Diff for /imach/src/imach.c between versions 1.52 and 1.171

version 1.52, 2002/07/19 18:49:30 version 1.171, 2014/12/23 13:26:59
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.171  2014/12/23 13:26:59  brouard
      Summary: Back from Visual C
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Still problem with utsname.h on Windows
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.170  2014/12/23 11:17:12  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: Cleaning some \%% back to %%
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.169  2014/12/22 23:08:31  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: 0.98p
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.168  2014/12/22 15:17:42  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: update
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.167  2014/12/22 13:50:56  brouard
   you to do it.  More covariates you add, slower the    Summary: Testing uname and compiler version and if compiled 32 or 64
   convergence.  
     Testing on Linux 64
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.166  2014/12/22 11:40:47  brouard
   identical for each individual. Also, if a individual missed an    *** empty log message ***
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    * imach.c (Module): Merging 1.61 to 1.162
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.164  2014/12/16 10:52:11  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    * imach.c (Module): Merging 1.61 to 1.162
   hPijx.  
     Revision 1.163  2014/12/16 10:30:11  brouard
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Module): Merging 1.61 to 1.162
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.162  2014/09/25 11:43:39  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: temporary backup 0.99!
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.1  2014/09/16 11:06:58  brouard
   from the European Union.    Summary: With some code (wrong) for nlopt
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Author:
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.161  2014/09/15 20:41:41  brouard
      Summary: Problem with macro SQR on Intel compiler
 #include <math.h>  
 #include <stdio.h>    Revision 1.160  2014/09/02 09:24:05  brouard
 #include <stdlib.h>    *** empty log message ***
 #include <unistd.h>  
     Revision 1.159  2014/09/01 10:34:10  brouard
 #define MAXLINE 256    Summary: WIN32
 #define GNUPLOTPROGRAM "gnuplot"    Author: Brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.158  2014/08/27 17:11:51  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.157  2014/08/27 16:26:55  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Preparing windows Visual studio version
     Author: Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
 #define NINTERVMAX 8    just make the differences in raw time format (time(&now).
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Trying to suppress #ifdef LINUX
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Add xdg-open for __linux in order to open default browser.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.156  2014/08/25 20:10:10  brouard
 #define YEARM 12. /* Number of months per year */    *** empty log message ***
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.155  2014/08/25 18:32:34  brouard
 #ifdef windows    Summary: New compile, minor changes
 #define DIRSEPARATOR '\\'    Author: Brouard
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.154  2014/06/20 17:32:08  brouard
 #define DIRSEPARATOR '/'    Summary: Outputs now all graphs of convergence to period prevalence
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Author: Brouard
 int erreur; /* Error number */  
 int nvar;    Revision 1.152  2014/06/18 17:54:09  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.151  2014/06/18 16:43:30  brouard
 int ndeath=1; /* Number of dead states */    *** empty log message ***
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 int *wav; /* Number of waves for this individuual 0 is possible */    Author: brouard
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.149  2014/06/18 15:51:14  brouard
 int mle, weightopt;    Summary: Some fixes in parameter files errors
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Author: Nicolas Brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.148  2014/06/17 17:38:48  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: Nothing new
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Author: Brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Just a new packaging for OS/X version 0.98nS
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.147  2014/06/16 10:33:11  brouard
 FILE *fichtm; /* Html File */    *** empty log message ***
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.146  2014/06/16 10:20:28  brouard
 FILE  *ficresvij;    Summary: Merge
 char fileresv[FILENAMELENGTH];    Author: Brouard
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Merge, before building revised version.
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.145  2014/06/10 21:23:15  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Lot of changes in order to output the results with some covariates
 char filerest[FILENAMELENGTH];    After the Edimburgh REVES conference 2014, it seems mandatory to
 char fileregp[FILENAMELENGTH];    improve the code.
 char popfile[FILENAMELENGTH];    No more memory valgrind error but a lot has to be done in order to
     continue the work of splitting the code into subroutines.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 #define NR_END 1    the source code.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.143  2014/01/26 09:45:38  brouard
     Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define NRANSI  
 #define ITMAX 200    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define TOL 2.0e-4  
     Revision 1.142  2014/01/26 03:57:36  brouard
 #define CGOLD 0.3819660    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 #define GOLD 1.618034    Revision 1.141  2014/01/26 02:42:01  brouard
 #define GLIMIT 100.0    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define TINY 1.0e-20  
     Revision 1.140  2011/09/02 10:37:54  brouard
 static double maxarg1,maxarg2;    Summary: times.h is ok with mingw32 now.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.139  2010/06/14 07:50:17  brouard
      After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define rint(a) floor(a+0.5)  
     Revision 1.138  2010/04/30 18:19:40  brouard
 static double sqrarg;    *** empty log message ***
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 int imx;    than V1+V2. A lot of change to be done. Unstable.
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 int estepm;    of likelione (using inter/intrapolation if mle = 0) in order to
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.135  2009/10/29 15:33:14  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.134  2009/10/29 13:18:53  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double *weight;  
 int **s; /* Status */    Revision 1.133  2009/07/06 10:21:25  brouard
 double *agedc, **covar, idx;    just nforces
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
     Revision 1.132  2009/07/06 08:22:05  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Many tings
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.131  2009/06/20 16:22:47  brouard
 /**************** split *************************/    Some dimensions resccaled
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.130  2009/05/26 06:44:34  brouard
    char *s;                             /* pointer */    (Module): Max Covariate is now set to 20 instead of 8. A
    int  l1, l2;                         /* length counters */    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.129  2007/08/31 13:49:27  lievre
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.128  2006/06/30 13:02:05  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    (Module): Clarifications on computing e.j
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
       if ( getwd( dirc ) == NULL ) {    imach-114 because nhstepm was no more computed in the age
 #else    loop. Now we define nhstepma in the age loop.
       extern char       *getcwd( );    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    and then all the health expectancies with variances or standard
 #endif    deviation (needs data from the Hessian matrices) which slows the
          return( GLOCK_ERROR_GETCWD );    computation.
       }    In the future we should be able to stop the program is only health
       strcpy( name, path );             /* we've got it */    expectancies and graph are needed without standard deviations.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.126  2006/04/28 17:23:28  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Yes the sum of survivors was wrong since
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    imach-114 because nhstepm was no more computed in the age
       strcpy( name, s );                /* save file name */    loop. Now we define nhstepma in the age loop.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Version 0.98h
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.125  2006/04/04 15:20:31  lievre
    l1 = strlen( dirc );                 /* length of directory */    Errors in calculation of health expectancies. Age was not initialized.
 #ifdef windows    Forecasting file added.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.124  2006/03/22 17:13:53  lievre
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #endif    The log-likelihood is printed in the log file
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.123  2006/03/20 10:52:43  brouard
    strcpy(ext,s);                       /* save extension */    * imach.c (Module): <title> changed, corresponds to .htm file
    l1= strlen( name);    name. <head> headers where missing.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    * imach.c (Module): Weights can have a decimal point as for
    finame[l1-l2]= 0;    English (a comma might work with a correct LC_NUMERIC environment,
    return( 0 );                         /* we're done */    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
     Version 0.98g
 /******************************************/  
     Revision 1.122  2006/03/20 09:45:41  brouard
 void replace(char *s, char*t)    (Module): Weights can have a decimal point as for
 {    English (a comma might work with a correct LC_NUMERIC environment,
   int i;    otherwise the weight is truncated).
   int lg=20;    Modification of warning when the covariates values are not 0 or
   i=0;    1.
   lg=strlen(t);    Version 0.98g
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.121  2006/03/16 17:45:01  lievre
     if (t[i]== '\\') s[i]='/';    * imach.c (Module): Comments concerning covariates added
   }  
 }    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 int nbocc(char *s, char occ)    not 1 month. Version 0.98f
 {  
   int i,j=0;    Revision 1.120  2006/03/16 15:10:38  lievre
   int lg=20;    (Module): refinements in the computation of lli if
   i=0;    status=-2 in order to have more reliable computation if stepm is
   lg=strlen(s);    not 1 month. Version 0.98f
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.119  2006/03/15 17:42:26  brouard
   }    (Module): Bug if status = -2, the loglikelihood was
   return j;    computed as likelihood omitting the logarithm. Version O.98e
 }  
     Revision 1.118  2006/03/14 18:20:07  brouard
 void cutv(char *u,char *v, char*t, char occ)    (Module): varevsij Comments added explaining the second
 {    table of variances if popbased=1 .
   /* cuts string t into u and v where u is ended by char occ excluding it    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    (Module): Function pstamp added
      gives u="abcedf" and v="ghi2j" */    (Module): Version 0.98d
   int i,lg,j,p=0;  
   i=0;    Revision 1.117  2006/03/14 17:16:22  brouard
   for(j=0; j<=strlen(t)-1; j++) {    (Module): varevsij Comments added explaining the second
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    table of variances if popbased=1 .
   }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   lg=strlen(t);    (Module): Version 0.98d
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);    Revision 1.116  2006/03/06 10:29:27  brouard
   }    (Module): Variance-covariance wrong links and
      u[p]='\0';    varian-covariance of ej. is needed (Saito).
   
    for(j=0; j<= lg; j++) {    Revision 1.115  2006/02/27 12:17:45  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    (Module): One freematrix added in mlikeli! 0.98c
   }  
 }    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 /********************** nrerror ********************/    filename with strsep.
   
 void nrerror(char error_text[])    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
   fprintf(stderr,"ERREUR ...\n");    datafile was not closed, some imatrix were not freed and on matrix
   fprintf(stderr,"%s\n",error_text);    allocation too.
   exit(1);  
 }    Revision 1.112  2006/01/30 09:55:26  brouard
 /*********************** vector *******************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 double *vector(int nl, int nh)  
 {    Revision 1.111  2006/01/25 20:38:18  brouard
   double *v;    (Module): Lots of cleaning and bugs added (Gompertz)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): Comments can be added in data file. Missing date values
   if (!v) nrerror("allocation failure in vector");    can be a simple dot '.'.
   return v-nl+NR_END;  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.109  2006/01/24 19:37:15  brouard
 {    (Module): Comments (lines starting with a #) are allowed in data.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 /************************ivector *******************************/    To be fixed
 int *ivector(long nl,long nh)  
 {    Revision 1.107  2006/01/19 16:20:37  brouard
   int *v;    Test existence of gnuplot in imach path
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.106  2006/01/19 13:24:36  brouard
   return v-nl+NR_END;    Some cleaning and links added in html output
 }  
     Revision 1.105  2006/01/05 20:23:19  lievre
 /******************free ivector **************************/    *** empty log message ***
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.104  2005/09/30 16:11:43  lievre
   free((FREE_ARG)(v+nl-NR_END));    (Module): sump fixed, loop imx fixed, and simplifications.
 }    (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 /******************* imatrix *******************************/    (instead of missing=-1 in earlier versions) and his/her
 int **imatrix(long nrl, long nrh, long ncl, long nch)    contributions to the likelihood is 1 - Prob of dying from last
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 {    the healthy state at last known wave). Version is 0.98
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.103  2005/09/30 15:54:49  lievre
      (Module): sump fixed, loop imx fixed, and simplifications.
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.102  2004/09/15 17:31:30  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Add the possibility to read data file including tab characters.
   m += NR_END;  
   m -= nrl;    Revision 1.101  2004/09/15 10:38:38  brouard
      Fix on curr_time
    
   /* allocate rows and set pointers to them */    Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Add version for Mac OS X. Just define UNIX in Makefile
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.99  2004/06/05 08:57:40  brouard
   m[nrl] -= ncl;    *** empty log message ***
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   /* return pointer to array of pointers to rows */    directly from the data i.e. without the need of knowing the health
   return m;    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 /****************** free_imatrix *************************/    cross-longitudinal survey is different from the mortality estimated
 void free_imatrix(m,nrl,nrh,ncl,nch)    from other sources like vital statistic data.
       int **m;  
       long nch,ncl,nrh,nrl;    The same imach parameter file can be used but the option for mle should be -3.
      /* free an int matrix allocated by imatrix() */  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    former routines in order to include the new code within the former code.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   double **m;    B) There is no computation of Life Expectancy nor Life Table.
   
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.97  2004/02/20 13:25:42  lievre
   if (!m) nrerror("allocation failure 1 in matrix()");    Version 0.96d. Population forecasting command line is (temporarily)
   m += NR_END;    suppressed.
   m -= nrl;  
     Revision 1.96  2003/07/15 15:38:55  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    rewritten within the same printf. Workaround: many printfs.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Repository): Using imachwizard code to output a more meaningful covariance
   return m;    matrix (cov(a12,c31) instead of numbers.
 }  
     Revision 1.94  2003/06/27 13:00:02  brouard
 /*************************free matrix ************************/    Just cleaning
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.93  2003/06/25 16:33:55  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): On windows (cygwin) function asctime_r doesn't
   free((FREE_ARG)(m+nrl-NR_END));    exist so I changed back to asctime which exists.
 }    (Module): Version 0.96b
   
 /******************* ma3x *******************************/    Revision 1.92  2003/06/25 16:30:45  brouard
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Repository): Elapsed time after each iteration is now output. It
   if (!m) nrerror("allocation failure 1 in matrix()");    helps to forecast when convergence will be reached. Elapsed time
   m += NR_END;    is stamped in powell.  We created a new html file for the graphs
   m -= nrl;    concerning matrix of covariance. It has extension -cov.htm.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.90  2003/06/24 12:34:15  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Some bugs corrected for windows. Also, when
   m[nrl] += NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl] -= ncl;    of the covariance matrix to be input.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.89  2003/06/24 12:30:52  brouard
     (Module): Some bugs corrected for windows. Also, when
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    mle=-1 a template is output in file "or"mypar.txt with the design
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    of the covariance matrix to be input.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.88  2003/06/23 17:54:56  brouard
   for (j=ncl+1; j<=nch; j++)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.87  2003/06/18 12:26:01  brouard
   for (i=nrl+1; i<=nrh; i++) {    Version 0.96
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.86  2003/06/17 20:04:08  brouard
       m[i][j]=m[i][j-1]+nlay;    (Module): Change position of html and gnuplot routines and added
   }    routine fileappend.
   return m;  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /*************************free ma3x ************************/    current date of interview. It may happen when the death was just
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    prior to the death. In this case, dh was negative and likelihood
 {    was wrong (infinity). We still send an "Error" but patch by
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    assuming that the date of death was just one stepm after the
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    interview.
   free((FREE_ARG)(m+nrl-NR_END));    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /***************** f1dim *************************/    truncation)
 extern int ncom;    (Repository): No more line truncation errors.
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.84  2003/06/13 21:44:43  brouard
      * imach.c (Repository): Replace "freqsummary" at a correct
 double f1dim(double x)    place. It differs from routine "prevalence" which may be called
 {    many times. Probs is memory consuming and must be used with
   int j;    parcimony.
   double f;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   double *xt;  
      Revision 1.83  2003/06/10 13:39:11  lievre
   xt=vector(1,ncom);    *** empty log message ***
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.82  2003/06/05 15:57:20  brouard
   free_vector(xt,1,ncom);    Add log in  imach.c and  fullversion number is now printed.
   return f;  
 }  */
   /*
 /*****************brent *************************/     Interpolated Markov Chain
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Short summary of the programme:
   int iter;    
   double a,b,d,etemp;    This program computes Healthy Life Expectancies from
   double fu,fv,fw,fx;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double ftemp;    first survey ("cross") where individuals from different ages are
   double p,q,r,tol1,tol2,u,v,w,x,xm;    interviewed on their health status or degree of disability (in the
   double e=0.0;    case of a health survey which is our main interest) -2- at least a
      second wave of interviews ("longitudinal") which measure each change
   a=(ax < cx ? ax : cx);    (if any) in individual health status.  Health expectancies are
   b=(ax > cx ? ax : cx);    computed from the time spent in each health state according to a
   x=w=v=bx;    model. More health states you consider, more time is necessary to reach the
   fw=fv=fx=(*f)(x);    Maximum Likelihood of the parameters involved in the model.  The
   for (iter=1;iter<=ITMAX;iter++) {    simplest model is the multinomial logistic model where pij is the
     xm=0.5*(a+b);    probability to be observed in state j at the second wave
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    conditional to be observed in state i at the first wave. Therefore
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     printf(".");fflush(stdout);    'age' is age and 'sex' is a covariate. If you want to have a more
     fprintf(ficlog,".");fflush(ficlog);    complex model than "constant and age", you should modify the program
 #ifdef DEBUG    where the markup *Covariates have to be included here again* invites
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    you to do it.  More covariates you add, slower the
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    convergence.
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    The advantage of this computer programme, compared to a simple
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    multinomial logistic model, is clear when the delay between waves is not
       *xmin=x;    identical for each individual. Also, if a individual missed an
       return fx;    intermediate interview, the information is lost, but taken into
     }    account using an interpolation or extrapolation.  
     ftemp=fu;  
     if (fabs(e) > tol1) {    hPijx is the probability to be observed in state i at age x+h
       r=(x-w)*(fx-fv);    conditional to the observed state i at age x. The delay 'h' can be
       q=(x-v)*(fx-fw);    split into an exact number (nh*stepm) of unobserved intermediate
       p=(x-v)*q-(x-w)*r;    states. This elementary transition (by month, quarter,
       q=2.0*(q-r);    semester or year) is modelled as a multinomial logistic.  The hPx
       if (q > 0.0) p = -p;    matrix is simply the matrix product of nh*stepm elementary matrices
       q=fabs(q);    and the contribution of each individual to the likelihood is simply
       etemp=e;    hPijx.
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    Also this programme outputs the covariance matrix of the parameters but also
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    of the life expectancies. It also computes the period (stable) prevalence. 
       else {    
         d=p/q;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
         u=x+d;             Institut national d'études démographiques, Paris.
         if (u-a < tol2 || b-u < tol2)    This software have been partly granted by Euro-REVES, a concerted action
           d=SIGN(tol1,xm-x);    from the European Union.
       }    It is copyrighted identically to a GNU software product, ie programme and
     } else {    software can be distributed freely for non commercial use. Latest version
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    can be accessed at http://euroreves.ined.fr/imach .
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     fu=(*f)(u);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    **********************************************************************/
       SHFT(v,w,x,u)  /*
         SHFT(fv,fw,fx,fu)    main
         } else {    read parameterfile
           if (u < x) a=u; else b=u;    read datafile
           if (fu <= fw || w == x) {    concatwav
             v=w;    freqsummary
             w=u;    if (mle >= 1)
             fv=fw;      mlikeli
             fw=fu;    print results files
           } else if (fu <= fv || v == x || v == w) {    if mle==1 
             v=u;       computes hessian
             fv=fu;    read end of parameter file: agemin, agemax, bage, fage, estepm
           }        begin-prev-date,...
         }    open gnuplot file
   }    open html file
   nrerror("Too many iterations in brent");    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   *xmin=x;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   return fx;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 }      freexexit2 possible for memory heap.
   
