
   fprintf(ficlog,"\n#Hessian matrix#\n");    for (i=nrl+1; i<=nrh; i++) {
   for (i=1;i<=npar;i++) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=npar;j++) {      for (j=ncl+1; j<=nch; j++) 
       printf("%.3e ",hess[i][j]);        m[i][j]=m[i][j-1]+nlay;
       fprintf(ficlog,"%.3e ",hess[i][j]);    }
     }    return m; 
     printf("\n");    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     fprintf(ficlog,"\n");             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /*************************free ma3x ************************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   ludcmp(a,npar,indx,&pd);  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   /*  printf("\n#Hessian matrix recomputed#\n");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** function subdirf ***********/
     lubksb(a,npar,indx,x);  char *subdirf(char fileres[])
     for (i=1;i<=npar;i++){  {
       y[i][j]=x[i];    /* Caution optionfilefiname is hidden */
       printf("%.3e ",y[i][j]);    strcpy(tmpout,optionfilefiname);
       fprintf(ficlog,"%.3e ",y[i][j]);    strcat(tmpout,"/"); /* Add to the right */
     }    strcat(tmpout,fileres);
     printf("\n");    return tmpout;
     fprintf(ficlog,"\n");  }
   }  
   */  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   free_matrix(a,1,npar,1,npar);  {
   free_matrix(y,1,npar,1,npar);    
   free_vector(x,1,npar);    /* Caution optionfilefiname is hidden */
   free_ivector(indx,1,npar);    strcpy(tmpout,optionfilefiname);
   free_matrix(hess,1,npar,1,npar);    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,fileres);
 }    return tmpout;
   }
 /*************** hessian matrix ****************/  
 double hessii( double x[], double delta, int theta, double delti[])  /*************** function subdirf3 ***********/
 {  char *subdirf3(char fileres[], char *preop, char *preop2)
   int i;  {
   int l=1, lmax=20;    
   double k1,k2;    /* Caution optionfilefiname is hidden */
   double p2[NPARMAX+1];    strcpy(tmpout,optionfilefiname);
   double res;    strcat(tmpout,"/");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    strcat(tmpout,preop);
   double fx;    strcat(tmpout,preop2);
   int k=0,kmax=10;    strcat(tmpout,fileres);
   double l1;    return tmpout;
   }
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /***************** f1dim *************************/
   for(l=0 ; l <=lmax; l++){  extern int ncom; 
     l1=pow(10,l);  extern double *pcom,*xicom;
     delts=delt;  extern double (*nrfunc)(double []); 
     for(k=1 ; k <kmax; k=k+1){   
       delt = delta*(l1*k);  double f1dim(double x) 
       p2[theta]=x[theta] +delt;  { 
       k1=func(p2)-fx;    int j; 
       p2[theta]=x[theta]-delt;    double f;
       k2=func(p2)-fx;    double *xt; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */   
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    xt=vector(1,ncom); 
          for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 #ifdef DEBUG    f=(*nrfunc)(xt); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    free_vector(xt,1,ncom); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    return f; 
 #endif  } 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  /*****************brent *************************/
         k=kmax;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       }  { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int iter; 
         k=kmax; l=lmax*10.;    double a,b,d,etemp;
       }    double fu=0,fv,fw,fx;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double ftemp;
         delts=delt;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       }    double e=0.0; 
     }   
   }    a=(ax < cx ? ax : cx); 
   delti[theta]=delts;    b=(ax > cx ? ax : cx); 
   return res;    x=w=v=bx; 
      fw=fv=fx=(*f)(x); 
 }    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
 double hessij( double x[], double delti[], int thetai,int thetaj)      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   int i;      printf(".");fflush(stdout);
   int l=1, l1, lmax=20;      fprintf(ficlog,".");fflush(ficlog);
   double k1,k2,k3,k4,res,fx;  #ifdef DEBUG
   double p2[NPARMAX+1];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   fx=func(x);  #endif
   for (k=1; k<=2; k++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (i=1;i<=npar;i++) p2[i]=x[i];        *xmin=x; 
     p2[thetai]=x[thetai]+delti[thetai]/k;        return fx; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      } 
     k1=func(p2)-fx;      ftemp=fu;
        if (fabs(e) > tol1) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        r=(x-w)*(fx-fv); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        q=(x-v)*(fx-fw); 
     k2=func(p2)-fx;        p=(x-v)*q-(x-w)*r; 
          q=2.0*(q-r); 
     p2[thetai]=x[thetai]-delti[thetai]/k;        if (q > 0.0) p = -p; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        q=fabs(q); 
     k3=func(p2)-fx;        etemp=e; 
          e=d; 
     p2[thetai]=x[thetai]-delti[thetai]/k;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     k4=func(p2)-fx;        else { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          d=p/q; 
 #ifdef DEBUG          u=x+d; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          if (u-a < tol2 || b-u < tol2) 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            d=SIGN(tol1,xm-x); 
 #endif        } 
   }      } else { 
   return res;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 /************** Inverse of matrix **************/      fu=(*f)(u); 
 void ludcmp(double **a, int n, int *indx, double *d)      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   int i,imax,j,k;        SHFT(v,w,x,u) 
   double big,dum,sum,temp;          SHFT(fv,fw,fx,fu) 
   double *vv;          } else { 
              if (u < x) a=u; else b=u; 
   vv=vector(1,n);            if (fu <= fw || w == x) { 
   *d=1.0;              v=w; 
   for (i=1;i<=n;i++) {              w=u; 
     big=0.0;              fv=fw; 
     for (j=1;j<=n;j++)              fw=fu; 
       if ((temp=fabs(a[i][j])) > big) big=temp;            } else if (fu <= fv || v == x || v == w) { 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");              v=u; 
     vv[i]=1.0/big;              fv=fu; 
   }            } 
   for (j=1;j<=n;j++) {          } 
     for (i=1;i<j;i++) {    } 
       sum=a[i][j];    nrerror("Too many iterations in brent"); 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    *xmin=x; 
       a[i][j]=sum;    return fx; 
     }  } 
     big=0.0;  
     for (i=j;i<=n;i++) {  /****************** mnbrak ***********************/
       sum=a[i][j];  
       for (k=1;k<j;k++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         sum -= a[i][k]*a[k][j];              double (*func)(double)) 
       a[i][j]=sum;  { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double ulim,u,r,q, dum;
         big=dum;    double fu; 
         imax=i;   
       }    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     if (j != imax) {    if (*fb > *fa) { 
       for (k=1;k<=n;k++) {      SHFT(dum,*ax,*bx,dum) 
         dum=a[imax][k];        SHFT(dum,*fb,*fa,dum) 
         a[imax][k]=a[j][k];        } 
         a[j][k]=dum;    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
       *d = -(*d);    while (*fb > *fc) { 
       vv[imax]=vv[j];      r=(*bx-*ax)*(*fb-*fc); 
     }      q=(*bx-*cx)*(*fb-*fa); 
     indx[j]=imax;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     if (a[j][j] == 0.0) a[j][j]=TINY;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     if (j != n) {      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       dum=1.0/(a[j][j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        fu=(*func)(u); 
     }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   }        fu=(*func)(u); 
   free_vector(vv,1,n);  /* Doesn't work */        if (fu < *fc) { 
 ;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 void lubksb(double **a, int n, int *indx, double b[])      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 {        u=ulim; 
   int i,ii=0,ip,j;        fu=(*func)(u); 
   double sum;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
   for (i=1;i<=n;i++) {        fu=(*func)(u); 
     ip=indx[i];      } 
     sum=b[ip];      SHFT(*ax,*bx,*cx,u) 
     b[ip]=b[i];        SHFT(*fa,*fb,*fc,fu) 
     if (ii)        } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  } 
     else if (sum) ii=i;  
     b[i]=sum;  /*************** linmin ************************/
   }  
   for (i=n;i>=1;i--) {  int ncom; 
     sum=b[i];  double *pcom,*xicom;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  double (*nrfunc)(double []); 
     b[i]=sum/a[i][i];   
   }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 }  { 
     double brent(double ax, double bx, double cx, 
 /************ Frequencies ********************/                 double (*f)(double), double tol, double *xmin); 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double f1dim(double x); 
 {  /* Some frequencies */    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                  double *fc, double (*func)(double)); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    int j; 
   int first;    double xx,xmin,bx,ax; 
   double ***freq; /* Frequencies */    double fx,fb,fa;
   double *pp;   
   double pos, k2, dateintsum=0,k2cpt=0;    ncom=n; 
   FILE *ficresp;    pcom=vector(1,n); 
   char fileresp[FILENAMELENGTH];    xicom=vector(1,n); 
      nrfunc=func; 
   pp=vector(1,nlstate);    for (j=1;j<=n;j++) { 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      pcom[j]=p[j]; 
   strcpy(fileresp,"p");      xicom[j]=xi[j]; 
   strcat(fileresp,fileres);    } 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    ax=0.0; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    xx=1.0; 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     exit(0);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   }  #ifdef DEBUG
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   j1=0;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
    #endif
   j=cptcoveff;    for (j=1;j<=n;j++) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      xi[j] *= xmin; 
       p[j] += xi[j]; 
   first=1;    } 
     free_vector(xicom,1,n); 
   for(k1=1; k1<=j;k1++){    free_vector(pcom,1,n); 
     for(i1=1; i1<=ncodemax[k1];i1++){  } 
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  char *asc_diff_time(long time_sec, char ascdiff[])
         scanf("%d", i);*/  {
       for (i=-1; i<=nlstate+ndeath; i++)      long sec_left, days, hours, minutes;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      days = (time_sec) / (60*60*24);
           for(m=agemin; m <= agemax+3; m++)    sec_left = (time_sec) % (60*60*24);
             freq[i][jk][m]=0;    hours = (sec_left) / (60*60) ;
          sec_left = (sec_left) %(60*60);
       dateintsum=0;    minutes = (sec_left) /60;
       k2cpt=0;    sec_left = (sec_left) % (60);
       for (i=1; i<=imx; i++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         bool=1;    return ascdiff;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*************** powell ************************/
               bool=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
         if (bool==1) {  { 
           for(m=firstpass; m<=lastpass; m++){    void linmin(double p[], double xi[], int n, double *fret, 
             k2=anint[m][i]+(mint[m][i]/12.);                double (*func)(double [])); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int i,ibig,j; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;    double del,t,*pt,*ptt,*xit;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double fp,fptt;
               if (m<lastpass) {    double *xits;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int niterf, itmp;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }    pt=vector(1,n); 
                  ptt=vector(1,n); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    xit=vector(1,n); 
                 dateintsum=dateintsum+k2;    xits=vector(1,n); 
                 k2cpt++;    *fret=(*func)(p); 
               }    for (j=1;j<=n;j++) pt[j]=p[j]; 
             }      rcurr_time = time(NULL);  
           }    for (*iter=1;;++(*iter)) { 
         }      fp=(*fret); 
       }      ibig=0; 
              del=0.0; 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      rlast_time=rcurr_time;
       /* (void) gettimeofday(&curr_time,&tzp); */
       if  (cptcovn>0) {      rcurr_time = time(NULL);  
         fprintf(ficresp, "\n#********** Variable ");      curr_time = *localtime(&rcurr_time);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
         fprintf(ficresp, "**********\n#");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
       for(i=1; i<=nlstate;i++)     for (i=1;i<=n;i++) {
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        printf(" %d %.12f",i, p[i]);
       fprintf(ficresp, "\n");        fprintf(ficlog," %d %.12lf",i, p[i]);
              fprintf(ficrespow," %.12lf", p[i]);
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         if(i==(int)agemax+3){      printf("\n");
           fprintf(ficlog,"Total");      fprintf(ficlog,"\n");
         }else{      fprintf(ficrespow,"\n");fflush(ficrespow);
           if(first==1){      if(*iter <=3){
             first=0;        tml = *localtime(&rcurr_time);
             printf("See log file for details...\n");        strcpy(strcurr,asctime(&tml));
           }  /*       asctime_r(&tm,strcurr); */
           fprintf(ficlog,"Age %d", i);        rforecast_time=rcurr_time; 
         }        itmp = strlen(strcurr);
         for(jk=1; jk <=nlstate ; jk++){        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          strcurr[itmp-1]='\0';
             pp[jk] += freq[jk][m][i];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         }        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(jk=1; jk <=nlstate ; jk++){        for(niterf=10;niterf<=30;niterf+=10){
           for(m=-1, pos=0; m <=0 ; m++)          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
             pos += freq[jk][m][i];          forecast_time = *localtime(&rforecast_time);
           if(pp[jk]>=1.e-10){  /*      asctime_r(&tmf,strfor); */
             if(first==1){          strcpy(strfor,asctime(&forecast_time));
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          itmp = strlen(strfor);
             }          if(strfor[itmp-1]=='\n')
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          strfor[itmp-1]='\0';
           }else{          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
             if(first==1)          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      }
           }      for (i=1;i<=n;i++) { 
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
         for(jk=1; jk <=nlstate ; jk++){  #ifdef DEBUG
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        printf("fret=%lf \n",*fret);
             pp[jk] += freq[jk][m][i];        fprintf(ficlog,"fret=%lf \n",*fret);
         }  #endif
         printf("%d",i);fflush(stdout);
         for(jk=1,pos=0; jk <=nlstate ; jk++)        fprintf(ficlog,"%d",i);fflush(ficlog);
           pos += pp[jk];        linmin(p,xit,n,fret,func); 
         for(jk=1; jk <=nlstate ; jk++){        if (fabs(fptt-(*fret)) > del) { 
           if(pos>=1.e-5){          del=fabs(fptt-(*fret)); 
             if(first==1)          ibig=i; 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        } 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  #ifdef DEBUG
           }else{        printf("%d %.12e",i,(*fret));
             if(first==1)        fprintf(ficlog,"%d %.12e",i,(*fret));
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for (j=1;j<=n;j++) {
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           }          printf(" x(%d)=%.12e",j,xit[j]);
           if( i <= (int) agemax){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             if(pos>=1.e-5){        }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        for(j=1;j<=n;j++) {
               probs[i][jk][j1]= pp[jk]/pos;          printf(" p=%.12e",p[j]);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          fprintf(ficlog," p=%.12e",p[j]);
             }        }
             else        printf("\n");
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        fprintf(ficlog,"\n");
           }  #endif
         }      } 
              if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         for(jk=-1; jk <=nlstate+ndeath; jk++)  #ifdef DEBUG
           for(m=-1; m <=nlstate+ndeath; m++)        int k[2],l;
             if(freq[jk][m][i] !=0 ) {        k[0]=1;
             if(first==1)        k[1]=-1;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        printf("Max: %.12e",(*func)(p));
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
             }        for (j=1;j<=n;j++) {
         if(i <= (int) agemax)          printf(" %.12e",p[j]);
           fprintf(ficresp,"\n");          fprintf(ficlog," %.12e",p[j]);
         if(first==1)        }
           printf("Others in log...\n");        printf("\n");
         fprintf(ficlog,"\n");        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   dateintmean=dateintsum/k2cpt;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
              fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   fclose(ficresp);          }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_vector(pp,1,nlstate);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
   /* End of Freq */  #endif
 }  
   
