version 1.18, 2002/02/20 17:17:09
|
version 1.233, 2016/08/23 07:40:50
|
Line 1
|
Line 1
|
|
/* $Id$ |
/*********************** Imach **************************************
|
$State$ |
This program computes Healthy Life Expectancies from cross-longitudinal
|
$Log$ |
data. Cross-longitudinal consist in a first survey ("cross") where
|
Revision 1.233 2016/08/23 07:40:50 brouard |
individuals from different ages are interviewed on their health status
|
Summary: not working |
or degree of disability. At least a second wave of interviews
|
|
("longitudinal") should measure each new individual health status.
|
Revision 1.232 2016/08/22 14:20:21 brouard |
Health expectancies are computed from the transistions observed between
|
Summary: not working |
waves and are computed for each degree of severity of disability (number
|
|
of life states). More degrees you consider, more time is necessary to
|
Revision 1.231 2016/08/22 07:17:15 brouard |
reach the Maximum Likelihood of the parameters involved in the model.
|
Summary: not working |
The simplest model is the multinomial logistic model where pij is
|
|
the probabibility to be observed in state j at the second wave conditional
|
Revision 1.230 2016/08/22 06:55:53 brouard |
to be observed in state i at the first wave. Therefore the model is:
|
Summary: Not working |
log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'
|
|
is a covariate. If you want to have a more complex model than "constant and
|
Revision 1.229 2016/07/23 09:45:53 brouard |
age", you should modify the program where the markup
|
Summary: Completing for func too |
*Covariates have to be included here again* invites you to do it.
|
|
More covariates you add, less is the speed of the convergence.
|
Revision 1.228 2016/07/22 17:45:30 brouard |
|
Summary: Fixing some arrays, still debugging |
The advantage that this computer programme claims, comes from that if the
|
|
delay between waves is not identical for each individual, or if some
|
Revision 1.226 2016/07/12 18:42:34 brouard |
individual missed an interview, the information is not rounded or lost, but
|
Summary: temp |
taken into account using an interpolation or extrapolation.
|
|
hPijx is the probability to be
|
Revision 1.225 2016/07/12 08:40:03 brouard |
observed in state i at age x+h conditional to the observed state i at age
|
Summary: saving but not running |
x. The delay 'h' can be split into an exact number (nh*stepm) of
|
|
unobserved intermediate states. This elementary transition (by month or
|
Revision 1.224 2016/07/01 13:16:01 brouard |
quarter trimester, semester or year) is model as a multinomial logistic.
|
Summary: Fixes |
The hPx matrix is simply the matrix product of nh*stepm elementary matrices
|
|
and the contribution of each individual to the likelihood is simply hPijx.
|
Revision 1.223 2016/02/19 09:23:35 brouard |
|
Summary: temporary |
Also this programme outputs the covariance matrix of the parameters but also
|
|
of the life expectancies. It also computes the prevalence limits.
|
Revision 1.222 2016/02/17 08:14:50 brouard |
|
Summary: Probably last 0.98 stable version 0.98r6 |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
|
|
Institut national d'études démographiques, Paris.
|
Revision 1.221 2016/02/15 23:35:36 brouard |
This software have been partly granted by Euro-REVES, a concerted action
|
Summary: minor bug |
from the European Union.
|
|
It is copyrighted identically to a GNU software product, ie programme and
|
Revision 1.219 2016/02/15 00:48:12 brouard |
software can be distributed freely for non commercial use. Latest version
|
*** empty log message *** |
can be accessed at http://euroreves.ined.fr/imach .
|
|
**********************************************************************/
|
Revision 1.218 2016/02/12 11:29:23 brouard |
|
Summary: 0.99 Back projections |
#include <math.h>
|
|
#include <stdio.h>
|
Revision 1.217 2015/12/23 17:18:31 brouard |
#include <stdlib.h>
|
Summary: Experimental backcast |
#include <unistd.h>
|
|
|
Revision 1.216 2015/12/18 17:32:11 brouard |
#define MAXLINE 256
|
Summary: 0.98r4 Warning and status=-2 |
#define FILENAMELENGTH 80
|
|
/*#define DEBUG*/
|
Version 0.98r4 is now: |
#define windows
|
- displaying an error when status is -1, date of interview unknown and date of death known; |
#define GLOCK_ERROR_NOPATH -1 /* empty path */
|
- permitting a status -2 when the vital status is unknown at a known date of right truncation. |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */
|
Older changes concerning s=-2, dating from 2005 have been supersed. |
|
|
#define MAXPARM 30 /* Maximum number of parameters for the optimization */
|
Revision 1.215 2015/12/16 08:52:24 brouard |
#define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
|
Summary: 0.98r4 working |
|
|
#define NINTERVMAX 8
|
Revision 1.214 2015/12/16 06:57:54 brouard |
#define NLSTATEMAX 8 /* Maximum number of live states (for func) */
|
Summary: temporary not working |
#define NDEATHMAX 8 /* Maximum number of dead states (for func) */
|
|
#define NCOVMAX 8 /* Maximum number of covariates */
|
Revision 1.213 2015/12/11 18:22:17 brouard |
#define MAXN 20000
|
Summary: 0.98r4 |
#define YEARM 12. /* Number of months per year */
|
|
#define AGESUP 130
|
Revision 1.212 2015/11/21 12:47:24 brouard |
#define AGEBASE 40
|
Summary: minor typo |
|
|
|
Revision 1.211 2015/11/21 12:41:11 brouard |
int nvar;
|
Summary: 0.98r3 with some graph of projected cross-sectional |
int cptcovn, cptcovage=0, cptcoveff=0,cptcov;
|
|
int npar=NPARMAX;
|
Author: Nicolas Brouard |
int nlstate=2; /* Number of live states */
|
|
int ndeath=1; /* Number of dead states */
|
Revision 1.210 2015/11/18 17:41:20 brouard |
int ncovmodel, ncov; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
|
Summary: Start working on projected prevalences |
int popbased=0;
|
|
|
Revision 1.209 2015/11/17 22:12:03 brouard |
int *wav; /* Number of waves for this individuual 0 is possible */
|
Summary: Adding ftolpl parameter |
int maxwav; /* Maxim number of waves */
|
Author: N Brouard |
int jmin, jmax; /* min, max spacing between 2 waves */
|
|
int mle, weightopt;
|
We had difficulties to get smoothed confidence intervals. It was due |
int **mw; /* mw[mi][i] is number of the mi wave for this individual */
|
to the period prevalence which wasn't computed accurately. The inner |
int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
|
parameter ftolpl is now an outer parameter of the .imach parameter |
double jmean; /* Mean space between 2 waves */
|
file after estepm. If ftolpl is small 1.e-4 and estepm too, |
double **oldm, **newm, **savm; /* Working pointers to matrices */
|
computation are long. |
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
|
|
FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf;
|
Revision 1.208 2015/11/17 14:31:57 brouard |
FILE *ficgp, *fichtm,*ficresprob,*ficpop;
|
Summary: temporary |
FILE *ficreseij;
|
|
char filerese[FILENAMELENGTH];
|
Revision 1.207 2015/10/27 17:36:57 brouard |
FILE *ficresvij;
|
*** empty log message *** |
char fileresv[FILENAMELENGTH];
|
|
FILE *ficresvpl;
|
Revision 1.206 2015/10/24 07:14:11 brouard |
char fileresvpl[FILENAMELENGTH];
|
*** empty log message *** |
|
|
#define NR_END 1
|
Revision 1.205 2015/10/23 15:50:53 brouard |
#define FREE_ARG char*
|
Summary: 0.98r3 some clarification for graphs on likelihood contributions |
#define FTOL 1.0e-10
|
|
|
Revision 1.204 2015/10/01 16:20:26 brouard |
#define NRANSI
|
Summary: Some new graphs of contribution to likelihood |
#define ITMAX 200
|
|
|
Revision 1.203 2015/09/30 17:45:14 brouard |
#define TOL 2.0e-4
|
Summary: looking at better estimation of the hessian |
|
|
#define CGOLD 0.3819660
|
Also a better criteria for convergence to the period prevalence And |
#define ZEPS 1.0e-10
|
therefore adding the number of years needed to converge. (The |
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
|
prevalence in any alive state shold sum to one |
|
|
#define GOLD 1.618034
|
Revision 1.202 2015/09/22 19:45:16 brouard |
#define GLIMIT 100.0
|
Summary: Adding some overall graph on contribution to likelihood. Might change |
#define TINY 1.0e-20
|
|
|
Revision 1.201 2015/09/15 17:34:58 brouard |
static double maxarg1,maxarg2;
|
Summary: 0.98r0 |
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
|
|
#define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
|
- Some new graphs like suvival functions |
|
- Some bugs fixed like model=1+age+V2. |
#define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
|
|
#define rint(a) floor(a+0.5)
|
Revision 1.200 2015/09/09 16:53:55 brouard |
|
Summary: Big bug thanks to Flavia |
static double sqrarg;
|
|
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
|
Even model=1+age+V2. did not work anymore |
#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
|
|
|
Revision 1.199 2015/09/07 14:09:23 brouard |
int imx;
|
Summary: 0.98q6 changing default small png format for graph to vectorized svg. |
int stepm;
|
|
/* Stepm, step in month: minimum step interpolation*/
|
Revision 1.198 2015/09/03 07:14:39 brouard |
|
Summary: 0.98q5 Flavia |
int m,nb;
|
|
int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
|
Revision 1.197 2015/09/01 18:24:39 brouard |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
|
*** empty log message *** |
double **pmmij, ***probs, ***mobaverage;
|
|
|
Revision 1.196 2015/08/18 23:17:52 brouard |
double *weight;
|
Summary: 0.98q5 |
int **s; /* Status */
|
|
double *agedc, **covar, idx;
|
Revision 1.195 2015/08/18 16:28:39 brouard |
int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
|
Summary: Adding a hack for testing purpose |
|
|
double ftol=FTOL; /* Tolerance for computing Max Likelihood */
|
After reading the title, ftol and model lines, if the comment line has |
double ftolhess; /* Tolerance for computing hessian */
|
a q, starting with #q, the answer at the end of the run is quit. It |
|
permits to run test files in batch with ctest. The former workaround was |
/**************** split *************************/
|
$ echo q | imach foo.imach |
static int split( char *path, char *dirc, char *name )
|
|
{
|
Revision 1.194 2015/08/18 13:32:00 brouard |
char *s; /* pointer */
|
Summary: Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line. |
int l1, l2; /* length counters */
|
|
|
Revision 1.193 2015/08/04 07:17:42 brouard |
l1 = strlen( path ); /* length of path */
|
Summary: 0.98q4 |
if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
|
|
s = strrchr( path, '\\' ); /* find last / */
|
Revision 1.192 2015/07/16 16:49:02 brouard |
if ( s == NULL ) { /* no directory, so use current */
|
Summary: Fixing some outputs |
#if defined(__bsd__) /* get current working directory */
|
|
extern char *getwd( );
|
Revision 1.191 2015/07/14 10:00:33 brouard |
|
Summary: Some fixes |
if ( getwd( dirc ) == NULL ) {
|
|
#else
|
Revision 1.190 2015/05/05 08:51:13 brouard |
extern char *getcwd( );
|
Summary: Adding digits in output parameters (7 digits instead of 6) |
|
|
if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
|
Fix 1+age+. |
#endif
|
|
return( GLOCK_ERROR_GETCWD );
|
Revision 1.189 2015/04/30 14:45:16 brouard |
}
|
Summary: 0.98q2 |
strcpy( name, path ); /* we've got it */
|
|
} else { /* strip direcotry from path */
|
Revision 1.188 2015/04/30 08:27:53 brouard |
s++; /* after this, the filename */
|
*** empty log message *** |
l2 = strlen( s ); /* length of filename */
|
|
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
|
Revision 1.187 2015/04/29 09:11:15 brouard |
strcpy( name, s ); /* save file name */
|
*** empty log message *** |
strncpy( dirc, path, l1 - l2 ); /* now the directory */
|
|
dirc[l1-l2] = 0; /* add zero */
|
Revision 1.186 2015/04/23 12:01:52 brouard |
}
|
Summary: V1*age is working now, version 0.98q1 |
l1 = strlen( dirc ); /* length of directory */
|
|
if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
|
Some codes had been disabled in order to simplify and Vn*age was |
return( 0 ); /* we're done */
|
working in the optimization phase, ie, giving correct MLE parameters, |
}
|
but, as usual, outputs were not correct and program core dumped. |
|
|
|
Revision 1.185 2015/03/11 13:26:42 brouard |
/******************************************/
|
Summary: Inclusion of compile and links command line for Intel Compiler |
|
|
void replace(char *s, char*t)
|
Revision 1.184 2015/03/11 11:52:39 brouard |
{
|
Summary: Back from Windows 8. Intel Compiler |
int i;
|
|
int lg=20;
|
Revision 1.183 2015/03/10 20:34:32 brouard |
i=0;
|
Summary: 0.98q0, trying with directest, mnbrak fixed |
lg=strlen(t);
|
|
for(i=0; i<= lg; i++) {
|
We use directest instead of original Powell test; probably no |
(s[i] = t[i]);
|
incidence on the results, but better justifications; |
if (t[i]== '\\') s[i]='/';
|
We fixed Numerical Recipes mnbrak routine which was wrong and gave |
}
|
wrong results. |
}
|
|
|
Revision 1.182 2015/02/12 08:19:57 brouard |
int nbocc(char *s, char occ)
|
Summary: Trying to keep directest which seems simpler and more general |
{
|
Author: Nicolas Brouard |
int i,j=0;
|
|
int lg=20;
|
Revision 1.181 2015/02/11 23:22:24 brouard |
i=0;
|
Summary: Comments on Powell added |
lg=strlen(s);
|
|
for(i=0; i<= lg; i++) {
|
Author: |
if (s[i] == occ ) j++;
|
|
}
|
Revision 1.180 2015/02/11 17:33:45 brouard |
return j;
|
Summary: Finishing move from main to function (hpijx and prevalence_limit) |
}
|
|
|
Revision 1.179 2015/01/04 09:57:06 brouard |
void cutv(char *u,char *v, char*t, char occ)
|
Summary: back to OS/X |
{
|
|
int i,lg,j,p=0;
|
Revision 1.178 2015/01/04 09:35:48 brouard |
i=0;
|
*** empty log message *** |
for(j=0; j<=strlen(t)-1; j++) {
|
|
if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
|
Revision 1.177 2015/01/03 18:40:56 brouard |
}
|
Summary: Still testing ilc32 on OSX |
|
|
lg=strlen(t);
|
Revision 1.176 2015/01/03 16:45:04 brouard |
for(j=0; j<p; j++) {
|
*** empty log message *** |
(u[j] = t[j]);
|
|
}
|
Revision 1.175 2015/01/03 16:33:42 brouard |
u[p]='\0';
|
*** empty log message *** |
|
|
for(j=0; j<= lg; j++) {
|
Revision 1.174 2015/01/03 16:15:49 brouard |
if (j>=(p+1))(v[j-p-1] = t[j]);
|
Summary: Still in cross-compilation |
}
|
|
}
|
Revision 1.173 2015/01/03 12:06:26 brouard |
|
Summary: trying to detect cross-compilation |
/********************** nrerror ********************/
|
|
|
Revision 1.172 2014/12/27 12:07:47 brouard |
void nrerror(char error_text[])
|
Summary: Back from Visual Studio and Intel, options for compiling for Windows XP |
{
|
|
fprintf(stderr,"ERREUR ...\n");
|
Revision 1.171 2014/12/23 13:26:59 brouard |
fprintf(stderr,"%s\n",error_text);
|
Summary: Back from Visual C |
exit(1);
|
|
}
|
Still problem with utsname.h on Windows |
/*********************** vector *******************/
|
|
double *vector(int nl, int nh)
|
Revision 1.170 2014/12/23 11:17:12 brouard |
{
|
Summary: Cleaning some \%% back to %% |
double *v;
|
|
v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
|
The escape was mandatory for a specific compiler (which one?), but too many warnings. |
if (!v) nrerror("allocation failure in vector");
|
|
return v-nl+NR_END;
|
Revision 1.169 2014/12/22 23:08:31 brouard |
}
|
Summary: 0.98p |
|
|
/************************ free vector ******************/
|
Outputs some informations on compiler used, OS etc. Testing on different platforms. |
void free_vector(double*v, int nl, int nh)
|
|
{
|
Revision 1.168 2014/12/22 15:17:42 brouard |
free((FREE_ARG)(v+nl-NR_END));
|
Summary: update |
}
|
|
|
Revision 1.167 2014/12/22 13:50:56 brouard |
/************************ivector *******************************/
|
Summary: Testing uname and compiler version and if compiled 32 or 64 |
int *ivector(long nl,long nh)
|
|
{
|
Testing on Linux 64 |
int *v;
|
|
v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
|
Revision 1.166 2014/12/22 11:40:47 brouard |
if (!v) nrerror("allocation failure in ivector");
|
*** empty log message *** |
return v-nl+NR_END;
|
|
}
|
Revision 1.165 2014/12/16 11:20:36 brouard |
|
Summary: After compiling on Visual C |
/******************free ivector **************************/
|
|
void free_ivector(int *v, long nl, long nh)
|
* imach.c (Module): Merging 1.61 to 1.162 |
{
|
|
free((FREE_ARG)(v+nl-NR_END));
|
Revision 1.164 2014/12/16 10:52:11 brouard |
}
|
Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn |
|
|
/******************* imatrix *******************************/
|
* imach.c (Module): Merging 1.61 to 1.162 |
int **imatrix(long nrl, long nrh, long ncl, long nch)
|
|
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