 /****************** mnbrak ***********************/    h Pij x                         | pij_nom  ficrestpij
      # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
             double (*func)(double))         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 {  
   double ulim,u,r,q, dum;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   double fu;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
      variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   *fa=(*func)(*ax);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   *fb=(*func)(*bx);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)    forecasting if prevfcast==1 prevforecast call prevalence()
       SHFT(dum,*fb,*fa,dum)    health expectancies
       }    Variance-covariance of DFLE
   *cx=(*bx)+GOLD*(*bx-*ax);    prevalence()
   *fc=(*func)(*cx);     movingaverage()
   while (*fb > *fc) {    varevsij() 
     r=(*bx-*ax)*(*fb-*fc);    if popbased==1 varevsij(,popbased)
     q=(*bx-*cx)*(*fb-*fa);    total life expectancies
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Variance of period (stable) prevalence
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));   end
     ulim=(*bx)+GLIMIT*(*cx-*bx);  */
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  #define POWELL /* Instead of NLOPT */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  #include <math.h>
       if (fu < *fc) {  #include <stdio.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #include <stdlib.h>
           SHFT(*fb,*fc,fu,(*func)(u))  #include <string.h>
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #ifdef _WIN32
       u=ulim;  #include <io.h>
       fu=(*func)(u);  #else
     } else {  #include <unistd.h>
       u=(*cx)+GOLD*(*cx-*bx);  #endif
       fu=(*func)(u);  
     }  #include <limits.h>
     SHFT(*ax,*bx,*cx,u)  #include <sys/types.h>
       SHFT(*fa,*fb,*fc,fu)  
       }  #if defined(__GNUC__)
 }  #include <sys/utsname.h> /* Doesn't work on Windows */
   #endif
 /*************** linmin ************************/  
   #include <sys/stat.h>
 int ncom;  #include <errno.h>
 double *pcom,*xicom;  /* extern int errno; */
 double (*nrfunc)(double []);  
    /* #ifdef LINUX */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /* #include <time.h> */
 {  /* #include "timeval.h" */
   double brent(double ax, double bx, double cx,  /* #else */
                double (*f)(double), double tol, double *xmin);  /* #include <sys/time.h> */
   double f1dim(double x);  /* #endif */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #include <time.h>
   int j;  
   double xx,xmin,bx,ax;  #ifdef GSL
   double fx,fb,fa;  #include <gsl/gsl_errno.h>
    #include <gsl/gsl_multimin.h>
   ncom=n;  #endif
   pcom=vector(1,n);  
   xicom=vector(1,n);  
   nrfunc=func;  #ifdef NLOPT
   for (j=1;j<=n;j++) {  #include <nlopt.h>
     pcom[j]=p[j];  typedef struct {
     xicom[j]=xi[j];    double (* function)(double [] );
   }  } myfunc_data ;
   ax=0.0;  #endif
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* #include <libintl.h> */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /* #define _(String) gettext (String) */
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #define GNUPLOTPROGRAM "gnuplot"
   for (j=1;j<=n;j++) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     xi[j] *= xmin;  #define FILENAMELENGTH 132
     p[j] += xi[j];  
   }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   free_vector(xicom,1,n);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   free_vector(pcom,1,n);  
 }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define NINTERVMAX 8
             double (*func)(double []))  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   void linmin(double p[], double xi[], int n, double *fret,  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
               double (*func)(double []));  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   int i,ibig,j;  #define MAXN 20000
   double del,t,*pt,*ptt,*xit;  #define YEARM 12. /**< Number of months per year */
   double fp,fptt;  #define AGESUP 130
   double *xits;  #define AGEBASE 40
   pt=vector(1,n);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   ptt=vector(1,n);  #ifdef _WIN32
   xit=vector(1,n);  #define DIRSEPARATOR '\\'
   xits=vector(1,n);  #define CHARSEPARATOR "\\"
   *fret=(*func)(p);  #define ODIRSEPARATOR '/'
   for (j=1;j<=n;j++) pt[j]=p[j];  #else
   for (*iter=1;;++(*iter)) {  #define DIRSEPARATOR '/'
     fp=(*fret);  #define CHARSEPARATOR "/"
     ibig=0;  #define ODIRSEPARATOR '\\'
     del=0.0;  #endif
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /* $Id$ */
     for (i=1;i<=n;i++)  /* $State$ */
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
     printf("\n");  char fullversion[]="$Revision$ $Date$"; 
     fprintf(ficlog,"\n");  char strstart[80];
     for (i=1;i<=n;i++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       fptt=(*fret);  int nvar=0, nforce=0; /* Number of variables, number of forces */
 #ifdef DEBUG  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       printf("fret=%lf \n",*fret);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       fprintf(ficlog,"fret=%lf \n",*fret);  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 #endif  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
       printf("%d",i);fflush(stdout);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       fprintf(ficlog,"%d",i);fflush(ficlog);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       linmin(p,xit,n,fret,func);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       if (fabs(fptt-(*fret)) > del) {  int cptcov=0; /* Working variable */
         del=fabs(fptt-(*fret));  int npar=NPARMAX;
         ibig=i;  int nlstate=2; /* Number of live states */
       }  int ndeath=1; /* Number of dead states */
 #ifdef DEBUG  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       printf("%d %.12e",i,(*fret));  int popbased=0;
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  int *wav; /* Number of waves for this individuual 0 is possible */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int maxwav=0; /* Maxim number of waves */
         printf(" x(%d)=%.12e",j,xit[j]);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       for(j=1;j<=n;j++) {                     to the likelihood and the sum of weights (done by funcone)*/
         printf(" p=%.12e",p[j]);  int mle=1, weightopt=0;
         fprintf(ficlog," p=%.12e",p[j]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       printf("\n");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       fprintf(ficlog,"\n");             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #endif  int countcallfunc=0;  /* Count the number of calls to func */
     }  double jmean=1; /* Mean space between 2 waves */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  double **matprod2(); /* test */
 #ifdef DEBUG  double **oldm, **newm, **savm; /* Working pointers to matrices */
       int k[2],l;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       k[0]=1;  /*FILE *fic ; */ /* Used in readdata only */
       k[1]=-1;  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       printf("Max: %.12e",(*func)(p));  FILE *ficlog, *ficrespow;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  int globpr=0; /* Global variable for printing or not */
       for (j=1;j<=n;j++) {  double fretone; /* Only one call to likelihood */
         printf(" %.12e",p[j]);  long ipmx=0; /* Number of contributions */
         fprintf(ficlog," %.12e",p[j]);  double sw; /* Sum of weights */
       }  char filerespow[FILENAMELENGTH];
       printf("\n");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       fprintf(ficlog,"\n");  FILE *ficresilk;
       for(l=0;l<=1;l++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
         for (j=1;j<=n;j++) {  FILE *ficresprobmorprev;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  FILE *fichtm, *fichtmcov; /* Html File */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  FILE *ficreseij;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char filerese[FILENAMELENGTH];
         }  FILE *ficresstdeij;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char fileresstde[FILENAMELENGTH];
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  FILE *ficrescveij;
       }  char filerescve[FILENAMELENGTH];
 #endif  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
       free_vector(xit,1,n);  char fileresvpl[FILENAMELENGTH];
       free_vector(xits,1,n);  char title[MAXLINE];
       free_vector(ptt,1,n);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       free_vector(pt,1,n);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       return;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     }  char command[FILENAMELENGTH];
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int  outcmd=0;
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  char filelog[FILENAMELENGTH]; /* Log file */
     }  char filerest[FILENAMELENGTH];
     fptt=(*func)(ptt);  char fileregp[FILENAMELENGTH];
     if (fptt < fp) {  char popfile[FILENAMELENGTH];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  
       if (t < 0.0) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
           xi[j][ibig]=xi[j][n];  /* struct timezone tzp; */
           xi[j][n]=xit[j];  /* extern int gettimeofday(); */
         }  struct tm tml, *gmtime(), *localtime();
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  extern time_t time();
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  struct tm start_time, end_time, curr_time, last_time, forecast_time;
           printf(" %.12e",xit[j]);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
           fprintf(ficlog," %.12e",xit[j]);  struct tm tm;
         }  
         printf("\n");  char strcurr[80], strfor[80];
         fprintf(ficlog,"\n");  
 #endif  char *endptr;
       }  long lval;
     }  double dval;
   }  
 }  #define NR_END 1
   #define FREE_ARG char*
 /**** Prevalence limit ****************/  #define FTOL 1.0e-10
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define NRANSI 
 {  #define ITMAX 200 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  
      matrix by transitions matrix until convergence is reached */  #define TOL 2.0e-4 
   
   int i, ii,j,k;  #define CGOLD 0.3819660 
   double min, max, maxmin, maxmax,sumnew=0.;  #define ZEPS 1.0e-10 
   double **matprod2();  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  #define GOLD 1.618034 
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  static double maxarg1,maxarg2;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
    cov[1]=1.;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    #define rint(a) floor(a+0.5)
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* #define mytinydouble 1.0e-16 */
     newm=savm;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
     /* Covariates have to be included here again */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
      cov[2]=agefin;  /* static double dsqrarg; */
    /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       for (k=1; k<=cptcovn;k++) {  static double sqrarg;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  int agegomp= AGEGOMP;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  int imx; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  int estepm;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   int m,nb;
     savm=oldm;  long *num;
     oldm=newm;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     maxmax=0.;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for(j=1;j<=nlstate;j++){  double **pmmij, ***probs;
       min=1.;  double *ageexmed,*agecens;
       max=0.;  double dateintmean=0;
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  double *weight;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int **s; /* Status */
         prlim[i][j]= newm[i][j]/(1-sumnew);  double *agedc;
         max=FMAX(max,prlim[i][j]);  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         min=FMIN(min,prlim[i][j]);                    * covar=matrix(0,NCOVMAX,1,n); 
       }                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       maxmin=max-min;  double  idx; 
       maxmax=FMAX(maxmax,maxmin);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     }  int *Ndum; /** Freq of modality (tricode */
     if(maxmax < ftolpl){  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       return prlim;  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     }  double *lsurv, *lpop, *tpop;
   }  
 }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double ftolhess; /**< Tolerance for computing hessian */
 /*************** transition probabilities ***************/  
   /**************** split *************************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   double s1, s2;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   /*double t34;*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   int i,j,j1, nc, ii, jj;    */ 
     char  *ss;                            /* pointer */
     for(i=1; i<= nlstate; i++){    int   l1, l2;                         /* length counters */
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    l1 = strlen(path );                   /* length of path */
         /*s2 += param[i][j][nc]*cov[nc];*/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       }      strcpy( name, path );               /* we got the fullname name because no directory */
       ps[i][j]=s2;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
     for(j=i+1; j<=nlstate+ndeath;j++){      /*    extern  char* getcwd ( char *buf , int len);*/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        return( GLOCK_ERROR_GETCWD );
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      }
       }      /* got dirc from getcwd*/
       ps[i][j]=s2;      printf(" DIRC = %s \n",dirc);
     }    } else {                              /* strip direcotry from path */
   }      ss++;                               /* after this, the filename */
     /*ps[3][2]=1;*/      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(i=1; i<= nlstate; i++){      strcpy( name, ss );         /* save file name */
      s1=0;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(j=1; j<i; j++)      dirc[l1-l2] = 0;                    /* add zero */
       s1+=exp(ps[i][j]);      printf(" DIRC2 = %s \n",dirc);
     for(j=i+1; j<=nlstate+ndeath; j++)    }
       s1+=exp(ps[i][j]);    /* We add a separator at the end of dirc if not exists */
     ps[i][i]=1./(s1+1.);    l1 = strlen( dirc );                  /* length of directory */
     for(j=1; j<i; j++)    if( dirc[l1-1] != DIRSEPARATOR ){
       ps[i][j]= exp(ps[i][j])*ps[i][i];      dirc[l1] =  DIRSEPARATOR;
     for(j=i+1; j<=nlstate+ndeath; j++)      dirc[l1+1] = 0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      printf(" DIRC3 = %s \n",dirc);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    }
   } /* end i */    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      ss++;
     for(jj=1; jj<= nlstate+ndeath; jj++){      strcpy(ext,ss);                     /* save extension */
       ps[ii][jj]=0;      l1= strlen( name);
       ps[ii][ii]=1;      l2= strlen(ss)+1;
     }      strncpy( finame, name, l1-l2);
   }      finame[l1-l2]= 0;
     }
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    return( 0 );                          /* we're done */
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  
     printf("\n ");  /******************************************/
     }  
     printf("\n ");printf("%lf ",cov[2]);*/  void replace_back_to_slash(char *s, char*t)
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    int i;
   goto end;*/    int lg=0;
     return ps;    i=0;
 }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 /**************** Product of 2 matrices ******************/      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    }
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  char *trimbb(char *out, char *in)
   /* in, b, out are matrice of pointers which should have been initialized  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
      before: only the contents of out is modified. The function returns    char *s;
      a pointer to pointers identical to out */    s=out;
   long i, j, k;    while (*in != '\0'){
   for(i=nrl; i<= nrh; i++)      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     for(k=ncolol; k<=ncoloh; k++)        in++;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      }
         out[i][k] +=in[i][j]*b[j][k];      *out++ = *in++;
     }
   return out;    *out='\0';
 }    return s;
   }
   
 /************* Higher Matrix Product ***************/  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
 {       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month       gives blocc="abcdef2ghi" and alocc="j".
      duration (i.e. until       If occ is not found blocc is null and alocc is equal to in. Returns blocc
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    char *s, *t;
      (typically every 2 years instead of every month which is too big).    t=in;s=in;
      Model is determined by parameters x and covariates have to be    while ((*in != occ) && (*in != '\0')){
      included manually here.      *alocc++ = *in++;
     }
      */    if( *in == occ){
       *(alocc)='\0';
   int i, j, d, h, k;      s=++in;
   double **out, cov[NCOVMAX];    }
   double **newm;   
     if (s == t) {/* occ not found */
   /* Hstepm could be zero and should return the unit matrix */      *(alocc-(in-s))='\0';
   for (i=1;i<=nlstate+ndeath;i++)      in=s;
     for (j=1;j<=nlstate+ndeath;j++){    }
       oldm[i][j]=(i==j ? 1.0 : 0.0);    while ( *in != '\0'){
       po[i][j][0]=(i==j ? 1.0 : 0.0);      *blocc++ = *in++;
     }    }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){    *blocc='\0';
     for(d=1; d <=hstepm; d++){    return t;
       newm=savm;  }
       /* Covariates have to be included here again */  char *cutv(char *blocc, char *alocc, char *in, char occ)
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       for (k=1; k<=cptcovage;k++)       gives blocc="abcdef2ghi" and alocc="j".
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       for (k=1; k<=cptcovprod;k++)    */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    char *s, *t;
     t=in;s=in;
     while (*in != '\0'){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      while( *in == occ){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        *blocc++ = *in++;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        s=in;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;      *blocc++ = *in++;
       oldm=newm;    }
     }    if (s == t) /* occ not found */
     for(i=1; i<=nlstate+ndeath; i++)      *(blocc-(in-s))='\0';
       for(j=1;j<=nlstate+ndeath;j++) {    else
         po[i][j][h]=newm[i][j];      *(blocc-(in-s)-1)='\0';
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    in=s;
          */    while ( *in != '\0'){
       }      *alocc++ = *in++;
   } /* end h */    }
   return po;  
 }    *alocc='\0';
     return s;
   }
 /*************** log-likelihood *************/  
 double func( double *x)  int nbocc(char *s, char occ)
 {  {
   int i, ii, j, k, mi, d, kk;    int i,j=0;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    int lg=20;
   double **out;    i=0;
   double sw; /* Sum of weights */    lg=strlen(s);
   double lli; /* Individual log likelihood */    for(i=0; i<= lg; i++) {
   long ipmx;    if  (s[i] == occ ) j++;
   /*extern weight */    }
   /* We are differentiating ll according to initial status */    return j;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  }
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  /* void cutv(char *u,char *v, char*t, char occ) */
   */  /* { */
   cov[1]=1.;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*   int i,lg,j,p=0; */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /*   i=0; */
     for(mi=1; mi<= wav[i]-1; mi++){  /*   lg=strlen(t); */
       for (ii=1;ii<=nlstate+ndeath;ii++)  /*   for(j=0; j<=lg-1; j++) { */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       for(d=0; d<dh[mi][i]; d++){  /*   } */
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  /*   for(j=0; j<p; j++) { */
         for (kk=1; kk<=cptcovage;kk++) {  /*     (u[j] = t[j]); */
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*   } */
         }  /*      u[p]='\0'; */
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  /*    for(j=0; j<= lg; j++) { */
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
         savm=oldm;  /*   } */
         oldm=newm;  /* } */
          
          #ifdef _WIN32
       } /* end mult */  char * strsep(char **pp, const char *delim)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    char *p, *q;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/           
       ipmx +=1;    if ((p = *pp) == NULL)
       sw += weight[i];      return 0;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if ((q = strpbrk (p, delim)) != NULL)
     } /* end of wave */    {
   } /* end of individual */      *pp = q + 1;
       *q = '\0';
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    else
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      *pp = 0;
   return -l;    return p;
 }  }
   #endif
   