 /************ Prevalence ********************/        free_vector(xit,1,n); 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        free_vector(xits,1,n); 
 {  /* Some frequencies */        free_vector(ptt,1,n); 
          free_vector(pt,1,n); 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        return; 
   double ***freq; /* Frequencies */      } 
   double *pp;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double pos, k2;      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
         ptt[j]=2.0*p[j]-pt[j]; 
   pp=vector(1,nlstate);        xit[j]=p[j]-pt[j]; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        pt[j]=p[j]; 
        } 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fptt=(*func)(ptt); 
   j1=0;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
          /* x1 f1=fp x2 f2=*fret x3 f3=fptt, xm fm */
   j=cptcoveff;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        /* Let f"(x2) be the 2nd derivative equal everywhere. Then the parabolic through (x1,f1), (x2,f2) and (x3,f3)
             will reach at f3 = fm + h^2/2 f''m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   for(k1=1; k1<=j;k1++){        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
     for(i1=1; i1<=ncodemax[k1];i1++){        /* Thus we compare delta(2h) with observed f1-f3 */
       j1++;        /* or best gain on one ancient line 'del' with total gain f1-f2 = f1 - f2 - 'del' with del */ 
              /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
       for (i=-1; i<=nlstate+ndeath; i++)          t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          t= t- del*SQR(fp-fptt);
           for(m=agemin; m <= agemax+3; m++)        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
             freq[i][jk][m]=0;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
        #ifdef DEBUG
       for (i=1; i<=imx; i++) {        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         bool=1;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         if  (cptcovn>0) {        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
           for (z1=1; z1<=cptcoveff; z1++)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
               bool=0;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         }  #endif
         if (bool==1) {        if (t < 0.0) { /* Then we use it for last direction */
           for(m=firstpass; m<=lastpass; m++){          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
             k2=anint[m][i]+(mint[m][i]/12.);          for (j=1;j<=n;j++) { 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
               if(agev[m][i]==0) agev[m][i]=agemax+1;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          }
               if (m<lastpass) {          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                 if (calagedate>0)          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  
                 else  #ifdef DEBUG
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          for(j=1;j<=n;j++){
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];            printf(" %.12e",xit[j]);
               }            fprintf(ficlog," %.12e",xit[j]);
             }          }
           }          printf("\n");
         }          fprintf(ficlog,"\n");
       }  #endif
       for(i=(int)agemin; i <= (int)agemax+3; i++){        }
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    } 
             pp[jk] += freq[jk][m][i];  } 
         }  
         for(jk=1; jk <=nlstate ; jk++){  /**** Prevalence limit (stable or period prevalence)  ****************/
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         }  {
            /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         for(jk=1; jk <=nlstate ; jk++){       matrix by transitions matrix until convergence is reached */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    int i, ii,j,k;
         }    double min, max, maxmin, maxmax,sumnew=0.;
            /* double **matprod2(); */ /* test */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    double **out, cov[NCOVMAX+1], **pmij();
            double **newm;
         for(jk=1; jk <=nlstate ; jk++){        double agefin, delaymax=50 ; /* Max number of years to converge */
           if( i <= (int) agemax){  
             if(pos>=1.e-5){    for (ii=1;ii<=nlstate+ndeath;ii++)
               probs[i][jk][j1]= pp[jk]/pos;      for (j=1;j<=nlstate+ndeath;j++){
             }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           }      }
         }/* end jk */  
       }/* end i */     cov[1]=1.;
     } /* end i1 */   
   } /* end k1 */   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      /* Covariates have to be included here again */
   free_vector(pp,1,nlstate);      cov[2]=agefin;
        