|
Revision 1.163 2014/12/16 10:30:11 brouard |
{
|
* imach.c (Module): Merging 1.61 to 1.162 |
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
|
|
int **m;
|
Revision 1.162 2014/09/25 11:43:39 brouard |
|
Summary: temporary backup 0.99! |
/* allocate pointers to rows */
|
|
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
|
Revision 1.1 2014/09/16 11:06:58 brouard |
if (!m) nrerror("allocation failure 1 in matrix()");
|
Summary: With some code (wrong) for nlopt |
m += NR_END;
|
|
m -= nrl;
|
Author: |
|
|
|
Revision 1.161 2014/09/15 20:41:41 brouard |
/* allocate rows and set pointers to them */
|
Summary: Problem with macro SQR on Intel compiler |
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
|
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
|
Revision 1.160 2014/09/02 09:24:05 brouard |
m[nrl] += NR_END;
|
*** empty log message *** |
m[nrl] -= ncl;
|
|
|
Revision 1.159 2014/09/01 10:34:10 brouard |
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
|
Summary: WIN32 |
|
Author: Brouard |
/* return pointer to array of pointers to rows */
|
|
return m;
|
Revision 1.158 2014/08/27 17:11:51 brouard |
}
|
*** empty log message *** |
|
|
/****************** free_imatrix *************************/
|
Revision 1.157 2014/08/27 16:26:55 brouard |
void free_imatrix(m,nrl,nrh,ncl,nch)
|
Summary: Preparing windows Visual studio version |
int **m;
|
Author: Brouard |
long nch,ncl,nrh,nrl;
|
|
/* free an int matrix allocated by imatrix() */
|
In order to compile on Visual studio, time.h is now correct and time_t |
{
|
and tm struct should be used. difftime should be used but sometimes I |
free((FREE_ARG) (m[nrl]+ncl-NR_END));
|
just make the differences in raw time format (time(&now). |
free((FREE_ARG) (m+nrl-NR_END));
|
Trying to suppress #ifdef LINUX |
}
|
Add xdg-open for __linux in order to open default browser. |
|
|
/******************* matrix *******************************/
|
Revision 1.156 2014/08/25 20:10:10 brouard |
double **matrix(long nrl, long nrh, long ncl, long nch)
|
*** empty log message *** |
{
|
|
long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
|
Revision 1.155 2014/08/25 18:32:34 brouard |
double **m;
|
Summary: New compile, minor changes |
|
Author: Brouard |
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
|
|
if (!m) nrerror("allocation failure 1 in matrix()");
|
Revision 1.154 2014/06/20 17:32:08 brouard |
m += NR_END;
|
Summary: Outputs now all graphs of convergence to period prevalence |
m -= nrl;
|
|
|
Revision 1.153 2014/06/20 16:45:46 brouard |
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
|
Summary: If 3 live state, convergence to period prevalence on same graph |
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
|
Author: Brouard |
m[nrl] += NR_END;
|
|
m[nrl] -= ncl;
|
Revision 1.152 2014/06/18 17:54:09 brouard |
|
Summary: open browser, use gnuplot on same dir than imach if not found in the path |
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
|
|
return m;
|
Revision 1.151 2014/06/18 16:43:30 brouard |
}
|
*** empty log message *** |
|
|
/*************************free matrix ************************/
|
Revision 1.150 2014/06/18 16:42:35 brouard |
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
|
Summary: If gnuplot is not in the path try on same directory than imach binary (OSX) |
{
|
Author: brouard |
free((FREE_ARG)(m[nrl]+ncl-NR_END));
|
|
free((FREE_ARG)(m+nrl-NR_END));
|
Revision 1.149 2014/06/18 15:51:14 brouard |
}
|
Summary: Some fixes in parameter files errors |
|
Author: Nicolas Brouard |
/******************* ma3x *******************************/
|
|
double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
|
Revision 1.148 2014/06/17 17:38:48 brouard |
{
|
Summary: Nothing new |
long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
|
Author: Brouard |
double ***m;
|
|
|
Just a new packaging for OS/X version 0.98nS |
m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
|
|
if (!m) nrerror("allocation failure 1 in matrix()");
|
Revision 1.147 2014/06/16 10:33:11 brouard |
m += NR_END;
|
*** empty log message *** |
m -= nrl;
|
|
|
Revision 1.146 2014/06/16 10:20:28 brouard |
m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
|
Summary: Merge |
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
|
Author: Brouard |
m[nrl] += NR_END;
|
|
m[nrl] -= ncl;
|
Merge, before building revised version. |
|
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
|
Revision 1.145 2014/06/10 21:23:15 brouard |
|
Summary: Debugging with valgrind |
m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
|
Author: Nicolas Brouard |
if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
|
|
m[nrl][ncl] += NR_END;
|
Lot of changes in order to output the results with some covariates |
m[nrl][ncl] -= nll;
|
After the Edimburgh REVES conference 2014, it seems mandatory to |
for (j=ncl+1; j<=nch; j++)
|
improve the code. |
m[nrl][j]=m[nrl][j-1]+nlay;
|
No more memory valgrind error but a lot has to be done in order to |
|
continue the work of splitting the code into subroutines. |
for (i=nrl+1; i<=nrh; i++) {
|
Also, decodemodel has been improved. Tricode is still not |
m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
|
optimal. nbcode should be improved. Documentation has been added in |
for (j=ncl+1; j<=nch; j++)
|
the source code. |
m[i][j]=m[i][j-1]+nlay;
|
|
}
|
Revision 1.143 2014/01/26 09:45:38 brouard |
return m;
|
Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising |
}
|
|
|
* imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
/*************************free ma3x ************************/
|
(Module): Version 0.98nR Running ok, but output format still only works for three covariates. |
void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
|
|
{
|
Revision 1.142 2014/01/26 03:57:36 brouard |
free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
|
Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2 |
free((FREE_ARG)(m[nrl]+ncl-NR_END));
|
|
free((FREE_ARG)(m+nrl-NR_END));
|
* imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
}
|
|
|
Revision 1.141 2014/01/26 02:42:01 brouard |
/***************** f1dim *************************/
|
* imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... |
extern int ncom;
|
|
extern double *pcom,*xicom;
|
Revision 1.140 2011/09/02 10:37:54 brouard |
extern double (*nrfunc)(double []);
|
Summary: times.h is ok with mingw32 now. |
|
|
double f1dim(double x)
|
Revision 1.139 2010/06/14 07:50:17 brouard |
{
|
After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree. |
int j;
|
I remember having already fixed agemin agemax which are pointers now but not cvs saved. |
double f;
|
|
double *xt;
|
Revision 1.138 2010/04/30 18:19:40 brouard |
|
*** empty log message *** |
xt=vector(1,ncom);
|
|
for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
|
Revision 1.137 2010/04/29 18:11:38 brouard |
f=(*nrfunc)(xt);
|
(Module): Checking covariates for more complex models |
free_vector(xt,1,ncom);
|
than V1+V2. A lot of change to be done. Unstable. |
return f;
|
|
}
|
Revision 1.136 2010/04/26 20:30:53 brouard |
|
(Module): merging some libgsl code. Fixing computation |
/*****************brent *************************/
|
of likelione (using inter/intrapolation if mle = 0) in order to |
double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
|
get same likelihood as if mle=1. |
{
|
Some cleaning of code and comments added. |
int iter;
|
|
double a,b,d,etemp;
|
Revision 1.135 2009/10/29 15:33:14 brouard |
double fu,fv,fw,fx;
|
(Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. |
double ftemp;
|
|
double p,q,r,tol1,tol2,u,v,w,x,xm;
|
Revision 1.134 2009/10/29 13:18:53 brouard |
double e=0.0;
|
(Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. |
|
|
a=(ax < cx ? ax : cx);
|
Revision 1.133 2009/07/06 10:21:25 brouard |
b=(ax > cx ? ax : cx);
|
just nforces |
x=w=v=bx;
|
|
fw=fv=fx=(*f)(x);
|
Revision 1.132 2009/07/06 08:22:05 brouard |
for (iter=1;iter<=ITMAX;iter++) {
|
Many tings |
xm=0.5*(a+b);
|
|
tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
|
Revision 1.131 2009/06/20 16:22:47 brouard |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
|
Some dimensions resccaled |
printf(".");fflush(stdout);
|
|
#ifdef DEBUG
|
Revision 1.130 2009/05/26 06:44:34 brouard |
printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
|
(Module): Max Covariate is now set to 20 instead of 8. A |
/* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
|
lot of cleaning with variables initialized to 0. Trying to make |
#endif
|
V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better. |
if (fabs(x-xm) <= (tol2-0.5*(b-a))){
|
|
*xmin=x;
|
Revision 1.129 2007/08/31 13:49:27 lievre |
return fx;
|
Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting |
}
|
|
ftemp=fu;
|
Revision 1.128 2006/06/30 13:02:05 brouard |
if (fabs(e) > tol1) {
|
(Module): Clarifications on computing e.j |
r=(x-w)*(fx-fv);
|
|
q=(x-v)*(fx-fw);
|
Revision 1.127 2006/04/28 18:11:50 brouard |
p=(x-v)*q-(x-w)*r;
|
(Module): Yes the sum of survivors was wrong since |
q=2.0*(q-r);
|
imach-114 because nhstepm was no more computed in the age |
if (q > 0.0) p = -p;
|
loop. Now we define nhstepma in the age loop. |
q=fabs(q);
|
(Module): In order to speed up (in case of numerous covariates) we |
etemp=e;
|
compute health expectancies (without variances) in a first step |
e=d;
|
and then all the health expectancies with variances or standard |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
|
deviation (needs data from the Hessian matrices) which slows the |
d=CGOLD*(e=(x >= xm ? a-x : b-x));
|
computation. |
else {
|
In the future we should be able to stop the program is only health |
d=p/q;
|
expectancies and graph are needed without standard deviations. |
u=x+d;
|
|
if (u-a < tol2 || b-u < tol2)
|
Revision 1.126 2006/04/28 17:23:28 brouard |
d=SIGN(tol1,xm-x);
|
(Module): Yes the sum of survivors was wrong since |
}
|
imach-114 because nhstepm was no more computed in the age |
} else {
|
loop. Now we define nhstepma in the age loop. |
d=CGOLD*(e=(x >= xm ? a-x : b-x));
|
Version 0.98h |
}
|
|
u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
|
Revision 1.125 2006/04/04 15:20:31 lievre |
fu=(*f)(u);
|
Errors in calculation of health expectancies. Age was not initialized. |
if (fu <= fx) {
|
Forecasting file added. |
if (u >= x) a=x; else b=x;
|
|
SHFT(v,w,x,u)
|
Revision 1.124 2006/03/22 17:13:53 lievre |
SHFT(fv,fw,fx,fu)
|
Parameters are printed with %lf instead of %f (more numbers after the comma). |
} else {
|
The log-likelihood is printed in the log file |
if (u < x) a=u; else b=u;
|
|
if (fu <= fw || w == x) {
|
Revision 1.123 2006/03/20 10:52:43 brouard |
v=w;
|
* imach.c (Module): <title> changed, corresponds to .htm file |
w=u;
|
name. <head> headers where missing. |
fv=fw;
|
|
fw=fu;
|
* imach.c (Module): Weights can have a decimal point as for |
} else if (fu <= fv || v == x || v == w) {
|
English (a comma might work with a correct LC_NUMERIC environment, |
v=u;
|
otherwise the weight is truncated). |
fv=fu;
|
Modification of warning when the covariates values are not 0 or |
}
|
1. |
}
|
Version 0.98g |
}
|
|
nrerror("Too many iterations in brent");
|
Revision 1.122 2006/03/20 09:45:41 brouard |
*xmin=x;
|
(Module): Weights can have a decimal point as for |
return fx;
|
English (a comma might work with a correct LC_NUMERIC environment, |
}
|
otherwise the weight is truncated). |
|
Modification of warning when the covariates values are not 0 or |
/****************** mnbrak ***********************/
|
1. |
|
Version 0.98g |
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
|
|
double (*func)(double))
|
Revision 1.121 2006/03/16 17:45:01 lievre |
{
|
* imach.c (Module): Comments concerning covariates added |
double ulim,u,r,q, dum;
|
|
double fu;
|
* imach.c (Module): refinements in the computation of lli if |
|
status=-2 in order to have more reliable computation if stepm is |
*fa=(*func)(*ax);
|
not 1 month. Version 0.98f |
*fb=(*func)(*bx);
|
|
if (*fb > *fa) {
|
Revision 1.120 2006/03/16 15:10:38 lievre |
SHFT(dum,*ax,*bx,dum)
|
(Module): refinements in the computation of lli if |
SHFT(dum,*fb,*fa,dum)
|
status=-2 in order to have more reliable computation if stepm is |
}
|
not 1 month. Version 0.98f |
*cx=(*bx)+GOLD*(*bx-*ax);
|
|
*fc=(*func)(*cx);
|
Revision 1.119 2006/03/15 17:42:26 brouard |
while (*fb > *fc) {
|
(Module): Bug if status = -2, the loglikelihood was |
r=(*bx-*ax)*(*fb-*fc);
|
computed as likelihood omitting the logarithm. Version O.98e |
q=(*bx-*cx)*(*fb-*fa);
|
|
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
|
Revision 1.118 2006/03/14 18:20:07 brouard |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
|
(Module): varevsij Comments added explaining the second |
ulim=(*bx)+GLIMIT*(*cx-*bx);
|
table of variances if popbased=1 . |
if ((*bx-u)*(u-*cx) > 0.0) {
|
(Module): Covariances of eij, ekl added, graphs fixed, new html link. |
fu=(*func)(u);
|
(Module): Function pstamp added |
} else if ((*cx-u)*(u-ulim) > 0.0) {
|
(Module): Version 0.98d |
fu=(*func)(u);
|
|
if (fu < *fc) {
|
Revision 1.117 2006/03/14 17:16:22 brouard |
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
|
(Module): varevsij Comments added explaining the second |
SHFT(*fb,*fc,fu,(*func)(u))
|
table of variances if popbased=1 . |
}
|
(Module): Covariances of eij, ekl added, graphs fixed, new html link. |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) {
|
(Module): Function pstamp added |
u=ulim;
|
(Module): Version 0.98d |
fu=(*func)(u);
|
|
} else {
|
Revision 1.116 2006/03/06 10:29:27 brouard |
u=(*cx)+GOLD*(*cx-*bx);
|
(Module): Variance-covariance wrong links and |
fu=(*func)(u);
|
varian-covariance of ej. is needed (Saito). |
}
|
|
SHFT(*ax,*bx,*cx,u)
|
Revision 1.115 2006/02/27 12:17:45 brouard |
SHFT(*fa,*fb,*fc,fu)
|
(Module): One freematrix added in mlikeli! 0.98c |
}
|
|
}
|
Revision 1.114 2006/02/26 12:57:58 brouard |
|
(Module): Some improvements in processing parameter |
/*************** linmin ************************/
|
filename with strsep. |
|
|
int ncom;
|
Revision 1.113 2006/02/24 14:20:24 brouard |
double *pcom,*xicom;
|
(Module): Memory leaks checks with valgrind and: |
double (*nrfunc)(double []);
|
datafile was not closed, some imatrix were not freed and on matrix |
|
allocation too. |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
|
|
{
|
Revision 1.112 2006/01/30 09:55:26 brouard |
double brent(double ax, double bx, double cx,
|
(Module): Back to gnuplot.exe instead of wgnuplot.exe |
double (*f)(double), double tol, double *xmin);
|
|
double f1dim(double x);
|
Revision 1.111 2006/01/25 20:38:18 brouard |
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
|
(Module): Lots of cleaning and bugs added (Gompertz) |
double *fc, double (*func)(double));
|
(Module): Comments can be added in data file. Missing date values |
int j;
|
can be a simple dot '.'. |
double xx,xmin,bx,ax;
|
|
double fx,fb,fa;
|
Revision 1.110 2006/01/25 00:51:50 brouard |
|
(Module): Lots of cleaning and bugs added (Gompertz) |
ncom=n;
|
|
pcom=vector(1,n);
|
Revision 1.109 2006/01/24 19:37:15 brouard |
xicom=vector(1,n);
|
(Module): Comments (lines starting with a #) are allowed in data. |
nrfunc=func;
|
|
for (j=1;j<=n;j++) {
|
Revision 1.108 2006/01/19 18:05:42 lievre |
pcom[j]=p[j];
|
Gnuplot problem appeared... |
xicom[j]=xi[j];
|
To be fixed |
}
|
|
ax=0.0;
|
Revision 1.107 2006/01/19 16:20:37 brouard |
xx=1.0;
|
Test existence of gnuplot in imach path |
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
|
|
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
|
Revision 1.106 2006/01/19 13:24:36 brouard |
#ifdef DEBUG
|
Some cleaning and links added in html output |
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
|
|
#endif
|
Revision 1.105 2006/01/05 20:23:19 lievre |
for (j=1;j<=n;j++) {
|
*** empty log message *** |
xi[j] *= xmin;
|
|
p[j] += xi[j];
|
Revision 1.104 2005/09/30 16:11:43 lievre |
}
|
(Module): sump fixed, loop imx fixed, and simplifications. |
free_vector(xicom,1,n);
|
(Module): If the status is missing at the last wave but we know |
free_vector(pcom,1,n);
|
that the person is alive, then we can code his/her status as -2 |
}
|
(instead of missing=-1 in earlier versions) and his/her |
|
contributions to the likelihood is 1 - Prob of dying from last |
/*************** powell ************************/
|
health status (= 1-p13= p11+p12 in the easiest case of somebody in |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
|
the healthy state at last known wave). Version is 0.98 |