 /*********** Maximum Likelihood Estimation ***************/  /********************** nrerror ********************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  void nrerror(char error_text[])
 {  {
   int i,j, iter;    fprintf(stderr,"ERREUR ...\n");
   double **xi,*delti;    fprintf(stderr,"%s\n",error_text);
   double fret;    exit(EXIT_FAILURE);
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  /*********************** vector *******************/
     for (j=1;j<=npar;j++)  double *vector(int nl, int nh)
       xi[i][j]=(i==j ? 1.0 : 0.0);  {
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    double *v;
   powell(p,xi,npar,ftol,&iter,&fret,func);    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return v-nl+NR_END;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /************************ free vector ******************/
 }  void free_vector(double*v, int nl, int nh)
   {
 /**** Computes Hessian and covariance matrix ***/    free((FREE_ARG)(v+nl-NR_END));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  }
 {  
   double  **a,**y,*x,pd;  /************************ivector *******************************/
   double **hess;  int *ivector(long nl,long nh)
   int i, j,jk;  {
   int *indx;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double hessii(double p[], double delta, int theta, double delti[]);    if (!v) nrerror("allocation failure in ivector");
   double hessij(double p[], double delti[], int i, int j);    return v-nl+NR_END;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
   /******************free ivector **************************/
   hess=matrix(1,npar,1,npar);  void free_ivector(int *v, long nl, long nh)
   {
   printf("\nCalculation of the hessian matrix. Wait...\n");    free((FREE_ARG)(v+nl-NR_END));
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /************************lvector *******************************/
     fprintf(ficlog,"%d",i);fflush(ficlog);  long *lvector(long nl,long nh)
     hess[i][i]=hessii(p,ftolhess,i,delti);  {
     /*printf(" %f ",p[i]);*/    long *v;
     /*printf(" %lf ",hess[i][i]);*/    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  /******************free lvector **************************/
         printf(".%d%d",i,j);fflush(stdout);  void free_lvector(long *v, long nl, long nh)
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  {
         hess[i][j]=hessij(p,delti,i,j);    free((FREE_ARG)(v+nl-NR_END));
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  /******************* imatrix *******************************/
     }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   printf("\n");  { 
   fprintf(ficlog,"\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   a=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   y=matrix(1,npar,1,npar);    m += NR_END; 
   x=vector(1,npar);    m -= nrl; 
   indx=ivector(1,npar);    
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /* allocate rows and set pointers to them */ 
   ludcmp(a,npar,indx,&pd);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   for (j=1;j<=npar;j++) {    m[nrl] += NR_END; 
     for (i=1;i<=npar;i++) x[i]=0;    m[nrl] -= ncl; 
     x[j]=1;    
     lubksb(a,npar,indx,x);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for (i=1;i<=npar;i++){    
       matcov[i][j]=x[i];    /* return pointer to array of pointers to rows */ 
     }    return m; 
   }  } 
   
   printf("\n#Hessian matrix#\n");  /****************** free_imatrix *************************/
   fprintf(ficlog,"\n#Hessian matrix#\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
   for (i=1;i<=npar;i++) {        int **m;
     for (j=1;j<=npar;j++) {        long nch,ncl,nrh,nrl; 
       printf("%.3e ",hess[i][j]);       /* free an int matrix allocated by imatrix() */ 
       fprintf(ficlog,"%.3e ",hess[i][j]);  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     printf("\n");    free((FREE_ARG) (m+nrl-NR_END)); 
     fprintf(ficlog,"\n");  } 
   }  
   /******************* matrix *******************************/
   /* Recompute Inverse */  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   ludcmp(a,npar,indx,&pd);    double **m;
   
   /*  printf("\n#Hessian matrix recomputed#\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=npar;j++) {    m += NR_END;
     for (i=1;i<=npar;i++) x[i]=0;    m -= nrl;
     x[j]=1;  
     lubksb(a,npar,indx,x);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (i=1;i<=npar;i++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       y[i][j]=x[i];    m[nrl] += NR_END;
       printf("%.3e ",y[i][j]);    m[nrl] -= ncl;
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf("\n");    return m;
     fprintf(ficlog,"\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   */  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
   free_matrix(a,1,npar,1,npar);  }
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);  /*************************free matrix ************************/
   free_ivector(indx,1,npar);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   free_matrix(hess,1,npar,1,npar);  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 }  }
   
 /*************** hessian matrix ****************/  /******************* ma3x *******************************/
 double hessii( double x[], double delta, int theta, double delti[])  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 {  {
   int i;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int l=1, lmax=20;    double ***m;
   double k1,k2;  
   double p2[NPARMAX+1];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double res;    if (!m) nrerror("allocation failure 1 in matrix()");
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m += NR_END;
   double fx;    m -= nrl;
   int k=0,kmax=10;  
   double l1;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   fx=func(x);    m[nrl] += NR_END;
   for (i=1;i<=npar;i++) p2[i]=x[i];    m[nrl] -= ncl;
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     delts=delt;  
     for(k=1 ; k <kmax; k=k+1){    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       delt = delta*(l1*k);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       p2[theta]=x[theta] +delt;    m[nrl][ncl] += NR_END;
       k1=func(p2)-fx;    m[nrl][ncl] -= nll;
       p2[theta]=x[theta]-delt;    for (j=ncl+1; j<=nch; j++) 
       k2=func(p2)-fx;      m[nrl][j]=m[nrl][j-1]+nlay;
       /*res= (k1-2.0*fx+k2)/delt/delt; */    
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    for (i=nrl+1; i<=nrh; i++) {
            m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #ifdef DEBUG      for (j=ncl+1; j<=nch; j++) 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        m[i][j]=m[i][j-1]+nlay;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    }
 #endif    return m; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         k=kmax;    */
       }  }
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  
         k=kmax; l=lmax*10.;  /*************************free ma3x ************************/
       }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  {
         delts=delt;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     }    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   delti[theta]=delts;  
   return res;  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
 }  {
     /* Caution optionfilefiname is hidden */
 double hessij( double x[], double delti[], int thetai,int thetaj)    strcpy(tmpout,optionfilefiname);
 {    strcat(tmpout,"/"); /* Add to the right */
   int i;    strcat(tmpout,fileres);
   int l=1, l1, lmax=20;    return tmpout;
   double k1,k2,k3,k4,res,fx;  }
   double p2[NPARMAX+1];  
   int k;  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
   fx=func(x);  {
   for (k=1; k<=2; k++) {    
     for (i=1;i<=npar;i++) p2[i]=x[i];    /* Caution optionfilefiname is hidden */
     p2[thetai]=x[thetai]+delti[thetai]/k;    strcpy(tmpout,optionfilefiname);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    strcat(tmpout,"/");
     k1=func(p2)-fx;    strcat(tmpout,preop);
      strcat(tmpout,fileres);
     p2[thetai]=x[thetai]+delti[thetai]/k;    return tmpout;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  }
     k2=func(p2)-fx;  
    /*************** function subdirf3 ***********/
     p2[thetai]=x[thetai]-delti[thetai]/k;  char *subdirf3(char fileres[], char *preop, char *preop2)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k3=func(p2)-fx;    
      /* Caution optionfilefiname is hidden */
     p2[thetai]=x[thetai]-delti[thetai]/k;    strcpy(tmpout,optionfilefiname);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    strcat(tmpout,"/");
     k4=func(p2)-fx;    strcat(tmpout,preop);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    strcat(tmpout,preop2);
 #ifdef DEBUG    strcat(tmpout,fileres);
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    return tmpout;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  }
 #endif  
   }  char *asc_diff_time(long time_sec, char ascdiff[])
   return res;  {
 }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
 /************** Inverse of matrix **************/    sec_left = (time_sec) % (60*60*24);
 void ludcmp(double **a, int n, int *indx, double *d)    hours = (sec_left) / (60*60) ;
 {    sec_left = (sec_left) %(60*60);
   int i,imax,j,k;    minutes = (sec_left) /60;
   double big,dum,sum,temp;    sec_left = (sec_left) % (60);
   double *vv;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
      return ascdiff;
   vv=vector(1,n);  }
   *d=1.0;  
   for (i=1;i<=n;i++) {  /***************** f1dim *************************/
     big=0.0;  extern int ncom; 
     for (j=1;j<=n;j++)  extern double *pcom,*xicom;
       if ((temp=fabs(a[i][j])) > big) big=temp;  extern double (*nrfunc)(double []); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");   
     vv[i]=1.0/big;  double f1dim(double x) 
   }  { 
   for (j=1;j<=n;j++) {    int j; 
     for (i=1;i<j;i++) {    double f;
       sum=a[i][j];    double *xt; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];   
       a[i][j]=sum;    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     big=0.0;    f=(*nrfunc)(xt); 
     for (i=j;i<=n;i++) {    free_vector(xt,1,ncom); 
       sum=a[i][j];    return f; 
       for (k=1;k<j;k++)  } 
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  /*****************brent *************************/
       if ( (dum=vv[i]*fabs(sum)) >= big) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
         big=dum;  { 
         imax=i;    int iter; 
       }    double a,b,d,etemp;
     }    double fu=0,fv,fw,fx;
     if (j != imax) {    double ftemp=0.;
       for (k=1;k<=n;k++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         dum=a[imax][k];    double e=0.0; 
         a[imax][k]=a[j][k];   
         a[j][k]=dum;    a=(ax < cx ? ax : cx); 
       }    b=(ax > cx ? ax : cx); 
       *d = -(*d);    x=w=v=bx; 
       vv[imax]=vv[j];    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     indx[j]=imax;      xm=0.5*(a+b); 
     if (a[j][j] == 0.0) a[j][j]=TINY;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     if (j != n) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       dum=1.0/(a[j][j]);      printf(".");fflush(stdout);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUGBRENT
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(vv,1,n);  /* Doesn't work */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 ;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 void lubksb(double **a, int n, int *indx, double b[])        *xmin=x; 
 {        return fx; 
   int i,ii=0,ip,j;      } 
   double sum;      ftemp=fu;
        if (fabs(e) > tol1) { 
   for (i=1;i<=n;i++) {        r=(x-w)*(fx-fv); 
     ip=indx[i];        q=(x-v)*(fx-fw); 
     sum=b[ip];        p=(x-v)*q-(x-w)*r; 
     b[ip]=b[i];        q=2.0*(q-r); 
     if (ii)        if (q > 0.0) p = -p; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        q=fabs(q); 
     else if (sum) ii=i;        etemp=e; 
     b[i]=sum;        e=d; 
   }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   for (i=n;i>=1;i--) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     sum=b[i];        else { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          d=p/q; 
     b[i]=sum/a[i][i];          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
 /************ Frequencies ********************/      } else { 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {  /* Some frequencies */      } 
        u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      fu=(*f)(u); 
   int first;      if (fu <= fx) { 
   double ***freq; /* Frequencies */        if (u >= x) a=x; else b=x; 
   double *pp;        SHFT(v,w,x,u) 
   double pos, k2, dateintsum=0,k2cpt=0;          SHFT(fv,fw,fx,fu) 
   FILE *ficresp;          } else { 
   char fileresp[FILENAMELENGTH];            if (u < x) a=u; else b=u; 
              if (fu <= fw || w == x) { 
   pp=vector(1,nlstate);              v=w; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              w=u; 
   strcpy(fileresp,"p");              fv=fw; 
   strcat(fileresp,fileres);              fw=fu; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {            } else if (fu <= fv || v == x || v == w) { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);              v=u; 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);              fv=fu; 
     exit(0);            } 
   }          } 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    } 
   j1=0;    nrerror("Too many iterations in brent"); 
      *xmin=x; 
   j=cptcoveff;    return fx; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  } 
   
   first=1;  /****************** mnbrak ***********************/
   
   for(k1=1; k1<=j;k1++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     for(i1=1; i1<=ncodemax[k1];i1++){              double (*func)(double)) 
       j1++;  { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    double ulim,u,r,q, dum;
         scanf("%d", i);*/    double fu; 
       for (i=-1; i<=nlstate+ndeath; i++)     
         for (jk=-1; jk<=nlstate+ndeath; jk++)      *fa=(*func)(*ax); 
           for(m=agemin; m <= agemax+3; m++)    *fb=(*func)(*bx); 
             freq[i][jk][m]=0;    if (*fb > *fa) { 
            SHFT(dum,*ax,*bx,dum) 
       dateintsum=0;        SHFT(dum,*fb,*fa,dum) 
       k2cpt=0;        } 
       for (i=1; i<=imx; i++) {    *cx=(*bx)+GOLD*(*bx-*ax); 
         bool=1;    *fc=(*func)(*cx); 
         if  (cptcovn>0) {    while (*fb > *fc) { /* Declining fa, fb, fc */
           for (z1=1; z1<=cptcoveff; z1++)      r=(*bx-*ax)*(*fb-*fc); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      q=(*bx-*cx)*(*fb-*fa); 
               bool=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
         if (bool==1) {      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
           for(m=firstpass; m<=lastpass; m++){      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
             k2=anint[m][i]+(mint[m][i]/12.);        fu=(*func)(u); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  #ifdef DEBUG
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /* f(x)=A(x-u)**2+f(u) */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        double A, fparabu; 
               if (m<lastpass) {        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        fparabu= *fa - A*(*ax-u)*(*ax-u);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
               }        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                #endif 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
                 dateintsum=dateintsum+k2;        fu=(*func)(u); 
                 k2cpt++;        if (fu < *fc) { 
               }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             }            SHFT(*fb,*fc,fu,(*func)(u)) 
           }            } 
         }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
       }        u=ulim; 
                fu=(*func)(u); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      } else { 
         u=(*cx)+GOLD*(*cx-*bx); 
       if  (cptcovn>0) {        fu=(*func)(u); 
         fprintf(ficresp, "\n#********** Variable ");      } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      SHFT(*ax,*bx,*cx,u) 
         fprintf(ficresp, "**********\n#");        SHFT(*fa,*fb,*fc,fu) 
       }        } 
       for(i=1; i<=nlstate;i++)  } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  /*************** linmin ************************/
        /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
       for(i=(int)agemin; i <= (int)agemax+3; i++){  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
         if(i==(int)agemax+3){  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
           fprintf(ficlog,"Total");  the value of func at the returned location p . This is actually all accomplished by calling the
         }else{  routines mnbrak and brent .*/
           if(first==1){  int ncom; 
             first=0;  double *pcom,*xicom;
             printf("See log file for details...\n");  double (*nrfunc)(double []); 
           }   
           fprintf(ficlog,"Age %d", i);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
         for(jk=1; jk <=nlstate ; jk++){    double brent(double ax, double bx, double cx, 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                 double (*f)(double), double tol, double *xmin); 
             pp[jk] += freq[jk][m][i];    double f1dim(double x); 
         }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for(jk=1; jk <=nlstate ; jk++){                double *fc, double (*func)(double)); 
           for(m=-1, pos=0; m <=0 ; m++)    int j; 
             pos += freq[jk][m][i];    double xx,xmin,bx,ax; 
           if(pp[jk]>=1.e-10){    double fx,fb,fa;
             if(first==1){   
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    ncom=n; 
             }    pcom=vector(1,n); 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    xicom=vector(1,n); 
           }else{    nrfunc=func; 
             if(first==1)    for (j=1;j<=n;j++) { 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      pcom[j]=p[j]; 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      xicom[j]=xi[j]; 
           }    } 
         }    ax=0.0; 
     xx=1.0; 
         for(jk=1; jk <=nlstate ; jk++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
             pp[jk] += freq[jk][m][i];  #ifdef DEBUG
         }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(jk=1,pos=0; jk <=nlstate ; jk++)  #endif
           pos += pp[jk];    for (j=1;j<=n;j++) { 
         for(jk=1; jk <=nlstate ; jk++){      xi[j] *= xmin; 
           if(pos>=1.e-5){      p[j] += xi[j]; 
             if(first==1)    } 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    free_vector(xicom,1,n); 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    free_vector(pcom,1,n); 
           }else{  } 
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  /*************** powell ************************/
           }  /*
           if( i <= (int) agemax){  Minimization of a function func of n variables. Input consists of an initial starting point
             if(pos>=1.e-5){  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
               probs[i][jk][j1]= pp[jk]/pos;  such that failure to decrease by more than this amount on one iteration signals doneness. On
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
             }  function value at p , and iter is the number of iterations taken. The routine linmin is used.
             else   */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           }              double (*func)(double [])) 
         }  { 
            void linmin(double p[], double xi[], int n, double *fret, 
         for(jk=-1; jk <=nlstate+ndeath; jk++)                double (*func)(double [])); 
           for(m=-1; m <=nlstate+ndeath; m++)    int i,ibig,j; 
             if(freq[jk][m][i] !=0 ) {    double del,t,*pt,*ptt,*xit;
             if(first==1)    double fp,fptt;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    double *xits;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    int niterf, itmp;
             }  
         if(i <= (int) agemax)    pt=vector(1,n); 
           fprintf(ficresp,"\n");    ptt=vector(1,n); 
         if(first==1)    xit=vector(1,n); 
           printf("Others in log...\n");    xits=vector(1,n); 
         fprintf(ficlog,"\n");    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }      rcurr_time = time(NULL);  
   }    for (*iter=1;;++(*iter)) { 
   dateintmean=dateintsum/k2cpt;      fp=(*fret); 
        ibig=0; 
   fclose(ficresp);      del=0.0; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      rlast_time=rcurr_time;
   free_vector(pp,1,nlstate);      /* (void) gettimeofday(&curr_time,&tzp); */
        rcurr_time = time(NULL);  
   /* End of Freq */      curr_time = *localtime(&rcurr_time);
 }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
 /************ Prevalence ********************/  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)     for (i=1;i<=n;i++) {
 {  /* Some frequencies */        printf(" %d %.12f",i, p[i]);
          fprintf(ficlog," %d %.12lf",i, p[i]);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        fprintf(ficrespow," %.12lf", p[i]);
   double ***freq; /* Frequencies */      }
   double *pp;      printf("\n");
   double pos, k2;      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   pp=vector(1,nlstate);      if(*iter <=3){
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        tml = *localtime(&rcurr_time);
          strcpy(strcurr,asctime(&tml));
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        rforecast_time=rcurr_time; 
   j1=0;        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   j=cptcoveff;          strcurr[itmp-1]='\0';
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   for(k1=1; k1<=j;k1++){        for(niterf=10;niterf<=30;niterf+=10){
     for(i1=1; i1<=ncodemax[k1];i1++){          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
       j1++;          forecast_time = *localtime(&rforecast_time);
                strcpy(strfor,asctime(&forecast_time));
       for (i=-1; i<=nlstate+ndeath; i++)            itmp = strlen(strfor);
         for (jk=-1; jk<=nlstate+ndeath; jk++)            if(strfor[itmp-1]=='\n')
           for(m=agemin; m <= agemax+3; m++)          strfor[itmp-1]='\0';
             freq[i][jk][m]=0;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       for (i=1; i<=imx; i++) {        }
         bool=1;      }
         if  (cptcovn>0) {      for (i=1;i<=n;i++) { 
           for (z1=1; z1<=cptcoveff; z1++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fptt=(*fret); 
               bool=0;  #ifdef DEBUG
         }            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
         if (bool==1) {            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           for(m=firstpass; m<=lastpass; m++){  #endif
             k2=anint[m][i]+(mint[m][i]/12.);        printf("%d",i);fflush(stdout);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fprintf(ficlog,"%d",i);fflush(ficlog);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        linmin(p,xit,n,fret,func); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        if (fabs(fptt-(*fret)) > del) { 
               if (m<lastpass) {          del=fabs(fptt-(*fret)); 
                 if (calagedate>0)          ibig=i; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        } 
                 else  #ifdef DEBUG
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        printf("%d %.12e",i,(*fret));
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        fprintf(ficlog,"%d %.12e",i,(*fret));
               }        for (j=1;j<=n;j++) {
             }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           }          printf(" x(%d)=%.12e",j,xit[j]);
         }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(j=1;j<=n;j++) {
         for(jk=1; jk <=nlstate ; jk++){          printf(" p(%d)=%.12e",j,p[j]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
             pp[jk] += freq[jk][m][i];        }
         }        printf("\n");
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"\n");
           for(m=-1, pos=0; m <=0 ; m++)  #endif
             pos += freq[jk][m][i];      } /* end i */
         }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          #ifdef DEBUG
         for(jk=1; jk <=nlstate ; jk++){        int k[2],l;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        k[0]=1;
             pp[jk] += freq[jk][m][i];        k[1]=-1;
         }        printf("Max: %.12e",(*func)(p));
                fprintf(ficlog,"Max: %.12e",(*func)(p));
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for (j=1;j<=n;j++) {
                  printf(" %.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){              fprintf(ficlog," %.12e",p[j]);
           if( i <= (int) agemax){        }
             if(pos>=1.e-5){        printf("\n");
               probs[i][jk][j1]= pp[jk]/pos;        fprintf(ficlog,"\n");
             }        for(l=0;l<=1;l++) {
           }          for (j=1;j<=n;j++) {
         }/* end jk */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       }/* end i */            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     } /* end i1 */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   } /* end k1 */          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        }
   free_vector(pp,1,nlstate);  #endif
    