 }  /* End of Freq */      for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /************* Waves Concatenation ***************/        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
       }
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 {      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
      Death is a valid wave (if date is known).      
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      and mw[mi+1][i]. dh depends on stepm.      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   int i, mi, m;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      
      double sum=0., jmean=0.;*/      savm=oldm;
   int first;      oldm=newm;
   int j, k=0,jk, ju, jl;      maxmax=0.;
   double sum=0.;      for(j=1;j<=nlstate;j++){
   first=0;        min=1.;
   jmin=1e+5;        max=0.;
   jmax=-1;        for(i=1; i<=nlstate; i++) {
   jmean=0.;          sumnew=0;
   for(i=1; i<=imx; i++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     mi=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
     m=firstpass;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     while(s[m][i] <= nlstate){          max=FMAX(max,prlim[i][j]);
       if(s[m][i]>=1)          min=FMIN(min,prlim[i][j]);
         mw[++mi][i]=m;        }
       if(m >=lastpass)        maxmin=max-min;
         break;        maxmax=FMAX(maxmax,maxmin);
       else      }
         m++;      if(maxmax < ftolpl){
     }/* end while */        return prlim;
     if (s[m][i] > nlstate){      }
       mi++;     /* Death is another wave */    }
       /* if(mi==0)  never been interviewed correctly before death */  }
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*************** transition probabilities ***************/ 
     }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     wav[i]=mi;  {
     if(mi==0){    /* According to parameters values stored in x and the covariate's values stored in cov,
       if(first==0){       computes the probability to be observed in state j being in state i by appying the
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);       model to the ncovmodel covariates (including constant and age).
         first=1;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
       }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       if(first==1){       ncth covariate in the global vector x is given by the formula:
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
       }       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     } /* end mi==0 */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
        Outputs ps[i][j] the probability to be observed in j being in j according to
   for(i=1; i<=imx; i++){       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     for(mi=1; mi<wav[i];mi++){    */
       if (stepm <=0)    double s1, lnpijopii;
         dh[mi][i]=1;    /*double t34;*/
       else{    int i,j,j1, nc, ii, jj;
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {      for(i=1; i<= nlstate; i++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(j=1; j<i;j++){
           if(j==0) j=1;  /* Survives at least one month after exam */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           k=k+1;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
           if (j >= jmax) jmax=j;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
           if (j <= jmin) jmin=j;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           sum=sum+j;          }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
           }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }        }
         else{        for(j=i+1; j<=nlstate+ndeath;j++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           k=k+1;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
           if (j >= jmax) jmax=j;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
           else if (j <= jmin)jmin=j;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          }
           sum=sum+j;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }        }
         jk= j/stepm;      }
         jl= j -jk*stepm;      
         ju= j -(jk+1)*stepm;      for(i=1; i<= nlstate; i++){
         if(jl <= -ju)        s1=0;
           dh[mi][i]=jk;        for(j=1; j<i; j++){
         else          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           dh[mi][i]=jk+1;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         if(dh[mi][i]==0)        }
           dh[mi][i]=1; /* At least one step */        for(j=i+1; j<=nlstate+ndeath; j++){
       }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   }        }
   jmean=sum/k;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        ps[i][i]=1./(s1+1.);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        /* Computing other pijs */
  }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
 /*********** Tricode ****************************/        for(j=i+1; j<=nlstate+ndeath; j++)
 void tricode(int *Tvar, int **nbcode, int imx)          ps[i][j]= exp(ps[i][j])*ps[i][i];
 {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   int Ndum[20],ij=1, k, j, i;      } /* end i */
   int cptcode=0;      
   cptcoveff=0;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
   for (k=0; k<19; k++) Ndum[k]=0;          ps[ii][jj]=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;          ps[ii][ii]=1;
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      }
     for (i=1; i<=imx; i++) {      
       ij=(int)(covar[Tvar[j]][i]);      
       Ndum[ij]++;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       if (ij > cptcode) cptcode=ij;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     }      /*   } */
       /*   printf("\n "); */
     for (i=0; i<=cptcode; i++) {      /* } */
       if(Ndum[i]!=0) ncodemax[j]++;      /* printf("\n ");printf("%lf ",cov[2]);*/
     }      /*
     ij=1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
       return ps;
     for (i=1; i<=ncodemax[j]; i++) {  }
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {  /**************** Product of 2 matrices ******************/
           nbcode[Tvar[j]][ij]=k;  
            double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
           ij++;  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         if (ij > ncodemax[j]) break;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       }      /* in, b, out are matrice of pointers which should have been initialized 
     }       before: only the contents of out is modified. The function returns
   }         a pointer to pointers identical to out */
     int i, j, k;
  for (k=0; k<19; k++) Ndum[k]=0;    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++){
  for (i=1; i<=ncovmodel-2; i++) {        out[i][k]=0.;
    ij=Tvar[i];        for(j=ncl; j<=nch; j++)
    Ndum[ij]++;          out[i][k] +=in[i][j]*b[j][k];
  }      }
     return out;
  ij=1;  }
  for (i=1; i<=10; i++) {  
    if((Ndum[i]!=0) && (i<=ncovcol)){  
      Tvaraff[ij]=i;  /************* Higher Matrix Product ***************/
      ij++;  
    }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
  }  {
      /* Computes the transition matrix starting at age 'age' over 
  cptcoveff=ij-1;       'nhstepm*hstepm*stepm' months (i.e. until
 }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
 /*********** Health Expectancies ****************/       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )       for the memory).
        Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   /* Health expectancies */  
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;       */
   double age, agelim, hf;  
   double ***p3mat,***varhe;    int i, j, d, h, k;
   double **dnewm,**doldm;    double **out, cov[NCOVMAX+1];
   double *xp;    double **newm;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    /* Hstepm could be zero and should return the unit matrix */
   int theta;    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        oldm[i][j]=(i==j ? 1.0 : 0.0);
   xp=vector(1,npar);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate*2,1,npar);      }
   doldm=matrix(1,nlstate*2,1,nlstate*2);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(h=1; h <=nhstepm; h++){
   fprintf(ficreseij,"# Health expectancies\n");      for(d=1; d <=hstepm; d++){
   fprintf(ficreseij,"# Age");        newm=savm;
   for(i=1; i<=nlstate;i++)        /* Covariates have to be included here again */
     for(j=1; j<=nlstate;j++)        cov[1]=1.;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   fprintf(ficreseij,"\n");        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   if(estepm < stepm){        for (k=1; k<=cptcovage;k++)
     printf ("Problem %d lower than %d\n",estepm, stepm);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   else  hstepm=estepm;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
    * we are calculating an estimate of the Life Expectancy assuming a linear        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
    * progression inbetween and thus overestimating or underestimating according        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
    * to the curvature of the survival function. If, for the same date, we                     pmij(pmmij,cov,ncovmodel,x,nlstate));
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        savm=oldm;
    * to compare the new estimate of Life expectancy with the same linear        oldm=newm;
    * hypothesis. A more precise result, taking into account a more precise      }
    * curvature will be obtained if estepm is as small as stepm. */      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   /* For example we decided to compute the life expectancy with the smallest unit */          po[i][j][h]=newm[i][j];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      nhstepm is the number of hstepm from age to agelim        }
      nstepm is the number of stepm from age to agelin.      /*printf("h=%d ",h);*/
      Look at hpijx to understand the reason of that which relies in memory size    } /* end h */
      and note for a fixed period like estepm months */  /*     printf("\n H=%d \n",h); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    return po;
      survival function given by stepm (the optimization length). Unfortunately it  }
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /*************** log-likelihood *************/
   */  double func( double *x)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  {
     int i, ii, j, k, mi, d, kk;
   agelim=AGESUP;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **out;
     /* nhstepm age range expressed in number of stepm */    double sw; /* Sum of weights */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double lli; /* Individual log likelihood */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    int s1, s2;
     /* if (stepm >= YEARM) hstepm=1;*/    double bbh, survp;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    long ipmx;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*extern weight */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    /* We are differentiating ll according to initial status */
     gp=matrix(0,nhstepm,1,nlstate*2);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gm=matrix(0,nhstepm,1,nlstate*2);    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    cov[1]=1.;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computing Variances of health expectancies */        /* Computes the values of the ncovmodel covariates of the model
            depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
      for(theta=1; theta <=npar; theta++){           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       for(i=1; i<=npar; i++){           to be observed in j being in i according to the model.
         xp[i] = x[i] + (i==theta ?delti[theta]:0);         */
       }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            cov[2+k]=covar[Tvar[k]][i];
          }
       cptj=0;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       for(j=1; j<= nlstate; j++){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
         for(i=1; i<=nlstate; i++){           has been calculated etc */
           cptj=cptj+1;        for(mi=1; mi<= wav[i]-1; mi++){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
                for(d=0; d<dh[mi][i]; d++){
                  newm=savm;
       for(i=1; i<=npar; i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
                  }
       cptj=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<= nlstate; j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1;i<=nlstate;i++){            savm=oldm;
           cptj=cptj+1;            oldm=newm;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          } /* end mult */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        
           }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
       }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       for(j=1; j<= nlstate*2; j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         for(h=0; h<=nhstepm-1; h++){           * the nearest (and in case of equal distance, to the lowest) interval but now
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         }           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      }           * probability in order to take into account the bias as a fraction of the way
               * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 /* End theta */           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);           * For stepm > 1 the results are less biased than in previous versions. 
            */
      for(h=0; h<=nhstepm-1; h++)          s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate*2;j++)          s2=s[mw[mi+1][i]][i];
         for(theta=1; theta <=npar; theta++)          bbh=(double)bh[mi][i]/(double)stepm; 
           trgradg[h][j][theta]=gradg[h][theta][j];          /* bias bh is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
            */
      for(i=1;i<=nlstate*2;i++)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for(j=1;j<=nlstate*2;j++)          if( s2 > nlstate){ 
         varhe[i][j][(int)age] =0.;            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
      printf("%d|",(int)age);fflush(stdout);               die between last step unit time and current  step unit time, 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);               which is also equal to probability to die before dh 
      for(h=0;h<=nhstepm-1;h++){               minus probability to die before dh-stepm . 
       for(k=0;k<=nhstepm-1;k++){               In version up to 0.92 likelihood was computed
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          as if date of death was unknown. Death was treated as any other
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          health state: the date of the interview describes the actual state
         for(i=1;i<=nlstate*2;i++)          and not the date of a change in health state. The former idea was
           for(j=1;j<=nlstate*2;j++)          to consider that at each interview the state was recorded
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          (healthy, disable or death) and IMaCh was corrected; but when we
       }          introduced the exact date of death then we should have modified
     }          the contribution of an exact death to the likelihood. This new
     /* Computing expectancies */          contribution is smaller and very dependent of the step unit
     for(i=1; i<=nlstate;i++)          stepm. It is no more the probability to die between last interview
       for(j=1; j<=nlstate;j++)          and month of death but the probability to survive from last
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          interview up to one month before death multiplied by the
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          probability to die within a month. Thanks to Chris
                    Jackson for correcting this bug.  Former versions increased
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
         }          lower mortality.
             */
     fprintf(ficreseij,"%3.0f",age );            lli=log(out[s1][s2] - savm[s1][s2]);
     cptj=0;  
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){          } else if  (s2==-2) {
         cptj++;            for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            /*survp += out[s1][j]; */
     fprintf(ficreseij,"\n");            lli= log(survp);
              }
     free_matrix(gm,0,nhstepm,1,nlstate*2);          
     free_matrix(gp,0,nhstepm,1,nlstate*2);          else if  (s2==-4) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            for (j=3,survp=0. ; j<=nlstate; j++)  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp); 
   }          } 
   printf("\n");  
   fprintf(ficlog,"\n");          else if  (s2==-5) { 
             for (j=1,survp=0. ; j<=2; j++)  
   free_vector(xp,1,npar);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(dnewm,1,nlstate*2,1,npar);            lli= log(survp); 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          } 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          
 }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 /************ Variance ******************/            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          } 
 {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   /* Variance of health expectancies */          /*if(lli ==000.0)*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   /* double **newm;*/          ipmx +=1;
   double **dnewm,**doldm;          sw += weight[i];
   double **dnewmp,**doldmp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, j, nhstepm, hstepm, h, nstepm ;        } /* end of wave */
   int k, cptcode;      } /* end of individual */
   double *xp;    }  else if(mle==2){
   double **gp, **gm;  /* for var eij */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double ***gradg, ***trgradg; /*for var eij */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gradgp, **trgradgp; /* for var p point j */        for(mi=1; mi<= wav[i]-1; mi++){
   double *gpp, *gmp; /* for var p point j */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            for (j=1;j<=nlstate+ndeath;j++){
   double ***p3mat;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim, hf;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int theta;            }
   char digit[4];          for(d=0; d<=dh[mi][i]; d++){
   char digitp[16];            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char fileresprobmorprev[FILENAMELENGTH];            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if(popbased==1)            }
     strcpy(digitp,"-populbased-");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     strcpy(digitp,"-stablbased-");            savm=oldm;
             oldm=newm;
   strcpy(fileresprobmorprev,"prmorprev");          } /* end mult */
   sprintf(digit,"%-d",ij);        
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          s1=s[mw[mi][i]][i];
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          s2=s[mw[mi+1][i]][i];
   strcat(fileresprobmorprev,digitp); /* Popbased or not */          bbh=(double)bh[mi][i]/(double)stepm; 
   strcat(fileresprobmorprev,fileres);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          ipmx +=1;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          sw += weight[i];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      } /* end of individual */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    }  else if(mle==3){  /* exponential inter-extrapolation */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(ficresprobmorprev," p.%-d SE",j);          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }                savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresprobmorprev,"\n");            }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            newm=savm;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     exit(0);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   else{            }
     fprintf(ficgp,"\n# Routine varevsij");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            savm=oldm;
     printf("Problem with html file: %s\n", optionfilehtm);            oldm=newm;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          } /* end mult */
     exit(0);        
   }          s1=s[mw[mi][i]][i];
   else{          s2=s[mw[mi+1][i]][i];
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          ipmx +=1;
           sw += weight[i];
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficresvij,"# Age");        } /* end of wave */
   for(i=1; i<=nlstate;i++)      } /* end of individual */
     for(j=1; j<=nlstate;j++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fprintf(ficresvij,"\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   xp=vector(1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   dnewm=matrix(1,nlstate,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   doldm=matrix(1,nlstate,1,nlstate);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
           for(d=0; d<dh[mi][i]; d++){
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            newm=savm;
   gpp=vector(nlstate+1,nlstate+ndeath);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   gmp=vector(nlstate+1,nlstate+ndeath);            for (kk=1; kk<=cptcovage;kk++) {
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   if(estepm < stepm){          
     printf ("Problem %d lower than %d\n",estepm, stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else  hstepm=estepm;              savm=oldm;
   /* For example we decided to compute the life expectancy with the smallest unit */            oldm=newm;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          } /* end mult */
      nhstepm is the number of hstepm from age to agelim        
      nstepm is the number of stepm from age to agelin.          s1=s[mw[mi][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size          s2=s[mw[mi+1][i]][i];
      and note for a fixed period like k years */          if( s2 > nlstate){ 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            lli=log(out[s1][s2] - savm[s1][s2]);
      survival function given by stepm (the optimization length). Unfortunately it          }else{
      means that if the survival funtion is printed only each two years of age and if            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          }
      results. So we changed our mind and took the option of the best precision.          ipmx +=1;
   */          sw += weight[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   agelim = AGESUP;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } /* end of wave */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      } /* end of individual */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gp=matrix(0,nhstepm,1,nlstate);        for(mi=1; mi<= wav[i]-1; mi++){
     gm=matrix(0,nhstepm,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(theta=1; theta <=npar; theta++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++){ /* Computes gradient */            }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       if (popbased==1) {            }
         for(i=1; i<=nlstate;i++)          
           prlim[i][i]=probs[(int)age][i][ij];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
       for(j=1; j<= nlstate; j++){            oldm=newm;
         for(h=0; h<=nhstepm; h++){          } /* end mult */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       /* This for computing forces of mortality (h=1)as a weighted average */          ipmx +=1;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          sw += weight[i];
         for(i=1; i<= nlstate; i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       }            } /* end of wave */
       /* end force of mortality */      } /* end of individual */
     } /* End of if */
       for(i=1; i<=npar; i++) /* Computes gradient */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    return -l;
    }
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
           prlim[i][i]=probs[(int)age][i][ij];  double funcone( double *x)
       }  {
     /* Same as likeli but slower because of a lot of printf and if */
       for(j=1; j<= nlstate; j++){    int i, ii, j, k, mi, d, kk;
         for(h=0; h<=nhstepm; h++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double **out;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    double lli; /* Individual log likelihood */
         }    double llt;
       }    int s1, s2;
       /* This for computing force of mortality (h=1)as a weighted average */    double bbh, survp;
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    /*extern weight */
         for(i=1; i<= nlstate; i++)    /* We are differentiating ll according to initial status */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       }        /*for(i=1;i<imx;i++) 
       /* end force of mortality */      printf(" %d\n",s[4][i]);
     */
       for(j=1; j<= nlstate; j++) /* vareij */    cov[1]=1.;
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
     } /* End theta */          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
     for(h=0; h<=nhstepm; h++) /* veij */        for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate;j++)          newm=savm;
         for(theta=1; theta <=npar; theta++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           trgradg[h][j][theta]=gradg[h][theta][j];          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          }
       for(theta=1; theta <=npar; theta++)          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         trgradgp[j][theta]=gradgp[theta][j];          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     for(i=1;i<=nlstate;i++)          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       for(j=1;j<=nlstate;j++)          savm=oldm;
         vareij[i][j][(int)age] =0.;          oldm=newm;
         } /* end mult */
     for(h=0;h<=nhstepm;h++){        
       for(k=0;k<=nhstepm;k++){        s1=s[mw[mi][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        s2=s[mw[mi+1][i]][i];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        bbh=(double)bh[mi][i]/(double)stepm; 
         for(i=1;i<=nlstate;i++)        /* bias is positive if real duration
           for(j=1;j<=nlstate;j++)         * is higher than the multiple of stepm and negative otherwise.
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;         */
       }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     }          lli=log(out[s1][s2] - savm[s1][s2]);
         } else if  (s2==-2) {
     /* pptj */          for (j=1,survp=0. ; j<=nlstate; j++) 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          lli= log(survp);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        }else if (mle==1){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         varppt[j][i]=doldmp[j][i];        } else if(mle==2){
     /* end ppptj */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          } else if(mle==3){  /* exponential inter-extrapolation */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          } else if (mle==4){  /* mle=4 no inter-extrapolation */
     if (popbased==1) {          lli=log(out[s1][s2]); /* Original formula */
       for(i=1; i<=nlstate;i++)        } else{  /* mle=0 back to 1 */
         prlim[i][i]=probs[(int)age][i][ij];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }          /*lli=log(out[s1][s2]); */ /* Original formula */
            } /* End of if */
     /* This for computing force of mortality (h=1)as a weighted average */        ipmx +=1;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        sw += weight[i];
       for(i=1; i<= nlstate; i++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }            if(globpr){
     /* end force of mortality */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(i=1; i<=nlstate;i++){            llt +=ll[k]*gipmx/gsw;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }          }
     }          fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficresprobmorprev,"\n");        }
       } /* end of wave */
     fprintf(ficresvij,"%.0f ",age );    } /* end of individual */
     for(i=1; i<=nlstate;i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(j=1; j<=nlstate;j++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    if(globpr==0){ /* First time we count the contributions and weights */
     fprintf(ficresvij,"\n");      gipmx=ipmx;
     free_matrix(gp,0,nhstepm,1,nlstate);      gsw=sw;
     free_matrix(gm,0,nhstepm,1,nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    return -l;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);  /*************** function likelione ***********/
   free_vector(gmp,nlstate+1,nlstate+ndeath);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  {
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /* This routine should help understanding what is done with 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");       the selection of individuals/waves and
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       to check the exact contribution to the likelihood.
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");       Plotting could be done.
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);     */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    int k;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    if(*globpri !=0){ /* Just counts and sums, no printings */
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      strcpy(fileresilk,"ilk"); 
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   free_vector(xp,1,npar);        printf("Problem with resultfile: %s\n", fileresilk);
   free_matrix(doldm,1,nlstate,1,nlstate);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   free_matrix(dnewm,1,nlstate,1,npar);      }
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   fclose(ficresprobmorprev);      for(k=1; k<=nlstate; k++) 
   fclose(ficgp);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fclose(fichtm);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 }  
     *fretone=(*funcone)(p);
 /************ Variance of prevlim ******************/    if(*globpri !=0){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fclose(ficresilk);
 {      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   /* Variance of prevalence limit */      fflush(fichtm); 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    } 
   double **newm;    return;
   double **dnewm,**doldm;  }
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  
   double *xp;  /*********** Maximum Likelihood Estimation ***************/
   double *gp, *gm;  
   double **gradg, **trgradg;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double age,agelim;  {
   int theta;    int i,j, iter;
        double **xi;
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    double fret;
   fprintf(ficresvpl,"# Age");    double fretone; /* Only one call to likelihood */
   for(i=1; i<=nlstate;i++)    /*  char filerespow[FILENAMELENGTH];*/
       fprintf(ficresvpl," %1d-%1d",i,i);    xi=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"\n");    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
   xp=vector(1,npar);        xi[i][j]=(i==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   doldm=matrix(1,nlstate,1,nlstate);    strcpy(filerespow,"pow"); 
      strcat(filerespow,fileres);
   hstepm=1*YEARM; /* Every year of age */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      printf("Problem with resultfile: %s\n", filerespow);
   agelim = AGESUP;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     if (stepm >= YEARM) hstepm=1;    for (i=1;i<=nlstate;i++)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(j=1;j<=nlstate+ndeath;j++)
     gradg=matrix(1,npar,1,nlstate);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     gp=vector(1,nlstate);    fprintf(ficrespow,"\n");
     gm=vector(1,nlstate);  
     powell(p,xi,npar,ftol,&iter,&fret,func);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_matrix(xi,1,npar,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(i=1;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         gp[i] = prlim[i][i];  
      }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /**** Computes Hessian and covariance matrix ***/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(i=1;i<=nlstate;i++)  {
         gm[i] = prlim[i][i];    double  **a,**y,*x,pd;
     double **hess;
       for(i=1;i<=nlstate;i++)    int i, j,jk;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    int *indx;
     } /* End theta */  
     double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     trgradg =matrix(1,nlstate,1,npar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(j=1; j<=nlstate;j++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
       for(theta=1; theta <=npar; theta++)    double gompertz(double p[]);
         trgradg[j][theta]=gradg[theta][j];    hess=matrix(1,npar,1,npar);
   