double (*func)(double []))
|
|
{
|
Revision 1.103 2005/09/30 15:54:49 lievre |
void linmin(double p[], double xi[], int n, double *fret,
|
(Module): sump fixed, loop imx fixed, and simplifications. |
double (*func)(double []));
|
|
int i,ibig,j;
|
Revision 1.102 2004/09/15 17:31:30 brouard |
double del,t,*pt,*ptt,*xit;
|
Add the possibility to read data file including tab characters. |
double fp,fptt;
|
|
double *xits;
|
Revision 1.101 2004/09/15 10:38:38 brouard |
pt=vector(1,n);
|
Fix on curr_time |
ptt=vector(1,n);
|
|
xit=vector(1,n);
|
Revision 1.100 2004/07/12 18:29:06 brouard |
xits=vector(1,n);
|
Add version for Mac OS X. Just define UNIX in Makefile |
*fret=(*func)(p);
|
|
for (j=1;j<=n;j++) pt[j]=p[j];
|
Revision 1.99 2004/06/05 08:57:40 brouard |
for (*iter=1;;++(*iter)) {
|
*** empty log message *** |
fp=(*fret);
|
|
ibig=0;
|
Revision 1.98 2004/05/16 15:05:56 brouard |
del=0.0;
|
New version 0.97 . First attempt to estimate force of mortality |
printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
|
directly from the data i.e. without the need of knowing the health |
for (i=1;i<=n;i++)
|
state at each age, but using a Gompertz model: log u =a + b*age . |
printf(" %d %.12f",i, p[i]);
|
This is the basic analysis of mortality and should be done before any |
printf("\n");
|
other analysis, in order to test if the mortality estimated from the |
for (i=1;i<=n;i++) {
|
cross-longitudinal survey is different from the mortality estimated |
for (j=1;j<=n;j++) xit[j]=xi[j][i];
|
from other sources like vital statistic data. |
fptt=(*fret);
|
|
#ifdef DEBUG
|
The same imach parameter file can be used but the option for mle should be -3. |
printf("fret=%lf \n",*fret);
|
|
#endif
|
Agnès, who wrote this part of the code, tried to keep most of the |
printf("%d",i);fflush(stdout);
|
former routines in order to include the new code within the former code. |
linmin(p,xit,n,fret,func);
|
|
if (fabs(fptt-(*fret)) > del) {
|
The output is very simple: only an estimate of the intercept and of |
del=fabs(fptt-(*fret));
|
the slope with 95% confident intervals. |
ibig=i;
|
|
}
|
Current limitations: |
#ifdef DEBUG
|
A) Even if you enter covariates, i.e. with the |
printf("%d %.12e",i,(*fret));
|
model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates. |
for (j=1;j<=n;j++) {
|
B) There is no computation of Life Expectancy nor Life Table. |
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
|
|
printf(" x(%d)=%.12e",j,xit[j]);
|
Revision 1.97 2004/02/20 13:25:42 lievre |
}
|
Version 0.96d. Population forecasting command line is (temporarily) |
for(j=1;j<=n;j++)
|
suppressed. |
printf(" p=%.12e",p[j]);
|
|
printf("\n");
|
Revision 1.96 2003/07/15 15:38:55 brouard |
#endif
|
* imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is |
}
|
rewritten within the same printf. Workaround: many printfs. |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
|
|
#ifdef DEBUG
|
Revision 1.95 2003/07/08 07:54:34 brouard |
int k[2],l;
|
* imach.c (Repository): |
k[0]=1;
|
(Repository): Using imachwizard code to output a more meaningful covariance |
k[1]=-1;
|
matrix (cov(a12,c31) instead of numbers. |
printf("Max: %.12e",(*func)(p));
|
|
for (j=1;j<=n;j++)
|
Revision 1.94 2003/06/27 13:00:02 brouard |
printf(" %.12e",p[j]);
|
Just cleaning |
printf("\n");
|
|
for(l=0;l<=1;l++) {
|
Revision 1.93 2003/06/25 16:33:55 brouard |
for (j=1;j<=n;j++) {
|
(Module): On windows (cygwin) function asctime_r doesn't |
ptt[j]=p[j]+(p[j]-pt[j])*k[l];
|
exist so I changed back to asctime which exists. |
printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
|
(Module): Version 0.96b |
}
|
|
printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
|
Revision 1.92 2003/06/25 16:30:45 brouard |
}
|
(Module): On windows (cygwin) function asctime_r doesn't |
#endif
|
exist so I changed back to asctime which exists. |
|
|
|
Revision 1.91 2003/06/25 15:30:29 brouard |
free_vector(xit,1,n);
|
* imach.c (Repository): Duplicated warning errors corrected. |
free_vector(xits,1,n);
|
(Repository): Elapsed time after each iteration is now output. It |
free_vector(ptt,1,n);
|
helps to forecast when convergence will be reached. Elapsed time |
free_vector(pt,1,n);
|
is stamped in powell. We created a new html file for the graphs |
return;
|
concerning matrix of covariance. It has extension -cov.htm. |
}
|
|
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
|
Revision 1.90 2003/06/24 12:34:15 brouard |
for (j=1;j<=n;j++) {
|
(Module): Some bugs corrected for windows. Also, when |
ptt[j]=2.0*p[j]-pt[j];
|
mle=-1 a template is output in file "or"mypar.txt with the design |
xit[j]=p[j]-pt[j];
|
of the covariance matrix to be input. |
pt[j]=p[j];
|
|
}
|
Revision 1.89 2003/06/24 12:30:52 brouard |
fptt=(*func)(ptt);
|
(Module): Some bugs corrected for windows. Also, when |
if (fptt < fp) {
|
mle=-1 a template is output in file "or"mypar.txt with the design |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
|
of the covariance matrix to be input. |
if (t < 0.0) {
|
|
linmin(p,xit,n,fret,func);
|
Revision 1.88 2003/06/23 17:54:56 brouard |
for (j=1;j<=n;j++) {
|
* imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things. |
xi[j][ibig]=xi[j][n];
|
|
xi[j][n]=xit[j];
|
Revision 1.87 2003/06/18 12:26:01 brouard |
}
|
Version 0.96 |
#ifdef DEBUG
|
|
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
|
Revision 1.86 2003/06/17 20:04:08 brouard |
for(j=1;j<=n;j++)
|
(Module): Change position of html and gnuplot routines and added |
printf(" %.12e",xit[j]);
|
routine fileappend. |
printf("\n");
|
|
#endif
|
Revision 1.85 2003/06/17 13:12:43 brouard |
}
|
* imach.c (Repository): Check when date of death was earlier that |
}
|
current date of interview. It may happen when the death was just |
}
|
prior to the death. In this case, dh was negative and likelihood |
}
|
was wrong (infinity). We still send an "Error" but patch by |
|
assuming that the date of death was just one stepm after the |
/**** Prevalence limit ****************/
|
interview. |
|
(Repository): Because some people have very long ID (first column) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
|
we changed int to long in num[] and we added a new lvector for |
{
|
memory allocation. But we also truncated to 8 characters (left |
/* Computes the prevalence limit in each live state at age x by left multiplying the unit
|
truncation) |
matrix by transitions matrix until convergence is reached */
|
(Repository): No more line truncation errors. |
|
|
int i, ii,j,k;
|
Revision 1.84 2003/06/13 21:44:43 brouard |
double min, max, maxmin, maxmax,sumnew=0.;
|
* imach.c (Repository): Replace "freqsummary" at a correct |
double **matprod2();
|
place. It differs from routine "prevalence" which may be called |
double **out, cov[NCOVMAX], **pmij();
|
many times. Probs is memory consuming and must be used with |
double **newm;
|
parcimony. |
double agefin, delaymax=50 ; /* Max number of years to converge */
|
Version 0.95a3 (should output exactly the same maximization than 0.8a2) |
|
|
for (ii=1;ii<=nlstate+ndeath;ii++)
|
Revision 1.83 2003/06/10 13:39:11 lievre |
for (j=1;j<=nlstate+ndeath;j++){
|
*** empty log message *** |
oldm[ii][j]=(ii==j ? 1.0 : 0.0);
|
|
}
|
Revision 1.82 2003/06/05 15:57:20 brouard |
|
Add log in imach.c and fullversion number is now printed. |
cov[1]=1.;
|
|
|
*/ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */
|
/* |
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
|
Interpolated Markov Chain |
newm=savm;
|
|
/* Covariates have to be included here again */
|
Short summary of the programme: |
cov[2]=agefin;
|
|
|
This program computes Healthy Life Expectancies or State-specific |
for (k=1; k<=cptcovn;k++) {
|
(if states aren't health statuses) Expectancies from |
cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
|
cross-longitudinal data. Cross-longitudinal data consist in: |
/*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/
|
|
}
|
-1- a first survey ("cross") where individuals from different ages |
for (k=1; k<=cptcovage;k++)
|
are interviewed on their health status or degree of disability (in |
cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
|
the case of a health survey which is our main interest) |
for (k=1; k<=cptcovprod;k++)
|
|
cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
|
-2- at least a second wave of interviews ("longitudinal") which |
|
measure each change (if any) in individual health status. Health |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
|
expectancies are computed from the time spent in each health state |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
|
according to a model. More health states you consider, more time is |
|
necessary to reach the Maximum Likelihood of the parameters involved |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
|
in the model. The simplest model is the multinomial logistic model |
|
where pij is the probability to be observed in state j at the second |
savm=oldm;
|
wave conditional to be observed in state i at the first |
oldm=newm;
|
wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex + |
maxmax=0.;
|
etc , where 'age' is age and 'sex' is a covariate. If you want to |
for(j=1;j<=nlstate;j++){
|
have a more complex model than "constant and age", you should modify |
min=1.;
|
the program where the markup *Covariates have to be included here |
max=0.;
|
again* invites you to do it. More covariates you add, slower the |
for(i=1; i<=nlstate; i++) {
|
convergence. |
sumnew=0;
|
|
for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
|
The advantage of this computer programme, compared to a simple |
prlim[i][j]= newm[i][j]/(1-sumnew);
|
multinomial logistic model, is clear when the delay between waves is not |
max=FMAX(max,prlim[i][j]);
|
identical for each individual. Also, if a individual missed an |
min=FMIN(min,prlim[i][j]);
|
intermediate interview, the information is lost, but taken into |
}
|
account using an interpolation or extrapolation. |
maxmin=max-min;
|
|
maxmax=FMAX(maxmax,maxmin);
|
hPijx is the probability to be observed in state i at age x+h |
}
|
conditional to the observed state i at age x. The delay 'h' can be |
if(maxmax < ftolpl){
|
split into an exact number (nh*stepm) of unobserved intermediate |
return prlim;
|
states. This elementary transition (by month, quarter, |
}
|
semester or year) is modelled as a multinomial logistic. The hPx |
}
|
matrix is simply the matrix product of nh*stepm elementary matrices |
}
|
and the contribution of each individual to the likelihood is simply |
|
hPijx. |
/*************** transition probabilities ***************/
|
|
|
Also this programme outputs the covariance matrix of the parameters but also |
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
|
of the life expectancies. It also computes the period (stable) prevalence. |
{
|
|
double s1, s2;
|
Back prevalence and projections: |
/*double t34;*/
|
|
int i,j,j1, nc, ii, jj;
|
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, |
|
double agemaxpar, double ftolpl, int *ncvyearp, double |
for(i=1; i<= nlstate; i++){
|
dateprev1,double dateprev2, int firstpass, int lastpass, int |
for(j=1; j<i;j++){
|
mobilavproj) |
for (nc=1, s2=0.;nc <=ncovmodel; nc++){
|
|
/*s2 += param[i][j][nc]*cov[nc];*/
|
Computes the back prevalence limit for any combination of |
s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
|
covariate values k at any age between ageminpar and agemaxpar and |
/*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
|
returns it in **bprlim. In the loops, |
}
|
|
ps[i][j]=s2;
|
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, |
/*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
|
**savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
}
|
|
for(j=i+1; j<=nlstate+ndeath;j++){
|
- hBijx Back Probability to be in state i at age x-h being in j at x |
for (nc=1, s2=0.;nc <=ncovmodel; nc++){
|
Computes for any combination of covariates k and any age between bage and fage |
s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
|
oldm=oldms;savm=savms; |
}
|
|
ps[i][j]=(s2);
|
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
}
|
Computes the transition matrix starting at age 'age' over |
}
|
'nhstepm*hstepm*stepm' months (i.e. until |
/*ps[3][2]=1;*/
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
|
nhstepm*hstepm matrices. |
for(i=1; i<= nlstate; i++){
|
|
s1=0;
|
Returns p3mat[i][j][h] after calling |
for(j=1; j<i; j++)
|
p3mat[i][j][h]=matprod2(newm, |
s1+=exp(ps[i][j]);
|
bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, |
for(j=i+1; j<=nlstate+ndeath; j++)
|
dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
s1+=exp(ps[i][j]);
|
oldm); |
ps[i][i]=1./(s1+1.);
|
|
for(j=1; j<i; j++)
|
Important routines |
ps[i][j]= exp(ps[i][j])*ps[i][i];
|
|
for(j=i+1; j<=nlstate+ndeath; j++)
|
- func (or funcone), computes logit (pij) distinguishing |
ps[i][j]= exp(ps[i][j])*ps[i][i];
|
o fixed variables (single or product dummies or quantitative); |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
|
o varying variables by: |
} /* end i */
|
(1) wave (single, product dummies, quantitative), |
|
(2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be: |
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
|
% fixed dummy (treated) or quantitative (not done because time-consuming); |
for(jj=1; jj<= nlstate+ndeath; jj++){
|
% varying dummy (not done) or quantitative (not done); |
ps[ii][jj]=0;
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
ps[ii][ii]=1;
|
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
}
|
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
}
|
o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
|
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){
|
|
for(jj=1; jj<= nlstate+ndeath; jj++){
|
|
printf("%lf ",ps[ii][jj]);
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
}
|
Institut national d'études démographiques, Paris. |
printf("\n ");
|
This software have been partly granted by Euro-REVES, a concerted action |
}
|
from the European Union. |
printf("\n ");printf("%lf ",cov[2]);*/
|
It is copyrighted identically to a GNU software product, ie programme and |
/*
|
software can be distributed freely for non commercial use. Latest version |
for(i=1; i<= npar; i++) printf("%f ",x[i]);
|
can be accessed at http://euroreves.ined.fr/imach . |
goto end;*/
|
|
return ps;
|
Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach |
}
|
or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so |
|
|
/**************** Product of 2 matrices ******************/
|
**********************************************************************/ |
|
/* |
double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
|
main |
{
|
read parameterfile |
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
|
read datafile |
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
|
concatwav |
/* in, b, out are matrice of pointers which should have been initialized
|
freqsummary |
before: only the contents of out is modified. The function returns
|
if (mle >= 1) |
a pointer to pointers identical to out */
|
mlikeli |
long i, j, k;
|
print results files |
for(i=nrl; i<= nrh; i++)
|
if mle==1 |
for(k=ncolol; k<=ncoloh; k++)
|
computes hessian |
for(j=ncl,out[i][k]=0.; j<=nch; j++)
|
read end of parameter file: agemin, agemax, bage, fage, estepm |
out[i][k] +=in[i][j]*b[j][k];
|
begin-prev-date,... |
|
open gnuplot file |
return out;
|
open html file |
}
|
period (stable) prevalence | pl_nom 1-1 2-2 etc by covariate |
|
for age prevalim() | #****** V1=0 V2=1 V3=1 V4=0 ****** |
|
| 65 1 0 2 1 3 1 4 0 0.96326 0.03674 |
/************* Higher Matrix Product ***************/
|
freexexit2 possible for memory heap. |
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
|
h Pij x | pij_nom ficrestpij |
{
|
# Cov Agex agex+h hpijx with i,j= 1-1 1-2 1-3 2-1 2-2 2-3 |
/* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month
|
1 85 85 1.00000 0.00000 0.00000 0.00000 1.00000 0.00000 |
duration (i.e. until
|
1 85 86 0.68299 0.22291 0.09410 0.71093 0.00000 0.28907 |
age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.
|
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step
|
1 65 99 0.00364 0.00322 0.99314 0.00350 0.00310 0.99340 |
(typically every 2 years instead of every month which is too big).
|
1 65 100 0.00214 0.00204 0.99581 0.00206 0.00196 0.99597 |
Model is determined by parameters x and covariates have to be
|
variance of p one-step probabilities varprob | prob_nom ficresprob #One-step probabilities and stand. devi in () |
included manually here.