 }  /* End of Freq */  
         free_vector(xit,1,n); 
 /************* Waves Concatenation ***************/        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        free_vector(pt,1,n); 
 {        return; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      } 
      Death is a valid wave (if date is known).      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        ptt[j]=2.0*p[j]-pt[j]; 
      and mw[mi+1][i]. dh depends on stepm.        xit[j]=p[j]-pt[j]; 
      */        pt[j]=p[j]; 
       } 
   int i, mi, m;      fptt=(*func)(ptt); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
      double sum=0., jmean=0.;*/        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
   int first;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
   int j, k=0,jk, ju, jl;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
   double sum=0.;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
   first=0;        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   jmin=1e+5;        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   jmax=-1;        /* Thus we compare delta(2h) with observed f1-f3 */
   jmean=0.;        /* or best gain on one ancient line 'del' with total  */
   for(i=1; i<=imx; i++){        /* gain f1-f2 = f1 - f2 - 'del' with del  */
     mi=0;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     m=firstpass;  
     while(s[m][i] <= nlstate){        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
       if(s[m][i]>=1)        t= t- del*SQR(fp-fptt);
         mw[++mi][i]=m;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
       if(m >=lastpass)        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         break;  #ifdef DEBUG
       else        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         m++;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     }/* end while */        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     if (s[m][i] > nlstate){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       mi++;     /* Death is another wave */        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
       /* if(mi==0)  never been interviewed correctly before death */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
          /* Only death is a correct wave */  #endif
       mw[mi][i]=m;        if (t < 0.0) { /* Then we use it for last direction */
     }          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
           for (j=1;j<=n;j++) { 
     wav[i]=mi;            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
     if(mi==0){            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
       if(first==0){          }
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         first=1;          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       }  
       if(first==1){  #ifdef DEBUG
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     } /* end mi==0 */          for(j=1;j<=n;j++){
   }            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
   for(i=1; i<=imx; i++){          }
     for(mi=1; mi<wav[i];mi++){          printf("\n");
       if (stepm <=0)          fprintf(ficlog,"\n");
         dh[mi][i]=1;  #endif
       else{        } /* end of t negative */
         if (s[mw[mi+1][i]][i] > nlstate) {      } /* end if (fptt < fp)  */
           if (agedc[i] < 2*AGESUP) {    } 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  } 
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;  /**** Prevalence limit (stable or period prevalence)  ****************/
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
           sum=sum+j;  {
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           }       matrix by transitions matrix until convergence is reached */
         }    
         else{    int i, ii,j,k;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double min, max, maxmin, maxmax,sumnew=0.;
           k=k+1;    /* double **matprod2(); */ /* test */
           if (j >= jmax) jmax=j;    double **out, cov[NCOVMAX+1], **pmij();
           else if (j <= jmin)jmin=j;    double **newm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double agefin, delaymax=50 ; /* Max number of years to converge */
           sum=sum+j;    
         }    for (ii=1;ii<=nlstate+ndeath;ii++)
         jk= j/stepm;      for (j=1;j<=nlstate+ndeath;j++){
         jl= j -jk*stepm;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;      }
         if(jl <= -ju)    
           dh[mi][i]=jk;    cov[1]=1.;
         else    
           dh[mi][i]=jk+1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if(dh[mi][i]==0)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           dh[mi][i]=1; /* At least one step */      newm=savm;
       }      /* Covariates have to be included here again */
     }      cov[2]=agefin;
   }      
   jmean=sum/k;      for (k=1; k<=cptcovn;k++) {
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
  }      }
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 /*********** Tricode ****************************/      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
 void tricode(int *Tvar, int **nbcode, int imx)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 {      
   int Ndum[20],ij=1, k, j, i;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   int cptcode=0;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   cptcoveff=0;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for (k=0; k<19; k++) Ndum[k]=0;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   for (k=1; k<=7; k++) ncodemax[k]=0;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      savm=oldm;
     for (i=1; i<=imx; i++) {      oldm=newm;
       ij=(int)(covar[Tvar[j]][i]);      maxmax=0.;
       Ndum[ij]++;      for(j=1;j<=nlstate;j++){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        min=1.;
       if (ij > cptcode) cptcode=ij;        max=0.;
     }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
     for (i=0; i<=cptcode; i++) {          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       if(Ndum[i]!=0) ncodemax[j]++;          prlim[i][j]= newm[i][j]/(1-sumnew);
     }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
     ij=1;          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
         }
     for (i=1; i<=ncodemax[j]; i++) {        maxmin=max-min;
       for (k=0; k<=19; k++) {        maxmax=FMAX(maxmax,maxmin);
         if (Ndum[k] != 0) {      } /* j loop */
           nbcode[Tvar[j]][ij]=k;      if(maxmax < ftolpl){
                  return prlim;
           ij++;      }
         }    } /* age loop */
         if (ij > ncodemax[j]) break;    return prlim; /* should not reach here */
       }    }
     }  
   }    /*************** transition probabilities ***************/ 
   
  for (k=0; k<19; k++) Ndum[k]=0;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
  for (i=1; i<=ncovmodel-2; i++) {    /* According to parameters values stored in x and the covariate's values stored in cov,
    ij=Tvar[i];       computes the probability to be observed in state j being in state i by appying the
    Ndum[ij]++;       model to the ncovmodel covariates (including constant and age).
  }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
        and, according on how parameters are entered, the position of the coefficient xij(nc) of the
  ij=1;       ncth covariate in the global vector x is given by the formula:
  for (i=1; i<=10; i++) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
    if((Ndum[i]!=0) && (i<=ncovcol)){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      Tvaraff[ij]=i;       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      ij++;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
    }       Outputs ps[i][j] the probability to be observed in j being in j according to
  }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      */
  cptcoveff=ij-1;    double s1, lnpijopii;
 }    /*double t34;*/
     int i,j, nc, ii, jj;
 /*********** Health Expectancies ****************/  
       for(i=1; i<= nlstate; i++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
 {            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   /* Health expectancies */            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   double age, agelim, hf;          }
   double ***p3mat,***varhe;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   double **dnewm,**doldm;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   double *xp;        }
   double **gp, **gm;        for(j=i+1; j<=nlstate+ndeath;j++){
   double ***gradg, ***trgradg;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   int theta;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate*2,1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        }
        }
   fprintf(ficreseij,"# Health expectancies\n");      
   fprintf(ficreseij,"# Age");      for(i=1; i<= nlstate; i++){
   for(i=1; i<=nlstate;i++)        s1=0;
     for(j=1; j<=nlstate;j++)        for(j=1; j<i; j++){
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   fprintf(ficreseij,"\n");          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
   if(estepm < stepm){        for(j=i+1; j<=nlstate+ndeath; j++){
     printf ("Problem %d lower than %d\n",estepm, stepm);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   }          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
    * This is mainly to measure the difference between two models: for example        ps[i][i]=1./(s1+1.);
    * if stepm=24 months pijx are given only every 2 years and by summing them        /* Computing other pijs */
    * we are calculating an estimate of the Life Expectancy assuming a linear        for(j=1; j<i; j++)
    * progression inbetween and thus overestimating or underestimating according          ps[i][j]= exp(ps[i][j])*ps[i][i];
    * to the curvature of the survival function. If, for the same date, we        for(j=i+1; j<=nlstate+ndeath; j++)
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          ps[i][j]= exp(ps[i][j])*ps[i][i];
    * to compare the new estimate of Life expectancy with the same linear        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
    * hypothesis. A more precise result, taking into account a more precise      } /* end i */
    * curvature will be obtained if estepm is as small as stepm. */      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   /* For example we decided to compute the life expectancy with the smallest unit */        for(jj=1; jj<= nlstate+ndeath; jj++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          ps[ii][jj]=0;
      nhstepm is the number of hstepm from age to agelim          ps[ii][ii]=1;
      nstepm is the number of stepm from age to agelin.        }
      Look at hpijx to understand the reason of that which relies in memory size      }
      and note for a fixed period like estepm months */      
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      
      survival function given by stepm (the optimization length). Unfortunately it      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
      means that if the survival funtion is printed only each two years of age and if      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
      results. So we changed our mind and took the option of the best precision.      /*   } */
   */      /*   printf("\n "); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
   agelim=AGESUP;      /*
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     /* nhstepm age range expressed in number of stepm */        goto end;*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      return ps;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  }
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  /**************** Product of 2 matrices ******************/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
     gp=matrix(0,nhstepm,1,nlstate*2);  {
     gm=matrix(0,nhstepm,1,nlstate*2);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    /* in, b, out are matrice of pointers which should have been initialized 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */       before: only the contents of out is modified. The function returns
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);         a pointer to pointers identical to out */
      int i, j, k;
     for(i=nrl; i<= nrh; i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for(k=ncolol; k<=ncoloh; k++){
         out[i][k]=0.;
     /* Computing Variances of health expectancies */        for(j=ncl; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
      for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){    return out;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
    /************* Higher Matrix Product ***************/
       cptj=0;  
       for(j=1; j<= nlstate; j++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         for(i=1; i<=nlstate; i++){  {
           cptj=cptj+1;    /* Computes the transition matrix starting at age 'age' over 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){       'nhstepm*hstepm*stepm' months (i.e. until
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           }       nhstepm*hstepm matrices. 
         }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       }       (typically every 2 years instead of every month which is too big 
             for the memory).
             Model is determined by parameters x and covariates have to be 
       for(i=1; i<=npar; i++)       included manually here. 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         */
        
       cptj=0;    int i, j, d, h, k;
       for(j=1; j<= nlstate; j++){    double **out, cov[NCOVMAX+1];
         for(i=1;i<=nlstate;i++){    double **newm;
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    /* Hstepm could be zero and should return the unit matrix */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (i=1;i<=nlstate+ndeath;i++)
           }      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
       }        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate*2; j++)      }
         for(h=0; h<=nhstepm-1; h++){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
      }        newm=savm;
            /* Covariates have to be included here again */
 /* End theta */        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      for(h=0; h<=nhstepm-1; h++)        for (k=1; k<=cptcovage;k++)
       for(j=1; j<=nlstate*2;j++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for(theta=1; theta <=npar; theta++)        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           trgradg[h][j][theta]=gradg[h][theta][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
   
      for(i=1;i<=nlstate*2;i++)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       for(j=1;j<=nlstate*2;j++)        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         varhe[i][j][(int)age] =0.;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
      printf("%d|",(int)age);fflush(stdout);        savm=oldm;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        oldm=newm;
      for(h=0;h<=nhstepm-1;h++){      }
       for(k=0;k<=nhstepm-1;k++){      for(i=1; i<=nlstate+ndeath; i++)
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        for(j=1;j<=nlstate+ndeath;j++) {
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          po[i][j][h]=newm[i][j];
         for(i=1;i<=nlstate*2;i++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           for(j=1;j<=nlstate*2;j++)        }
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      /*printf("h=%d ",h);*/
       }    } /* end h */
     }  /*     printf("\n H=%d \n",h); */
     /* Computing expectancies */    return po;
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  #ifdef NLOPT
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
              double fret;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    double *xt;
     int j;
         }    myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
     fprintf(ficreseij,"%3.0f",age );    xt=vector(1,n); 
     cptj=0;    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         cptj++;    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    printf("Function = %.12lf ",fret);
       }    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     fprintf(ficreseij,"\n");    printf("\n");
       free_vector(xt,1,n);
     free_matrix(gm,0,nhstepm,1,nlstate*2);    return fret;
     free_matrix(gp,0,nhstepm,1,nlstate*2);  }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  #endif
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*************** log-likelihood *************/
   }  double func( double *x)
   printf("\n");  {
   fprintf(ficlog,"\n");    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   free_vector(xp,1,npar);    double **out;
   free_matrix(dnewm,1,nlstate*2,1,npar);    double sw; /* Sum of weights */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    double lli; /* Individual log likelihood */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    int s1, s2;
 }    double bbh, survp;
     long ipmx;
 /************ Variance ******************/    /*extern weight */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    /* We are differentiating ll according to initial status */
 {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /* Variance of health expectancies */    /*for(i=1;i<imx;i++) 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      printf(" %d\n",s[4][i]);
   /* double **newm;*/    */
   double **dnewm,**doldm;  
   double **dnewmp,**doldmp;    ++countcallfunc;
   int i, j, nhstepm, hstepm, h, nstepm ;  
   int k, cptcode;    cov[1]=1.;
   double *xp;  
   double **gp, **gm;  /* for var eij */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double ***gradg, ***trgradg; /*for var eij */  
   double **gradgp, **trgradgp; /* for var p point j */    if(mle==1){
   double *gpp, *gmp; /* for var p point j */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        /* Computes the values of the ncovmodel covariates of the model
   double ***p3mat;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   double age,agelim, hf;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   int theta;           to be observed in j being in i according to the model.
   char digit[4];         */
   char digitp[16];        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           cov[2+k]=covar[Tvar[k]][i];
   char fileresprobmorprev[FILENAMELENGTH];        }
         /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   if(popbased==1)           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     strcpy(digitp,"-populbased-");           has been calculated etc */
   else        for(mi=1; mi<= wav[i]-1; mi++){
     strcpy(digitp,"-stablbased-");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresprobmorprev,"prmorprev");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   sprintf(digit,"%-d",ij);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          for(d=0; d<dh[mi][i]; d++){
   strcat(fileresprobmorprev,digitp); /* Popbased or not */            newm=savm;
   strcat(fileresprobmorprev,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            for (kk=1; kk<=cptcovage;kk++) {
     printf("Problem with resultfile: %s\n", fileresprobmorprev);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            savm=oldm;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            oldm=newm;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          } /* end mult */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        
     fprintf(ficresprobmorprev," p.%-d SE",j);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(i=1; i<=nlstate;i++)          /* But now since version 0.9 we anticipate for bias at large stepm.
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }             * (in months) between two waves is not a multiple of stepm, we rounded to 
   fprintf(ficresprobmorprev,"\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);           * probability in order to take into account the bias as a fraction of the way
     exit(0);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
   else{           * For stepm=1 the results are the same as for previous versions of Imach.
     fprintf(ficgp,"\n# Routine varevsij");           * For stepm > 1 the results are less biased than in previous versions. 
   }           */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with html file: %s\n", optionfilehtm);          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          bbh=(double)bh[mi][i]/(double)stepm; 
     exit(0);          /* bias bh is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   else{           */
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          if( s2 > nlstate){ 
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");               die between last step unit time and current  step unit time, 
   fprintf(ficresvij,"# Age");               which is also equal to probability to die before dh 
   for(i=1; i<=nlstate;i++)               minus probability to die before dh-stepm . 
     for(j=1; j<=nlstate;j++)               In version up to 0.92 likelihood was computed
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          as if date of death was unknown. Death was treated as any other
   fprintf(ficresvij,"\n");          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   xp=vector(1,npar);          to consider that at each interview the state was recorded
   dnewm=matrix(1,nlstate,1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   doldm=matrix(1,nlstate,1,nlstate);          introduced the exact date of death then we should have modified
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          the contribution of an exact death to the likelihood. This new
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          and month of death but the probability to survive from last
   gpp=vector(nlstate+1,nlstate+ndeath);          interview up to one month before death multiplied by the
   gmp=vector(nlstate+1,nlstate+ndeath);          probability to die within a month. Thanks to Chris
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          Jackson for correcting this bug.  Former versions increased
            mortality artificially. The bad side is that we add another loop
   if(estepm < stepm){          which slows down the processing. The difference can be up to 10%
     printf ("Problem %d lower than %d\n",estepm, stepm);          lower mortality.
   }            */
   else  hstepm=estepm;              lli=log(out[s1][s2] - savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim          } else if  (s2==-2) {
      nstepm is the number of stepm from age to agelin.            for (j=1,survp=0. ; j<=nlstate; j++) 
      Look at hpijx to understand the reason of that which relies in memory size              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and note for a fixed period like k years */            /*survp += out[s1][j]; */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            lli= log(survp);
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          else if  (s2==-4) { 
      results. So we changed our mind and took the option of the best precision.            for (j=3,survp=0. ; j<=nlstate; j++)  
   */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            lli= log(survp); 
   agelim = AGESUP;          } 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          else if  (s2==-5) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for (j=1,survp=0. ; j<=2; j++)  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);            lli= log(survp); 
     gp=matrix(0,nhstepm,1,nlstate);          } 
     gm=matrix(0,nhstepm,1,nlstate);          
           else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for(theta=1; theta <=npar; theta++){            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */          } 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       }          /*if(lli ==000.0)*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
           sw += weight[i];
       if (popbased==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1; i<=nlstate;i++)        } /* end of wave */
           prlim[i][i]=probs[(int)age][i][ij];      } /* end of individual */
       }    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate; j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* This for computing forces of mortality (h=1)as a weighted average */            }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          for(d=0; d<=dh[mi][i]; d++){
         for(i=1; i<= nlstate; i++)            newm=savm;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }                for (kk=1; kk<=cptcovage;kk++) {
       /* end force of mortality */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
       for(i=1; i<=npar; i++) /* Computes gradient */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm=newm;
            } /* end mult */
       if (popbased==1) {        
         for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
           prlim[i][i]=probs[(int)age][i][ij];          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<= nlstate; j++){          ipmx +=1;
         for(h=0; h<=nhstepm; h++){          sw += weight[i];
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        } /* end of wave */
         }      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
       /* This for computing force of mortality (h=1)as a weighted average */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(i=1; i<= nlstate; i++)        for(mi=1; mi<= wav[i]-1; mi++){
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          for (ii=1;ii<=nlstate+ndeath;ii++)
       }                for (j=1;j<=nlstate+ndeath;j++){
       /* end force of mortality */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++) /* vareij */            }
         for(h=0; h<=nhstepm; h++){          for(d=0; d<dh[mi][i]; d++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            newm=savm;
         }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            for (kk=1; kk<=cptcovage;kk++) {
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     } /* End theta */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            oldm=newm;
           } /* end mult */
     for(h=0; h<=nhstepm; h++) /* veij */        
       for(j=1; j<=nlstate;j++)          s1=s[mw[mi][i]][i];
         for(theta=1; theta <=npar; theta++)          s2=s[mw[mi+1][i]][i];
           trgradg[h][j][theta]=gradg[h][theta][j];          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          ipmx +=1;
       for(theta=1; theta <=npar; theta++)          sw += weight[i];
         trgradgp[j][theta]=gradgp[theta][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      } /* end of individual */
     for(i=1;i<=nlstate;i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for(j=1;j<=nlstate;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         vareij[i][j][(int)age] =0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(h=0;h<=nhstepm;h++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(k=0;k<=nhstepm;k++){            for (j=1;j<=nlstate+ndeath;j++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++)            }
           for(j=1;j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     /* pptj */            }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=nlstate+1;j<=nlstate+ndeath;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            savm=oldm;
         varppt[j][i]=doldmp[j][i];            oldm=newm;
     /* end ppptj */          } /* end mult */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     if (popbased==1) {          if( s2 > nlstate){ 
       for(i=1; i<=nlstate;i++)            lli=log(out[s1][s2] - savm[s1][s2]);
         prlim[i][i]=probs[(int)age][i][ij];          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
              }
     /* This for computing force of mortality (h=1)as a weighted average */          ipmx +=1;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          sw += weight[i];
       for(i=1; i<= nlstate; i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     }            } /* end of wave */
     /* end force of mortality */      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=nlstate;i++){          for (ii=1;ii<=nlstate+ndeath;ii++)
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficresprobmorprev,"\n");            }
           for(d=0; d<dh[mi][i]; d++){
     fprintf(ficresvij,"%.0f ",age );            newm=savm;
     for(i=1; i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<=nlstate;j++){            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     fprintf(ficresvij,"\n");          
     free_matrix(gp,0,nhstepm,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     free_matrix(gm,0,nhstepm,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            savm=oldm;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            oldm=newm;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /* end mult */
   } /* End age */        
   free_vector(gpp,nlstate+1,nlstate+ndeath);          s1=s[mw[mi][i]][i];
   free_vector(gmp,nlstate+1,nlstate+ndeath);          s2=s[mw[mi+1][i]][i];
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          ipmx +=1;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          sw += weight[i];
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);        } /* end of wave */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      } /* end of individual */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    } /* End of if */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 */    return -l;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);  }
   