     for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       varpl[i][(int)age] =0.;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      printf("%d",i);fflush(stdout);
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     fprintf(ficresvpl,"%.0f ",age );      
     for(i=1; i<=nlstate;i++)      /*  printf(" %f ",p[i]);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);    
     free_vector(gm,1,nlstate);    for (i=1;i<=npar;i++) {
     free_matrix(gradg,1,npar,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_matrix(trgradg,1,nlstate,1,npar);        if (j>i) { 
   } /* End age */          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   free_vector(xp,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_matrix(doldm,1,nlstate,1,npar);          
   free_matrix(dnewm,1,nlstate,1,nlstate);          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
 }        }
       }
 /************ Variance of one-step probabilities  ******************/    }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    printf("\n");
 {    fprintf(ficlog,"\n");
   int i, j=0,  i1, k1, l1, t, tj;  
   int k2, l2, j1,  z1;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   int k=0,l, cptcode;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int first=1, first1;    
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    a=matrix(1,npar,1,npar);
   double **dnewm,**doldm;    y=matrix(1,npar,1,npar);
   double *xp;    x=vector(1,npar);
   double *gp, *gm;    indx=ivector(1,npar);
   double **gradg, **trgradg;    for (i=1;i<=npar;i++)
   double **mu;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double age,agelim, cov[NCOVMAX];    ludcmp(a,npar,indx,&pd);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */  
   int theta;    for (j=1;j<=npar;j++) {
   char fileresprob[FILENAMELENGTH];      for (i=1;i<=npar;i++) x[i]=0;
   char fileresprobcov[FILENAMELENGTH];      x[j]=1;
   char fileresprobcor[FILENAMELENGTH];      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   double ***varpij;        matcov[i][j]=x[i];
       }
   strcpy(fileresprob,"prob");    }
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    printf("\n#Hessian matrix#\n");
     printf("Problem with resultfile: %s\n", fileresprob);    fprintf(ficlog,"\n#Hessian matrix#\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    for (i=1;i<=npar;i++) { 
   }      for (j=1;j<=npar;j++) { 
   strcpy(fileresprobcov,"probcov");        printf("%.3e ",hess[i][j]);
   strcat(fileresprobcov,fileres);        fprintf(ficlog,"%.3e ",hess[i][j]);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobcov);      printf("\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      fprintf(ficlog,"\n");
   }    }
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);    /* Recompute Inverse */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    for (i=1;i<=npar;i++)
     printf("Problem with resultfile: %s\n", fileresprobcor);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    ludcmp(a,npar,indx,&pd);
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /*  printf("\n#Hessian matrix recomputed#\n");
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (j=1;j<=npar;j++) {
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      for (i=1;i<=npar;i++) x[i]=0;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      x[j]=1;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      lubksb(a,npar,indx,x);
        for (i=1;i<=npar;i++){ 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        y[i][j]=x[i];
   fprintf(ficresprob,"# Age");        printf("%.3e ",y[i][j]);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        fprintf(ficlog,"%.3e ",y[i][j]);
   fprintf(ficresprobcov,"# Age");      }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      printf("\n");
   fprintf(ficresprobcov,"# Age");      fprintf(ficlog,"\n");
     }
     */
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){    free_matrix(a,1,npar,1,npar);
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    free_matrix(y,1,npar,1,npar);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    free_vector(x,1,npar);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    free_ivector(indx,1,npar);
     }      free_matrix(hess,1,npar,1,npar);
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");  }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /*************** hessian matrix ****************/
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  {
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    int i;
   first=1;    int l=1, lmax=20;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double k1,k2;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double p2[MAXPARM+1]; /* identical to x */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    double res;
     exit(0);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   else{    int k=0,kmax=10;
     fprintf(ficgp,"\n# Routine varprob");    double l1;
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    fx=func(x);
     printf("Problem with html file: %s\n", optionfilehtm);    for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     exit(0);      l1=pow(10,l);
   }      delts=delt;
   else{      for(k=1 ; k <kmax; k=k+1){
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        delt = delta*(l1*k);
     fprintf(fichtm,"\n");        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        p2[theta]=x[theta]-delt;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        k2=func(p2)-fx;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   }        
   #ifdef DEBUGHESS
          printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   cov[1]=1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   tj=cptcoveff;  #endif
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   j1=0;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   for(t=1; t<=tj;t++){          k=kmax;
     for(i1=1; i1<=ncodemax[t];i1++){        }
       j1++;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                k=kmax; l=lmax*10.;
       if  (cptcovn>0) {        }
         fprintf(ficresprob, "\n#********** Variable ");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          delts=delt;
         fprintf(ficresprob, "**********\n#");        }
         fprintf(ficresprobcov, "\n#********** Variable ");      }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficresprobcov, "**********\n#");    delti[theta]=delts;
            return res; 
         fprintf(ficgp, "\n#********** Variable ");    
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
         fprintf(ficgp, "**********\n#");  
          double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
          {
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    int i;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int l=1, l1, lmax=20;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    double k1,k2,k3,k4,res,fx;
            double p2[MAXPARM+1];
         fprintf(ficresprobcor, "\n#********** Variable ");        int k;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");        fx=func(x);
       }    for (k=1; k<=2; k++) {
            for (i=1;i<=npar;i++) p2[i]=x[i];
       for (age=bage; age<=fage; age ++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         cov[2]=age;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for (k=1; k<=cptcovn;k++) {      k1=func(p2)-fx;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for (k=1; k<=cptcovprod;k++)      k2=func(p2)-fx;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
              p2[thetai]=x[thetai]-delti[thetai]/k;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      k3=func(p2)-fx;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    
         gm=vector(1,(nlstate)*(nlstate+ndeath));      p2[thetai]=x[thetai]-delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++){      k4=func(p2)-fx;
           for(i=1; i<=npar; i++)      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef DEBUG
                printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
            #endif
           k=0;    }
           for(i=1; i<= (nlstate); i++){    return res;
             for(j=1; j<=(nlstate+ndeath);j++){  }
               k=k+1;  
               gp[k]=pmmij[i][j];  /************** Inverse of matrix **************/
             }  void ludcmp(double **a, int n, int *indx, double *d) 
           }  { 
              int i,imax,j,k; 
           for(i=1; i<=npar; i++)    double big,dum,sum,temp; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    double *vv; 
       
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    vv=vector(1,n); 
           k=0;    *d=1.0; 
           for(i=1; i<=(nlstate); i++){    for (i=1;i<=n;i++) { 
             for(j=1; j<=(nlstate+ndeath);j++){      big=0.0; 
               k=k+1;      for (j=1;j<=n;j++) 
               gm[k]=pmmij[i][j];        if ((temp=fabs(a[i][j])) > big) big=temp; 
             }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           }      vv[i]=1.0/big; 
          } 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    for (j=1;j<=n;j++) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (i=1;i<j;i++) { 
         }        sum=a[i][j]; 
         for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        a[i][j]=sum; 
           for(theta=1; theta <=npar; theta++)      } 
             trgradg[j][theta]=gradg[theta][j];      big=0.0; 
              for (i=j;i<=n;i++) { 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        sum=a[i][j]; 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);        for (k=1;k<j;k++) 
                  sum -= a[i][k]*a[k][j]; 
         pmij(pmmij,cov,ncovmodel,x,nlstate);        a[i][j]=sum; 
                if ( (dum=vv[i]*fabs(sum)) >= big) { 
         k=0;          big=dum; 
         for(i=1; i<=(nlstate); i++){          imax=i; 
           for(j=1; j<=(nlstate+ndeath);j++){        } 
             k=k+1;      } 
             mu[k][(int) age]=pmmij[i][j];      if (j != imax) { 
           }        for (k=1;k<=n;k++) { 
         }          dum=a[imax][k]; 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          a[imax][k]=a[j][k]; 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          a[j][k]=dum; 
             varpij[i][j][(int)age] = doldm[i][j];        } 
         *d = -(*d); 
         /*printf("\n%d ",(int)age);        vv[imax]=vv[j]; 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      } 
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      indx[j]=imax; 
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      if (a[j][j] == 0.0) a[j][j]=TINY; 
      }*/      if (j != n) { 
         dum=1.0/(a[j][j]); 
         fprintf(ficresprob,"\n%d ",(int)age);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         fprintf(ficresprobcov,"\n%d ",(int)age);      } 
         fprintf(ficresprobcor,"\n%d ",(int)age);    } 
     free_vector(vv,1,n);  /* Doesn't work */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  ;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  } 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  void lubksb(double **a, int n, int *indx, double b[]) 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  { 
         }    int i,ii=0,ip,j; 
         i=0;    double sum; 
         for (k=1; k<=(nlstate);k++){   
           for (l=1; l<=(nlstate+ndeath);l++){    for (i=1;i<=n;i++) { 
             i=i++;      ip=indx[i]; 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      sum=b[ip]; 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      b[ip]=b[i]; 
             for (j=1; j<=i;j++){      if (ii) 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      else if (sum) ii=i; 
             }      b[i]=sum; 
           }    } 
         }/* end of loop for state */    for (i=n;i>=1;i--) { 
       } /* end of loop for age */      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       /* Confidence intervalle of pij  */      b[i]=sum/a[i][i]; 
       /*    } 
       fprintf(ficgp,"\nset noparametric;unset label");  } 
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  void pstamp(FILE *fichier)
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);  {
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  {  /* Some frequencies */
       first1=1;    
       for (k2=1; k2<=(nlstate);k2++){    int i, m, jk, k1,i1, j1, bool, z1,j;
         for (l2=1; l2<=(nlstate+ndeath);l2++){    int first;
           if(l2==k2) continue;    double ***freq; /* Frequencies */
           j=(k2-1)*(nlstate+ndeath)+l2;    double *pp, **prop;
           for (k1=1; k1<=(nlstate);k1++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             for (l1=1; l1<=(nlstate+ndeath);l1++){    char fileresp[FILENAMELENGTH];
               if(l1==k1) continue;    
               i=(k1-1)*(nlstate+ndeath)+l1;    pp=vector(1,nlstate);
               if(i<=j) continue;    prop=matrix(1,nlstate,iagemin,iagemax+3);
               for (age=bage; age<=fage; age ++){    strcpy(fileresp,"p");
                 if ((int)age %5==0){    strcat(fileresp,fileres);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    if((ficresp=fopen(fileresp,"w"))==NULL) {
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      printf("Problem with prevalence resultfile: %s\n", fileresp);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   mu1=mu[i][(int) age]/stepm*YEARM ;      exit(0);
                   mu2=mu[j][(int) age]/stepm*YEARM;    }
                   c12=cv12/sqrt(v1*v2);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                   /* Computing eigen value of matrix of covariance */    j1=0;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    j=cptcoveff;
                   /* Eigen vectors */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   /*v21=sqrt(1.-v11*v11); *//* error */    first=1;
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
                   v22=v11;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
                   tnalp=v21/v11;    /*    j1++;
                   if(first1==1){  */
                     first1=0;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   }          scanf("%d", i);*/
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        for (i=-5; i<=nlstate+ndeath; i++)  
                   /*printf(fignu*/          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            for(m=iagemin; m <= iagemax+3; m++)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              freq[i][jk][m]=0;
                   if(first==1){        
                     first=0;        for (i=1; i<=nlstate; i++)  
                     fprintf(ficgp,"\nset parametric;unset label");          for(m=iagemin; m <= iagemax+3; m++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            prop[i][m]=0;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        dateintsum=0;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);        k2cpt=0;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        for (i=1; i<=imx; i++) {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          bool=1;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            for (z1=1; z1<=cptcoveff; z1++)       
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                   }else{                bool=0;
                     first=0;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\              } 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          }
                   }/* if first */   
                 } /* age mod 5 */          if (bool==1){
               } /* end loop age */            for(m=firstpass; m<=lastpass; m++){
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);              k2=anint[m][i]+(mint[m][i]/12.);
               first=1;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             } /*l12 */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           } /* k12 */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         } /*l1 */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }/* k1 */                if (m<lastpass) {
     } /* loop covariates */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                  dateintsum=dateintsum+k2;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                  k2cpt++;
   }                }
   free_vector(xp,1,npar);                /*}*/
   fclose(ficresprob);            }
   fclose(ficresprobcov);          }
   fclose(ficresprobcor);        } /* end i */
   fclose(ficgp);         
   fclose(fichtm);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 }        pstamp(ficresp);
         if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
 /******************* Printing html file ***********/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          fprintf(ficresp, "**********\n#");
                   int lastpass, int stepm, int weightopt, char model[],\          fprintf(ficlog, "\n#********** Variable "); 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   int popforecast, int estepm ,\          fprintf(ficlog, "**********\n#");
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){        for(i=1; i<=nlstate;i++) 
   int jj1, k1, i1, cpt;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   /*char optionfilehtm[FILENAMELENGTH];*/        fprintf(ficresp, "\n");
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        
     printf("Problem with %s \n",optionfilehtm), exit(0);        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          if(i==iagemax+3){
   }            fprintf(ficlog,"Total");
           }else{
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n            if(first==1){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              first=0;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              printf("See log file for details...\n");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            }
  - Life expectancies by age and initial health status (estepm=%2d months):            fprintf(ficlog,"Age %d", i);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");              pp[jk] += freq[jk][m][i]; 
           }
  m=cptcoveff;          for(jk=1; jk <=nlstate ; jk++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
  jj1=0;            if(pp[jk]>=1.e-10){
  for(k1=1; k1<=m;k1++){              if(first==1){
    for(i1=1; i1<=ncodemax[k1];i1++){                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      jj1++;              }
      if (cptcovn > 0) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            }else{
        for (cpt=1; cpt<=cptcoveff;cpt++)              if(first==1)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      }            }
      /* Pij */          }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              for(jk=1; jk <=nlstate ; jk++){
      /* Quasi-incidences */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              pp[jk] += freq[jk][m][i];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          }       
        /* Stable prevalence in each health state */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
        for(cpt=1; cpt<nlstate;cpt++){            pos += pp[jk];
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>            posprop += prop[jk][i];
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
        }          for(jk=1; jk <=nlstate ; jk++){
      for(cpt=1; cpt<=nlstate;cpt++) {            if(pos>=1.e-5){
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>              if(first==1)
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }else{
 health expectancies in states (1) and (2): e%s%d.png<br>              if(first==1)
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
    } /* end i1 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  }/* End k1 */            }
  fprintf(fichtm,"</ul>");            if( i <= iagemax){
               if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n                /*probs[i][jk][j1]= pp[jk]/pos;*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              }
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              else
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n            }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
  if(popforecast==1) fprintf(fichtm,"\n            for(m=-1; m <=nlstate+ndeath; m++)
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              if(freq[jk][m][i] !=0 ) {
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n              if(first==1)
         <br>",fileres,fileres,fileres,fileres);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  else                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              }
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          if(i <= iagemax)
             fprintf(ficresp,"\n");
  m=cptcoveff;          if(first==1)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            printf("Others in log...\n");
           fprintf(ficlog,"\n");
  jj1=0;        }
  for(k1=1; k1<=m;k1++){        /*}*/
    for(i1=1; i1<=ncodemax[k1];i1++){    }
      jj1++;    dateintmean=dateintsum/k2cpt; 
      if (cptcovn > 0) {   
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fclose(ficresp);
        for (cpt=1; cpt<=cptcoveff;cpt++)    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    free_vector(pp,1,nlstate);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      }    /* End of Freq */
      for(cpt=1; cpt<=nlstate;cpt++) {  }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>  /************ Prevalence ********************/
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      }  {  
    } /* end i1 */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  }/* End k1 */       in each health status at the date of interview (if between dateprev1 and dateprev2).
  fprintf(fichtm,"</ul>");       We still use firstpass and lastpass as another selection.
 fclose(fichtm);    */
 }   
     int i, m, jk, k1, i1, j1, bool, z1,j;
 /******************* Gnuplot file **************/    double ***freq; /* Frequencies */
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double *pp, **prop;
     double pos,posprop; 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double  y2; /* in fractional years */
   int ng;    int iagemin, iagemax;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    int first; /** to stop verbosity which is redirected to log file */
     printf("Problem with file %s",optionfilegnuplot);  
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
 #ifdef windows    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     fprintf(ficgp,"cd \"%s\" \n",pathc);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 #endif    j1=0;
 m=pow(2,cptcoveff);    
      /*j=cptcoveff;*/
  /* 1eme*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for (cpt=1; cpt<= nlstate ; cpt ++) {    
    for (k1=1; k1<= m ; k1 ++) {    first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 #ifdef windows      /*for(i1=1; i1<=ncodemax[k1];i1++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        j1++;*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        
 #endif        for (i=1; i<=nlstate; i++)  
 #ifdef unix          for(m=iagemin; m <= iagemax+3; m++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            prop[i][m]=0.0;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       
 #endif        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
 for (i=1; i<= nlstate ; i ++) {          if  (cptcovn>0) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for (z1=1; z1<=cptcoveff; z1++) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                bool=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          } 
     for (i=1; i<= nlstate ; i ++) {          if (bool==1) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
 }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
      for (i=1; i<= nlstate ; i ++) {                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 }                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 #ifdef unix                  prop[s[m][i]][iagemax+3] += weight[i]; 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                } 
 #endif              }
    }            } /* end selection of waves */
   }          }
   /*2 eme*/        }
         for(i=iagemin; i <= iagemax+3; i++){  
   for (k1=1; k1<= m ; k1 ++) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            posprop += prop[jk][i]; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          } 
              