|
Standard deviation of one-step probabilities | probcor_nom ficresprobcor #One-step probabilities and correlation matrix |
|
Matrix of variance covariance of one-step probabilities | probcov_nom ficresprobcov #One-step probabilities and covariance matrix |
*/
|
|
|
forecasting if prevfcast==1 prevforecast call prevalence() |
int i, j, d, h, k;
|
health expectancies |
double **out, cov[NCOVMAX];
|
Variance-covariance of DFLE |
double **newm;
|
prevalence() |
|
movingaverage() |
/* Hstepm could be zero and should return the unit matrix */
|
varevsij() |
for (i=1;i<=nlstate+ndeath;i++)
|
if popbased==1 varevsij(,popbased) |
for (j=1;j<=nlstate+ndeath;j++){
|
total life expectancies |
oldm[i][j]=(i==j ? 1.0 : 0.0);
|
Variance of period (stable) prevalence |
po[i][j][0]=(i==j ? 1.0 : 0.0);
|
end |
}
|
*/ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */
|
|
for(h=1; h <=nhstepm; h++){
|
/* #define DEBUG */ |
for(d=1; d <=hstepm; d++){
|
/* #define DEBUGBRENT */ |
newm=savm;
|
/* #define DEBUGLINMIN */ |
/* Covariates have to be included here again */
|
/* #define DEBUGHESS */ |
cov[1]=1.;
|
#define DEBUGHESSIJ |
cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
|
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan) *\/ */ |
for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
|
#define POWELL /* Instead of NLOPT */ |
for (k=1; k<=cptcovage;k++)
|
#define POWELLNOF3INFF1TEST /* Skip test */ |
cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
|
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
for (k=1; k<=cptcovprod;k++)
|
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
|
|
|
#include <math.h> |
|
#include <stdio.h> |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
|
#include <stdlib.h> |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
|
#include <string.h> |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
|
#include <ctype.h> |
pmij(pmmij,cov,ncovmodel,x,nlstate));
|
|
savm=oldm;
|
#ifdef _WIN32 |
oldm=newm;
|
#include <io.h> |
}
|
#include <windows.h> |
for(i=1; i<=nlstate+ndeath; i++)
|
#include <tchar.h> |
for(j=1;j<=nlstate+ndeath;j++) {
|
#else |
po[i][j][h]=newm[i][j];
|
#include <unistd.h> |
/*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
|
#endif |
*/
|
|
}
|
#include <limits.h> |
} /* end h */
|
#include <sys/types.h> |
return po;
|
|
}
|
#if defined(__GNUC__) |
|
#include <sys/utsname.h> /* Doesn't work on Windows */ |
|
#endif |
/*************** log-likelihood *************/
|
|
double func( double *x)
|
#include <sys/stat.h> |
{
|
#include <errno.h> |
int i, ii, j, k, mi, d, kk;
|
/* extern int errno; */ |
double l, ll[NLSTATEMAX], cov[NCOVMAX];
|
|
double **out;
|
/* #ifdef LINUX */ |
double sw; /* Sum of weights */
|
/* #include <time.h> */ |
double lli; /* Individual log likelihood */
|
/* #include "timeval.h" */ |
long ipmx;
|
/* #else */ |
/*extern weight */
|
/* #include <sys/time.h> */ |
/* We are differentiating ll according to initial status */
|
/* #endif */ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
|
|
/*for(i=1;i<imx;i++)
|
#include <time.h> |
printf(" %d\n",s[4][i]);
|
|
*/
|
#ifdef GSL |
cov[1]=1.;
|
#include <gsl/gsl_errno.h> |
|
#include <gsl/gsl_multimin.h> |
for(k=1; k<=nlstate; k++) ll[k]=0.;
|
#endif |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){
|
|
for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
|
|
for(mi=1; mi<= wav[i]-1; mi++){
|
#ifdef NLOPT |
for (ii=1;ii<=nlstate+ndeath;ii++)
|
#include <nlopt.h> |
for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
|
typedef struct { |
for(d=0; d<dh[mi][i]; d++){
|
double (* function)(double [] ); |
newm=savm;
|
} myfunc_data ; |
cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
|
#endif |
for (kk=1; kk<=cptcovage;kk++) {
|
|
cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
|
/* #include <libintl.h> */ |
}
|
/* #define _(String) gettext (String) */ |
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
|
#define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
|
|
savm=oldm;
|
#define GNUPLOTPROGRAM "gnuplot" |
oldm=newm;
|
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
|
#define FILENAMELENGTH 132 |
|
|
} /* end mult */
|
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
|
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
|
|
/* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
|
#define MAXPARM 128 /**< Maximum number of parameters for the optimization */ |
ipmx +=1;
|
#define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
sw += weight[i];
|
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
|
#define NINTERVMAX 8 |
} /* end of wave */
|
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
} /* end of individual */
|
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
|
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
|
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */
|
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
|
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
return -l;
|
#define MAXN 20000 |
}
|
#define YEARM 12. /**< Number of months per year */ |
|
/* #define AGESUP 130 */ |
|
#define AGESUP 150 |
/*********** Maximum Likelihood Estimation ***************/
|
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
|
#define AGEBASE 40 |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
|
#define AGEOVERFLOW 1.e20 |
{
|
#define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */ |
int i,j, iter;
|
#ifdef _WIN32 |
double **xi,*delti;
|
#define DIRSEPARATOR '\\' |
double fret;
|
#define CHARSEPARATOR "\\" |
xi=matrix(1,npar,1,npar);
|
#define ODIRSEPARATOR '/' |
for (i=1;i<=npar;i++)
|
#else |
for (j=1;j<=npar;j++)
|
#define DIRSEPARATOR '/' |
xi[i][j]=(i==j ? 1.0 : 0.0);
|
#define CHARSEPARATOR "/" |
printf("Powell\n");
|
#define ODIRSEPARATOR '\\' |
powell(p,xi,npar,ftol,&iter,&fret,func);
|
#endif |
|
|
printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
|
/* $Id$ */ |
fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));
|
/* $State$ */ |
|
#include "version.h" |
}
|
char version[]=__IMACH_VERSION__; |
|
char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018"; |
/**** Computes Hessian and covariance matrix ***/
|
char fullversion[]="$Revision$ $Date$"; |
void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
|
char strstart[80]; |
{
|
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
double **a,**y,*x,pd;
|
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
double **hess;
|
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
int i, j,jk;
|
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
int *indx;
|
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
|
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
double hessii(double p[], double delta, int theta, double delti[]);
|
int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */ |
double hessij(double p[], double delti[], int i, int j);
|
int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */ |
void lubksb(double **a, int npar, int *indx, double b[]) ;
|
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
void ludcmp(double **a, int npar, int *indx, double *d) ;
|
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
|
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
hess=matrix(1,npar,1,npar);
|
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
|
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
printf("\nCalculation of the hessian matrix. Wait...\n");
|
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
for (i=1;i<=npar;i++){
|
|
printf("%d",i);fflush(stdout);
|
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
hess[i][i]=hessii(p,ftolhess,i,delti);
|
int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */ |
/*printf(" %f ",p[i]);*/
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
/*printf(" %lf ",hess[i][i]);*/
|
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
}
|
int cptcov=0; /* Working variable */ |
|
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
for (i=1;i<=npar;i++) {
|
int npar=NPARMAX; |
for (j=1;j<=npar;j++) {
|
int nlstate=2; /* Number of live states */ |
if (j>i) {
|
int ndeath=1; /* Number of dead states */ |
printf(".%d%d",i,j);fflush(stdout);
|
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
hess[i][j]=hessij(p,delti,i,j);
|
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ |
hess[j][i]=hess[i][j];
|
int popbased=0; |
/*printf(" %lf ",hess[i][j]);*/
|
|
}
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
}
|
int maxwav=0; /* Maxim number of waves */ |
}
|
int jmin=0, jmax=0; /* min, max spacing between 2 waves */ |
printf("\n");
|
int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ |
|
int gipmx=0, gsw=0; /* Global variables on the number of contributions |
printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
|
to the likelihood and the sum of weights (done by funcone)*/ |
|
int mle=1, weightopt=0; |
a=matrix(1,npar,1,npar);
|
int **mw; /* mw[mi][i] is number of the mi wave for this individual */ |
y=matrix(1,npar,1,npar);
|
int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */ |
x=vector(1,npar);
|
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
indx=ivector(1,npar);
|
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
for (i=1;i<=npar;i++)
|
int countcallfunc=0; /* Count the number of calls to func */ |
for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
|
int selected(int kvar); /* Is covariate kvar selected for printing results */ |
ludcmp(a,npar,indx,&pd);
|
|
|
double jmean=1; /* Mean space between 2 waves */ |
for (j=1;j<=npar;j++) {
|
double **matprod2(); /* test */ |
for (i=1;i<=npar;i++) x[i]=0;
|
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
x[j]=1;
|
double **oldms, **newms, **savms; /* Fixed working pointers to matrices */ |
lubksb(a,npar,indx,x);
|
double **ddnewms, **ddoldms, **ddsavms; /* for freeing later */ |
for (i=1;i<=npar;i++){
|
|
matcov[i][j]=x[i];
|
/*FILE *fic ; */ /* Used in readdata only */ |
}
|
FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop; |
}
|
FILE *ficlog, *ficrespow; |
|
int globpr=0; /* Global variable for printing or not */ |
printf("\n#Hessian matrix#\n");
|
double fretone; /* Only one call to likelihood */ |
for (i=1;i<=npar;i++) {
|
long ipmx=0; /* Number of contributions */ |
for (j=1;j<=npar;j++) {
|
double sw; /* Sum of weights */ |
printf("%.3e ",hess[i][j]);
|
char filerespow[FILENAMELENGTH]; |
}
|
char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */ |
printf("\n");
|
FILE *ficresilk; |
}
|
FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor; |
|
FILE *ficresprobmorprev; |
/* Recompute Inverse */
|
FILE *fichtm, *fichtmcov; /* Html File */ |
for (i=1;i<=npar;i++)
|
FILE *ficreseij; |
for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
|
char filerese[FILENAMELENGTH]; |
ludcmp(a,npar,indx,&pd);
|
FILE *ficresstdeij; |
|
char fileresstde[FILENAMELENGTH]; |
/* printf("\n#Hessian matrix recomputed#\n");
|
FILE *ficrescveij; |
|
char filerescve[FILENAMELENGTH]; |
for (j=1;j<=npar;j++) {
|
FILE *ficresvij; |
for (i=1;i<=npar;i++) x[i]=0;
|
char fileresv[FILENAMELENGTH]; |
x[j]=1;
|
FILE *ficresvpl; |
lubksb(a,npar,indx,x);
|
char fileresvpl[FILENAMELENGTH]; |
for (i=1;i<=npar;i++){
|
char title[MAXLINE]; |
y[i][j]=x[i];
|
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
printf("%.3e ",y[i][j]);
|
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
}
|
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
printf("\n");
|
char command[FILENAMELENGTH]; |
}
|
int outcmd=0; |
*/
|
|
|
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH]; |
free_matrix(a,1,npar,1,npar);
|
char fileresu[FILENAMELENGTH]; /* fileres without r in front */ |
free_matrix(y,1,npar,1,npar);
|
char filelog[FILENAMELENGTH]; /* Log file */ |
free_vector(x,1,npar);
|
char filerest[FILENAMELENGTH]; |
free_ivector(indx,1,npar);
|
char fileregp[FILENAMELENGTH]; |
free_matrix(hess,1,npar,1,npar);
|
char popfile[FILENAMELENGTH]; |
|
|
|
char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ; |
}
|
|
|
/* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */ |
/*************** hessian matrix ****************/
|
/* struct timezone tzp; */ |
double hessii( double x[], double delta, int theta, double delti[])
|
/* extern int gettimeofday(); */ |
{
|
struct tm tml, *gmtime(), *localtime(); |
int i;
|
|
int l=1, lmax=20;
|
extern time_t time(); |
double k1,k2;
|
|
double p2[NPARMAX+1];
|
struct tm start_time, end_time, curr_time, last_time, forecast_time; |
double res;
|
time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
|
struct tm tm; |
double fx;
|
|
int k=0,kmax=10;
|
char strcurr[80], strfor[80]; |
double l1;
|
|
|
char *endptr; |
fx=func(x);
|
long lval; |
for (i=1;i<=npar;i++) p2[i]=x[i];
|
double dval; |
for(l=0 ; l <=lmax; l++){
|
|
l1=pow(10,l);
|
#define NR_END 1 |
delts=delt;
|
#define FREE_ARG char* |
for(k=1 ; k <kmax; k=k+1){
|
#define FTOL 1.0e-10 |
delt = delta*(l1*k);
|
|
p2[theta]=x[theta] +delt;
|
#define NRANSI |
k1=func(p2)-fx;
|
#define ITMAX 200 |
p2[theta]=x[theta]-delt;
|
|
k2=func(p2)-fx;
|
#define TOL 2.0e-4 |
/*res= (k1-2.0*fx+k2)/delt/delt; */
|
|
res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
|
#define CGOLD 0.3819660 |
|
#define ZEPS 1.0e-10 |
#ifdef DEBUG
|
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); |
printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
|
|
#endif
|
#define GOLD 1.618034 |
/*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
|
#define GLIMIT 100.0 |
if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
|
#define TINY 1.0e-20 |
k=kmax;
|
|
}
|
static double maxarg1,maxarg2; |
else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
|
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2)) |
k=kmax; l=lmax*10.;
|
#define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2)) |
}
|
|
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
|
#define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a)) |
delts=delt;
|
#define rint(a) floor(a+0.5) |
}
|
/* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */ |
}
|
#define mytinydouble 1.0e-16 |
}
|
/* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */ |
delti[theta]=delts;
|
/* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */ |
return res;
|
/* static double dsqrarg; */ |
|
/* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */ |
}
|
static double sqrarg; |
|
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg) |
double hessij( double x[], double delti[], int thetai,int thetaj)
|
#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} |
{
|
int agegomp= AGEGOMP; |
int i;
|
|
int l=1, l1, lmax=20;
|
int imx; |
double k1,k2,k3,k4,res,fx;
|
int stepm=1; |
double p2[NPARMAX+1];
|
/* Stepm, step in month: minimum step interpolation*/ |
int k;
|
|
|
int estepm; |
fx=func(x);
|
/* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/ |
for (k=1; k<=2; k++) {
|
|
for (i=1;i<=npar;i++) p2[i]=x[i];
|
int m,nb; |
p2[thetai]=x[thetai]+delti[thetai]/k;
|
long *num; |
p2[thetaj]=x[thetaj]+delti[thetaj]/k;
|
int firstpass=0, lastpass=4,*cod, *cens; |
k1=func(p2)-fx;
|
int *ncodemax; /* ncodemax[j]= Number of modalities of the j th |
|
covariate for which somebody answered excluding |
p2[thetai]=x[thetai]+delti[thetai]/k;
|
undefined. Usually 2: 0 and 1. */ |
p2[thetaj]=x[thetaj]-delti[thetaj]/k;
|
int *ncodemaxwundef; /* ncodemax[j]= Number of modalities of the j th |
k2=func(p2)-fx;
|
covariate for which somebody answered including |
|
undefined. Usually 3: -1, 0 and 1. */ |
p2[thetai]=x[thetai]-delti[thetai]/k;
|
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
p2[thetaj]=x[thetaj]+delti[thetaj]/k;
|
double **pmmij, ***probs; /* Global pointer */ |
k3=func(p2)-fx;
|
double ***mobaverage, ***mobaverages; /* New global variable */ |
|
double *ageexmed,*agecens; |
p2[thetai]=x[thetai]-delti[thetai]/k;
|
double dateintmean=0; |
p2[thetaj]=x[thetaj]-delti[thetaj]/k;
|
|
k4=func(p2)-fx;
|
double *weight; |
res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
|
int **s; /* Status */ |
#ifdef DEBUG
|
double *agedc; |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
|
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
#endif
|
* covar=matrix(0,NCOVMAX,1,n); |
}
|
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
return res;
|
double **coqvar; /* Fixed quantitative covariate iqv */ |
}
|
double ***cotvar; /* Time varying covariate itv */ |
|
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