   free_vector(xp,1,npar);  /*************** log-likelihood *************/
   free_matrix(doldm,1,nlstate,1,nlstate);  double funcone( double *x)
   free_matrix(dnewm,1,nlstate,1,npar);  {
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* Same as likeli but slower because of a lot of printf and if */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    int i, ii, j, k, mi, d, kk;
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   fclose(ficresprobmorprev);    double **out;
   fclose(ficgp);    double lli; /* Individual log likelihood */
   fclose(fichtm);    double llt;
     int s1, s2;
 }    double bbh, survp;
     /*extern weight */
 /************ Variance of prevlim ******************/    /* We are differentiating ll according to initial status */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 {    /*for(i=1;i<imx;i++) 
   /* Variance of prevalence limit */      printf(" %d\n",s[4][i]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    */
   double **newm;    cov[1]=1.;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int k, cptcode;  
   double *xp;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double *gp, *gm;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double **gradg, **trgradg;      for(mi=1; mi<= wav[i]-1; mi++){
   double age,agelim;        for (ii=1;ii<=nlstate+ndeath;ii++)
   int theta;          for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvpl,"# Age");          }
   for(i=1; i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresvpl," %1d-%1d",i,i);          newm=savm;
   fprintf(ficresvpl,"\n");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   xp=vector(1,npar);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   hstepm=1*YEARM; /* Every year of age */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   agelim = AGESUP;          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          savm=oldm;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          oldm=newm;
     if (stepm >= YEARM) hstepm=1;        } /* end mult */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        
     gradg=matrix(1,npar,1,nlstate);        s1=s[mw[mi][i]][i];
     gp=vector(1,nlstate);        s2=s[mw[mi+1][i]][i];
     gm=vector(1,nlstate);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
     for(theta=1; theta <=npar; theta++){         * is higher than the multiple of stepm and negative otherwise.
       for(i=1; i<=npar; i++){ /* Computes gradient */         */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       }          lli=log(out[s1][s2] - savm[s1][s2]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if  (s2==-2) {
       for(i=1;i<=nlstate;i++)          for (j=1,survp=0. ; j<=nlstate; j++) 
         gp[i] = prlim[i][i];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp);
       for(i=1; i<=npar; i++) /* Computes gradient */        }else if (mle==1){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else if(mle==2){
       for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         gm[i] = prlim[i][i];        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(i=1;i<=nlstate;i++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          lli=log(out[s1][s2]); /* Original formula */
     } /* End theta */        } else{  /* mle=0 back to 1 */
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     trgradg =matrix(1,nlstate,1,npar);          /*lli=log(out[s1][s2]); */ /* Original formula */
         } /* End of if */
     for(j=1; j<=nlstate;j++)        ipmx +=1;
       for(theta=1; theta <=npar; theta++)        sw += weight[i];
         trgradg[j][theta]=gradg[theta][j];        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=1;i<=nlstate;i++)        if(globpr){
       varpl[i][(int)age] =0.;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);   %11.6f %11.6f %11.6f ", \
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     for(i=1;i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     fprintf(ficresvpl,"%.0f ",age );            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          fprintf(ficresilk," %10.6f\n", -llt);
     fprintf(ficresvpl,"\n");        }
     free_vector(gp,1,nlstate);      } /* end of wave */
     free_vector(gm,1,nlstate);    } /* end of individual */
     free_matrix(gradg,1,npar,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_matrix(trgradg,1,nlstate,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   } /* End age */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
   free_vector(xp,1,npar);      gipmx=ipmx;
   free_matrix(doldm,1,nlstate,1,npar);      gsw=sw;
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     return -l;
 }  }
   
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  /*************** function likelione ***********/
 {  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   int i, j=0,  i1, k1, l1, t, tj;  {
   int k2, l2, j1,  z1;    /* This routine should help understanding what is done with 
   int k=0,l, cptcode;       the selection of individuals/waves and
   int first=1, first1;       to check the exact contribution to the likelihood.
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;       Plotting could be done.
   double **dnewm,**doldm;     */
   double *xp;    int k;
   double *gp, *gm;  
   double **gradg, **trgradg;    if(*globpri !=0){ /* Just counts and sums, no printings */
   double **mu;      strcpy(fileresilk,"ilk"); 
   double age,agelim, cov[NCOVMAX];      strcat(fileresilk,fileres);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int theta;        printf("Problem with resultfile: %s\n", fileresilk);
   char fileresprob[FILENAMELENGTH];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   char fileresprobcov[FILENAMELENGTH];      }
   char fileresprobcor[FILENAMELENGTH];      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double ***varpij;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
   strcpy(fileresprob,"prob");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   strcat(fileresprob,fileres);      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    *fretone=(*funcone)(p);
   }    if(*globpri !=0){
   strcpy(fileresprobcov,"probcov");      fclose(ficresilk);
   strcat(fileresprobcov,fileres);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      fflush(fichtm); 
     printf("Problem with resultfile: %s\n", fileresprobcov);    } 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    return;
   }  }
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  /*********** Maximum Likelihood Estimation ***************/
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int i,j, iter=0;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double **xi;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double fret;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double fretone; /* Only one call to likelihood */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /*  char filerespow[FILENAMELENGTH];*/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
    #ifdef NLOPT
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    int creturn;
   fprintf(ficresprob,"# Age");    nlopt_opt opt;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   fprintf(ficresprobcov,"# Age");    double *lb;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    double minf; /* the minimum objective value, upon return */
   fprintf(ficresprobcov,"# Age");    double * p1; /* Shifted parameters from 0 instead of 1 */
     myfunc_data dinst, *d = &dinst;
   #endif
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    xi=matrix(1,npar,1,npar);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    for (i=1;i<=npar;i++)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      for (j=1;j<=npar;j++)
     }          xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresprob,"\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficresprobcov,"\n");    strcpy(filerespow,"pow"); 
   fprintf(ficresprobcor,"\n");    strcat(filerespow,fileres);
   xp=vector(1,npar);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      printf("Problem with resultfile: %s\n", filerespow);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   first=1;    for (i=1;i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      for(j=1;j<=nlstate+ndeath;j++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    fprintf(ficrespow,"\n");
     exit(0);  #ifdef POWELL
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   else{  #endif
     fprintf(ficgp,"\n# Routine varprob");  
   }  #ifdef NLOPT
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  #ifdef NEWUOA
     printf("Problem with html file: %s\n", optionfilehtm);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  #else
     exit(0);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   }  #endif
   else{    lb=vector(0,npar-1);
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     fprintf(fichtm,"\n");    nlopt_set_lower_bounds(opt, lb);
     nlopt_set_initial_step1(opt, 0.1);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    d->function = func;
     printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   }    nlopt_set_min_objective(opt, myfunc, d);
     nlopt_set_xtol_rel(opt, ftol);
      if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   cov[1]=1;      printf("nlopt failed! %d\n",creturn); 
   tj=cptcoveff;    }
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    else {
   j1=0;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   for(t=1; t<=tj;t++){      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
     for(i1=1; i1<=ncodemax[t];i1++){      iter=1; /* not equal */
       j1++;    }
          nlopt_destroy(opt);
       if  (cptcovn>0) {  #endif
         fprintf(ficresprob, "\n#********** Variable ");    free_matrix(xi,1,npar,1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fclose(ficrespow);
         fprintf(ficresprob, "**********\n#");    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         fprintf(ficresprobcov, "\n#********** Variable ");    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         fprintf(ficresprobcov, "**********\n#");  
          }
         fprintf(ficgp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /**** Computes Hessian and covariance matrix ***/
         fprintf(ficgp, "**********\n#");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
          {
            double  **a,**y,*x,pd;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    double **hess;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, j;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    int *indx;
          
         fprintf(ficresprobcor, "\n#********** Variable ");        double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         fprintf(ficgp, "**********\n#");        void lubksb(double **a, int npar, int *indx, double b[]) ;
       }    void ludcmp(double **a, int npar, int *indx, double *d) ;
          double gompertz(double p[]);
       for (age=bage; age<=fage; age ++){    hess=matrix(1,npar,1,npar);
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {    printf("\nCalculation of the hessian matrix. Wait...\n");
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         }    for (i=1;i<=npar;i++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      printf("%d",i);fflush(stdout);
         for (k=1; k<=cptcovprod;k++)      fprintf(ficlog,"%d",i);fflush(ficlog);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     
               hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      /*  printf(" %f ",p[i]);
         gp=vector(1,(nlstate)*(nlstate+ndeath));          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         gm=vector(1,(nlstate)*(nlstate+ndeath));    }
        
         for(theta=1; theta <=npar; theta++){    for (i=1;i<=npar;i++) {
           for(i=1; i<=npar; i++)      for (j=1;j<=npar;j++)  {
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        if (j>i) { 
                    printf(".%d%d",i,j);fflush(stdout);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                    hess[i][j]=hessij(p,delti,i,j,func,npar);
           k=0;          
           for(i=1; i<= (nlstate); i++){          hess[j][i]=hess[i][j];    
             for(j=1; j<=(nlstate+ndeath);j++){          /*printf(" %lf ",hess[i][j]);*/
               k=k+1;        }
               gp[k]=pmmij[i][j];      }
             }    }
           }    printf("\n");
              fprintf(ficlog,"\n");
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    
           k=0;    a=matrix(1,npar,1,npar);
           for(i=1; i<=(nlstate); i++){    y=matrix(1,npar,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){    x=vector(1,npar);
               k=k+1;    indx=ivector(1,npar);
               gm[k]=pmmij[i][j];    for (i=1;i<=npar;i++)
             }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    for (j=1;j<=npar;j++) {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for (i=1;i<=npar;i++) x[i]=0;
         }      x[j]=1;
       lubksb(a,npar,indx,x);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      for (i=1;i<=npar;i++){ 
           for(theta=1; theta <=npar; theta++)        matcov[i][j]=x[i];
             trgradg[j][theta]=gradg[theta][j];      }
            }
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    printf("\n#Hessian matrix#\n");
            fprintf(ficlog,"\n#Hessian matrix#\n");
         pmij(pmmij,cov,ncovmodel,x,nlstate);    for (i=1;i<=npar;i++) { 
              for (j=1;j<=npar;j++) { 
         k=0;        printf("%.3e ",hess[i][j]);
         for(i=1; i<=(nlstate); i++){        fprintf(ficlog,"%.3e ",hess[i][j]);
           for(j=1; j<=(nlstate+ndeath);j++){      }
             k=k+1;      printf("\n");
             mu[k][(int) age]=pmmij[i][j];      fprintf(ficlog,"\n");
           }    }
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    /* Recompute Inverse */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    for (i=1;i<=npar;i++)
             varpij[i][j][(int)age] = doldm[i][j];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /*  printf("\n#Hessian matrix recomputed#\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    for (j=1;j<=npar;j++) {
      }*/      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
         fprintf(ficresprob,"\n%d ",(int)age);      lubksb(a,npar,indx,x);
         fprintf(ficresprobcov,"\n%d ",(int)age);      for (i=1;i<=npar;i++){ 
         fprintf(ficresprobcor,"\n%d ",(int)age);        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficlog,"%.3e ",y[i][j]);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      printf("\n");
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficlog,"\n");
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    }
         }    */
         i=0;  
         for (k=1; k<=(nlstate);k++){    free_matrix(a,1,npar,1,npar);
           for (l=1; l<=(nlstate+ndeath);l++){    free_matrix(y,1,npar,1,npar);
             i=i++;    free_vector(x,1,npar);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    free_ivector(indx,1,npar);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    free_matrix(hess,1,npar,1,npar);
             for (j=1; j<=i;j++){  
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  }
             }  
           }  /*************** hessian matrix ****************/
         }/* end of loop for state */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       } /* end of loop for age */  {
     int i;
       /* Confidence intervalle of pij  */    int l=1, lmax=20;
       /*    double k1,k2;
       fprintf(ficgp,"\nset noparametric;unset label");    double p2[MAXPARM+1]; /* identical to x */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    double res;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    double fx;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    int k=0,kmax=10;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    double l1;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  
       */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       first1=1;      l1=pow(10,l);
       for (k2=1; k2<=(nlstate);k2++){      delts=delt;
         for (l2=1; l2<=(nlstate+ndeath);l2++){      for(k=1 ; k <kmax; k=k+1){
           if(l2==k2) continue;        delt = delta*(l1*k);
           j=(k2-1)*(nlstate+ndeath)+l2;        p2[theta]=x[theta] +delt;
           for (k1=1; k1<=(nlstate);k1++){        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
             for (l1=1; l1<=(nlstate+ndeath);l1++){        p2[theta]=x[theta]-delt;
               if(l1==k1) continue;        k2=func(p2)-fx;
               i=(k1-1)*(nlstate+ndeath)+l1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
               if(i<=j) continue;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
               for (age=bage; age<=fage; age ++){        
                 if ((int)age %5==0){  #ifdef DEBUGHESS
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  #endif
                   mu1=mu[i][(int) age]/stepm*YEARM ;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   mu2=mu[j][(int) age]/stepm*YEARM;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   c12=cv12/sqrt(v1*v2);          k=kmax;
                   /* Computing eigen value of matrix of covariance */        }
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          k=kmax; l=lmax*10;
                   /* Eigen vectors */        }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   /*v21=sqrt(1.-v11*v11); *//* error */          delts=delt;
                   v21=(lc1-v1)/cv12*v11;        }
                   v12=-v21;      }
                   v22=v11;    }
                   tnalp=v21/v11;    delti[theta]=delts;
                   if(first1==1){    return res; 
                     first1=0;    
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  }
                   }  
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                   /*printf(fignu*/  {
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    int i;
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    int l=1, lmax=20;
                   if(first==1){    double k1,k2,k3,k4,res,fx;
                     first=0;    double p2[MAXPARM+1];
                     fprintf(ficgp,"\nset parametric;unset label");    int k;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    fx=func(x);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    for (k=1; k<=2; k++) {
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);      for (i=1;i<=npar;i++) p2[i]=x[i];
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);      p2[thetai]=x[thetai]+delti[thetai]/k;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      k1=func(p2)-fx;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      p2[thetai]=x[thetai]+delti[thetai]/k;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      k2=func(p2)-fx;
                   }else{    
                     first=0;      p2[thetai]=x[thetai]-delti[thetai]/k;
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);      k3=func(p2)-fx;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      p2[thetai]=x[thetai]-delti[thetai]/k;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      k4=func(p2)-fx;
                   }/* if first */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                 } /* age mod 5 */  #ifdef DEBUG
               } /* end loop age */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
               first=1;  #endif
             } /*l12 */    }
           } /* k12 */    return res;
         } /*l1 */  }
       }/* k1 */  
     } /* loop covariates */  /************** Inverse of matrix **************/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  void ludcmp(double **a, int n, int *indx, double *d) 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  { 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int i,imax,j,k; 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double big,dum,sum,temp; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double *vv; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   
   }    vv=vector(1,n); 
   free_vector(xp,1,npar);    *d=1.0; 
   fclose(ficresprob);    for (i=1;i<=n;i++) { 
   fclose(ficresprobcov);      big=0.0; 
   fclose(ficresprobcor);      for (j=1;j<=n;j++) 
   fclose(ficgp);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   fclose(fichtm);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 }      vv[i]=1.0/big; 
     } 
     for (j=1;j<=n;j++) { 
 /******************* Printing html file ***********/      for (i=1;i<j;i++) { 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        sum=a[i][j]; 
                   int lastpass, int stepm, int weightopt, char model[],\        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        a[i][j]=sum; 
                   int popforecast, int estepm ,\      } 
                   double jprev1, double mprev1,double anprev1, \      big=0.0; 
                   double jprev2, double mprev2,double anprev2){      for (i=j;i<=n;i++) { 
   int jj1, k1, i1, cpt;        sum=a[i][j]; 
   /*char optionfilehtm[FILENAMELENGTH];*/        for (k=1;k<j;k++) 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          sum -= a[i][k]*a[k][j]; 
     printf("Problem with %s \n",optionfilehtm), exit(0);        a[i][j]=sum; 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   }          big=dum; 
           imax=i; 
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n        } 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      } 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      if (j != imax) { 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for (k=1;k<=n;k++) { 
  - Life expectancies by age and initial health status (estepm=%2d months):          dum=a[imax][k]; 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          a[imax][k]=a[j][k]; 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          a[j][k]=dum; 
         } 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        *d = -(*d); 
         vv[imax]=vv[j]; 
  m=cptcoveff;      } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
  jj1=0;      if (j != n) { 
  for(k1=1; k1<=m;k1++){        dum=1.0/(a[j][j]); 
    for(i1=1; i1<=ncodemax[k1];i1++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
      jj1++;      } 
      if (cptcovn > 0) {    } 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    free_vector(vv,1,n);  /* Doesn't work */
        for (cpt=1; cpt<=cptcoveff;cpt++)  ;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  } 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  void lubksb(double **a, int n, int *indx, double b[]) 
      /* Pij */  { 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    int i,ii=0,ip,j; 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        double sum; 
      /* Quasi-incidences */   
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    for (i=1;i<=n;i++) { 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      ip=indx[i]; 
        /* Stable prevalence in each health state */      sum=b[ip]; 
        for(cpt=1; cpt<nlstate;cpt++){      b[ip]=b[i]; 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      if (ii) 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        }      else if (sum) ii=i; 
      for(cpt=1; cpt<=nlstate;cpt++) {      b[i]=sum; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    } 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    for (i=n;i>=1;i--) { 
      }      sum=b[i]; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 health expectancies in states (1) and (2): e%s%d.png<br>      b[i]=sum/a[i][i]; 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    } 
    } /* end i1 */  } 
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  void pstamp(FILE *fichier)
   {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /************ Frequencies ********************/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  {  /* Some frequencies */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    int i, m, jk, j1, bool, z1,j;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    int first;
     double ***freq; /* Frequencies */
  if(popforecast==1) fprintf(fichtm,"\n    double *pp, **prop;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double pos,posprop, k2, dateintsum=0,k2cpt=0;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    char fileresp[FILENAMELENGTH];
         <br>",fileres,fileres,fileres,fileres);    
  else    pp=vector(1,nlstate);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    prop=matrix(1,nlstate,iagemin,iagemax+3);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
  m=cptcoveff;    if((ficresp=fopen(fileresp,"w"))==NULL) {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  jj1=0;      exit(0);
  for(k1=1; k1<=m;k1++){    }
    for(i1=1; i1<=ncodemax[k1];i1++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
      jj1++;    j1=0;
      if (cptcovn > 0) {    
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    j=cptcoveff;
        for (cpt=1; cpt<=cptcoveff;cpt++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    first=1;
      }  
      for(cpt=1; cpt<=nlstate;cpt++) {    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
 interval) in state (%d): v%s%d%d.png <br>    /*    j1++; */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
      }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
    } /* end i1 */          scanf("%d", i);*/
  }/* End k1 */        for (i=-5; i<=nlstate+ndeath; i++)  
  fprintf(fichtm,"</ul>");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 fclose(fichtm);            for(m=iagemin; m <= iagemax+3; m++)
 }              freq[i][jk][m]=0;
         