     for (i=1; i<= nlstate+1 ; i ++) {          for(jk=1; jk <=nlstate ; jk++){     
       k=2*i;            if( i <=  iagemax){ 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if(posprop>=1.e-5){ 
       for (j=1; j<= nlstate+1 ; j ++) {                probs[i][jk][j1]= prop[jk][i]/posprop;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              } else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if(first==1){
 }                    first=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {            } 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }/* end jk */ 
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }/* end i */ 
 }        /*} *//* end i1 */
       fprintf(ficgp,"\" t\"\" w l 0,");    } /* end j1 */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    /*free_vector(pp,1,nlstate);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 }    }  /* End of prevalence */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  /************* Waves Concatenation ***************/
     }  
   }  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
    {
   /*3eme*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
   for (k1=1; k1<= m ; k1 ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     for (cpt=1; cpt<= nlstate ; cpt ++) {       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       k=2+nlstate*(2*cpt-2);       and mw[mi+1][i]. dh depends on stepm.
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    int i, mi, m;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       double sum=0., jmean=0.;*/
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    int first;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    int j, k=0,jk, ju, jl;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    double sum=0.;
     first=0;
 */    jmin=1e+5;
       for (i=1; i< nlstate ; i ++) {    jmax=-1;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    jmean=0.;
     for(i=1; i<=imx; i++){
       }      mi=0;
     }      m=firstpass;
   }      while(s[m][i] <= nlstate){
          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* CV preval stat */          mw[++mi][i]=m;
     for (k1=1; k1<= m ; k1 ++) {        if(m >=lastpass)
     for (cpt=1; cpt<nlstate ; cpt ++) {          break;
       k=3;        else
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          m++;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      }/* end while */
       if (s[m][i] > nlstate){
       for (i=1; i< nlstate ; i ++)        mi++;     /* Death is another wave */
         fprintf(ficgp,"+$%d",k+i+1);        /* if(mi==0)  never been interviewed correctly before death */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);           /* Only death is a correct wave */
              mw[mi][i]=m;
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {      wav[i]=mi;
         l=3+(nlstate+ndeath)*cpt;      if(mi==0){
         fprintf(ficgp,"+$%d",l+i+1);        nbwarn++;
       }        if(first==0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     }          first=1;
   }          }
          if(first==1){
   /* proba elementaires */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
    for(i=1,jk=1; i <=nlstate; i++){        }
     for(k=1; k <=(nlstate+ndeath); k++){      } /* end mi==0 */
       if (k != i) {    } /* End individuals */
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    for(i=1; i<=imx; i++){
           jk++;      for(mi=1; mi<wav[i];mi++){
           fprintf(ficgp,"\n");        if (stepm <=0)
         }          dh[mi][i]=1;
       }        else{
     }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    }            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              if(j==0) j=1;  /* Survives at least one month after exam */
      for(jk=1; jk <=m; jk++) {              else if(j<0){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);                nberr++;
        if (ng==2)                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                j=1; /* Temporary Dangerous patch */
        else                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
          fprintf(ficgp,"\nset title \"Probability\"\n");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
        i=1;              }
        for(k2=1; k2<=nlstate; k2++) {              k=k+1;
          k3=i;              if (j >= jmax){
          for(k=1; k<=(nlstate+ndeath); k++) {                jmax=j;
            if (k != k2){                ijmax=i;
              if(ng==2)              }
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              if (j <= jmin){
              else                jmin=j;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                ijmin=i;
              ij=1;              }
              for(j=3; j <=ncovmodel; j++) {              sum=sum+j;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                  ij++;            }
                }          }
                else          else{
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
              }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
              fprintf(ficgp,")/(1");  
                          k=k+1;
              for(k1=1; k1 <=nlstate; k1++){              if (j >= jmax) {
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);              jmax=j;
                ij=1;              ijmax=i;
                for(j=3; j <=ncovmodel; j++){            }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            else if (j <= jmin){
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              jmin=j;
                    ij++;              ijmin=i;
                  }            }
                  else            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                }            if(j<0){
                fprintf(ficgp,")");              nberr++;
              }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            }
              i=i+ncovmodel;            sum=sum+j;
            }          }
          } /* end k */          jk= j/stepm;
        } /* end k2 */          jl= j -jk*stepm;
      } /* end jk */          ju= j -(jk+1)*stepm;
    } /* end ng */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    fclose(ficgp);            if(jl==0){
 }  /* end gnuplot */              dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
 /*************** Moving average **************/                    * to avoid the price of an extra matrix product in likelihood */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   int i, cpt, cptcod;            }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          }else{
       for (i=1; i<=nlstate;i++)            if(jl <= -ju){
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)              dh[mi][i]=jk;
           mobaverage[(int)agedeb][i][cptcod]=0.;              bh[mi][i]=jl;       /* bias is positive if real duration
                                       * is higher than the multiple of stepm and negative otherwise.
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                                   */
       for (i=1; i<=nlstate;i++){            }
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            else{
           for (cpt=0;cpt<=4;cpt++){              dh[mi][i]=jk+1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              bh[mi][i]=ju;
           }            }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;            if(dh[mi][i]==0){
         }              dh[mi][i]=1; /* At least one step */
       }              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                }
 }          } /* end if mle */
         }
       } /* end wave */
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    jmean=sum/k;
      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   int *popage;   }
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;  /*********** Tricode ****************************/
   double ***p3mat;  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   char fileresf[FILENAMELENGTH];  {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
  agelim=AGESUP;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* nbcode[Tvar[j]][1]= 
      */
    
   strcpy(fileresf,"f");    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
   strcat(fileresf,fileres);    int modmaxcovj=0; /* Modality max of covariates j */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int cptcode=0; /* Modality max of covariates j */
     printf("Problem with forecast resultfile: %s\n", fileresf);    int modmincovj=0; /* Modality min of covariates j */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);    cptcoveff=0; 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);   
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
   if (mobilav==1) {    /* Loop on covariates without age and products */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   }                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   stepsize=(int) (stepm+YEARM-1)/YEARM;                                      * If product of Vn*Vm, still boolean *:
   if (stepm<=12) stepsize=1;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                        * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
   agelim=AGESUP;        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                          modality of the nth covariate of individual i. */
   hstepm=1;        if (ij > modmaxcovj)
   hstepm=hstepm/stepm;          modmaxcovj=ij; 
   yp1=modf(dateintmean,&yp);        else if (ij < modmincovj) 
   anprojmean=yp;          modmincovj=ij; 
   yp2=modf((yp1*12),&yp);        if ((ij < -1) && (ij > NCOVMAX)){
   mprojmean=yp;          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
   yp1=modf((yp2*30.5),&yp);          exit(1);
   jprojmean=yp;        }else
   if(jprojmean==0) jprojmean=1;        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   if(mprojmean==0) jprojmean=1;        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
          /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        /* getting the maximum value of the modality of the covariate
             (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
   for(cptcov=1;cptcov<=i2;cptcov++){           female is 1, then modmaxcovj=1.*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      }
       k=k+1;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       fprintf(ficresf,"\n#******");      cptcode=modmaxcovj;
       for(j=1;j<=cptcoveff;j++) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     /*for (i=0; i<=cptcode; i++) {*/
       }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
       fprintf(ficresf,"******\n");        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
       fprintf(ficresf,"# StartingAge FinalAge");        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
              }
              /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
         fprintf(ficresf,"\n");      } /* Ndum[-1] number of undefined modalities */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           nhstepm = nhstepm/hstepm;         modmincovj=3; modmaxcovj = 7;
                   There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           oldm=oldms;savm=savms;         variables V1_1 and V1_2.
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           nbcode[Tvar[j]][ij]=k;
                 nbcode[Tvar[j]][1]=0;
           for (h=0; h<=nhstepm; h++){         nbcode[Tvar[j]][2]=1;
             if (h==(int) (calagedate+YEARM*cpt)) {         nbcode[Tvar[j]][3]=2;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      */
             }      ij=1; /* ij is similar to i but can jumps over null modalities */
             for(j=1; j<=nlstate+ndeath;j++) {      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
               kk1=0.;kk2=0;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
               for(i=1; i<=nlstate;i++) {                        /*recode from 0 */
                 if (mobilav==1)          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                 else {                                       k is a modality. If we have model=V1+V1*sex 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                 }            ij++;
                          }
               }          if (ij > ncodemax[j]) break; 
               if (h==(int)(calagedate+12*cpt)){        }  /* end of loop on */
                 fprintf(ficresf," %.3f", kk1);      } /* end of loop on modality */ 
                            } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
               }    
             }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
           }    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
         }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
       }     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     }     Ndum[ij]++; 
   }   } 
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   ij=1;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   fclose(ficresf);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
 }     if((Ndum[i]!=0) && (i<=ncovcol)){
 /************** Forecasting ******************/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       Tvaraff[ij]=i; /*For printing (unclear) */
         ij++;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     }else
   int *popage;         Tvaraff[ij]=0;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   }
   double *popeffectif,*popcount;   ij--;
   double ***p3mat,***tabpop,***tabpopprev;   cptcoveff=ij; /*Number of total covariates*/
   char filerespop[FILENAMELENGTH];  
   }
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;  /*********** Health Expectancies ****************/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    {
      /* Health expectancies, no variances */
   strcpy(filerespop,"pop");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   strcat(filerespop,fileres);    int nhstepma, nstepma; /* Decreasing with age */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    double age, agelim, hf;
     printf("Problem with forecast resultfile: %s\n", filerespop);    double ***p3mat;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    double eip;
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    pstamp(ficreseij);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
   if (mobilav==1) {        fprintf(ficreseij," e%1d%1d ",i,j);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficreseij," e%1d. ",i);
   }    }
     fprintf(ficreseij,"\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    
      if(estepm < stepm){
   agelim=AGESUP;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   hstepm=1;    else  hstepm=estepm;   
   hstepm=hstepm/stepm;    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   if (popforecast==1) {     * if stepm=24 months pijx are given only every 2 years and by summing them
     if((ficpop=fopen(popfile,"r"))==NULL) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
       printf("Problem with population file : %s\n",popfile);exit(0);     * progression in between and thus overestimating or underestimating according
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
     popage=ivector(0,AGESUP);     * to compare the new estimate of Life expectancy with the same linear 
     popeffectif=vector(0,AGESUP);     * hypothesis. A more precise result, taking into account a more precise
     popcount=vector(0,AGESUP);     * curvature will be obtained if estepm is as small as stepm. */
      
     i=1;      /* For example we decided to compute the life expectancy with the smallest unit */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           nhstepm is the number of hstepm from age to agelim 
     imx=i;       nstepm is the number of stepm from age to agelin. 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       Look at hpijx to understand the reason of that which relies in memory size
   }       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(cptcov=1;cptcov<=i2;cptcov++){       survival function given by stepm (the optimization length). Unfortunately it
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       means that if the survival funtion is printed only each two years of age and if
       k=k+1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficrespop,"\n#******");       results. So we changed our mind and took the option of the best precision.
       for(j=1;j<=cptcoveff;j++) {    */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       }  
       fprintf(ficrespop,"******\n");    agelim=AGESUP;
       fprintf(ficrespop,"# Age");    /* If stepm=6 months */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       if (popforecast==1)  fprintf(ficrespop," [Population]");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
            
       for (cpt=0; cpt<=0;cpt++) {  /* nhstepm age range expressed in number of stepm */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
            /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* if (stepm >= YEARM) hstepm=1;*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           nhstepm = nhstepm/hstepm;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (age=bage; age<=fage; age ++){ 
           oldm=oldms;savm=savms;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              /* if (stepm >= YEARM) hstepm=1;*/
           for (h=0; h<=nhstepm; h++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* If stepm=6 months */
             }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             for(j=1; j<=nlstate+ndeath;j++) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               kk1=0.;kk2=0;      
               for(i=1; i<=nlstate;i++) {                    hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                 if (mobilav==1)      
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                 else {      
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf("%d|",(int)age);fflush(stdout);
                 }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               }      
               if (h==(int)(calagedate+12*cpt)){      /* Computing expectancies */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      for(i=1; i<=nlstate;i++)
                   /*fprintf(ficrespop," %.3f", kk1);        for(j=1; j<=nlstate;j++)
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             }            
             for(i=1; i<=nlstate;i++){            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){          }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }      fprintf(ficreseij,"%3.0f",age );
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      for(i=1; i<=nlstate;i++){
             }        eip=0;
         for(j=1; j<=nlstate;j++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          eip +=eij[i][j][(int)age];
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
           }        }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficreseij,"%9.4f", eip );
         }      }
       }      fprintf(ficreseij,"\n");
        