/************** Inverse of matrix **************/
|
double idx; |
void ludcmp(double **a, int n, int *indx, double *d)
|
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
{
|
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int i,imax,j,k;
|
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
double big,dum,sum,temp;
|
int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
double *vv;
|
int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
vv=vector(1,n);
|
int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
*d=1.0;
|
int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
for (i=1;i<=n;i++) {
|
int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
big=0.0;
|
int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
for (j=1;j<=n;j++)
|
int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
if ((temp=fabs(a[i][j])) > big) big=temp;
|
int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
vv[i]=1.0/big;
|
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
}
|
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
for (j=1;j<=n;j++) {
|
|
for (i=1;i<j;i++) {
|
int *Tvarsel; /**< Selected covariates for output */ |
sum=a[i][j];
|
double *Tvalsel; /**< Selected modality value of covariate for output */ |
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
|
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
a[i][j]=sum;
|
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
}
|
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
big=0.0;
|
int *Tage; |
for (i=j;i<=n;i++) {
|
int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ |
sum=a[i][j];
|
int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
for (k=1;k<j;k++)
|
int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
sum -= a[i][k]*a[k][j];
|
int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
a[i][j]=sum;
|
int *Ndum; /** Freq of modality (tricode */ |
if ( (dum=vv[i]*fabs(sum)) >= big) {
|
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
big=dum;
|
int **Tvard; |
imax=i;
|
int *Tprod;/**< Gives the k position of the k1 product */ |
}
|
int *Tposprod; /**< Gives the k1 product from the k position */ |
}
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
if (j != imax) {
|
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
for (k=1;k<=n;k++) {
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
dum=a[imax][k];
|
*/ |
a[imax][k]=a[j][k];
|
int cptcovprod, *Tvaraff, *invalidvarcomb; |
a[j][k]=dum;
|
double *lsurv, *lpop, *tpop; |
}
|
|
*d = -(*d);
|
#define FD 1; /* Fixed dummy covariate */ |
vv[imax]=vv[j];
|
#define FQ 2; /* Fixed quantitative covariate */ |
}
|
#define FP 3; /* Fixed product covariate */ |
indx[j]=imax;
|
#define FPDD 7; /* Fixed product dummy*dummy covariate */ |
if (a[j][j] == 0.0) a[j][j]=TINY;
|
#define FPDQ 8; /* Fixed product dummy*quantitative covariate */ |
if (j != n) {
|
#define FPQQ 9; /* Fixed product quantitative*quantitative covariate */ |
dum=1.0/(a[j][j]);
|
#define VD 10; /* Varying dummy covariate */ |
for (i=j+1;i<=n;i++) a[i][j] *= dum;
|
#define VQ 11; /* Varying quantitative covariate */ |
}
|
#define VP 12; /* Varying product covariate */ |
}
|
#define VPDD 13; /* Varying product dummy*dummy covariate */ |
free_vector(vv,1,n); /* Doesn't work */
|
#define VPDQ 14; /* Varying product dummy*quantitative covariate */ |
;
|
#define VPQQ 15; /* Varying product quantitative*quantitative covariate */ |
}
|
#define APFD 16; /* Age product * fixed dummy covariate */ |
|
#define APFQ 17; /* Age product * fixed quantitative covariate */ |
void lubksb(double **a, int n, int *indx, double b[])
|
#define APVD 18; /* Age product * varying dummy covariate */ |
{
|
#define APVQ 19; /* Age product * varying quantitative covariate */ |
int i,ii=0,ip,j;
|
|
double sum;
|
#define FTYPE 1; /* Fixed covariate */ |
|
#define VTYPE 2; /* Varying covariate (loop in wave) */ |
for (i=1;i<=n;i++) {
|
#define ATYPE 2; /* Age product covariate (loop in dh within wave)*/ |
ip=indx[i];
|
|
sum=b[ip];
|
struct kmodel{ |
b[ip]=b[i];
|
int maintype; /* main type */ |
if (ii)
|
int subtype; /* subtype */ |
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
|
}; |
else if (sum) ii=i;
|
struct kmodel modell[NCOVMAX]; |
b[i]=sum;
|
|
}
|
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
for (i=n;i>=1;i--) {
|
double ftolhess; /**< Tolerance for computing hessian */ |
sum=b[i];
|
|
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
|
/**************** split *************************/ |
b[i]=sum/a[i][i];
|
static int split( char *path, char *dirc, char *name, char *ext, char *finame ) |
}
|
{ |
}
|
/* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc) |
|
the name of the file (name), its extension only (ext) and its first part of the name (finame) |
/************ Frequencies ********************/
|
*/ |
void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1,double **mint,double **anint, int boolprev, double dateprev1,double dateprev2)
|
char *ss; /* pointer */ |
{ /* Some frequencies */
|
int l1=0, l2=0; /* length counters */ |
|
|
int i, m, jk, k1,i1, j1, bool, z1,z2,j;
|
l1 = strlen(path ); /* length of path */ |
double ***freq; /* Frequencies */
|
if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH ); |
double *pp;
|
ss= strrchr( path, DIRSEPARATOR ); /* find last / */ |
double pos, k2;
|
if ( ss == NULL ) { /* no directory, so determine current directory */ |
FILE *ficresp;
|
strcpy( name, path ); /* we got the fullname name because no directory */ |
char fileresp[FILENAMELENGTH];
|
/*if(strrchr(path, ODIRSEPARATOR )==NULL) |
|
printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/ |
pp=vector(1,nlstate);
|
/* get current working directory */ |
probs= ma3x(1,130 ,1,8, 1,8);
|
/* extern char* getcwd ( char *buf , int len);*/ |
strcpy(fileresp,"p");
|
#ifdef WIN32 |
strcat(fileresp,fileres);
|
if (_getcwd( dirc, FILENAME_MAX ) == NULL ) { |
if((ficresp=fopen(fileresp,"w"))==NULL) {
|
#else |
printf("Problem with prevalence resultfile: %s\n", fileresp);
|
if (getcwd(dirc, FILENAME_MAX) == NULL) { |
exit(0);
|
#endif |
}
|
return( GLOCK_ERROR_GETCWD ); |
freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
|
} |
j1=0;
|
/* got dirc from getcwd*/ |
|
printf(" DIRC = %s \n",dirc); |
j=cptcoveff;
|
} else { /* strip directory from path */ |
if (cptcovn<1) {j=1;ncodemax[1]=1;}
|
ss++; /* after this, the filename */ |
|
l2 = strlen( ss ); /* length of filename */ |
for(k1=1; k1<=j;k1++){
|
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH ); |
for(i1=1; i1<=ncodemax[k1];i1++){
|
strcpy( name, ss ); /* save file name */ |
j1++;
|
strncpy( dirc, path, l1 - l2 ); /* now the directory */ |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
|
dirc[l1-l2] = '\0'; /* add zero */ |
scanf("%d", i);*/
|
printf(" DIRC2 = %s \n",dirc); |
for (i=-1; i<=nlstate+ndeath; i++)
|
} |
for (jk=-1; jk<=nlstate+ndeath; jk++)
|
/* We add a separator at the end of dirc if not exists */ |
for(m=agemin; m <= agemax+3; m++)
|
l1 = strlen( dirc ); /* length of directory */ |
freq[i][jk][m]=0;
|
if( dirc[l1-1] != DIRSEPARATOR ){ |
|
dirc[l1] = DIRSEPARATOR; |
for (i=1; i<=imx; i++) {
|
dirc[l1+1] = 0; |
bool=1;
|
printf(" DIRC3 = %s \n",dirc); |
if (cptcovn>0) {
|
} |
for (z1=1; z1<=cptcoveff; z1++)
|
ss = strrchr( name, '.' ); /* find last / */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
|
if (ss >0){ |
bool=0;
|
ss++; |
}
|
strcpy(ext,ss); /* save extension */ |
if (bool==1) {
|
l1= strlen( name); |
if (boolprev==1){
|
l2= strlen(ss)+1; |
for(m=fprev1; m<=lprev1; m++){
|
strncpy( finame, name, l1-l2); |
if(agev[m][i]==0) agev[m][i]=agemax+1;
|
finame[l1-l2]= 0; |
if(agev[m][i]==1) agev[m][i]=agemax+2;
|
} |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
|
|
freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
|
return( 0 ); /* we're done */ |
}
|
} |
}
|
|
else {
|
|
for(m=firstpass; m<=lastpass; m++){
|
/******************************************/ |
k2=anint[m][i]+(mint[m][i]/12.);
|
|
if ((k2>=dateprev1) && (k2<=dateprev2)) {
|
void replace_back_to_slash(char *s, char*t) |
if(agev[m][i]==0) agev[m][i]=agemax+1;
|
{ |
if(agev[m][i]==1) agev[m][i]=agemax+2;
|
int i; |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
|
int lg=0; |
freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
|
i=0; |
}
|
lg=strlen(t); |
}
|
for(i=0; i<= lg; i++) { |
}
|
(s[i] = t[i]); |
}
|
if (t[i]== '\\') s[i]='/'; |
}
|
} |
if (cptcovn>0) {
|
} |
fprintf(ficresp, "\n#********** Variable ");
|
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
|
char *trimbb(char *out, char *in) |
fprintf(ficresp, "**********\n#");
|
{ /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */ |
}
|
char *s; |
for(i=1; i<=nlstate;i++)
|
s=out; |
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
|
while (*in != '\0'){ |
fprintf(ficresp, "\n");
|
while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/ |
|
in++; |
for(i=(int)agemin; i <= (int)agemax+3; i++){
|
} |
if(i==(int)agemax+3)
|
*out++ = *in++; |
printf("Total");
|
} |
else
|
*out='\0'; |
printf("Age %d", i);
|
return s; |
for(jk=1; jk <=nlstate ; jk++){
|
} |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
|
|
pp[jk] += freq[jk][m][i];
|
/* char *substrchaine(char *out, char *in, char *chain) */ |
}
|
/* { */ |
for(jk=1; jk <=nlstate ; jk++){
|
/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */ |
for(m=-1, pos=0; m <=0 ; m++)
|
/* char *s, *t; */ |
pos += freq[jk][m][i];
|
/* t=in;s=out; */ |
if(pp[jk]>=1.e-10)
|
/* while ((*in != *chain) && (*in != '\0')){ */ |
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
|
/* *out++ = *in++; */ |
else
|
/* } */ |
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
|
|
}
|
/* /\* *in matches *chain *\/ */ |
|
/* while ((*in++ == *chain++) && (*in != '\0')){ */ |
for(jk=1; jk <=nlstate ; jk++){
|
/* printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */ |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
|
/* } */ |
pp[jk] += freq[jk][m][i];
|
/* in--; chain--; */ |
}
|
/* while ( (*in != '\0')){ */ |
|
/* printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */ |
for(jk=1,pos=0; jk <=nlstate ; jk++)
|
/* *out++ = *in++; */ |
pos += pp[jk];
|
/* printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */ |
for(jk=1; jk <=nlstate ; jk++){
|
/* } */ |
if(pos>=1.e-5)
|
/* *out='\0'; */ |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
|
/* out=s; */ |
else
|
/* return out; */ |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
|
/* } */ |
if( i <= (int) agemax){
|
char *substrchaine(char *out, char *in, char *chain) |
if(pos>=1.e-5){
|
{ |
fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
|
/* Substract chain 'chain' from 'in', return and output 'out' */ |
probs[i][jk][j1]= pp[jk]/pos;
|
/* in="V1+V1*age+age*age+V2", chain="age*age" */ |
/*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
|
|
}
|
char *strloc; |
else
|
|
fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
|
strcpy (out, in); |
}
|
strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */ |
}
|
printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); |
for(jk=-1; jk <=nlstate+ndeath; jk++)
|
if(strloc != NULL){ |
for(m=-1; m <=nlstate+ndeath; m++)
|
/* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */ |
if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
|
memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); |
if(i <= (int) agemax)
|
/* strcpy (strloc, strloc +strlen(chain));*/ |
fprintf(ficresp,"\n");
|
} |
printf("\n");
|
printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out); |
}
|
return out; |
}
|
} |
}
|
|
|
|
fclose(ficresp);
|
char *cutl(char *blocc, char *alocc, char *in, char occ) |
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
|
{ |
free_vector(pp,1,nlstate);
|
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
|
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
} /* End of Freq */
|
gives blocc="abcdef" and alocc="ghi2j". |
|
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
/************ Prevalence ********************/
|
*/ |
void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax, int fprev1,int lprev1, double **mint,double **anint,int boolprev, double dateprev1, double dateprev2)
|
char *s, *t; |
{ /* Some frequencies */
|
t=in;s=in; |
|
while ((*in != occ) && (*in != '\0')){ |
int i, m, jk, k1, i1, j1, bool, z1,z2,j;
|
*alocc++ = *in++; |
double ***freq; /* Frequencies */
|
} |
double *pp;
|
if( *in == occ){ |
double pos, k2;
|
*(alocc)='\0'; |
|
s=++in; |
pp=vector(1,nlstate);
|
} |
probs= ma3x(1,130 ,1,8, 1,8);
|
|
|
if (s == t) {/* occ not found */ |
freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
|
*(alocc-(in-s))='\0'; |
j1=0;
|
in=s; |
|
} |
j=cptcoveff;
|
while ( *in != '\0'){ |
if (cptcovn<1) {j=1;ncodemax[1]=1;}
|
*blocc++ = *in++; |
|
} |
for(k1=1; k1<=j;k1++){
|
|
for(i1=1; i1<=ncodemax[k1];i1++){
|
*blocc='\0'; |
j1++;
|
return t; |
|
} |
for (i=-1; i<=nlstate+ndeath; i++)
|
char *cutv(char *blocc, char *alocc, char *in, char occ) |
for (jk=-1; jk<=nlstate+ndeath; jk++)
|
{ |
for(m=agemin; m <= agemax+3; m++)
|
/* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' |
freq[i][jk][m]=0;
|
and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
|
gives blocc="abcdef2ghi" and alocc="j". |
for (i=1; i<=imx; i++) {
|
If occ is not found blocc is null and alocc is equal to in. Returns alocc |
bool=1;
|
*/ |
if (cptcovn>0) {
|
char *s, *t; |
for (z1=1; z1<=cptcoveff; z1++)
|
t=in;s=in; |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
|
while (*in != '\0'){ |
bool=0;
|
while( *in == occ){ |
}
|
*blocc++ = *in++; |
if (bool==1) {
|
s=in; |
if (boolprev==1){
|
} |
for(m=fprev1; m<=lprev1; m++){
|
*blocc++ = *in++; |
if(agev[m][i]==0) agev[m][i]=agemax+1;
|
} |
if(agev[m][i]==1) agev[m][i]=agemax+2;
|
if (s == t) /* occ not found */ |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
|
*(blocc-(in-s))='\0'; |
freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
|
else |
}
|
*(blocc-(in-s)-1)='\0'; |
}
|
in=s; |
else {
|
while ( *in != '\0'){ |
for(m=firstpass; m<=lastpass; m++){
|
*alocc++ = *in++; |
k2=anint[m][i]+(mint[m][i]/12.);
|
} |
if ((k2>=dateprev1) && (k2<=dateprev2)) {
|
|
if(agev[m][i]==0) agev[m][i]=agemax+1;
|
*alocc='\0'; |
if(agev[m][i]==1) agev[m][i]=agemax+2;
|
return s; |
freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
|
} |
freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
|
|
}
|
int nbocc(char *s, char occ) |
}
|
{ |
}
|
int i,j=0; |
}
|
int lg=20; |
}
|
i=0; |
for(i=(int)agemin; i <= (int)agemax+3; i++){
|
lg=strlen(s); |
for(jk=1; jk <=nlstate ; jk++){
|
for(i=0; i<= lg; i++) { |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
|
if (s[i] == occ ) j++; |
pp[jk] += freq[jk][m][i];
|
} |
}
|
return j; |
for(jk=1; jk <=nlstate ; jk++){
|
} |
for(m=-1, pos=0; m <=0 ; m++)
|
|
pos += freq[jk][m][i];
|
/* void cutv(char *u,char *v, char*t, char occ) */ |
}
|
/* { */ |
|
/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
for(jk=1; jk <=nlstate ; jk++){
|
/* and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */ |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
|
/* gives u="abcdef2ghi" and v="j" *\/ */ |
pp[jk] += freq[jk][m][i];
|
/* int i,lg,j,p=0; */ |
}
|
/* i=0; */ |
|
/* lg=strlen(t); */ |
for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
|
/* for(j=0; j<=lg-1; j++) { */ |
|
/* if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */ |
for(jk=1; jk <=nlstate ; jk++){
|
/* } */ |
if( i <= (int) agemax){
|
|
if(pos>=1.e-5){
|
/* for(j=0; j<p; j++) { */ |
probs[i][jk][j1]= pp[jk]/pos;
|
/* (u[j] = t[j]); */ |
}
|
/* } */ |
}
|
/* u[p]='\0'; */ |
}
|
|
|
/* for(j=0; j<= lg; j++) { */ |
}
|
/* if (j>=(p+1))(v[j-p-1] = t[j]); */ |
}
|
/* } */ |
}
|
/* } */ |
|
|
|
#ifdef _WIN32 |
free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
|
char * strsep(char **pp, const char *delim) |
free_vector(pp,1,nlstate);
|
{ |
|
char *p, *q; |
} /* End of Freq */
|
|
/************* Waves Concatenation ***************/
|
if ((p = *pp) == NULL) |
|
return 0; |
void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm)
|
if ((q = strpbrk (p, delim)) != NULL) |
{
|
{ |
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
|
*pp = q + 1; |
Death is a valid wave (if date is known).
|
*q = '\0'; |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i
|
} |
dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
|
else |
and mw[mi+1][i]. dh depends on stepm.