 /******************* Gnuplot file **************/        for (i=1; i<=nlstate; i++)  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        
   int ng;        dateintsum=0;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        k2cpt=0;
     printf("Problem with file %s",optionfilegnuplot);        for (i=1; i<=imx; i++) {
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          bool=1;
   }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             for (z1=1; z1<=cptcoveff; z1++)       
 #ifdef windows              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
     fprintf(ficgp,"cd \"%s\" \n",pathc);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
 #endif                bool=0;
 m=pow(2,cptcoveff);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
  /* 1eme*/                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
    for (k1=1; k1<= m ; k1 ++) {              } 
           }
 #ifdef windows   
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if (bool==1){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            for(m=firstpass; m<=lastpass; m++){
 #endif              k2=anint[m][i]+(mint[m][i]/12.);
 #ifdef unix              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 #endif                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
 for (i=1; i<= nlstate ; i ++) {                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");                }
 }                
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     for (i=1; i<= nlstate ; i ++) {                  dateintsum=dateintsum+k2;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  k2cpt++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                }
 }                /*}*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        } /* end i */
   else fprintf(ficgp," \%%*lf (\%%*lf)");         
 }          /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        pstamp(ficresp);
 #ifdef unix        if  (cptcovn>0) {
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          fprintf(ficresp, "\n#********** Variable "); 
 #endif          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    }          fprintf(ficresp, "**********\n#");
   }          fprintf(ficlog, "\n#********** Variable "); 
   /*2 eme*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficlog, "**********\n#");
   for (k1=1; k1<= m ; k1 ++) {        }
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        for(i=1; i<=nlstate;i++) 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            fprintf(ficresp, "\n");
     for (i=1; i<= nlstate+1 ; i ++) {        
       k=2*i;        for(i=iagemin; i <= iagemax+3; i++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          if(i==iagemax+3){
       for (j=1; j<= nlstate+1 ; j ++) {            fprintf(ficlog,"Total");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(first==1){
 }                first=0;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              printf("See log file for details...\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            fprintf(ficlog,"Age %d", i);
       for (j=1; j<= nlstate+1 ; j ++) {          }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for(jk=1; jk <=nlstate ; jk++){
         else fprintf(ficgp," \%%*lf (\%%*lf)");            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 }                pp[jk] += freq[jk][m][i]; 
       fprintf(ficgp,"\" t\"\" w l 0,");          }
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
       for (j=1; j<= nlstate+1 ; j ++) {            for(m=-1, pos=0; m <=0 ; m++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              pos += freq[jk][m][i];
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if(pp[jk]>=1.e-10){
 }                if(first==1){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       else fprintf(ficgp,"\" t\"\" w l 0,");              }
     }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   }            }else{
                if(first==1)
   /*3eme*/                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          }
       k=2+nlstate*(2*cpt-2);  
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              pp[jk] += freq[jk][m][i];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          }       
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            pos += pp[jk];
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            posprop += prop[jk][i];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }
           for(jk=1; jk <=nlstate ; jk++){
 */            if(pos>=1.e-5){
       for (i=1; i< nlstate ; i ++) {              if(first==1)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }            }else{
     }              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {            if( i <= iagemax){
     for (cpt=1; cpt<nlstate ; cpt ++) {              if(pos>=1.e-5){
       k=3;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
       for (i=1; i< nlstate ; i ++)              else
         fprintf(ficgp,"+$%d",k+i+1);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            }
                }
       l=3+(nlstate+ndeath)*cpt;          
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          for(jk=-1; jk <=nlstate+ndeath; jk++)
       for (i=1; i< nlstate ; i ++) {            for(m=-1; m <=nlstate+ndeath; m++)
         l=3+(nlstate+ndeath)*cpt;              if(freq[jk][m][i] !=0 ) {
         fprintf(ficgp,"+$%d",l+i+1);              if(first==1)
       }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     }              }
   }            if(i <= iagemax)
              fprintf(ficresp,"\n");
   /* proba elementaires */          if(first==1)
    for(i=1,jk=1; i <=nlstate; i++){            printf("Others in log...\n");
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficlog,"\n");
       if (k != i) {        }
         for(j=1; j <=ncovmodel; j++){        /*}*/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    }
           jk++;    dateintmean=dateintsum/k2cpt; 
           fprintf(ficgp,"\n");   
         }    fclose(ficresp);
       }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }    free_vector(pp,1,nlstate);
    }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  }
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  /************ Prevalence ********************/
        if (ng==2)  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  {  
        else    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
          fprintf(ficgp,"\nset title \"Probability\"\n");       in each health status at the date of interview (if between dateprev1 and dateprev2).
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);       We still use firstpass and lastpass as another selection.
        i=1;    */
        for(k2=1; k2<=nlstate; k2++) {   
          k3=i;    int i, m, jk, j1, bool, z1,j;
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){    double **prop;
              if(ng==2)    double posprop; 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    double  y2; /* in fractional years */
              else    int iagemin, iagemax;
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int first; /** to stop verbosity which is redirected to log file */
              ij=1;  
              for(j=3; j <=ncovmodel; j++) {    iagemin= (int) agemin;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    iagemax= (int) agemax;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /*pp=vector(1,nlstate);*/
                  ij++;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
                }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                else    j1=0;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
              }    /*j=cptcoveff;*/
              fprintf(ficgp,")/(1");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
                  
              for(k1=1; k1 <=nlstate; k1++){      first=1;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
                ij=1;      /*for(i1=1; i1<=ncodemax[k1];i1++){
                for(j=3; j <=ncovmodel; j++){        j1++;*/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (i=1; i<=nlstate; i++)  
                    ij++;          for(m=iagemin; m <= iagemax+3; m++)
                  }            prop[i][m]=0.0;
                  else       
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        for (i=1; i<=imx; i++) { /* Each individual */
                }          bool=1;
                fprintf(ficgp,")");          if  (cptcovn>0) {
              }            for (z1=1; z1<=cptcoveff; z1++) 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                bool=0;
              i=i+ncovmodel;          } 
            }          if (bool==1) { 
          } /* end k */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        } /* end k2 */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      } /* end jk */              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    } /* end ng */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    fclose(ficgp);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 }  /* end gnuplot */                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 /*************** Moving average **************/                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
   int i, cpt, cptcod;              }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            } /* end selection of waves */
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        }
           mobaverage[(int)agedeb][i][cptcod]=0.;        for(i=iagemin; i <= iagemax+3; i++){  
              for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            posprop += prop[jk][i]; 
       for (i=1; i<=nlstate;i++){          } 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          
           for (cpt=0;cpt<=4;cpt++){          for(jk=1; jk <=nlstate ; jk++){     
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];            if( i <=  iagemax){ 
           }              if(posprop>=1.e-5){ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                probs[i][jk][j1]= prop[jk][i]/posprop;
         }              } else{
       }                if(first==1){
     }                  first=0;
                      printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
 }                }
               }
             } 
 /************** Forecasting ******************/          }/* end jk */ 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }/* end i */ 
        /*} *//* end i1 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    } /* end j1 */
   int *popage;    
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double *popeffectif,*popcount;    /*free_vector(pp,1,nlstate);*/
   double ***p3mat;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   char fileresf[FILENAMELENGTH];  }  /* End of prevalence */
   
  agelim=AGESUP;  /************* Waves Concatenation ***************/
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  {
      /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         Death is a valid wave (if date is known).
   strcpy(fileresf,"f");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   strcat(fileresf,fileres);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if((ficresf=fopen(fileresf,"w"))==NULL) {       and mw[mi+1][i]. dh depends on stepm.
     printf("Problem with forecast resultfile: %s\n", fileresf);       */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  
   }    int i, mi, m;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);       double sum=0., jmean=0.;*/
     int first;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int j, k=0,jk, ju, jl;
     double sum=0.;
   if (mobilav==1) {    first=0;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    jmin=100000;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    jmax=-1;
   }    jmean=0.;
     for(i=1; i<=imx; i++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;      mi=0;
   if (stepm<=12) stepsize=1;      m=firstpass;
        while(s[m][i] <= nlstate){
   agelim=AGESUP;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
            mw[++mi][i]=m;
   hstepm=1;        if(m >=lastpass)
   hstepm=hstepm/stepm;          break;
   yp1=modf(dateintmean,&yp);        else
   anprojmean=yp;          m++;
   yp2=modf((yp1*12),&yp);      }/* end while */
   mprojmean=yp;      if (s[m][i] > nlstate){
   yp1=modf((yp2*30.5),&yp);        mi++;     /* Death is another wave */
   jprojmean=yp;        /* if(mi==0)  never been interviewed correctly before death */
   if(jprojmean==0) jprojmean=1;           /* Only death is a correct wave */
   if(mprojmean==0) jprojmean=1;        mw[mi][i]=m;
        }
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);  
        wav[i]=mi;
   for(cptcov=1;cptcov<=i2;cptcov++){      if(mi==0){
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        nbwarn++;
       k=k+1;        if(first==0){
       fprintf(ficresf,"\n#******");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       for(j=1;j<=cptcoveff;j++) {          first=1;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       }        if(first==1){
       fprintf(ficresf,"******\n");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       fprintf(ficresf,"# StartingAge FinalAge");        }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      } /* end mi==0 */
          } /* End individuals */
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for(i=1; i<=imx; i++){
         fprintf(ficresf,"\n");      for(mi=1; mi<wav[i];mi++){
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          if (stepm <=0)
           dh[mi][i]=1;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        else{
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           nhstepm = nhstepm/hstepm;            if (agedc[i] < 2*AGESUP) {
                        j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if(j==0) j=1;  /* Survives at least one month after exam */
           oldm=oldms;savm=savms;              else if(j<0){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  nberr++;
                        printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for (h=0; h<=nhstepm; h++){                j=1; /* Temporary Dangerous patch */
             if (h==(int) (calagedate+YEARM*cpt)) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             for(j=1; j<=nlstate+ndeath;j++) {              }
               kk1=0.;kk2=0;              k=k+1;
               for(i=1; i<=nlstate;i++) {                            if (j >= jmax){
                 if (mobilav==1)                jmax=j;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                ijmax=i;
                 else {              }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              if (j <= jmin){
                 }                jmin=j;
                                ijmin=i;
               }              }
               if (h==(int)(calagedate+12*cpt)){              sum=sum+j;
                 fprintf(ficresf," %.3f", kk1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                                      /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
               }            }
             }          }
           }          else{
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
         }  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       }  
     }            k=k+1;
   }            if (j >= jmax) {
                      jmax=j;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              ijmax=i;
             }
   fclose(ficresf);            else if (j <= jmin){
 }              jmin=j;
 /************** Forecasting ******************/              ijmin=i;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            }
              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   int *popage;            if(j<0){
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              nberr++;
   double *popeffectif,*popcount;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double ***p3mat,***tabpop,***tabpopprev;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char filerespop[FILENAMELENGTH];            }
             sum=sum+j;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          jk= j/stepm;
   agelim=AGESUP;          jl= j -jk*stepm;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            if(jl==0){
                dh[mi][i]=jk;
                bh[mi][i]=0;
   strcpy(filerespop,"pop");            }else{ /* We want a negative bias in order to only have interpolation ie
   strcat(filerespop,fileres);                    * to avoid the price of an extra matrix product in likelihood */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              dh[mi][i]=jk+1;
     printf("Problem with forecast resultfile: %s\n", filerespop);              bh[mi][i]=ju;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            }
   }          }else{
   printf("Computing forecasting: result on file '%s' \n", filerespop);            if(jl <= -ju){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
   if (mobilav==1) {            }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            else{
     movingaverage(agedeb, fage, ageminpar, mobaverage);              dh[mi][i]=jk+1;
   }              bh[mi][i]=ju;
             }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            if(dh[mi][i]==0){
   if (stepm<=12) stepsize=1;              dh[mi][i]=1; /* At least one step */
                bh[mi][i]=ju; /* At least one step */
   agelim=AGESUP;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   hstepm=1;          } /* end if mle */
   hstepm=hstepm/stepm;        }
        } /* end wave */
   if (popforecast==1) {    }
     if((ficpop=fopen(popfile,"r"))==NULL) {    jmean=sum/k;
       printf("Problem with population file : %s\n",popfile);exit(0);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);  /*********** Tricode ****************************/
     popcount=vector(0,AGESUP);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
      {
     i=1;      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         * Boring subroutine which should only output nbcode[Tvar[j]][k]
     imx=i;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];     * nbcode[Tvar[j]][1]= 
   }    */
   
   for(cptcov=1;cptcov<=i2;cptcov++){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int modmaxcovj=0; /* Modality max of covariates j */
       k=k+1;    int cptcode=0; /* Modality max of covariates j */
       fprintf(ficrespop,"\n#******");    int modmincovj=0; /* Modality min of covariates j */
       for(j=1;j<=cptcoveff;j++) {  
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    cptcoveff=0; 
       fprintf(ficrespop,"******\n");   
       fprintf(ficrespop,"# Age");    for (k=-1; k < maxncov; k++) Ndum[k]=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
          /* Loop on covariates without age and products */
       for (cpt=0; cpt<=0;cpt++) {    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                         modality of this covariate Vj*/ 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                                      * If product of Vn*Vm, still boolean *:
           nhstepm = nhstepm/hstepm;                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                                * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
           oldm=oldms;savm=savms;                                        modality of the nth covariate of individual i. */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if (ij > modmaxcovj)
                  modmaxcovj=ij; 
           for (h=0; h<=nhstepm; h++){        else if (ij < modmincovj) 
             if (h==(int) (calagedate+YEARM*cpt)) {          modmincovj=ij; 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        if ((ij < -1) && (ij > NCOVMAX)){
             }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
             for(j=1; j<=nlstate+ndeath;j++) {          exit(1);
               kk1=0.;kk2=0;        }else
               for(i=1; i<=nlstate;i++) {                      Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                 if (mobilav==1)        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                 else {        /* getting the maximum value of the modality of the covariate
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                 }           female is 1, then modmaxcovj=1.*/
               }      }
               if (h==(int)(calagedate+12*cpt)){      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      cptcode=modmaxcovj;
                   /*fprintf(ficrespop," %.3f", kk1);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/     /*for (i=0; i<=cptcode; i++) {*/
               }      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
             }        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
             for(i=1; i<=nlstate;i++){        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
               kk1=0.;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
                 for(j=1; j<=nlstate;j++){        }
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
                 }           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      } /* Ndum[-1] number of undefined modalities */
             }  
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           }         modmincovj=3; modmaxcovj = 7;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
         }         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
       }         variables V1_1 and V1_2.
           nbcode[Tvar[j]][ij]=k;
   /******/         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {         nbcode[Tvar[j]][3]=2;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      ij=1; /* ij is similar to i but can jumps over null modalities */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
           nhstepm = nhstepm/hstepm;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
                    /*recode from 0 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
           oldm=oldms;savm=savms;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                                         k is a modality. If we have model=V1+V1*sex 
           for (h=0; h<=nhstepm; h++){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             if (h==(int) (calagedate+YEARM*cpt)) {            ij++;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          }
             }          if (ij > ncodemax[j]) break; 
             for(j=1; j<=nlstate+ndeath;j++) {        }  /* end of loop on */
               kk1=0.;kk2=0;      } /* end of loop on modality */ 
               for(i=1; i<=nlstate;i++) {                  } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        
               }   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    
             }    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
           }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
         }     Ndum[ij]++; 
       }   } 
    }  
   }   ij=1;
     for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
   if (popforecast==1) {       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     free_ivector(popage,0,AGESUP);       Tvaraff[ij]=i; /*For printing (unclear) */
     free_vector(popeffectif,0,AGESUP);       ij++;
     free_vector(popcount,0,AGESUP);     }else
   }         Tvaraff[ij]=0;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   ij--;
   fclose(ficrespop);   cptcoveff=ij; /*Number of total covariates*/
 }  
   }
 /***********************************************/  
 /**************** Main Program *****************/  
 /***********************************************/  /*********** Health Expectancies ****************/
   
 int main(int argc, char *argv[])  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 {  
   {
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /* Health expectancies, no variances */
   double agedeb, agefin,hf;    int i, j, nhstepm, hstepm, h, nstepm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   double fret;    double ***p3mat;
   double **xi,tmp,delta;    double eip;
   