   /******/    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    printf("\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficlog,"\n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  }
           nhstepm = nhstepm/hstepm;  
            void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Covariances of health expectancies eij and of total life expectancies according
           for (h=0; h<=nhstepm; h++){     to initial status i, ei. .
             if (h==(int) (calagedate+YEARM*cpt)) {    */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
             }    int nhstepma, nstepma; /* Decreasing with age */
             for(j=1; j<=nlstate+ndeath;j++) {    double age, agelim, hf;
               kk1=0.;kk2=0;    double ***p3matp, ***p3matm, ***varhe;
               for(i=1; i<=nlstate;i++) {                  double **dnewm,**doldm;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        double *xp, *xm;
               }    double **gp, **gm;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    double ***gradg, ***trgradg;
             }    int theta;
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double eip, vip;
         }  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    }    xp=vector(1,npar);
   }    xm=vector(1,npar);
      dnewm=matrix(1,nlstate*nlstate,1,npar);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   if (popforecast==1) {    pstamp(ficresstdeij);
     free_ivector(popage,0,AGESUP);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     free_vector(popeffectif,0,AGESUP);    fprintf(ficresstdeij,"# Age");
     free_vector(popcount,0,AGESUP);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresstdeij," e%1d. ",i);
   fclose(ficrespop);    }
 }    fprintf(ficresstdeij,"\n");
   
 /***********************************************/    pstamp(ficrescveij);
 /**************** Main Program *****************/    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 /***********************************************/    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])      for(j=1; j<=nlstate;j++){
 {        cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for(j2=1; j2<=nlstate;j2++){
   double agedeb, agefin,hf;            cptj2= (j2-1)*nlstate+i2;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   double fret;          }
   double **xi,tmp,delta;      }
     fprintf(ficrescveij,"\n");
   double dum; /* Dummy variable */    
   double ***p3mat;    if(estepm < stepm){
   int *indx;      printf ("Problem %d lower than %d\n",estepm, stepm);
   char line[MAXLINE], linepar[MAXLINE];    }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    else  hstepm=estepm;   
   int firstobs=1, lastobs=10;    /* We compute the life expectancy from trapezoids spaced every estepm months
   int sdeb, sfin; /* Status at beginning and end */     * This is mainly to measure the difference between two models: for example
   int c,  h , cpt,l;     * if stepm=24 months pijx are given only every 2 years and by summing them
   int ju,jl, mi;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     * progression in between and thus overestimating or underestimating according
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;     * to the curvature of the survival function. If, for the same date, we 
   int mobilav=0,popforecast=0;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   int hstepm, nhstepm;     * to compare the new estimate of Life expectancy with the same linear 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    /* For example we decided to compute the life expectancy with the smallest unit */
   double **prlim;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double *severity;       nhstepm is the number of hstepm from age to agelim 
   double ***param; /* Matrix of parameters */       nstepm is the number of stepm from age to agelin. 
   double  *p;       Look at hpijx to understand the reason of that which relies in memory size
   double **matcov; /* Matrix of covariance */       and note for a fixed period like estepm months */
   double ***delti3; /* Scale */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *delti; /* Scale */       survival function given by stepm (the optimization length). Unfortunately it
   double ***eij, ***vareij;       means that if the survival funtion is printed only each two years of age and if
   double **varpl; /* Variances of prevalence limits by age */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double *epj, vepp;       results. So we changed our mind and took the option of the best precision.
   double kk1, kk2;    */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
     /* If stepm=6 months */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   char z[1]="c", occ;    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 #include <sys/time.h>    /* if (stepm >= YEARM) hstepm=1;*/
 #include <time.h>    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    
      p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* long total_usecs;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   struct timeval start_time, end_time;    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   getcwd(pathcd, size);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   printf("\n%s",version);    for (age=bage; age<=fage; age ++){ 
   if(argc <=1){      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("\nEnter the parameter file name: ");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     scanf("%s",pathtot);      /* if (stepm >= YEARM) hstepm=1;*/
   }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   else{  
     strcpy(pathtot,argv[1]);      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   /*cygwin_split_path(pathtot,path,optionfile);      
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* cutv(path,optionfile,pathtot,'\\');*/  
       /* Computing  Variances of health expectancies */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);         decrease memory allocation */
   chdir(path);      for(theta=1; theta <=npar; theta++){
   replace(pathc,path);        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /*-------- arguments in the command line --------*/          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
   /* Log file */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   strcat(filelog, optionfilefiname);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   strcat(filelog,".log");    /* */    
   if((ficlog=fopen(filelog,"w"))==NULL)    {        for(j=1; j<= nlstate; j++){
     printf("Problem with logfile %s\n",filelog);          for(i=1; i<=nlstate; i++){
     goto end;            for(h=0; h<=nhstepm-1; h++){
   }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   fprintf(ficlog,"Log filename:%s\n",filelog);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   fprintf(ficlog,"\n%s",version);            }
   fprintf(ficlog,"\nEnter the parameter file name: ");          }
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        }
   fflush(ficlog);       
         for(ij=1; ij<= nlstate*nlstate; ij++)
   /* */          for(h=0; h<=nhstepm-1; h++){
   strcpy(fileres,"r");            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   strcat(fileres, optionfilefiname);          }
   strcat(fileres,".txt");    /* Other files have txt extension */      }/* End theta */
       
   /*---------arguments file --------*/      
       for(h=0; h<=nhstepm-1; h++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(j=1; j<=nlstate*nlstate;j++)
     printf("Problem with optionfile %s\n",optionfile);          for(theta=1; theta <=npar; theta++)
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);            trgradg[h][j][theta]=gradg[h][theta][j];
     goto end;      
   }  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   strcpy(filereso,"o");        for(ji=1;ji<=nlstate*nlstate;ji++)
   strcat(filereso,fileres);          varhe[ij][ji][(int)age] =0.;
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);       printf("%d|",(int)age);fflush(stdout);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     goto end;       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   /* Reads comments: lines beginning with '#' */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   while((c=getc(ficpar))=='#' && c!= EOF){          for(ij=1;ij<=nlstate*nlstate;ij++)
     ungetc(c,ficpar);            for(ji=1;ji<=nlstate*nlstate;ji++)
     fgets(line, MAXLINE, ficpar);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     puts(line);        }
     fputs(line,ficparo);      }
   }  
   ungetc(c,ficpar);      /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(i=1; i<=nlstate;i++)
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        for(j=1; j<=nlstate;j++)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 while((c=getc(ficpar))=='#' && c!= EOF){            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     ungetc(c,ficpar);            
     fgets(line, MAXLINE, ficpar);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     puts(line);  
     fputs(line,ficparo);          }
   }  
   ungetc(c,ficpar);      fprintf(ficresstdeij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
            eip=0.;
   covar=matrix(0,NCOVMAX,1,n);        vip=0.;
   cptcovn=0;        for(j=1; j<=nlstate;j++){
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   ncovmodel=2+cptcovn;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
          }
   /* Read guess parameters */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresstdeij,"\n");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      fprintf(ficrescveij,"%3.0f",age );
     puts(line);      for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);        for(j=1; j<=nlstate;j++){
   }          cptj= (j-1)*nlstate+i;
   ungetc(c,ficpar);          for(i2=1; i2<=nlstate;i2++)
              for(j2=1; j2<=nlstate;j2++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);              cptj2= (j2-1)*nlstate+i2;
     for(i=1; i <=nlstate; i++)              if(cptj2 <= cptj)
     for(j=1; j <=nlstate+ndeath-1; j++){                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);            }
       fprintf(ficparo,"%1d%1d",i1,j1);        }
       if(mle==1)      fprintf(ficrescveij,"\n");
         printf("%1d%1d",i,j);     
       fprintf(ficlog,"%1d%1d",i,j);    }
       for(k=1; k<=ncovmodel;k++){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fscanf(ficpar," %lf",&param[i][j][k]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         if(mle==1){    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           printf(" %lf",param[i][j][k]);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           fprintf(ficlog," %lf",param[i][j][k]);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else    printf("\n");
           fprintf(ficlog," %lf",param[i][j][k]);    fprintf(ficlog,"\n");
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    free_vector(xm,1,npar);
       fscanf(ficpar,"\n");    free_vector(xp,1,npar);
       if(mle==1)    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         printf("\n");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficlog,"\n");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficparo,"\n");  }
     }  
    /************ Variance ******************/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   p=param[1][1];    /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   /* Reads comments: lines beginning with '#' */    /* double **newm;*/
   while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewm,**doldm;
     ungetc(c,ficpar);    double **dnewmp,**doldmp;
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     puts(line);    int k, cptcode;
     fputs(line,ficparo);    double *xp;
   }    double **gp, **gm;  /* for var eij */
   ungetc(c,ficpar);    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double *gpp, *gmp; /* for var p point j */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   for(i=1; i <=nlstate; i++){    double ***p3mat;
     for(j=1; j <=nlstate+ndeath-1; j++){    double age,agelim, hf;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double ***mobaverage;
       printf("%1d%1d",i,j);    int theta;
       fprintf(ficparo,"%1d%1d",i1,j1);    char digit[4];
       for(k=1; k<=ncovmodel;k++){    char digitp[25];
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);    char fileresprobmorprev[FILENAMELENGTH];
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    if(popbased==1){
       fscanf(ficpar,"\n");      if(mobilav!=0)
       printf("\n");        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficparo,"\n");      else strcpy(digitp,"-populbased-nomobil-");
     }    }
   }    else 
   delti=delti3[1][1];      strcpy(digitp,"-stablbased-");
    