|
*pp = 0; |
*/
|
return p; |
|
} |
int i, mi, m;
|
#endif |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
|
|
double sum=0., jmean=0.;*/
|
/********************** nrerror ********************/ |
|
|
int j, k=0,jk, ju, jl;
|
void nrerror(char error_text[]) |
double sum=0.;
|
{ |
jmin=1e+5;
|
fprintf(stderr,"ERREUR ...\n"); |
jmax=-1;
|
fprintf(stderr,"%s\n",error_text); |
jmean=0.;
|
exit(EXIT_FAILURE); |
for(i=1; i<=imx; i++){
|
} |
mi=0;
|
/*********************** vector *******************/ |
m=firstpass;
|
double *vector(int nl, int nh) |
while(s[m][i] <= nlstate){
|
{ |
if(s[m][i]>=1)
|
double *v; |
mw[++mi][i]=m;
|
v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double))); |
if(m >=lastpass)
|
if (!v) nrerror("allocation failure in vector"); |
break;
|
return v-nl+NR_END; |
else
|
} |
m++;
|
|
}/* end while */
|
/************************ free vector ******************/ |
if (s[m][i] > nlstate){
|
void free_vector(double*v, int nl, int nh) |
mi++; /* Death is another wave */
|
{ |
/* if(mi==0) never been interviewed correctly before death */
|
free((FREE_ARG)(v+nl-NR_END)); |
/* Only death is a correct wave */
|
} |
mw[mi][i]=m;
|
|
}
|
/************************ivector *******************************/ |
|
int *ivector(long nl,long nh) |
wav[i]=mi;
|
{ |
if(mi==0)
|
int *v; |
printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
|
v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int))); |
}
|
if (!v) nrerror("allocation failure in ivector"); |
|
return v-nl+NR_END; |
for(i=1; i<=imx; i++){
|
} |
for(mi=1; mi<wav[i];mi++){
|
|
if (stepm <=0)
|
/******************free ivector **************************/ |
dh[mi][i]=1;
|
void free_ivector(int *v, long nl, long nh) |
else{
|
{ |
if (s[mw[mi+1][i]][i] > nlstate) {
|
free((FREE_ARG)(v+nl-NR_END)); |
if (agedc[i] < 2*AGESUP) {
|
} |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
|
|
if(j==0) j=1; /* Survives at least one month after exam */
|
/************************lvector *******************************/ |
k=k+1;
|
long *lvector(long nl,long nh) |
if (j >= jmax) jmax=j;
|
{ |
if (j <= jmin) jmin=j;
|
long *v; |
sum=sum+j;
|
v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long))); |
/* if (j<10) printf("j=%d num=%d ",j,i); */
|
if (!v) nrerror("allocation failure in ivector"); |
}
|
return v-nl+NR_END; |
}
|
} |
else{
|
|
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
|
/******************free lvector **************************/ |
k=k+1;
|
void free_lvector(long *v, long nl, long nh) |
if (j >= jmax) jmax=j;
|
{ |
else if (j <= jmin)jmin=j;
|
free((FREE_ARG)(v+nl-NR_END)); |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
|
} |
sum=sum+j;
|
|
}
|
/******************* imatrix *******************************/ |
jk= j/stepm;
|
int **imatrix(long nrl, long nrh, long ncl, long nch) |
jl= j -jk*stepm;
|
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ |
ju= j -(jk+1)*stepm;
|
{ |
if(jl <= -ju)
|
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; |
dh[mi][i]=jk;
|
int **m; |
else
|
|
dh[mi][i]=jk+1;
|
/* allocate pointers to rows */ |
if(dh[mi][i]==0)
|
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); |
dh[mi][i]=1; /* At least one step */
|
if (!m) nrerror("allocation failure 1 in matrix()"); |
}
|
m += NR_END; |
}
|
m -= nrl; |
}
|
|
jmean=sum/k;
|
|
printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
|
/* allocate rows and set pointers to them */ |
}
|
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); |
/*********** Tricode ****************************/
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
void tricode(int *Tvar, int **nbcode, int imx)
|
m[nrl] += NR_END; |
{
|
m[nrl] -= ncl; |
int Ndum[20],ij=1, k, j, i;
|
|
int cptcode=0;
|
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; |
cptcoveff=0;
|
|
|
/* return pointer to array of pointers to rows */ |
for (k=0; k<19; k++) Ndum[k]=0;
|
return m; |
for (k=1; k<=7; k++) ncodemax[k]=0;
|
} |
|
|
for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
|
/****************** free_imatrix *************************/ |
for (i=1; i<=imx; i++) {
|
void free_imatrix(m,nrl,nrh,ncl,nch) |
ij=(int)(covar[Tvar[j]][i]);
|
int **m; |
Ndum[ij]++;
|
long nch,ncl,nrh,nrl; |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
|
/* free an int matrix allocated by imatrix() */ |
if (ij > cptcode) cptcode=ij;
|
{ |
}
|
free((FREE_ARG) (m[nrl]+ncl-NR_END)); |
|
free((FREE_ARG) (m+nrl-NR_END)); |
for (i=0; i<=cptcode; i++) {
|
} |
if(Ndum[i]!=0) ncodemax[j]++;
|
|
}
|
/******************* matrix *******************************/ |
ij=1;
|
double **matrix(long nrl, long nrh, long ncl, long nch) |
|
{ |
|
long i, nrow=nrh-nrl+1, ncol=nch-ncl+1; |
for (i=1; i<=ncodemax[j]; i++) {
|
double **m; |
for (k=0; k<=19; k++) {
|
|
if (Ndum[k] != 0) {
|
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
nbcode[Tvar[j]][ij]=k;
|
if (!m) nrerror("allocation failure 1 in matrix()"); |
ij++;
|
m += NR_END; |
}
|
m -= nrl; |
if (ij > ncodemax[j]) break;
|
|
}
|
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); |
}
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
}
|
m[nrl] += NR_END; |
|
m[nrl] -= ncl; |
for (k=0; k<19; k++) Ndum[k]=0;
|
|
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
for (i=1; i<=ncovmodel-2; i++) {
|
return m; |
ij=Tvar[i];
|
/* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0]) |
Ndum[ij]++;
|
m[i] = address of ith row of the table. &(m[i]) is its value which is another adress |
}
|
that of m[i][0]. In order to get the value p m[i][0] but it is unitialized. |
|
*/ |
ij=1;
|
} |
for (i=1; i<=10; i++) {
|
|
if((Ndum[i]!=0) && (i<=ncov)){
|
/*************************free matrix ************************/ |
Tvaraff[ij]=i;
|
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) |
ij++;
|
{ |
}
|
free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
}
|
free((FREE_ARG)(m+nrl-NR_END)); |
|
} |
cptcoveff=ij-1;
|
|
}
|
/******************* ma3x *******************************/ |
|
double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh) |
/*********** Health Expectancies ****************/
|
{ |
|
long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1; |
void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)
|
double ***m; |
{
|
|
/* Health expectancies */
|
m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*))); |
int i, j, nhstepm, hstepm, h;
|
if (!m) nrerror("allocation failure 1 in matrix()"); |
double age, agelim,hf;
|
m += NR_END; |
double ***p3mat;
|
m -= nrl; |
|
|
fprintf(ficreseij,"# Health expectancies\n");
|
m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); |
fprintf(ficreseij,"# Age");
|
if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); |
for(i=1; i<=nlstate;i++)
|
m[nrl] += NR_END; |
for(j=1; j<=nlstate;j++)
|
m[nrl] -= ncl; |
fprintf(ficreseij," %1d-%1d",i,j);
|
|
fprintf(ficreseij,"\n");
|
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol; |
|
|
hstepm=1*YEARM; /* Every j years of age (in month) */
|
m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double))); |
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
|
if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()"); |
|
m[nrl][ncl] += NR_END; |
agelim=AGESUP;
|
m[nrl][ncl] -= nll; |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
|
for (j=ncl+1; j<=nch; j++) |
/* nhstepm age range expressed in number of stepm */
|
m[nrl][j]=m[nrl][j-1]+nlay; |
nhstepm=(int) rint((agelim-age)*YEARM/stepm);
|
|
/* Typically if 20 years = 20*12/6=40 stepm */
|
for (i=nrl+1; i<=nrh; i++) { |
if (stepm >= YEARM) hstepm=1;
|
m[i][ncl]=m[i-1l][ncl]+ncol*nlay; |
nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */
|
for (j=ncl+1; j<=nch; j++) |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
m[i][j]=m[i][j-1]+nlay; |
/* Computed by stepm unit matrices, product of hstepm matrices, stored
|
} |
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
|
return m; |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);
|
/* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1]) |
|
&(m[i][j][k]) <=> *((*(m+i) + j)+k) |
|
*/ |
for(i=1; i<=nlstate;i++)
|
} |
for(j=1; j<=nlstate;j++)
|
|
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){
|
/*************************free ma3x ************************/ |
eij[i][j][(int)age] +=p3mat[i][j][h];
|
void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh) |
}
|
{ |
|
free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END)); |
hf=1;
|
free((FREE_ARG)(m[nrl]+ncl-NR_END)); |
if (stepm >= YEARM) hf=stepm/YEARM;
|
free((FREE_ARG)(m+nrl-NR_END)); |
fprintf(ficreseij,"%.0f",age );
|
} |
for(i=1; i<=nlstate;i++)
|
|
for(j=1; j<=nlstate;j++){
|
/*************** function subdirf ***********/ |
fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);
|
char *subdirf(char fileres[]) |
}
|
{ |
fprintf(ficreseij,"\n");
|
/* Caution optionfilefiname is hidden */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
strcpy(tmpout,optionfilefiname); |
}
|
strcat(tmpout,"/"); /* Add to the right */ |
}
|
strcat(tmpout,fileres); |
|
return tmpout; |
/************ Variance ******************/
|
} |
void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
|
|
{
|
/*************** function subdirf2 ***********/ |
/* Variance of health expectancies */
|
char *subdirf2(char fileres[], char *preop) |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
|
{ |
double **newm;
|
|
double **dnewm,**doldm;
|
/* Caution optionfilefiname is hidden */ |
int i, j, nhstepm, hstepm, h;
|
strcpy(tmpout,optionfilefiname); |
int k, cptcode;
|
strcat(tmpout,"/"); |
double *xp;
|
strcat(tmpout,preop); |
double **gp, **gm;
|
strcat(tmpout,fileres); |
double ***gradg, ***trgradg;
|
return tmpout; |
double ***p3mat;
|
} |
double age,agelim;
|
|
int theta;
|
/*************** function subdirf3 ***********/ |
|
char *subdirf3(char fileres[], char *preop, char *preop2) |
fprintf(ficresvij,"# Covariances of life expectancies\n");
|
{ |
fprintf(ficresvij,"# Age");
|
|
for(i=1; i<=nlstate;i++)
|
/* Caution optionfilefiname is hidden */ |
for(j=1; j<=nlstate;j++)
|
strcpy(tmpout,optionfilefiname); |
fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
|
strcat(tmpout,"/"); |
fprintf(ficresvij,"\n");
|
strcat(tmpout,preop); |
|
strcat(tmpout,preop2); |
xp=vector(1,npar);
|
strcat(tmpout,fileres); |
dnewm=matrix(1,nlstate,1,npar);
|
return tmpout; |
doldm=matrix(1,nlstate,1,nlstate);
|
} |
|
|
hstepm=1*YEARM; /* Every year of age */
|
/*************** function subdirfext ***********/ |
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
|
char *subdirfext(char fileres[], char *preop, char *postop) |
agelim = AGESUP;
|
{ |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
|
|
nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
|
strcpy(tmpout,preop); |
if (stepm >= YEARM) hstepm=1;
|
strcat(tmpout,fileres); |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
|
strcat(tmpout,postop); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
return tmpout; |
gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
|
} |
gp=matrix(0,nhstepm,1,nlstate);
|
|
gm=matrix(0,nhstepm,1,nlstate);
|
/*************** function subdirfext3 ***********/ |
|
char *subdirfext3(char fileres[], char *preop, char *postop) |
for(theta=1; theta <=npar; theta++){
|
{ |
for(i=1; i<=npar; i++){ /* Computes gradient */
|
|
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
/* Caution optionfilefiname is hidden */ |
}
|
strcpy(tmpout,optionfilefiname); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
|
strcat(tmpout,"/"); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
strcat(tmpout,preop); |
|
strcat(tmpout,fileres); |
if (popbased==1) {
|
strcat(tmpout,postop); |
for(i=1; i<=nlstate;i++)
|
return tmpout; |
prlim[i][i]=probs[(int)age][i][ij];
|
} |
}
|
|
|
char *asc_diff_time(long time_sec, char ascdiff[]) |
for(j=1; j<= nlstate; j++){
|
{ |
for(h=0; h<=nhstepm; h++){
|
long sec_left, days, hours, minutes; |
for(i=1, gp[h][j]=0.;i<=nlstate;i++)
|
days = (time_sec) / (60*60*24); |
gp[h][j] += prlim[i][i]*p3mat[i][j][h];
|
sec_left = (time_sec) % (60*60*24); |
}
|
hours = (sec_left) / (60*60) ; |
}
|
sec_left = (sec_left) %(60*60); |
|
minutes = (sec_left) /60; |
for(i=1; i<=npar; i++) /* Computes gradient */
|
sec_left = (sec_left) % (60); |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
|
return ascdiff; |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
} |
|
|
if (popbased==1) {
|
/***************** f1dim *************************/ |
for(i=1; i<=nlstate;i++)
|
extern int ncom; |
prlim[i][i]=probs[(int)age][i][ij];
|
extern double *pcom,*xicom; |
}
|
extern double (*nrfunc)(double []); |
|
|
for(j=1; j<= nlstate; j++){
|
double f1dim(double x) |
for(h=0; h<=nhstepm; h++){
|
{ |
for(i=1, gm[h][j]=0.;i<=nlstate;i++)
|
int j; |
gm[h][j] += prlim[i][i]*p3mat[i][j][h];
|
double f; |
}
|
double *xt; |
}
|
|
|
xt=vector(1,ncom); |
for(j=1; j<= nlstate; j++)
|
for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; |
for(h=0; h<=nhstepm; h++){
|
f=(*nrfunc)(xt); |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
|
free_vector(xt,1,ncom); |
}
|
return f; |
} /* End theta */
|
} |
|
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
|
/*****************brent *************************/ |
|
double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin) |
for(h=0; h<=nhstepm; h++)
|
{ |
for(j=1; j<=nlstate;j++)
|
/* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is |
for(theta=1; theta <=npar; theta++)
|
* between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates |
trgradg[h][j][theta]=gradg[h][theta][j];
|
* the minimum to a fractional precision of about tol using Brent’s method. The abscissa of |
|
* the minimum is returned as xmin, and the minimum function value is returned as brent , the |
for(i=1;i<=nlstate;i++)
|
* returned function value. |
for(j=1;j<=nlstate;j++)
|
*/ |
vareij[i][j][(int)age] =0.;
|
int iter; |
for(h=0;h<=nhstepm;h++){
|
double a,b,d,etemp; |
for(k=0;k<=nhstepm;k++){
|
double fu=0,fv,fw,fx; |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
|
double ftemp=0.; |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
|
double p,q,r,tol1,tol2,u,v,w,x,xm; |
for(i=1;i<=nlstate;i++)
|
double e=0.0; |
for(j=1;j<=nlstate;j++)
|
|
vareij[i][j][(int)age] += doldm[i][j];
|
a=(ax < cx ? ax : cx); |
}
|
b=(ax > cx ? ax : cx); |
}
|
x=w=v=bx; |
h=1;
|
fw=fv=fx=(*f)(x); |
if (stepm >= YEARM) h=stepm/YEARM;
|
for (iter=1;iter<=ITMAX;iter++) { |
fprintf(ficresvij,"%.0f ",age );
|
xm=0.5*(a+b); |
for(i=1; i<=nlstate;i++)
|
tol2=2.0*(tol1=tol*fabs(x)+ZEPS); |
for(j=1; j<=nlstate;j++){
|
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/ |
fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);
|
printf(".");fflush(stdout); |
}
|
fprintf(ficlog,".");fflush(ficlog); |
fprintf(ficresvij,"\n");
|
#ifdef DEBUGBRENT |
free_matrix(gp,0,nhstepm,1,nlstate);
|
printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
free_matrix(gm,0,nhstepm,1,nlstate);
|
fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol); |
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
|
/* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */ |
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
|
#endif |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
if (fabs(x-xm) <= (tol2-0.5*(b-a))){ |
} /* End age */
|
*xmin=x; |
|
return fx; |
free_vector(xp,1,npar);
|
} |
free_matrix(doldm,1,nlstate,1,npar);
|
ftemp=fu; |
free_matrix(dnewm,1,nlstate,1,nlstate);
|
if (fabs(e) > tol1) { |
|
r=(x-w)*(fx-fv); |
}
|
q=(x-v)*(fx-fw); |
|
p=(x-v)*q-(x-w)*r; |
/************ Variance of prevlim ******************/
|
q=2.0*(q-r); |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
|
if (q > 0.0) p = -p; |
{
|
q=fabs(q); |
/* Variance of prevalence limit */
|
etemp=e; |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
|
e=d; |
double **newm;
|
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
double **dnewm,**doldm;
|
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
int i, j, nhstepm, hstepm;
|
else { |
int k, cptcode;
|
d=p/q; |
double *xp;
|
u=x+d; |
double *gp, *gm;
|
if (u-a < tol2 || b-u < tol2) |
double **gradg, **trgradg;
|
d=SIGN(tol1,xm-x); |
double age,agelim;
|
} |
int theta;
|
} else { |
|
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
|
} |
fprintf(ficresvpl,"# Age");
|
u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); |
for(i=1; i<=nlstate;i++)
|
fu=(*f)(u); |
fprintf(ficresvpl," %1d-%1d",i,i);
|
if (fu <= fx) { |
fprintf(ficresvpl,"\n");
|
if (u >= x) a=x; else b=x; |
|
SHFT(v,w,x,u) |
xp=vector(1,npar);
|
SHFT(fv,fw,fx,fu) |
dnewm=matrix(1,nlstate,1,npar);
|
} else { |
doldm=matrix(1,nlstate,1,nlstate);
|
if (u < x) a=u; else b=u; |
|
if (fu <= fw || w == x) { |
hstepm=1*YEARM; /* Every year of age */
|
v=w; |
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
|
w=u; |
agelim = AGESUP;
|
fv=fw; |
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
|
fw=fu; |
nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
|
} else if (fu <= fv || v == x || v == w) { |
if (stepm >= YEARM) hstepm=1;
|
v=u; |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
|
fv=fu; |
gradg=matrix(1,npar,1,nlstate);
|
} |
gp=vector(1,nlstate);
|
} |
gm=vector(1,nlstate);
|
} |
|
nrerror("Too many iterations in brent"); |
for(theta=1; theta <=npar; theta++){
|
*xmin=x; |
for(i=1; i<=npar; i++){ /* Computes gradient */
|
return fx; |
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
} |
}
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
/****************** mnbrak ***********************/ |