   double dum; /* Dummy variable */    pstamp(ficreseij);
   double ***p3mat;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   int *indx;    fprintf(ficreseij,"# Age");
   char line[MAXLINE], linepar[MAXLINE];    for(i=1; i<=nlstate;i++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];      for(j=1; j<=nlstate;j++){
   int firstobs=1, lastobs=10;        fprintf(ficreseij," e%1d%1d ",i,j);
   int sdeb, sfin; /* Status at beginning and end */      }
   int c,  h , cpt,l;      fprintf(ficreseij," e%1d. ",i);
   int ju,jl, mi;    }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fprintf(ficreseij,"\n");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;    
   int hstepm, nhstepm;    if(estepm < stepm){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   double bage, fage, age, agelim, agebase;    else  hstepm=estepm;   
   double ftolpl=FTOL;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double **prlim;     * This is mainly to measure the difference between two models: for example
   double *severity;     * if stepm=24 months pijx are given only every 2 years and by summing them
   double ***param; /* Matrix of parameters */     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double  *p;     * progression in between and thus overestimating or underestimating according
   double **matcov; /* Matrix of covariance */     * to the curvature of the survival function. If, for the same date, we 
   double ***delti3; /* Scale */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double *delti; /* Scale */     * to compare the new estimate of Life expectancy with the same linear 
   double ***eij, ***vareij;     * hypothesis. A more precise result, taking into account a more precise
   double **varpl; /* Variances of prevalence limits by age */     * curvature will be obtained if estepm is as small as stepm. */
   double *epj, vepp;  
   double kk1, kk2;    /* For example we decided to compute the life expectancy with the smallest unit */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   char *alph[]={"a","a","b","c","d","e"}, str[4];       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   char z[1]="c", occ;       survival function given by stepm (the optimization length). Unfortunately it
 #include <sys/time.h>       means that if the survival funtion is printed only each two years of age and if
 #include <time.h>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       results. So we changed our mind and took the option of the best precision.
      */
   /* long total_usecs;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   struct timeval start_time, end_time;  
      agelim=AGESUP;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    /* If stepm=6 months */
   getcwd(pathcd, size);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   printf("\n%s",version);      
   if(argc <=1){  /* nhstepm age range expressed in number of stepm */
     printf("\nEnter the parameter file name: ");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     scanf("%s",pathtot);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }    /* if (stepm >= YEARM) hstepm=1;*/
   else{    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     strcpy(pathtot,argv[1]);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    for (age=bage; age<=fage; age ++){ 
   /*cygwin_split_path(pathtot,path,optionfile);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /* cutv(path,optionfile,pathtot,'\\');*/      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      /* If stepm=6 months */
   chdir(path);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   replace(pathc,path);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
 /*-------- arguments in the command line --------*/      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
   /* Log file */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   strcat(filelog, optionfilefiname);      
   strcat(filelog,".log");    /* */      printf("%d|",(int)age);fflush(stdout);
   if((ficlog=fopen(filelog,"w"))==NULL)    {      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     printf("Problem with logfile %s\n",filelog);      
     goto end;      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"Log filename:%s\n",filelog);        for(j=1; j<=nlstate;j++)
   fprintf(ficlog,"\n%s",version);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fprintf(ficlog,"\nEnter the parameter file name: ");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            
   fflush(ficlog);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   /* */          }
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);      fprintf(ficreseij,"%3.0f",age );
   strcat(fileres,".txt");    /* Other files have txt extension */      for(i=1; i<=nlstate;i++){
         eip=0;
   /*---------arguments file --------*/        for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     printf("Problem with optionfile %s\n",optionfile);        }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        fprintf(ficreseij,"%9.4f", eip );
     goto end;      }
   }      fprintf(ficreseij,"\n");
       
   strcpy(filereso,"o");    }
   strcat(filereso,fileres);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficparo=fopen(filereso,"w"))==NULL) {    printf("\n");
     printf("Problem with Output resultfile: %s\n", filereso);    fprintf(ficlog,"\n");
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    
     goto end;  }
   }  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  {
     ungetc(c,ficpar);    /* Covariances of health expectancies eij and of total life expectancies according
     fgets(line, MAXLINE, ficpar);     to initial status i, ei. .
     puts(line);    */
     fputs(line,ficparo);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
   ungetc(c,ficpar);    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **dnewm,**doldm;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double *xp, *xm;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **gp, **gm;
 while((c=getc(ficpar))=='#' && c!= EOF){    double ***gradg, ***trgradg;
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    double eip, vip;
     fputs(line,ficparo);  
   }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   ungetc(c,ficpar);    xp=vector(1,npar);
      xm=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
   covar=matrix(0,NCOVMAX,1,n);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   cptcovn=0;    
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   ncovmodel=2+cptcovn;    fprintf(ficresstdeij,"# Age");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++)
   /* Read guess parameters */        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   /* Reads comments: lines beginning with '#' */      fprintf(ficresstdeij," e%1d. ",i);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    fprintf(ficresstdeij,"\n");
     fgets(line, MAXLINE, ficpar);  
     puts(line);    pstamp(ficrescveij);
     fputs(line,ficparo);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   }    fprintf(ficrescveij,"# Age");
   ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        cptj= (j-1)*nlstate+i;
     for(i=1; i <=nlstate; i++)        for(i2=1; i2<=nlstate;i2++)
     for(j=1; j <=nlstate+ndeath-1; j++){          for(j2=1; j2<=nlstate;j2++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);            cptj2= (j2-1)*nlstate+i2;
       fprintf(ficparo,"%1d%1d",i1,j1);            if(cptj2 <= cptj)
       if(mle==1)              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         printf("%1d%1d",i,j);          }
       fprintf(ficlog,"%1d%1d",i,j);      }
       for(k=1; k<=ncovmodel;k++){    fprintf(ficrescveij,"\n");
         fscanf(ficpar," %lf",&param[i][j][k]);    
         if(mle==1){    if(estepm < stepm){
           printf(" %lf",param[i][j][k]);      printf ("Problem %d lower than %d\n",estepm, stepm);
           fprintf(ficlog," %lf",param[i][j][k]);    }
         }    else  hstepm=estepm;   
         else    /* We compute the life expectancy from trapezoids spaced every estepm months
           fprintf(ficlog," %lf",param[i][j][k]);     * This is mainly to measure the difference between two models: for example
         fprintf(ficparo," %lf",param[i][j][k]);     * if stepm=24 months pijx are given only every 2 years and by summing them
       }     * we are calculating an estimate of the Life Expectancy assuming a linear 
       fscanf(ficpar,"\n");     * progression in between and thus overestimating or underestimating according
       if(mle==1)     * to the curvature of the survival function. If, for the same date, we 
         printf("\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       fprintf(ficlog,"\n");     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficparo,"\n");     * hypothesis. A more precise result, taking into account a more precise
     }     * curvature will be obtained if estepm is as small as stepm. */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   p=param[1][1];       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /* Reads comments: lines beginning with '#' */       Look at hpijx to understand the reason of that which relies in memory size
   while((c=getc(ficpar))=='#' && c!= EOF){       and note for a fixed period like estepm months */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fgets(line, MAXLINE, ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     puts(line);       means that if the survival funtion is printed only each two years of age and if
     fputs(line,ficparo);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   ungetc(c,ficpar);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    /* If stepm=6 months */
   for(i=1; i <=nlstate; i++){    /* nhstepm age range expressed in number of stepm */
     for(j=1; j <=nlstate+ndeath-1; j++){    agelim=AGESUP;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       printf("%1d%1d",i,j);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficparo,"%1d%1d",i1,j1);    /* if (stepm >= YEARM) hstepm=1;*/
       for(k=1; k<=ncovmodel;k++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficparo," %le",delti3[i][j][k]);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       fscanf(ficpar,"\n");    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       printf("\n");    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       fprintf(ficparo,"\n");    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     }  
   }    for (age=bage; age<=fage; age ++){ 
   delti=delti3[1][1];      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /* Reads comments: lines beginning with '#' */      /* if (stepm >= YEARM) hstepm=1;*/
   while((c=getc(ficpar))=='#' && c!= EOF){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      /* If stepm=6 months */
     puts(line);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     fputs(line,ficparo);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
   ungetc(c,ficpar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    
   matcov=matrix(1,npar,1,npar);      /* Computing  Variances of health expectancies */
   for(i=1; i <=npar; i++){      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
     fscanf(ficpar,"%s",&str);         decrease memory allocation */
     if(mle==1)      for(theta=1; theta <=npar; theta++){
       printf("%s",str);        for(i=1; i<=npar; i++){ 
     fprintf(ficlog,"%s",str);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficparo,"%s",str);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
     for(j=1; j <=i; j++){        }
       fscanf(ficpar," %le",&matcov[i][j]);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       if(mle==1){        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         printf(" %.5le",matcov[i][j]);    
         fprintf(ficlog," %.5le",matcov[i][j]);        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
       else            for(h=0; h<=nhstepm-1; h++){
         fprintf(ficlog," %.5le",matcov[i][j]);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       fprintf(ficparo," %.5le",matcov[i][j]);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     }            }
     fscanf(ficpar,"\n");          }
     if(mle==1)        }
       printf("\n");       
     fprintf(ficlog,"\n");        for(ij=1; ij<= nlstate*nlstate; ij++)
     fprintf(ficparo,"\n");          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   for(i=1; i <=npar; i++)          }
     for(j=i+1;j<=npar;j++)      }/* End theta */
       matcov[i][j]=matcov[j][i];      
          
   if(mle==1)      for(h=0; h<=nhstepm-1; h++)
     printf("\n");        for(j=1; j<=nlstate*nlstate;j++)
   fprintf(ficlog,"\n");          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */       for(ij=1;ij<=nlstate*nlstate;ij++)
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        for(ji=1;ji<=nlstate*nlstate;ji++)
      strcat(rfileres,".");    /* */          varhe[ij][ji][(int)age] =0.;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {       printf("%d|",(int)age);fflush(stdout);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
     fprintf(ficres,"#%s\n",version);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     /*-------- data file ----------*/          for(ij=1;ij<=nlstate*nlstate;ij++)
     if((fic=fopen(datafile,"r"))==NULL)    {            for(ji=1;ji<=nlstate*nlstate;ji++)
       printf("Problem with datafile: %s\n", datafile);goto end;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        }
     }      }
   
     n= lastobs;      /* Computing expectancies */
     severity = vector(1,maxwav);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     outcome=imatrix(1,maxwav+1,1,n);      for(i=1; i<=nlstate;i++)
     num=ivector(1,n);        for(j=1; j<=nlstate;j++)
     moisnais=vector(1,n);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     annais=vector(1,n);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     moisdc=vector(1,n);            
     andc=vector(1,n);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     agedc=vector(1,n);  
     cod=ivector(1,n);          }
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      fprintf(ficresstdeij,"%3.0f",age );
     mint=matrix(1,maxwav,1,n);      for(i=1; i<=nlstate;i++){
     anint=matrix(1,maxwav,1,n);        eip=0.;
     s=imatrix(1,maxwav+1,1,n);        vip=0.;
     adl=imatrix(1,maxwav+1,1,n);            for(j=1; j<=nlstate;j++){
     tab=ivector(1,NCOVMAX);          eip += eij[i][j][(int)age];
     ncodemax=ivector(1,8);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     i=1;          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     while (fgets(line, MAXLINE, fic) != NULL)    {        }
       if ((i >= firstobs) && (i <=lastobs)) {        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
              }
         for (j=maxwav;j>=1;j--){      fprintf(ficresstdeij,"\n");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);      fprintf(ficrescveij,"%3.0f",age );
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++){
         }          cptj= (j-1)*nlstate+i;
                  for(i2=1; i2<=nlstate;i2++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j2=1; j2<=nlstate;j2++){
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficrescveij,"\n");
         for (j=ncovcol;j>=1;j--){     
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
         }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         num[i]=atol(stra);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
            free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i=i+1;    printf("\n");
       }    fprintf(ficlog,"\n");
     }  
     /* printf("ii=%d", ij);    free_vector(xm,1,npar);
        scanf("%d",i);*/    free_vector(xp,1,npar);
   imx=i-1; /* Number of individuals */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* for (i=1; i<=imx; i++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;  
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  /************ Variance ******************/
     }*/  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    /*  for (i=1; i<=imx; i++){  {
      if (s[4][i]==9)  s[4][i]=-1;    /* Variance of health expectancies */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
      /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
   /* Calculation of the number of parameter from char model*/    
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    int movingaverage();
   Tprod=ivector(1,15);    double **dnewm,**doldm;
   Tvaraff=ivector(1,15);    double **dnewmp,**doldmp;
   Tvard=imatrix(1,15,1,2);    int i, j, nhstepm, hstepm, h, nstepm ;
   Tage=ivector(1,15);          int k;
        double *xp;
   if (strlen(model) >1){    double **gp, **gm;  /* for var eij */
     j=0, j1=0, k1=1, k2=1;    double ***gradg, ***trgradg; /*for var eij */
     j=nbocc(model,'+');    double **gradgp, **trgradgp; /* for var p point j */
     j1=nbocc(model,'*');    double *gpp, *gmp; /* for var p point j */
     cptcovn=j+1;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     cptcovprod=j1;    double ***p3mat;
        double age,agelim, hf;
     strcpy(modelsav,model);    double ***mobaverage;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    int theta;
       printf("Error. Non available option model=%s ",model);    char digit[4];
       fprintf(ficlog,"Error. Non available option model=%s ",model);    char digitp[25];
       goto end;  
     }    char fileresprobmorprev[FILENAMELENGTH];
      
     for(i=(j+1); i>=1;i--){    if(popbased==1){
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      if(mobilav!=0)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        strcpy(digitp,"-populbased-mobilav-");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      else strcpy(digitp,"-populbased-nomobil-");
       /*scanf("%d",i);*/    }
       if (strchr(strb,'*')) {  /* Model includes a product */    else 
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      strcpy(digitp,"-stablbased-");
         if (strcmp(strc,"age")==0) { /* Vn*age */  
           cptcovprod--;    if (mobilav!=0) {
           cutv(strb,stre,strd,'V');      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           cptcovage++;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             Tage[cptcovage]=i;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             /*printf("stre=%s ", stre);*/      }
         }    }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  
           cptcovprod--;    strcpy(fileresprobmorprev,"prmorprev"); 
           cutv(strb,stre,strc,'V');    sprintf(digit,"%-d",ij);
           Tvar[i]=atoi(stre);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           cptcovage++;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           Tage[cptcovage]=i;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         }    strcat(fileresprobmorprev,fileres);
         else {  /* Age is not in the model */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           Tvar[i]=ncovcol+k1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    }
           Tprod[k1]=i;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           Tvard[k1][1]=atoi(strc); /* m*/   
           Tvard[k1][2]=atoi(stre); /* n */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           Tvar[cptcovn+k2]=Tvard[k1][1];    pstamp(ficresprobmorprev);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           for (k=1; k<=lastobs;k++)    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           k1++;      fprintf(ficresprobmorprev," p.%-d SE",j);
           k2=k2+2;      for(i=1; i<=nlstate;i++)
         }        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       }    }  
       else { /* no more sum */    fprintf(ficresprobmorprev,"\n");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(ficgp,"\n# Routine varevsij");
        /*  scanf("%d",i);*/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
       cutv(strd,strc,strb,'V');    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       Tvar[i]=atoi(strc);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       }  /*   } */
       strcpy(modelsav,stra);      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    pstamp(ficresvij);
         scanf("%d",i);*/    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     } /* end of loop + */    if(popbased==1)
   } /* end model */      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficresvij,"# Age");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    for(i=1; i<=nlstate;i++)
   scanf("%d ",i);*/      for(j=1; j<=nlstate;j++)
     fclose(fic);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    xp=vector(1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     /*-calculation of age at interview from date of interview and age at death -*/    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     agev=matrix(1,maxwav,1,imx);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     for (i=1; i<=imx; i++) {    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       for(m=2; (m<= maxwav); m++) {    gpp=vector(nlstate+1,nlstate+ndeath);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    gmp=vector(nlstate+1,nlstate+ndeath);
          anint[m][i]=9999;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          s[m][i]=-1;    
        }    if(estepm < stepm){
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      printf ("Problem %d lower than %d\n",estepm, stepm);
       }    }
     }    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     for (i=1; i<=imx; i++)  {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);       nhstepm is the number of hstepm from age to agelim 
       for(m=1; (m<= maxwav); m++){       nstepm is the number of stepm from age to agelin. 
         if(s[m][i] >0){       Look at function hpijx to understand why (it is linked to memory size questions) */
           if (s[m][i] >= nlstate+1) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             if(agedc[i]>0)       survival function given by stepm (the optimization length). Unfortunately it
               if(moisdc[i]!=99 && andc[i]!=9999)       means that if the survival funtion is printed every two years of age and if
                 agev[m][i]=agedc[i];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/       results. So we changed our mind and took the option of the best precision.
            else {    */
               if (andc[i]!=9999){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    agelim = AGESUP;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               agev[m][i]=-1;      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */      gp=matrix(0,nhstepm,1,nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      gm=matrix(0,nhstepm,1,nlstate);
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){      for(theta=1; theta <=npar; theta++){
               agemin=agev[m][i];        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }        }
             else if(agev[m][i] >agemax){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               agemax=agev[m][i];        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }        if (popbased==1) {
             /*agev[m][i]=anint[m][i]-annais[i];*/          if(mobilav ==0){
             /*   agev[m][i] = age[i]+2*m;*/            for(i=1; i<=nlstate;i++)
           }              prlim[i][i]=probs[(int)age][i][ij];
           else { /* =9 */          }else{ /* mobilav */ 
             agev[m][i]=1;            for(i=1; i<=nlstate;i++)
             s[m][i]=-1;              prlim[i][i]=mobaverage[(int)age][i][ij];
           }          }
         }        }
         else /*= 0 Unknown */    
           agev[m][i]=1;        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (i=1; i<=imx; i++)  {          }
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        /* This for computing probability of death (h=1 means
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             computed over hstepm matrices product = hstepm*stepm months) 
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             as a weighted average of prlim.
           goto end;        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        /* end probability of death */
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     free_vector(severity,1,maxwav);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_imatrix(outcome,1,maxwav+1,1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     free_vector(moisnais,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(annais,1,n);   
     /* free_matrix(mint,1,maxwav,1,n);        if (popbased==1) {
        free_matrix(anint,1,maxwav,1,n);*/          if(mobilav ==0){
     free_vector(moisdc,1,n);            for(i=1; i<=nlstate;i++)
     free_vector(andc,1,n);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
                for(i=1; i<=nlstate;i++)
     wav=ivector(1,imx);              prlim[i][i]=mobaverage[(int)age][i][ij];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        }
      