   /* Reads comments: lines beginning with '#' */    if (mobilav!=0) {
   while((c=getc(ficpar))=='#' && c!= EOF){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     fgets(line, MAXLINE, ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fputs(line,ficparo);      }
   }    }
   ungetc(c,ficpar);  
      strcpy(fileresprobmorprev,"prmorprev"); 
   matcov=matrix(1,npar,1,npar);    sprintf(digit,"%-d",ij);
   for(i=1; i <=npar; i++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fscanf(ficpar,"%s",&str);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     if(mle==1)    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       printf("%s",str);    strcat(fileresprobmorprev,fileres);
     fprintf(ficlog,"%s",str);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fprintf(ficparo,"%s",str);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     for(j=1; j <=i; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       fscanf(ficpar," %le",&matcov[i][j]);    }
       if(mle==1){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         printf(" %.5le",matcov[i][j]);   
         fprintf(ficlog," %.5le",matcov[i][j]);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       }    pstamp(ficresprobmorprev);
       else    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         fprintf(ficlog," %.5le",matcov[i][j]);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       fprintf(ficparo," %.5le",matcov[i][j]);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
     fscanf(ficpar,"\n");      for(i=1; i<=nlstate;i++)
     if(mle==1)        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       printf("\n");    }  
     fprintf(ficlog,"\n");    fprintf(ficresprobmorprev,"\n");
     fprintf(ficparo,"\n");    fprintf(ficgp,"\n# Routine varevsij");
   }    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   for(i=1; i <=npar; i++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for(j=i+1;j<=npar;j++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       matcov[i][j]=matcov[j][i];  /*   } */
        varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if(mle==1)    pstamp(ficresvij);
     printf("\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   fprintf(ficlog,"\n");    if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
     /*-------- Rewriting paramater file ----------*/      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficresvij,"# Age");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    for(i=1; i<=nlstate;i++)
      strcat(rfileres,".");    /* */      for(j=1; j<=nlstate;j++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     if((ficres =fopen(rfileres,"w"))==NULL) {    fprintf(ficresvij,"\n");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    xp=vector(1,npar);
     }    dnewm=matrix(1,nlstate,1,npar);
     fprintf(ficres,"#%s\n",version);    doldm=matrix(1,nlstate,1,nlstate);
        dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     /*-------- data file ----------*/    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    gpp=vector(nlstate+1,nlstate+ndeath);
     }    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     n= lastobs;    
     severity = vector(1,maxwav);    if(estepm < stepm){
     outcome=imatrix(1,maxwav+1,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     num=ivector(1,n);    }
     moisnais=vector(1,n);    else  hstepm=estepm;   
     annais=vector(1,n);    /* For example we decided to compute the life expectancy with the smallest unit */
     moisdc=vector(1,n);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     andc=vector(1,n);       nhstepm is the number of hstepm from age to agelim 
     agedc=vector(1,n);       nstepm is the number of stepm from age to agelin. 
     cod=ivector(1,n);       Look at function hpijx to understand why (it is linked to memory size questions) */
     weight=vector(1,n);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       survival function given by stepm (the optimization length). Unfortunately it
     mint=matrix(1,maxwav,1,n);       means that if the survival funtion is printed every two years of age and if
     anint=matrix(1,maxwav,1,n);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     s=imatrix(1,maxwav+1,1,n);       results. So we changed our mind and took the option of the best precision.
     adl=imatrix(1,maxwav+1,1,n);        */
     tab=ivector(1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     ncodemax=ivector(1,8);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     i=1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     while (fgets(line, MAXLINE, fic) != NULL)    {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       if ((i >= firstobs) && (i <=lastobs)) {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         for (j=maxwav;j>=1;j--){      gp=matrix(0,nhstepm,1,nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      gm=matrix(0,nhstepm,1,nlstate);
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                  xp[i] = x[i] + (i==theta ?delti[theta]:0);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        if (popbased==1) {
           if(mobilav ==0){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=nlstate;i++)
         for (j=ncovcol;j>=1;j--){              prlim[i][i]=probs[(int)age][i][ij];
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
         num[i]=atol(stra);              prlim[i][i]=mobaverage[(int)age][i][ij];
                  }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    
         for(j=1; j<= nlstate; j++){
         i=i+1;          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     /* printf("ii=%d", ij);          }
        scanf("%d",i);*/        }
   imx=i-1; /* Number of individuals */        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   /* for (i=1; i<=imx; i++){           as a weighted average of prlim.
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     }*/            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    /*  for (i=1; i<=imx; i++){        }    
      if (s[4][i]==9)  s[4][i]=-1;        /* end probability of death */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   /* Calculation of the number of parameter from char model*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   Tprod=ivector(1,15);   
   Tvaraff=ivector(1,15);        if (popbased==1) {
   Tvard=imatrix(1,15,1,2);          if(mobilav ==0){
   Tage=ivector(1,15);                  for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
   if (strlen(model) >1){          }else{ /* mobilav */ 
     j=0, j1=0, k1=1, k2=1;            for(i=1; i<=nlstate;i++)
     j=nbocc(model,'+');              prlim[i][i]=mobaverage[(int)age][i][ij];
     j1=nbocc(model,'*');          }
     cptcovn=j+1;        }
     cptcovprod=j1;  
            for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     strcpy(modelsav,model);          for(h=0; h<=nhstepm; h++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf("Error. Non available option model=%s ",model);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficlog,"Error. Non available option model=%s ",model);          }
       goto end;        }
     }        /* This for computing probability of death (h=1 means
               computed over hstepm matrices product = hstepm*stepm months) 
     for(i=(j+1); i>=1;i--){           as a weighted average of prlim.
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
       /*scanf("%d",i);*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       if (strchr(strb,'*')) {  /* Model includes a product */        }    
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        /* end probability of death */
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;        for(j=1; j<= nlstate; j++) /* vareij */
           cutv(strb,stre,strd,'V');          for(h=0; h<=nhstepm; h++){
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           cptcovage++;          }
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        }
           cptcovprod--;  
           cutv(strb,stre,strc,'V');      } /* End theta */
           Tvar[i]=atoi(stre);  
           cptcovage++;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           Tage[cptcovage]=i;  
         }      for(h=0; h<=nhstepm; h++) /* veij */
         else {  /* Age is not in the model */        for(j=1; j<=nlstate;j++)
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          for(theta=1; theta <=npar; theta++)
           Tvar[i]=ncovcol+k1;            trgradg[h][j][theta]=gradg[h][theta][j];
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  
           Tprod[k1]=i;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           Tvard[k1][1]=atoi(strc); /* m*/        for(theta=1; theta <=npar; theta++)
           Tvard[k1][2]=atoi(stre); /* n */          trgradgp[j][theta]=gradgp[theta][j];
           Tvar[cptcovn+k2]=Tvard[k1][1];    
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  
           for (k=1; k<=lastobs;k++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for(i=1;i<=nlstate;i++)
           k1++;        for(j=1;j<=nlstate;j++)
           k2=k2+2;          vareij[i][j][(int)age] =0.;
         }  
       }      for(h=0;h<=nhstepm;h++){
       else { /* no more sum */        for(k=0;k<=nhstepm;k++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
        /*  scanf("%d",i);*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       cutv(strd,strc,strb,'V');          for(i=1;i<=nlstate;i++)
       Tvar[i]=atoi(strc);            for(j=1;j<=nlstate;j++)
       }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       strcpy(modelsav,stra);          }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      }
         scanf("%d",i);*/    
     } /* end of loop + */      /* pptj */
   } /* end model */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   printf("cptcovprod=%d ", cptcovprod);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          varppt[j][i]=doldmp[j][i];
   scanf("%d ",i);*/      /* end ppptj */
     fclose(fic);      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     /*  if(mle==1){*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     if (weightopt != 1) { /* Maximisation without weights*/   
       for(i=1;i<=n;i++) weight[i]=1.0;      if (popbased==1) {
     }        if(mobilav ==0){
     /*-calculation of age at interview from date of interview and age at death -*/          for(i=1; i<=nlstate;i++)
     agev=matrix(1,maxwav,1,imx);            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
     for (i=1; i<=imx; i++) {          for(i=1; i<=nlstate;i++)
       for(m=2; (m<= maxwav); m++) {            prlim[i][i]=mobaverage[(int)age][i][ij];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        }
          anint[m][i]=9999;      }
          s[m][i]=-1;               
        }      /* This for computing probability of death (h=1 means
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       }         as a weighted average of prlim.
     }      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
     for (i=1; i<=imx; i++)  {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       for(m=1; (m<= maxwav); m++){      }    
         if(s[m][i] >0){      /* end probability of death */
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               if(moisdc[i]!=99 && andc[i]!=9999)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                 agev[m][i]=agedc[i];        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for(i=1; i<=nlstate;i++){
            else {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               if (andc[i]!=9999){        }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      } 
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      fprintf(ficresprobmorprev,"\n");
               agev[m][i]=-1;  
               }      fprintf(ficresvij,"%.0f ",age );
             }      for(i=1; i<=nlstate;i++)
           }        for(j=1; j<=nlstate;j++){
           else if(s[m][i] !=9){ /* Should no more exist */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);        }
             if(mint[m][i]==99 || anint[m][i]==9999)      fprintf(ficresvij,"\n");
               agev[m][i]=1;      free_matrix(gp,0,nhstepm,1,nlstate);
             else if(agev[m][i] <agemin){      free_matrix(gm,0,nhstepm,1,nlstate);
               agemin=agev[m][i];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
             }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             else if(agev[m][i] >agemax){    } /* End age */
               agemax=agev[m][i];    free_vector(gpp,nlstate+1,nlstate+ndeath);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
             }    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
             /*agev[m][i]=anint[m][i]-annais[i];*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
           }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           else { /* =9 */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
             agev[m][i]=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
             s[m][i]=-1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
         else /*= 0 Unknown */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
           agev[m][i]=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
        fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
     for (i=1; i<=imx; i++)  {  */
       for(m=1; (m<= maxwav); m++){  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      free_vector(xp,1,npar);
           goto end;    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
       }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fclose(ficresprobmorprev);
     fflush(ficgp);
     free_vector(severity,1,maxwav);    fflush(fichtm); 
     free_imatrix(outcome,1,maxwav+1,1,n);  }  /* end varevsij */
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);  /************ Variance of prevlim ******************/
     /* free_matrix(mint,1,maxwav,1,n);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
        free_matrix(anint,1,maxwav,1,n);*/  {
     free_vector(moisdc,1,n);    /* Variance of prevalence limit */
     free_vector(andc,1,n);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
        double **dnewm,**doldm;
     wav=ivector(1,imx);    int i, j, nhstepm, hstepm;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int k, cptcode;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double *xp;
        double *gp, *gm;
     /* Concatenates waves */    double **gradg, **trgradg;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    double age,agelim;
     int theta;
     
       Tcode=ivector(1,100);    pstamp(ficresvpl);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       ncodemax[1]=1;    fprintf(ficresvpl,"# Age");
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    for(i=1; i<=nlstate;i++)
              fprintf(ficresvpl," %1d-%1d",i,i);
    codtab=imatrix(1,100,1,10);    fprintf(ficresvpl,"\n");
    h=0;  
    m=pow(2,cptcoveff);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
    for(k=1;k<=cptcoveff; k++){    doldm=matrix(1,nlstate,1,nlstate);
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){    hstepm=1*YEARM; /* Every year of age */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
            h++;    agelim = AGESUP;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          }      if (stepm >= YEARM) hstepm=1;
        }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      }      gradg=matrix(1,npar,1,nlstate);
    }      gp=vector(1,nlstate);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      gm=vector(1,nlstate);
       codtab[1][2]=1;codtab[2][2]=2; */  
    /* for(i=1; i <=m ;i++){      for(theta=1; theta <=npar; theta++){
       for(k=1; k <=cptcovn; k++){        for(i=1; i<=npar; i++){ /* Computes gradient */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
       scanf("%d",i);*/          gp[i] = prlim[i][i];
          
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(i=1; i<=npar; i++) /* Computes gradient */
        and prints on file fileres'p'. */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            for(i=1;i<=nlstate;i++)
              gm[i] = prlim[i][i];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=1;i<=nlstate;i++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      } /* End theta */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
            trgradg =matrix(1,nlstate,1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for(j=1; j<=nlstate;j++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
     if(mle==1){  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      for(i=1;i<=nlstate;i++)
     }        varpl[i][(int)age] =0.;
          matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     /*--------- results files --------------*/      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
    jk=1;      fprintf(ficresvpl,"%.0f ",age );
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      for(i=1; i<=nlstate;i++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fprintf(ficresvpl,"\n");
    for(i=1,jk=1; i <=nlstate; i++){      free_vector(gp,1,nlstate);
      for(k=1; k <=(nlstate+ndeath); k++){      free_vector(gm,1,nlstate);
        if (k != i)      free_matrix(gradg,1,npar,1,nlstate);
          {      free_matrix(trgradg,1,nlstate,1,npar);
            printf("%d%d ",i,k);    } /* End age */
            fprintf(ficlog,"%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    free_vector(xp,1,npar);
            for(j=1; j <=ncovmodel; j++){    free_matrix(doldm,1,nlstate,1,npar);
              printf("%f ",p[jk]);    free_matrix(dnewm,1,nlstate,1,nlstate);
              fprintf(ficlog,"%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);  }
              jk++;  
            }  /************ Variance of one-step probabilities  ******************/
            printf("\n");  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            fprintf(ficlog,"\n");  {
            fprintf(ficres,"\n");    int i, j=0,  i1, k1, l1, t, tj;
          }    int k2, l2, j1,  z1;
      }    int k=0,l, cptcode;
    }    int first=1, first1, first2;
    if(mle==1){    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      /* Computing hessian and covariance matrix */    double **dnewm,**doldm;
      ftolhess=ftol; /* Usually correct */    double *xp;
      hesscov(matcov, p, npar, delti, ftolhess, func);    double *gp, *gm;
    }    double **gradg, **trgradg;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    double **mu;
    printf("# Scales (for hessian or gradient estimation)\n");    double age,agelim, cov[NCOVMAX+1];
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
    for(i=1,jk=1; i <=nlstate; i++){    int theta;
      for(j=1; j <=nlstate+ndeath; j++){    char fileresprob[FILENAMELENGTH];
        if (j!=i) {    char fileresprobcov[FILENAMELENGTH];
          fprintf(ficres,"%1d%1d",i,j);    char fileresprobcor[FILENAMELENGTH];
          printf("%1d%1d",i,j);    double ***varpij;
          fprintf(ficlog,"%1d%1d",i,j);  
          for(k=1; k<=ncovmodel;k++){    strcpy(fileresprob,"prob"); 
            printf(" %.5e",delti[jk]);    strcat(fileresprob,fileres);
            fprintf(ficlog," %.5e",delti[jk]);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
            fprintf(ficres," %.5e",delti[jk]);      printf("Problem with resultfile: %s\n", fileresprob);
            jk++;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
          }    }
          printf("\n");    strcpy(fileresprobcov,"probcov"); 
          fprintf(ficlog,"\n");    strcat(fileresprobcov,fileres);
          fprintf(ficres,"\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        }      printf("Problem with resultfile: %s\n", fileresprobcov);
      }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    }    }
        strcpy(fileresprobcor,"probcor"); 
    k=1;    strcat(fileresprobcor,fileres);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    if(mle==1)      printf("Problem with resultfile: %s\n", fileresprobcor);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    }
    for(i=1;i<=npar;i++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      /*  if (k>nlstate) k=1;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
          i1=(i-1)/(ncovmodel*nlstate)+1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          printf("%s%d%d",alph[k],i1,tab[i]);*/    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficres,"%3d",i);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      if(mle==1)    pstamp(ficresprob);
        printf("%3d",i);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficlog,"%3d",i);    fprintf(ficresprob,"# Age");
      for(j=1; j<=i;j++){    pstamp(ficresprobcov);
        fprintf(ficres," %.5e",matcov[i][j]);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
        if(mle==1)    fprintf(ficresprobcov,"# Age");
          printf(" %.5e",matcov[i][j]);    pstamp(ficresprobcor);
        fprintf(ficlog," %.5e",matcov[i][j]);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      }    fprintf(ficresprobcor,"# Age");
      fprintf(ficres,"\n");  
      if(mle==1)  
        printf("\n");    for(i=1; i<=nlstate;i++)
      fprintf(ficlog,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
      k++;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficresprobcor," p%1d-%1d ",i,j);
    while((c=getc(ficpar))=='#' && c!= EOF){      }  
      ungetc(c,ficpar);   /* fprintf(ficresprob,"\n");
      fgets(line, MAXLINE, ficpar);    fprintf(ficresprobcov,"\n");
      puts(line);    fprintf(ficresprobcor,"\n");
      fputs(line,ficparo);   */
    }    xp=vector(1,npar);
    ungetc(c,ficpar);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    estepm=0;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    if (estepm==0 || estepm < stepm) estepm=stepm;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    if (fage <= 2) {    first=1;
      bage = ageminpar;    fprintf(ficgp,"\n# Routine varprob");
      fage = agemaxpar;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
    }    fprintf(fichtm,"\n");
      