for(i=1;i<=nlstate;i++)
|
|
gp[i] = prlim[i][i];
|
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, |
|
double (*func)(double)) |
for(i=1; i<=npar; i++) /* Computes gradient */
|
{ /* Given a function func , and given distinct initial points ax and bx , this routine searches in |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
the downhill direction (defined by the function as evaluated at the initial points) and returns |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
|
new points ax , bx , cx that bracket a minimum of the function. Also returned are the function |
for(i=1;i<=nlstate;i++)
|
values at the three points, fa, fb , and fc such that fa > fb and fb < fc. |
gm[i] = prlim[i][i];
|
*/ |
|
double ulim,u,r,q, dum; |
for(i=1;i<=nlstate;i++)
|
double fu; |
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
|
|
} /* End theta */
|
double scale=10.; |
|
int iterscale=0; |
trgradg =matrix(1,nlstate,1,npar);
|
|
|
*fa=(*func)(*ax); /* xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/ |
for(j=1; j<=nlstate;j++)
|
*fb=(*func)(*bx); /* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */ |
for(theta=1; theta <=npar; theta++)
|
|
trgradg[j][theta]=gradg[theta][j];
|
|
|
/* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */ |
for(i=1;i<=nlstate;i++)
|
/* printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */ |
varpl[i][(int)age] =0.;
|
/* *bx = *ax - (*ax - *bx)/scale; */ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
|
/* *fb=(*func)(*bx); /\* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */ |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
|
/* } */ |
for(i=1;i<=nlstate;i++)
|
|
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
|
if (*fb > *fa) { |
|
SHFT(dum,*ax,*bx,dum) |
fprintf(ficresvpl,"%.0f ",age );
|
SHFT(dum,*fb,*fa,dum) |
for(i=1; i<=nlstate;i++)
|
} |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
|
*cx=(*bx)+GOLD*(*bx-*ax); |
fprintf(ficresvpl,"\n");
|
*fc=(*func)(*cx); |
free_vector(gp,1,nlstate);
|
#ifdef DEBUG |
free_vector(gm,1,nlstate);
|
printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
free_matrix(gradg,1,npar,1,nlstate);
|
fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
free_matrix(trgradg,1,nlstate,1,npar);
|
#endif |
} /* End age */
|
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/ |
|
r=(*bx-*ax)*(*fb-*fc); |
free_vector(xp,1,npar);
|
q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */ |
free_matrix(doldm,1,nlstate,1,npar);
|
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
free_matrix(dnewm,1,nlstate,1,nlstate);
|
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
|
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
}
|
if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */ |
|
fu=(*func)(u); |
/************ Variance of one-step probabilities ******************/
|
#ifdef DEBUG |
void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)
|
/* f(x)=A(x-u)**2+f(u) */ |
{
|
double A, fparabu; |
int i, j;
|
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
int k=0, cptcode;
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
double **dnewm,**doldm;
|
printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
double *xp;
|
fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
double *gp, *gm;
|
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
double **gradg, **trgradg;
|
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
double age,agelim, cov[NCOVMAX];
|
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
int theta;
|
/* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/ |
char fileresprob[FILENAMELENGTH];
|
#endif |
|
#ifdef MNBRAKORIGINAL |
strcpy(fileresprob,"prob");
|
#else |
strcat(fileresprob,fileres);
|
/* if (fu > *fc) { */ |
if((ficresprob=fopen(fileresprob,"w"))==NULL) {
|
/* #ifdef DEBUG */ |
printf("Problem with resultfile: %s\n", fileresprob);
|
/* printf("mnbrak4 fu > fc \n"); */ |
}
|
/* fprintf(ficlog, "mnbrak4 fu > fc\n"); */ |
printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);
|
/* #endif */ |
|
/* /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/ *\/ */ |
|
/* /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc will exit *\\/ *\/ */ |
xp=vector(1,npar);
|
/* dum=u; /\* Shifting c and u *\/ */ |
dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
|
/* u = *cx; */ |
doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));
|
/* *cx = dum; */ |
|
/* dum = fu; */ |
cov[1]=1;
|
/* fu = *fc; */ |
for (age=bage; age<=fage; age ++){
|
/* *fc =dum; */ |
cov[2]=age;
|
/* } else { /\* end *\/ */ |
gradg=matrix(1,npar,1,9);
|
/* #ifdef DEBUG */ |
trgradg=matrix(1,9,1,npar);
|
/* printf("mnbrak3 fu < fc \n"); */ |
gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
|
/* fprintf(ficlog, "mnbrak3 fu < fc\n"); */ |
gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
|
/* #endif */ |
|
/* dum=u; /\* Shifting c and u *\/ */ |
for(theta=1; theta <=npar; theta++){
|
/* u = *cx; */ |
for(i=1; i<=npar; i++)
|
/* *cx = dum; */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0);
|
/* dum = fu; */ |
|
/* fu = *fc; */ |
pmij(pmmij,cov,ncovmodel,xp,nlstate);
|
/* *fc =dum; */ |
|
/* } */ |
k=0;
|
#ifdef DEBUGMNBRAK |
for(i=1; i<= (nlstate+ndeath); i++){
|
double A, fparabu; |
for(j=1; j<=(nlstate+ndeath);j++){
|
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
k=k+1;
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
gp[k]=pmmij[i][j];
|
printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
}
|
fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
}
|
#endif |
|
dum=u; /* Shifting c and u */ |
for(i=1; i<=npar; i++)
|
u = *cx; |
xp[i] = x[i] - (i==theta ?delti[theta]:0);
|
*cx = dum; |
|
dum = fu; |
|
fu = *fc; |
pmij(pmmij,cov,ncovmodel,xp,nlstate);
|
*fc =dum; |
k=0;
|
#endif |
for(i=1; i<=(nlstate+ndeath); i++){
|
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
for(j=1; j<=(nlstate+ndeath);j++){
|
#ifdef DEBUG |
k=k+1;
|
printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
gm[k]=pmmij[i][j];
|
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
}
|
#endif |
}
|
fu=(*func)(u); |
|
if (fu < *fc) { |
for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)
|
#ifdef DEBUG |
gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];
|
printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
}
|
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
|
#endif |
for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)
|
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
for(theta=1; theta <=npar; theta++)
|
SHFT(*fb,*fc,fu,(*func)(u)) |
trgradg[j][theta]=gradg[theta][j];
|
#ifdef DEBUG |
|
printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx)); |
matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);
|
#endif |
matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);
|
} |
|
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
pmij(pmmij,cov,ncovmodel,x,nlstate);
|
#ifdef DEBUG |
|
printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
k=0;
|
fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
for(i=1; i<=(nlstate+ndeath); i++){
|
#endif |
for(j=1; j<=(nlstate+ndeath);j++){
|
u=ulim; |
k=k+1;
|
fu=(*func)(u); |
gm[k]=pmmij[i][j];
|
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
}
|
#ifdef DEBUG |
}
|
printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
|
fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
/*printf("\n%d ",(int)age);
|
#endif |
for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
|
u=(*cx)+GOLD*(*cx-*bx); |
|
fu=(*func)(u); |
|
#ifdef DEBUG |
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
|
printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
}*/
|
fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
#endif |
fprintf(ficresprob,"\n%d ",(int)age);
|
} /* end tests */ |
|
SHFT(*ax,*bx,*cx,u) |
for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
|
SHFT(*fa,*fb,*fc,fu) |
if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);
|
#ifdef DEBUG |
if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);
|
printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
}
|
fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
|
#endif |
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
|
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
|
} |
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
|
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
|
/*************** linmin ************************/ |
}
|
/* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and |
free_vector(xp,1,npar);
|
resets p to where the function func(p) takes on a minimum along the direction xi from p , |
fclose(ficresprob);
|
and replaces xi by the actual vector displacement that p was moved. Also returns as fret |
exit(0);
|
the value of func at the returned location p . This is actually all accomplished by calling the |
}
|
routines mnbrak and brent .*/ |
|
int ncom; |
/***********************************************/
|
double *pcom,*xicom; |
/**************** Main Program *****************/
|
double (*nrfunc)(double []); |
/***********************************************/
|
|
|
#ifdef LINMINORIGINAL |
/*int main(int argc, char *argv[])*/
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
int main()
|
#else |
{
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) |
|
#endif |
int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
|
{ |
double agedeb, agefin,hf;
|
double brent(double ax, double bx, double cx, |
double agemin=1.e20, agemax=-1.e20;
|
double (*f)(double), double tol, double *xmin); |
|
double f1dim(double x); |
double fret;
|
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, |
double **xi,tmp,delta;
|
double *fc, double (*func)(double)); |
|
int j; |
double dum; /* Dummy variable */
|
double xx,xmin,bx,ax; |
double ***p3mat;
|
double fx,fb,fa; |
int *indx;
|
|
char line[MAXLINE], linepar[MAXLINE];
|
#ifdef LINMINORIGINAL |
char title[MAXLINE];
|
#else |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
|
double scale=10., axs, xxs; /* Scale added for infinity */ |
char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];
|
#endif |
char filerest[FILENAMELENGTH];
|
|
char fileregp[FILENAMELENGTH];
|
ncom=n; |
char popfile[FILENAMELENGTH];
|
pcom=vector(1,n); |
char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
|
xicom=vector(1,n); |
int firstobs=1, lastobs=10;
|
nrfunc=func; |
int sdeb, sfin; /* Status at beginning and end */
|
for (j=1;j<=n;j++) { |
int c, h , cpt,l;
|
pcom[j]=p[j]; |
int ju,jl, mi;
|
xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */ |
int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
|
} |
int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;
|
|
int mobilav=0, fprev, lprev ,fprevfore=1, lprevfore=1,nforecast,popforecast=0;
|
#ifdef LINMINORIGINAL |
int hstepm, nhstepm;
|
xx=1.; |
int *popage,boolprev=0;/*boolprev=0 if date and zero if wave*/
|
#else |
|
axs=0.0; |
double bage, fage, age, agelim, agebase;
|
xxs=1.; |
double ftolpl=FTOL;
|
do{ |
double **prlim;
|
xx= xxs; |
double *severity;
|
#endif |
double ***param; /* Matrix of parameters */
|
ax=0.; |
double *p;
|
mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */ |
double **matcov; /* Matrix of covariance */
|
/* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */ |
double ***delti3; /* Scale */
|
/* xt[x,j]=pcom[j]+x*xicom[j] f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j)) */ |
double *delti; /* Scale */
|
/* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */ |
double ***eij, ***vareij;
|
/* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */ |
double **varpl; /* Variances of prevalence limits by age */
|
/* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */ |
double *epj, vepp;
|
/* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus [0:xi[j]]*/ |
double kk1, kk2;
|
#ifdef LINMINORIGINAL |
double *popeffectif,*popcount;
|
#else |
double dateprev1, dateprev2;
|
if (fx != fx){ |
|
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";
|
printf("|"); |
char *alph[]={"a","a","b","c","d","e"}, str[4];
|
fprintf(ficlog,"|"); |
|
#ifdef DEBUGLINMIN |
|
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
char z[1]="c", occ;
|
#endif |
#include <sys/time.h>
|
} |
#include <time.h>
|
}while(fx != fx && xxs > 1.e-5); |
char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
|
#endif |
char strfprev[10], strlprev[10];
|
|
char strfprevfore[10], strlprevfore[10];
|
#ifdef DEBUGLINMIN |
/* long total_usecs;
|
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
struct timeval start_time, end_time;
|
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
|
#endif |
gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
|
#ifdef LINMINORIGINAL |
|
#else |
|
if(fb == fx){ /* Flat function in the direction */ |
printf("\nIMACH, Version 0.7");
|
xmin=xx; |
printf("\nEnter the parameter file name: ");
|
*flat=1; |
|
}else{ |
#ifdef windows
|
*flat=0; |
scanf("%s",pathtot);
|
#endif |
getcwd(pathcd, size);
|
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
/*cygwin_split_path(pathtot,path,optionfile);
|
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
|
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* cutv(path,optionfile,pathtot,'\\');*/
|
/* fmin = f(p[j] + xmin * xi[j]) */ |
|
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
split(pathtot, path,optionfile);
|
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
chdir(path);
|
#ifdef DEBUG |
replace(pathc,path);
|
printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
#endif
|
fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
#ifdef unix
|
#endif |
scanf("%s",optionfile);
|
#ifdef LINMINORIGINAL |
#endif
|
#else |
|
} |
/*-------- arguments in the command line --------*/
|
#endif |
|
#ifdef DEBUGLINMIN |
strcpy(fileres,"r");
|
printf("linmin end "); |
strcat(fileres, optionfile);
|
fprintf(ficlog,"linmin end "); |
|
#endif |
/*---------arguments file --------*/
|
for (j=1;j<=n;j++) { |
|
#ifdef LINMINORIGINAL |
if((ficpar=fopen(optionfile,"r"))==NULL) {
|
xi[j] *= xmin; |
printf("Problem with optionfile %s\n",optionfile);
|
#else |
goto end;
|
#ifdef DEBUGLINMIN |
}
|
if(xxs <1.0) |
|
printf(" before xi[%d]=%12.8f", j,xi[j]); |
strcpy(filereso,"o");
|
#endif |
strcat(filereso,fileres);
|
xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */ |
if((ficparo=fopen(filereso,"w"))==NULL) {
|
#ifdef DEBUGLINMIN |
printf("Problem with Output resultfile: %s\n", filereso);goto end;
|
if(xxs <1.0) |
}
|
printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs ); |
|
#endif |
/* Reads comments: lines beginning with '#' */
|
#endif |
while((c=getc(ficpar))=='#' && c!= EOF){
|
p[j] += xi[j]; /* Parameters values are updated accordingly */ |
ungetc(c,ficpar);
|
} |
fgets(line, MAXLINE, ficpar);
|
#ifdef DEBUGLINMIN |
puts(line);
|
printf("\n"); |
fputs(line,ficparo);
|
printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
}
|
fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p)); |
ungetc(c,ficpar);
|
for (j=1;j<=n;j++) { |
|
printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]); |
fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
|
fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]); |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);
|
if(j % ncovmodel == 0){ |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);
|
printf("\n"); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
fprintf(ficlog,"\n"); |
ungetc(c,ficpar);
|
} |
fgets(line, MAXLINE, ficpar);
|
} |
puts(line);
|
#else |
fputs(line,ficparo);
|
#endif |
}
|
free_vector(xicom,1,n); |
ungetc(c,ficpar);
|
free_vector(pcom,1,n); |
|
} |
fscanf(ficpar,"fprevalence=%s lprevalence=%s pop_based=%d\n",strfprev,strlprev,&popbased);
|
|
fprintf(ficparo,"fprevalence=%s lprevalence=%s pop_based=%d\n",strfprev,strlprev,popbased);
|
|
|
/*************** powell ************************/ |
/* printf("%s %s",strfprev,strlprev);
|
/* |
exit(0);*/
|
Minimization of a function func of n variables. Input consists of an initial starting point |
while((c=getc(ficpar))=='#' && c!= EOF){
|
p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
ungetc(c,ficpar);
|
rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
fgets(line, MAXLINE, ficpar);
|
such that failure to decrease by more than this amount on one iteration signals doneness. On |
puts(line);
|
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
fputs(line,ficparo);
|
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
}
|
*/ |
ungetc(c,ficpar);
|
#ifdef LINMINORIGINAL |
|
#else |
fscanf(ficpar,"fprevalence=%s lprevalence=%s nforecast=%d mob_average=%d\n",strfprevfore,strlprevfore,&nforecast,&mobilav);
|
int *flatdir; /* Function is vanishing in that direction */ |
fprintf(ficparo,"fprevalence=%s lprevalence=%s nforecast=%d mob_average=%d\n",strfprevfore,strlprevfore,nforecast,mobilav);
|
int flat=0, flatd=0; /* Function is vanishing in that direction */ |
|
#endif |
|
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
while((c=getc(ficpar))=='#' && c!= EOF){
|
double (*func)(double [])) |
ungetc(c,ficpar);
|
{ |
fgets(line, MAXLINE, ficpar);
|
#ifdef LINMINORIGINAL |
puts(line);
|
void linmin(double p[], double xi[], int n, double *fret, |
fputs(line,ficparo);
|
double (*func)(double [])); |
}
|
#else |
ungetc(c,ficpar);
|
void linmin(double p[], double xi[], int n, double *fret, |
|
double (*func)(double []),int *flat); |
fscanf(ficpar,"popforecast=%d popfile=%s\n",&popforecast,popfile);
|
#endif |
|
int i,ibig,j; |
covar=matrix(0,NCOVMAX,1,n);