     /* Concatenates waves */        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       Tcode=ivector(1,100);          }
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        }
       ncodemax[1]=1;        /* This for computing probability of death (h=1 means
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);           computed over hstepm matrices product = hstepm*stepm months) 
                 as a weighted average of prlim.
    codtab=imatrix(1,100,1,10);        */
    h=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    m=pow(2,cptcoveff);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
    for(k=1;k<=cptcoveff; k++){        }    
      for(i=1; i <=(m/pow(2,k));i++){        /* end probability of death */
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1; j<= nlstate; j++) /* vareij */
            h++;          for(h=0; h<=nhstepm; h++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          }
          }  
        }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
    }        }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */      } /* End theta */
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }      for(h=0; h<=nhstepm; h++) /* veij */
       printf("\n");        for(j=1; j<=nlstate;j++)
       }          for(theta=1; theta <=npar; theta++)
       scanf("%d",i);*/            trgradg[h][j][theta]=gradg[h][theta][j];
      
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
        and prints on file fileres'p'. */        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
        
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(i=1;i<=nlstate;i++)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(j=1;j<=nlstate;j++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          vareij[i][j][(int)age] =0.;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
            for(h=0;h<=nhstepm;h++){
     /* For Powell, parameters are in a vector p[] starting at p[1]        for(k=0;k<=nhstepm;k++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
     if(mle==1){            for(j=1;j<=nlstate;j++)
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     }        }
          }
     /*--------- results files --------------*/    
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
    jk=1;      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          varppt[j][i]=doldmp[j][i];
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* end ppptj */
    for(i=1,jk=1; i <=nlstate; i++){      /*  x centered again */
      for(k=1; k <=(nlstate+ndeath); k++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        if (k != i)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
          {   
            printf("%d%d ",i,k);      if (popbased==1) {
            fprintf(ficlog,"%d%d ",i,k);        if(mobilav ==0){
            fprintf(ficres,"%1d%1d ",i,k);          for(i=1; i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){            prlim[i][i]=probs[(int)age][i][ij];
              printf("%f ",p[jk]);        }else{ /* mobilav */ 
              fprintf(ficlog,"%f ",p[jk]);          for(i=1; i<=nlstate;i++)
              fprintf(ficres,"%f ",p[jk]);            prlim[i][i]=mobaverage[(int)age][i][ij];
              jk++;        }
            }      }
            printf("\n");               
            fprintf(ficlog,"\n");      /* This for computing probability of death (h=1 means
            fprintf(ficres,"\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          }         as a weighted average of prlim.
      }      */
    }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
    if(mle==1){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
      /* Computing hessian and covariance matrix */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      ftolhess=ftol; /* Usually correct */      }    
      hesscov(matcov, p, npar, delti, ftolhess, func);      /* end probability of death */
    }  
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    printf("# Scales (for hessian or gradient estimation)\n");      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
    for(i=1,jk=1; i <=nlstate; i++){        for(i=1; i<=nlstate;i++){
      for(j=1; j <=nlstate+ndeath; j++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
        if (j!=i) {        }
          fprintf(ficres,"%1d%1d",i,j);      } 
          printf("%1d%1d",i,j);      fprintf(ficresprobmorprev,"\n");
          fprintf(ficlog,"%1d%1d",i,j);  
          for(k=1; k<=ncovmodel;k++){      fprintf(ficresvij,"%.0f ",age );
            printf(" %.5e",delti[jk]);      for(i=1; i<=nlstate;i++)
            fprintf(ficlog," %.5e",delti[jk]);        for(j=1; j<=nlstate;j++){
            fprintf(ficres," %.5e",delti[jk]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            jk++;        }
          }      fprintf(ficresvij,"\n");
          printf("\n");      free_matrix(gp,0,nhstepm,1,nlstate);
          fprintf(ficlog,"\n");      free_matrix(gm,0,nhstepm,1,nlstate);
          fprintf(ficres,"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    } /* End age */
        free_vector(gpp,nlstate+1,nlstate+ndeath);
    k=1;    free_vector(gmp,nlstate+1,nlstate+ndeath);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    if(mle==1)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    for(i=1;i<=npar;i++){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      /*  if (k>nlstate) k=1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
          i1=(i-1)/(ncovmodel*nlstate)+1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficres,"%3d",i);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      if(mle==1)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
        printf("%3d",i);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(ficlog,"%3d",i);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      for(j=1; j<=i;j++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
        fprintf(ficres," %.5e",matcov[i][j]);  */
        if(mle==1)  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
          printf(" %.5e",matcov[i][j]);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        fprintf(ficlog," %.5e",matcov[i][j]);  
      }    free_vector(xp,1,npar);
      fprintf(ficres,"\n");    free_matrix(doldm,1,nlstate,1,nlstate);
      if(mle==1)    free_matrix(dnewm,1,nlstate,1,npar);
        printf("\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fprintf(ficlog,"\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      k++;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        fclose(ficresprobmorprev);
    while((c=getc(ficpar))=='#' && c!= EOF){    fflush(ficgp);
      ungetc(c,ficpar);    fflush(fichtm); 
      fgets(line, MAXLINE, ficpar);  }  /* end varevsij */
      puts(line);  
      fputs(line,ficparo);  /************ Variance of prevlim ******************/
    }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
    ungetc(c,ficpar);  {
    estepm=0;    /* Variance of prevalence limit */
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    if (estepm==0 || estepm < stepm) estepm=stepm;  
    if (fage <= 2) {    double **dnewm,**doldm;
      bage = ageminpar;    int i, j, nhstepm, hstepm;
      fage = agemaxpar;    double *xp;
    }    double *gp, *gm;
        double **gradg, **trgradg;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double age,agelim;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int theta;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    
        pstamp(ficresvpl);
    while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
      fgets(line, MAXLINE, ficpar);    for(i=1; i<=nlstate;i++)
      puts(line);        fprintf(ficresvpl," %1d-%1d",i,i);
      fputs(line,ficparo);    fprintf(ficresvpl,"\n");
    }  
    ungetc(c,ficpar);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    doldm=matrix(1,nlstate,1,nlstate);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    hstepm=1*YEARM; /* Every year of age */
        hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
    while((c=getc(ficpar))=='#' && c!= EOF){    agelim = AGESUP;
      ungetc(c,ficpar);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      fgets(line, MAXLINE, ficpar);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      puts(line);      if (stepm >= YEARM) hstepm=1;
      fputs(line,ficparo);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    }      gradg=matrix(1,npar,1,nlstate);
    ungetc(c,ficpar);      gp=vector(1,nlstate);
        gm=vector(1,nlstate);
   
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      for(theta=1; theta <=npar; theta++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        }
   fprintf(ficparo,"pop_based=%d\n",popbased);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficres,"pop_based=%d\n",popbased);          for(i=1;i<=nlstate;i++)
            gp[i] = prlim[i][i];
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
     fgets(line, MAXLINE, ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   ungetc(c,ficpar);  
         for(i=1;i<=nlstate;i++)
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      } /* End theta */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
       trgradg =matrix(1,nlstate,1,npar);
   
 while((c=getc(ficpar))=='#' && c!= EOF){      for(j=1; j<=nlstate;j++)
     ungetc(c,ficpar);        for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);          trgradg[j][theta]=gradg[theta][j];
     puts(line);  
     fputs(line,ficparo);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] =0.;
   ungetc(c,ficpar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
       fprintf(ficresvpl,"%.0f ",age );
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 /*------------ gnuplot -------------*/      fprintf(ficresvpl,"\n");
   strcpy(optionfilegnuplot,optionfilefiname);      free_vector(gp,1,nlstate);
   strcat(optionfilegnuplot,".gp");      free_vector(gm,1,nlstate);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      free_matrix(gradg,1,npar,1,nlstate);
     printf("Problem with file %s",optionfilegnuplot);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    free_vector(xp,1,npar);
 /*--------- index.htm --------*/    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");  }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);  /************ Variance of one-step probabilities  ******************/
   }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    int i, j=0,  k1, l1, tj;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    int k2, l2, j1,  z1;
 \n    int k=0, l;
 Total number of observations=%d <br>\n    int first=1, first1, first2;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 <hr  size=\"2\" color=\"#EC5E5E\">    double **dnewm,**doldm;
  <ul><li><h4>Parameter files</h4>\n    double *xp;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    double *gp, *gm;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    double **gradg, **trgradg;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    double **mu;
   fclose(fichtm);    double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    int theta;
      char fileresprob[FILENAMELENGTH];
 /*------------ free_vector  -------------*/    char fileresprobcov[FILENAMELENGTH];
  chdir(path);    char fileresprobcor[FILENAMELENGTH];
      double ***varpij;
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    strcpy(fileresprob,"prob"); 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      strcat(fileresprob,fileres);
  free_ivector(num,1,n);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  free_vector(agedc,1,n);      printf("Problem with resultfile: %s\n", fileresprob);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  fclose(ficparo);    }
  fclose(ficres);    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   /*--------------- Prevalence limit --------------*/      printf("Problem with resultfile: %s\n", fileresprobcov);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   strcpy(filerespl,"pl");    }
   strcat(filerespl,fileres);    strcpy(fileresprobcor,"probcor"); 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    strcat(fileresprobcor,fileres);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      printf("Problem with resultfile: %s\n", fileresprobcor);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    }
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fprintf(ficrespl,"#Age ");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   fprintf(ficrespl,"\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   prlim=matrix(1,nlstate,1,nlstate);    pstamp(ficresprob);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprob,"# Age");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresprobcov);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresprobcov,"# Age");
   k=0;    pstamp(ficresprobcor);
   agebase=ageminpar;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   agelim=agemaxpar;    fprintf(ficresprobcor,"# Age");
   ftolpl=1.e-10;  
   i1=cptcoveff;  
   if (cptcovn < 1){i1=1;}    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         k=k+1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      }  
         fprintf(ficrespl,"\n#******");   /* fprintf(ficresprob,"\n");
         printf("\n#******");    fprintf(ficresprobcov,"\n");
         fprintf(ficlog,"\n#******");    fprintf(ficresprobcor,"\n");
         for(j=1;j<=cptcoveff;j++) {   */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    xp=vector(1,npar);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         fprintf(ficrespl,"******\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         printf("******\n");    first=1;
         fprintf(ficlog,"******\n");    fprintf(ficgp,"\n# Routine varprob");
            fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
         for (age=agebase; age<=agelim; age++){    fprintf(fichtm,"\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
           for(i=1; i<=nlstate;i++)    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
           fprintf(ficrespl," %.5f", prlim[i][i]);    file %s<br>\n",optionfilehtmcov);
           fprintf(ficrespl,"\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         }  and drawn. It helps understanding how is the covariance between two incidences.\
       }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   fclose(ficrespl);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   /*------------- h Pij x at various ages ------------*/  standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    cov[1]=1;
   }    /* tj=cptcoveff; */
   printf("Computing pij: result on file '%s' \n", filerespij);    tj = (int) pow(2,cptcoveff);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      j1=0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(j1=1; j1<=tj;j1++){
   /*if (stepm<=24) stepsize=2;*/      /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
   agelim=AGESUP;        if  (cptcovn>0) {
   hstepm=stepsize*YEARM; /* Every year of age */          fprintf(ficresprob, "\n#********** Variable "); 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
   /* hstepm=1;   aff par mois*/          fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   k=0;          fprintf(ficresprobcov, "**********\n#\n");
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficgp, "\n#********** Variable "); 
       k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficrespij,"\n#****** ");          fprintf(ficgp, "**********\n#\n");
         for(j=1;j<=cptcoveff;j++)          
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          
         fprintf(ficrespij,"******\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                  for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          fprintf(ficresprobcor, "**********\n#");    
         }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        
           oldm=oldms;savm=savms;        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficrespij,"# Age");        gp=vector(1,(nlstate)*(nlstate+ndeath));
           for(i=1; i<=nlstate;i++)        gm=vector(1,(nlstate)*(nlstate+ndeath));
             for(j=1; j<=nlstate+ndeath;j++)        for (age=bage; age<=fage; age ++){ 
               fprintf(ficrespij," %1d-%1d",i,j);          cov[2]=age;
           fprintf(ficrespij,"\n");          for (k=1; k<=cptcovn;k++) {
            for (h=0; h<=nhstepm; h++){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                                                           * 1  1 1 1 1
             for(i=1; i<=nlstate;i++)                                                           * 2  2 1 1 1
               for(j=1; j<=nlstate+ndeath;j++)                                                           * 3  1 2 1 1
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                                                           */
             fprintf(ficrespij,"\n");            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
              }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           fprintf(ficrespij,"\n");          for (k=1; k<=cptcovprod;k++)
         }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
   }      
           for(theta=1; theta <=npar; theta++){
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   fclose(ficrespij);            
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   /*---------- Forecasting ------------------*/            k=0;
   if((stepm == 1) && (strcmp(model,".")==0)){            for(i=1; i<= (nlstate); i++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              for(j=1; j<=(nlstate+ndeath);j++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);                k=k+1;
   }                gp[k]=pmmij[i][j];
   else{              }
     erreur=108;            }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*---------- Health expectancies and variances ------------*/            k=0;
             for(i=1; i<=(nlstate); i++){
   strcpy(filerest,"t");              for(j=1; j<=(nlstate+ndeath);j++){
   strcat(filerest,fileres);                k=k+1;
   if((ficrest=fopen(filerest,"w"))==NULL) {                gm[k]=pmmij[i][j];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            }
   }       
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
   strcpy(filerese,"e");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   strcat(filerese,fileres);            for(theta=1; theta <=npar; theta++)
   if((ficreseij=fopen(filerese,"w"))==NULL) {              trgradg[j][theta]=gradg[theta][j];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          pmij(pmmij,cov,ncovmodel,x,nlstate);
           
   strcpy(fileresv,"v");          k=0;
   strcat(fileresv,fileres);          for(i=1; i<=(nlstate); i++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            for(j=1; j<=(nlstate+ndeath);j++){
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              k=k+1;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);              mu[k][(int) age]=pmmij[i][j];
   }            }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          }
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   calagedate=-1;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              varpij[i][j][(int)age] = doldm[i][j];
   
   k=0;          /*printf("\n%d ",(int)age);
   for(cptcov=1;cptcov<=i1;cptcov++){            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       k=k+1;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficrest,"\n#****** ");            }*/
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprob,"\n%d ",(int)age);
       fprintf(ficrest,"******\n");          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
       fprintf(ficreseij,"******\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
       fprintf(ficresvij,"\n#****** ");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          i=0;
       fprintf(ficresvij,"******\n");          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              i++;
       oldm=oldms;savm=savms;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
       oldm=oldms;savm=savms;                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       if(popbased==1){              }
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);            }
        }          }/* end of loop for state */
         } /* end of loop for age */
          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficrest,"\n");        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
       epj=vector(1,nlstate+1);        /* Confidence intervalle of pij  */
       for(age=bage; age <=fage ;age++){        /*
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          fprintf(ficgp,"\nunset parametric;unset label");
         if (popbased==1) {          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           for(i=1; i<=nlstate;i++)          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             prlim[i][i]=probs[(int)age][i][k];          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
         }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                  fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         fprintf(ficrest," %4.0f",age);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/        first1=1;first2=2;
           }        for (k2=1; k2<=(nlstate);k2++){
           epj[nlstate+1] +=epj[j];          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         }            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
         for(i=1, vepp=0.;i <=nlstate;i++)            for (k1=1; k1<=(nlstate);k1++){
           for(j=1;j <=nlstate;j++)              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
             vepp += vareij[i][j][(int)age];                if(l1==k1) continue;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                i=(k1-1)*(nlstate+ndeath)+l1;
         for(j=1;j <=nlstate;j++){                if(i<=j) continue;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                for (age=bage; age<=fage; age ++){ 
         }                  if ((int)age %5==0){
         fprintf(ficrest,"\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
     }                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   }                    mu1=mu[i][(int) age]/stepm*YEARM ;
 free_matrix(mint,1,maxwav,1,n);                    mu2=mu[j][(int) age]/stepm*YEARM;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    c12=cv12/sqrt(v1*v2);
     free_vector(weight,1,n);                    /* Computing eigen value of matrix of covariance */
   fclose(ficreseij);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fclose(ficresvij);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fclose(ficrest);                    if ((lc2 <0) || (lc1 <0) ){
   fclose(ficpar);                      if(first2==1){
   free_vector(epj,1,nlstate+1);                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   /*------- Variance limit prevalence------*/                        }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
   strcpy(fileresvpl,"vpl");                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
   strcat(fileresvpl,fileres);                      /* lc2=fabs(lc2); */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                    /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
   k=0;                    v12=-v21;
   for(cptcov=1;cptcov<=i1;cptcov++){                    v22=v11;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    tnalp=v21/v11;
       k=k+1;                    if(first1==1){
       fprintf(ficresvpl,"\n#****** ");                      first1=0;
       for(j=1;j<=cptcoveff;j++)                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    }
       fprintf(ficresvpl,"******\n");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                          /*printf(fignu*/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
       oldm=oldms;savm=savms;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    if(first==1){
     }                      first=0;
  }                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   fclose(ficresvpl);                      fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   /*---------- End : free ----------------*/   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   free_matrix(matcov,1,npar,1,npar);                    }else{
   free_vector(delti,1,npar);                      first=0;
   free_matrix(agev,1,maxwav,1,imx);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(fichtm,"\n</body>");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fclose(fichtm);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fclose(ficgp);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }/* if first */
                   } /* age mod 5 */
   if(erreur >0){                } /* end loop age */
     printf("End of Imach with error or warning %d\n",erreur);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);                first=1;
   }else{              } /*l12 */
    printf("End of Imach\n");            } /* k12 */
    fprintf(ficlog,"End of Imach\n");          } /*l1 */
   }        }/* k1 */
   printf("See log file on %s\n",filelog);        /* } */ /* loop covariates */
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*printf("Total time was %d uSec.\n", total_usecs);*/    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   /*------ End -----------*/    free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
  end:    fclose(ficresprobcor);
 #ifdef windows    fflush(ficgp);
   /* chdir(pathcd);*/    fflush(fichtmcov);
 #endif  }
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  /******************* Printing html file ***********/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
  strcpy(plotcmd,GNUPLOTPROGRAM);                    int lastpass, int stepm, int weightopt, char model[],\
  strcat(plotcmd," ");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
  strcat(plotcmd,optionfilegnuplot);                    int popforecast, int estepm ,\
  system(plotcmd);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
 #ifdef windows    int jj1, k1, i1, cpt;
   while (z[0] != 'q') {  
     /* chdir(path); */     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     scanf("%s",z);  </ul>");
     if (z[0] == 'c') system("./imach");     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     else if (z[0] == 'e') system(optionfilehtm);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     else if (z[0] == 'g') system(plotcmd);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     else if (z[0] == 'q') exit(0);     fprintf(fichtm,"\
   }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
 #endif             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
 }     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   #include <stdint.h>
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit.\n"); fprintf(ficlog," 32-bit.\n");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit.\n"); fprintf(ficlog," 64-bit.\n");/* 64-bit */
   #else
      printf(" wtf-bit.\n"); fprintf(ficlog," wtf-bit.\n");/* wtf */
   #endif
   
   /* struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
             */
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
      /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.52  
changed lines
  Added in v.1.171


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>