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    file %s<br>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    while((c=getc(ficpar))=='#' && c!= EOF){  and drawn. It helps understanding how is the covariance between two incidences.\
      ungetc(c,ficpar);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fgets(line, MAXLINE, ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      puts(line);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      fputs(line,ficparo);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
    }  standard deviations wide on each axis. <br>\
    ungetc(c,ficpar);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    cov[1]=1;
        /* tj=cptcoveff; */
    while((c=getc(ficpar))=='#' && c!= EOF){    tj = (int) pow(2,cptcoveff);
      ungetc(c,ficpar);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      fgets(line, MAXLINE, ficpar);    j1=0;
      puts(line);    for(j1=1; j1<=tj;j1++){
      fputs(line,ficparo);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
    }      /*j1++;*/
    ungetc(c,ficpar);        if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficresprob, "**********\n#\n");
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficresprobcov, "**********\n#\n");
   fprintf(ficparo,"pop_based=%d\n",popbased);            
   fprintf(ficres,"pop_based=%d\n",popbased);            fprintf(ficgp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   ungetc(c,ficpar);          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficresprobcor, "**********\n#");    
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
 while((c=getc(ficpar))=='#' && c!= EOF){        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     ungetc(c,ficpar);        gp=vector(1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);        gm=vector(1,(nlstate)*(nlstate+ndeath));
     puts(line);        for (age=bage; age<=fage; age ++){ 
     fputs(line,ficparo);          cov[2]=age;
   }          for (k=1; k<=cptcovn;k++) {
   ungetc(c,ficpar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                                                           * 2  2 1 1 1
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                                                           * 3  1 2 1 1
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                                                           */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /*------------ gnuplot -------------*/          for (k=1; k<=cptcovprod;k++)
   strcpy(optionfilegnuplot,optionfilefiname);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   strcat(optionfilegnuplot,".gp");          
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      
     printf("Problem with file %s",optionfilegnuplot);          for(theta=1; theta <=npar; theta++){
   }            for(i=1; i<=npar; i++)
   fclose(ficgp);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            
 /*--------- index.htm --------*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   strcpy(optionfilehtm,optionfile);            k=0;
   strcat(optionfilehtm,".htm");            for(i=1; i<= (nlstate); i++){
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {              for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with %s \n",optionfilehtm), exit(0);                k=k+1;
   }                gp[k]=pmmij[i][j];
               }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n            }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            
 \n            for(i=1; i<=npar; i++)
 Total number of observations=%d <br>\n              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      
 <hr  size=\"2\" color=\"#EC5E5E\">            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  <ul><li><h4>Parameter files</h4>\n            k=0;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n            for(i=1; i<=(nlstate); i++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n              for(j=1; j<=(nlstate+ndeath);j++){
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                k=k+1;
   fclose(fichtm);                gm[k]=pmmij[i][j];
               }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            }
         
 /*------------ free_vector  -------------*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  chdir(path);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              for(theta=1; theta <=npar; theta++)
  free_ivector(num,1,n);              trgradg[j][theta]=gradg[theta][j];
  free_vector(agedc,1,n);          
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  fclose(ficparo);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  fclose(ficres);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
   /*--------------- Prevalence limit --------------*/          k=0;
            for(i=1; i<=(nlstate); i++){
   strcpy(filerespl,"pl");            for(j=1; j<=(nlstate+ndeath);j++){
   strcat(filerespl,fileres);              k=k+1;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              mu[k][(int) age]=pmmij[i][j];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;          }
   }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);              varpij[i][j][(int)age] = doldm[i][j];
   fprintf(ficrespl,"#Prevalence limit\n");  
   fprintf(ficrespl,"#Age ");          /*printf("\n%d ",(int)age);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficrespl,"\n");            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   prlim=matrix(1,nlstate,1,nlstate);            }*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprob,"\n%d ",(int)age);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcov,"\n%d ",(int)age);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresprobcor,"\n%d ",(int)age);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   agebase=ageminpar;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   agelim=agemaxpar;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   ftolpl=1.e-10;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   i1=cptcoveff;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if (cptcovn < 1){i1=1;}          }
           i=0;
   for(cptcov=1;cptcov<=i1;cptcov++){          for (k=1; k<=(nlstate);k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for (l=1; l<=(nlstate+ndeath);l++){ 
         k=k+1;              i++;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
         fprintf(ficrespl,"\n#******");              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         printf("\n#******");              for (j=1; j<=i;j++){
         fprintf(ficlog,"\n#******");                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
         for(j=1;j<=cptcoveff;j++) {                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
         }          }/* end of loop for state */
         fprintf(ficrespl,"******\n");        } /* end of loop for age */
         printf("******\n");        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficlog,"******\n");        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         for (age=agebase; age<=agelim; age++){        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        
           fprintf(ficrespl,"%.0f",age );        /* Confidence intervalle of pij  */
           for(i=1; i<=nlstate;i++)        /*
           fprintf(ficrespl," %.5f", prlim[i][i]);          fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficrespl,"\n");          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
         }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fclose(ficrespl);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   /*------------- h Pij x at various ages ------------*/        */
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        first1=1;first2=2;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for (k2=1; k2<=(nlstate);k2++){
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   }            if(l2==k2) continue;
   printf("Computing pij: result on file '%s' \n", filerespij);            j=(k2-1)*(nlstate+ndeath)+l2;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   stepsize=(int) (stepm+YEARM-1)/YEARM;                if(l1==k1) continue;
   /*if (stepm<=24) stepsize=2;*/                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
   agelim=AGESUP;                for (age=bage; age<=fage; age ++){ 
   hstepm=stepsize*YEARM; /* Every year of age */                  if ((int)age %5==0){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /* hstepm=1;   aff par mois*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
   k=0;                    mu2=mu[j][(int) age]/stepm*YEARM;
   for(cptcov=1;cptcov<=i1;cptcov++){                    c12=cv12/sqrt(v1*v2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    /* Computing eigen value of matrix of covariance */
       k=k+1;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         fprintf(ficrespij,"\n#****** ");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for(j=1;j<=cptcoveff;j++)                    if ((lc2 <0) || (lc1 <0) ){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      if(first2==1){
         fprintf(ficrespij,"******\n");                        first1=0;
                              printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                    }
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /* Eigen vectors */
           oldm=oldms;savm=savms;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /*v21=sqrt(1.-v11*v11); *//* error */
           fprintf(ficrespij,"# Age");                    v21=(lc1-v1)/cv12*v11;
           for(i=1; i<=nlstate;i++)                    v12=-v21;
             for(j=1; j<=nlstate+ndeath;j++)                    v22=v11;
               fprintf(ficrespij," %1d-%1d",i,j);                    tnalp=v21/v11;
           fprintf(ficrespij,"\n");                    if(first1==1){
            for (h=0; h<=nhstepm; h++){                      first1=0;
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
             for(i=1; i<=nlstate;i++)                    }
               for(j=1; j<=nlstate+ndeath;j++)                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    /*printf(fignu*/
             fprintf(ficrespij,"\n");                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
              }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(first==1){
           fprintf(ficrespij,"\n");                      first=0;
         }                      fprintf(ficgp,"\nset parametric;unset label");
     }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   fclose(ficrespij);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*---------- Forecasting ------------------*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   if((stepm == 1) && (strcmp(model,".")==0)){                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   else{                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     erreur=108;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                    }else{
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                      first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*---------- Health expectancies and variances ------------*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcpy(filerest,"t");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(filerest,fileres);                    }/* if first */
   if((ficrest=fopen(filerest,"w"))==NULL) {                  } /* age mod 5 */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                } /* end loop age */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   }                first=1;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              } /*l12 */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);            } /* k12 */
           } /*l1 */
         }/* k1 */
   strcpy(filerese,"e");        /* } /* loop covariates */
   strcat(filerese,fileres);    }
   if((ficreseij=fopen(filerese,"w"))==NULL) {    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   }    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    free_vector(xp,1,npar);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    fclose(ficresprob);
     fclose(ficresprobcov);
   strcpy(fileresv,"v");    fclose(ficresprobcor);
   strcat(fileresv,fileres);    fflush(ficgp);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    fflush(fichtmcov);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  }
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /******************* Printing html file ***********/
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   calagedate=-1;                    int lastpass, int stepm, int weightopt, char model[],\
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   k=0;                    double jprev1, double mprev1,double anprev1, \
   for(cptcov=1;cptcov<=i1;cptcov++){                    double jprev2, double mprev2,double anprev2){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int jj1, k1, i1, cpt;
       k=k+1;  
       fprintf(ficrest,"\n#****** ");     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       for(j=1;j<=cptcoveff;j++)     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  </ul>");
       fprintf(ficrest,"******\n");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       fprintf(ficreseij,"\n#****** ");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
       fprintf(ficreseij,"******\n");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
       fprintf(ficresvij,"\n#****** ");   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     fprintf(fichtm,"\
       fprintf(ficresvij,"******\n");   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       oldm=oldms;savm=savms;     fprintf(fichtm,"\
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     - Population projections by age and states: \
       <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){   m=pow(2,cptcoveff);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
        }  
    jj1=0;
     for(k1=1; k1<=m;k1++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       jj1++;
       fprintf(ficrest,"\n");       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       epj=vector(1,nlstate+1);         for (cpt=1; cpt<=cptcoveff;cpt++) 
       for(age=bage; age <=fage ;age++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         if (popbased==1) {       }
           for(i=1; i<=nlstate;i++)       /* Pij */
             prlim[i][i]=probs[(int)age][i][k];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
         }  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
               /* Quasi-incidences */
         fprintf(ficrest," %4.0f",age);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         /* Period (stable) prevalence in each health state */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/         for(cpt=1; cpt<=nlstate;cpt++){
           }           fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
           epj[nlstate+1] +=epj[j];  <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         }         }
        for(cpt=1; cpt<=nlstate;cpt++) {
         for(i=1, vepp=0.;i <=nlstate;i++)          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           for(j=1;j <=nlstate;j++)  <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             vepp += vareij[i][j][(int)age];       }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));     } /* end i1 */
         for(j=1;j <=nlstate;j++){   }/* End k1 */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));   fprintf(fichtm,"</ul>");
         }  
         fprintf(ficrest,"\n");  
       }   fprintf(fichtm,"\
     }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
 free_matrix(mint,1,maxwav,1,n);  
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     free_vector(weight,1,n);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   fclose(ficreseij);   fprintf(fichtm,"\
   fclose(ficresvij);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fclose(ficrest);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);   fprintf(fichtm,"\
     - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /*------- Variance limit prevalence------*/             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   strcpy(fileresvpl,"vpl");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   strcat(fileresvpl,fileres);     <a href=\"%s\">%s</a> <br>\n</li>",
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   fprintf(fichtm,"\
     exit(0);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
   k=0;   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   for(cptcov=1;cptcov<=i1;cptcov++){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm,"\
       k=k+1;   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvpl,"\n#****** ");           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficresvpl,"******\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
        
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  /*  if(popforecast==1) fprintf(fichtm,"\n */
       oldm=oldms;savm=savms;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     }  /*      <br>",fileres,fileres,fileres,fileres); */
  }  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fclose(ficresvpl);   fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   /*---------- End : free ----------------*/  
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   m=pow(2,cptcoveff);
     if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);   jj1=0;
     for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       jj1++;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       if (cptcovn > 0) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         for (cpt=1; cpt<=cptcoveff;cpt++) 
             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   free_matrix(matcov,1,npar,1,npar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   free_vector(delti,1,npar);       }
   free_matrix(agev,1,maxwav,1,imx);       for(cpt=1; cpt<=nlstate;cpt++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   fprintf(fichtm,"\n</body>");  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   fclose(fichtm);       }
   fclose(ficgp);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
   if(erreur >0){   drawn in addition to the population based expectancies computed using\
     printf("End of Imach with error or warning %d\n",erreur);   observed and cahotic prevalences: %s%d.png<br>\
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   }else{     } /* end i1 */
    printf("End of Imach\n");   }/* End k1 */
    fprintf(ficlog,"End of Imach\n");   fprintf(fichtm,"</ul>");
   }   fflush(fichtm);
   printf("See log file on %s\n",filelog);  }
   fclose(ficlog);  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    char dirfileres[132],optfileres[132];
   /*------ End -----------*/    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
  end:  /*     printf("Problem with file %s",optionfilegnuplot); */
 #ifdef windows  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /* chdir(pathcd);*/  /*   } */
 #endif  
  /*system("wgnuplot graph.plt");*/    /*#ifdef windows */
  /*system("../gp37mgw/wgnuplot graph.plt");*/    fprintf(ficgp,"cd \"%s\" \n",pathc);
  /*system("cd ../gp37mgw");*/      /*#endif */
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    m=pow(2,cptcoveff);
  strcpy(plotcmd,GNUPLOTPROGRAM);  
  strcat(plotcmd," ");    strcpy(dirfileres,optionfilefiname);
  strcat(plotcmd,optionfilegnuplot);    strcpy(optfileres,"vpl");
  system(plotcmd);   /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
 #ifdef windows    for (cpt=1; cpt<= nlstate ; cpt ++) {
   while (z[0] != 'q') {      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
     /* chdir(path); */       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
     scanf("%s",z);       fprintf(ficgp,"set xlabel \"Age\" \n\
     if (z[0] == 'c') system("./imach");  set ylabel \"Probability\" \n\
     else if (z[0] == 'e') system(optionfilehtm);  set ter png small size 320, 240\n\
     else if (z[0] == 'g') system(plotcmd);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     else if (z[0] == 'q') exit(0);  
   }       for (i=1; i<= nlstate ; i ++) {
 #endif         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 }         else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.51  
changed lines
  Added in v.1.161


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>