|
double del,t,*pt,*ptt,*xit; |
cptcovn=0;
|
double directest; |
if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
|
double fp,fptt; |
|
double *xits; |
ncovmodel=2+cptcovn;
|
int niterf, itmp; |
nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
|
#ifdef LINMINORIGINAL |
|
#else |
/* Read guess parameters */
|
|
/* Reads comments: lines beginning with '#' */
|
flatdir=ivector(1,n); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
for (j=1;j<=n;j++) flatdir[j]=0; |
ungetc(c,ficpar);
|
#endif |
fgets(line, MAXLINE, ficpar);
|
|
puts(line);
|
pt=vector(1,n); |
fputs(line,ficparo);
|
ptt=vector(1,n); |
}
|
xit=vector(1,n); |
ungetc(c,ficpar);
|
xits=vector(1,n); |
|
*fret=(*func)(p); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
|
for (j=1;j<=n;j++) pt[j]=p[j]; |
for(i=1; i <=nlstate; i++)
|
rcurr_time = time(NULL); |
for(j=1; j <=nlstate+ndeath-1; j++){
|
for (*iter=1;;++(*iter)) { |
fscanf(ficpar,"%1d%1d",&i1,&j1);
|
fp=(*fret); /* From former iteration or initial value */ |
fprintf(ficparo,"%1d%1d",i1,j1);
|
ibig=0; |
printf("%1d%1d",i,j);
|
del=0.0; |
for(k=1; k<=ncovmodel;k++){
|
rlast_time=rcurr_time; |
fscanf(ficpar," %lf",¶m[i][j][k]);
|
/* (void) gettimeofday(&curr_time,&tzp); */ |
printf(" %lf",param[i][j][k]);
|
rcurr_time = time(NULL); |
fprintf(ficparo," %lf",param[i][j][k]);
|
curr_time = *localtime(&rcurr_time); |
}
|
printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
fscanf(ficpar,"\n");
|
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
printf("\n");
|
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
fprintf(ficparo,"\n");
|
for (i=1;i<=n;i++) { |
}
|
printf(" %d %.12f",i, p[i]); |
|
fprintf(ficlog," %d %.12lf",i, p[i]); |
npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
|
fprintf(ficrespow," %.12lf", p[i]); |
|
} |
p=param[1][1];
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
/* Reads comments: lines beginning with '#' */
|
fprintf(ficrespow,"\n");fflush(ficrespow); |
while((c=getc(ficpar))=='#' && c!= EOF){
|
if(*iter <=3){ |
ungetc(c,ficpar);
|
tml = *localtime(&rcurr_time); |
fgets(line, MAXLINE, ficpar);
|
strcpy(strcurr,asctime(&tml)); |
puts(line);
|
rforecast_time=rcurr_time; |
fputs(line,ficparo);
|
itmp = strlen(strcurr); |
}
|
if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */ |
ungetc(c,ficpar);
|
strcurr[itmp-1]='\0'; |
|
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
|
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
|
for(niterf=10;niterf<=30;niterf+=10){ |
for(i=1; i <=nlstate; i++){
|
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
for(j=1; j <=nlstate+ndeath-1; j++){
|
forecast_time = *localtime(&rforecast_time); |
fscanf(ficpar,"%1d%1d",&i1,&j1);
|
strcpy(strfor,asctime(&forecast_time)); |
printf("%1d%1d",i,j);
|
itmp = strlen(strfor); |
fprintf(ficparo,"%1d%1d",i1,j1);
|
if(strfor[itmp-1]=='\n') |
for(k=1; k<=ncovmodel;k++){
|
strfor[itmp-1]='\0'; |
fscanf(ficpar,"%le",&delti3[i][j][k]);
|
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
printf(" %le",delti3[i][j][k]);
|
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficparo," %le",delti3[i][j][k]);
|
} |
}
|
} |
fscanf(ficpar,"\n");
|
for (i=1;i<=n;i++) { /* For each direction i */ |
printf("\n");
|
for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */ |
fprintf(ficparo,"\n");
|
fptt=(*fret); |
}
|
#ifdef DEBUG |
}
|
printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
delti=delti3[1][1];
|
fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
|
#endif |
/* Reads comments: lines beginning with '#' */
|
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
while((c=getc(ficpar))=='#' && c!= EOF){
|
fprintf(ficlog,"%d",i);fflush(ficlog); |
ungetc(c,ficpar);
|
#ifdef LINMINORIGINAL |
fgets(line, MAXLINE, ficpar);
|
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
puts(line);
|
#else |
fputs(line,ficparo);
|
linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
}
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
ungetc(c,ficpar);
|
#endif |
|
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
matcov=matrix(1,npar,1,npar);
|
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
for(i=1; i <=npar; i++){
|
/* because that direction will be replaced unless the gain del is small */ |
fscanf(ficpar,"%s",&str);
|
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
printf("%s",str);
|
/* Unless the n directions are conjugate some gain in the determinant may be obtained */ |
fprintf(ficparo,"%s",str);
|
/* with the new direction. */ |
for(j=1; j <=i; j++){
|
del=fabs(fptt-(*fret)); |
fscanf(ficpar," %le",&matcov[i][j]);
|
ibig=i; |
printf(" %.5le",matcov[i][j]);
|
} |
fprintf(ficparo," %.5le",matcov[i][j]);
|
#ifdef DEBUG |
}
|
printf("%d %.12e",i,(*fret)); |
fscanf(ficpar,"\n");
|
fprintf(ficlog,"%d %.12e",i,(*fret)); |
printf("\n");
|
for (j=1;j<=n;j++) { |
fprintf(ficparo,"\n");
|
xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5); |
}
|
printf(" x(%d)=%.12e",j,xit[j]); |
for(i=1; i <=npar; i++)
|
fprintf(ficlog," x(%d)=%.12e",j,xit[j]); |
for(j=i+1;j<=npar;j++)
|
} |
matcov[i][j]=matcov[j][i];
|
for(j=1;j<=n;j++) { |
|
printf(" p(%d)=%.12e",j,p[j]); |
printf("\n");
|
fprintf(ficlog," p(%d)=%.12e",j,p[j]); |
|
} |
|
printf("\n"); |
/*-------- data file ----------*/
|
fprintf(ficlog,"\n"); |
if((ficres =fopen(fileres,"w"))==NULL) {
|
#endif |
printf("Problem with resultfile: %s\n", fileres);goto end;
|
} /* end loop on each direction i */ |
}
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
fprintf(ficres,"#%s\n",version);
|
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
|
/* New value of last point Pn is not computed, P(n-1) */ |
if((fic=fopen(datafile,"r"))==NULL) {
|
for(j=1;j<=n;j++) { |
printf("Problem with datafile: %s\n", datafile);goto end;
|
if(flatdir[j] >0){ |
}
|
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
n= lastobs;
|
} |
severity = vector(1,maxwav);
|
/* printf("\n"); */ |
outcome=imatrix(1,maxwav+1,1,n);
|
/* fprintf(ficlog,"\n"); */ |
num=ivector(1,n);
|
} |
moisnais=vector(1,n);
|
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
annais=vector(1,n);
|
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
moisdc=vector(1,n);
|
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
andc=vector(1,n);
|
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
agedc=vector(1,n);
|
/* decreased of more than 3.84 */ |
cod=ivector(1,n);
|
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
weight=vector(1,n);
|
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
|
/* By adding 10 parameters more the gain should be 18.31 */ |
mint=matrix(1,maxwav,1,n);
|
|
anint=matrix(1,maxwav,1,n);
|
/* Starting the program with initial values given by a former maximization will simply change */ |
s=imatrix(1,maxwav+1,1,n);
|
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
adl=imatrix(1,maxwav+1,1,n);
|
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
tab=ivector(1,NCOVMAX);
|
/* under the tolerance value. If the tolerance is very small 1.e-9, it could last long. */ |
ncodemax=ivector(1,8);
|
#ifdef DEBUG |
|
int k[2],l; |
i=1;
|
k[0]=1; |
while (fgets(line, MAXLINE, fic) != NULL) {
|
k[1]=-1; |
if ((i >= firstobs) && (i <=lastobs)) {
|
printf("Max: %.12e",(*func)(p)); |
|
fprintf(ficlog,"Max: %.12e",(*func)(p)); |
for (j=maxwav;j>=1;j--){
|
for (j=1;j<=n;j++) { |
cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
|
printf(" %.12e",p[j]); |
strcpy(line,stra);
|
fprintf(ficlog," %.12e",p[j]); |
cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
|
} |
cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
|
printf("\n"); |
}
|
fprintf(ficlog,"\n"); |
|
for(l=0;l<=1;l++) { |
cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
|
for (j=1;j<=n;j++) { |
cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
|
ptt[j]=p[j]+(p[j]-pt[j])*k[l]; |
|
printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
|
fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]); |
cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
|
} |
|
printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
|
fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p))); |
for (j=ncov;j>=1;j--){
|
} |
cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
|
#endif |
}
|
|
num[i]=atol(stra);
|
#ifdef LINMINORIGINAL |
|
#else |
/*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
|
free_ivector(flatdir,1,n); |
printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
|
#endif |
|
free_vector(xit,1,n); |
i=i+1;
|
free_vector(xits,1,n); |
}
|
free_vector(ptt,1,n); |
}
|
free_vector(pt,1,n); |
/* printf("ii=%d", ij);
|
return; |
scanf("%d",i);*/
|
} /* enough precision */ |
imx=i-1; /* Number of individuals */
|
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); |
|
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
/* for (i=1; i<=imx; i++){
|
ptt[j]=2.0*p[j]-pt[j]; |
if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
|
xit[j]=p[j]-pt[j]; |
if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
|
pt[j]=p[j]; |
if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
|
} |
}
|
fptt=(*func)(ptt); /* f_3 */ |
for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));*/
|
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
if (*iter <=4) { |
/* Calculation of the number of parameter from char model*/
|
#else |
Tvar=ivector(1,15);
|
#endif |
Tprod=ivector(1,15);
|
#ifdef POWELLNOF3INFF1TEST /* skips test F3 <F1 */ |
Tvaraff=ivector(1,15);
|
#else |
Tvard=imatrix(1,15,1,2);
|
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
Tage=ivector(1,15);
|
#endif |
|
/* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */ |
if (strlen(model) >1){
|
/* From x1 (P0) distance of x2 is at h and x3 is 2h */ |
j=0, j1=0, k1=1, k2=1;
|
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
j=nbocc(model,'+');
|
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
j1=nbocc(model,'*');
|
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
cptcovn=j+1;
|
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */ |
cptcovprod=j1;
|
/* also lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */ |
|
/* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */ |
|
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
strcpy(modelsav,model);
|
/* Even if f3 <f1, directest can be negative and t >0 */ |
if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
|
/* mu² and del² are equal when f3=f1 */ |
printf("Error. Non available option model=%s ",model);
|
/* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */ |
goto end;
|
/* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */ |
}
|
/* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0 */ |
|
/* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0 */ |
for(i=(j+1); i>=1;i--){
|
#ifdef NRCORIGINAL |
cutv(stra,strb,modelsav,'+');
|
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);
|
#else |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
|
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */ |
/*scanf("%d",i);*/
|
t= t- del*SQR(fp-fptt); |
if (strchr(strb,'*')) {
|
#endif |
cutv(strd,strc,strb,'*');
|
directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */ |
if (strcmp(strc,"age")==0) {
|
#ifdef DEBUG |
cptcovprod--;
|
printf("t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
cutv(strb,stre,strd,'V');
|
fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest); |
Tvar[i]=atoi(stre);
|
printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), |
cptcovage++;
|
(fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); |
Tage[cptcovage]=i;
|
fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt), |
/*printf("stre=%s ", stre);*/
|
(fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt)); |
}
|
printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); |
else if (strcmp(strd,"age")==0) {
|
fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t); |
cptcovprod--;
|
#endif |
cutv(strb,stre,strc,'V');
|
#ifdef POWELLORIGINAL |
Tvar[i]=atoi(stre);
|
if (t < 0.0) { /* Then we use it for new direction */ |
cptcovage++;
|
#else |
Tage[cptcovage]=i;
|
if (directest*t < 0.0) { /* Contradiction between both tests */ |
}
|
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
else {
|
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
cutv(strb,stre,strc,'V');
|
fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
Tvar[i]=ncov+k1;
|
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
cutv(strb,strc,strd,'V');
|
} |
Tprod[k1]=i;
|
if (directest < 0.0) { /* Then we use it for new direction */ |
Tvard[k1][1]=atoi(strc);
|
#endif |
Tvard[k1][2]=atoi(stre);
|
#ifdef DEBUGLINMIN |
Tvar[cptcovn+k2]=Tvard[k1][1];
|
printf("Before linmin in direction P%d-P0\n",n); |
Tvar[cptcovn+k2+1]=Tvard[k1][2];
|
for (j=1;j<=n;j++) { |
for (k=1; k<=lastobs;k++)
|
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
|
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
k1++;
|
if(j % ncovmodel == 0){ |
k2=k2+2;
|
printf("\n"); |
}
|
fprintf(ficlog,"\n"); |
}
|
} |
else {
|
} |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
|
#endif |
/* scanf("%d",i);*/
|
#ifdef LINMINORIGINAL |
cutv(strd,strc,strb,'V');
|
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
Tvar[i]=atoi(strc);
|
#else |
}
|
linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
strcpy(modelsav,stra);
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
|
#endif |
scanf("%d",i);*/
|
|
}
|
#ifdef DEBUGLINMIN |
}
|
for (j=1;j<=n;j++) { |
|
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
/*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
|
fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf("cptcovprod=%d ", cptcovprod);
|
if(j % ncovmodel == 0){ |
scanf("%d ",i);*/
|
printf("\n"); |
fclose(fic);
|
fprintf(ficlog,"\n"); |
|
} |
/* if(mle==1){*/
|
} |
if (weightopt != 1) { /* Maximisation without weights*/
|
#endif |
for(i=1;i<=n;i++) weight[i]=1.0;
|
for (j=1;j<=n;j++) { |
}
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
/*-calculation of age at interview from date of interview and age at death -*/
|
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
agev=matrix(1,maxwav,1,imx);
|
} |
|
#ifdef LINMINORIGINAL |
for (i=1; i<=imx; i++)
|
#else |
for(m=2; (m<= maxwav); m++)
|
for (j=1, flatd=0;j<=n;j++) { |
if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
|
if(flatdir[j]>0) |
anint[m][i]=9999;
|
flatd++; |
s[m][i]=-1;
|
} |
}
|
if(flatd >0){ |
|
printf("%d flat directions\n",flatd); |
for (i=1; i<=imx; i++) {
|
fprintf(ficlog,"%d flat directions\n",flatd); |
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
|
for (j=1;j<=n;j++) { |
for(m=1; (m<= maxwav); m++){
|
if(flatdir[j]>0){ |
if(s[m][i] >0){
|
printf("%d ",j); |
if (s[m][i] == nlstate+1) {
|
fprintf(ficlog,"%d ",j); |
if(agedc[i]>0)
|
} |
if(moisdc[i]!=99 && andc[i]!=9999)
|
} |
agev[m][i]=agedc[i];
|
printf("\n"); |
else {
|
fprintf(ficlog,"\n"); |
if (andc[i]!=9999){
|
} |
printf("Warning negative age at death: %d line:%d\n",num[i],i);
|
#endif |
agev[m][i]=-1;
|
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
}
|
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
}
|
|
}
|
#ifdef DEBUG |
else if(s[m][i] !=9){ /* Should no more exist */
|
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
|
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
if(mint[m][i]==99 || anint[m][i]==9999)
|
for(j=1;j<=n;j++){ |
agev[m][i]=1;
|
printf(" %lf",xit[j]); |
else if(agev[m][i] <agemin){
|
fprintf(ficlog," %lf",xit[j]); |
agemin=agev[m][i];
|
} |
/*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
|
printf("\n"); |
}
|
fprintf(ficlog,"\n"); |
else if(agev[m][i] >agemax){
|
#endif |
agemax=agev[m][i];
|
} /* end of t or directest negative */ |
/* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
|
#ifdef POWELLNOF3INFF1TEST |
}
|
#else |
/*agev[m][i]=anint[m][i]-annais[i];*/
|
} /* end if (fptt < fp) */ |
/* agev[m][i] = age[i]+2*m;*/
|
#endif |
}
|
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
else { /* =9 */
|
} /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ |
agev[m][i]=1;
|
#else |
s[m][i]=-1;
|
#endif |
}
|
} /* loop iteration */ |
}
|
} |
else /*= 0 Unknown */
|
|
agev[m][i]=1;
|
/**** Prevalence limit (stable or period prevalence) ****************/ |
}
|
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij) |
}
|
{ |
for (i=1; i<=imx; i++) {
|
/* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit |
for(m=1; (m<= maxwav); m++){
|
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
if (s[m][i] > (nlstate+ndeath)) {
|
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
printf("Error: Wrong value in nlstate or ndeath\n");
|
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
goto end;
|
/* or prevalence in state 1, prevalence in state 2, 0 */ |
}
|
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
}
|
/* Initial matrix pimij */ |
}
|
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
|
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
|
/* 0, 0 , 1} */ |
|
/* |
free_vector(severity,1,maxwav);
|
* and after some iteration: */ |
free_imatrix(outcome,1,maxwav+1,1,n);
|
/* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */ |
free_vector(moisnais,1,n);
|
/* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */ |
free_vector(annais,1,n);
|
/* 0, 0 , 1} */ |
/* free_matrix(mint,1,maxwav,1,n);
|
/* And prevalence by suppressing the deaths are close to identical rows in prlim: */ |
free_matrix(anint,1,maxwav,1,n);*/
|
/* {0.51571254859325999, 0.4842874514067399, */ |
free_vector(moisdc,1,n);
|
/* 0.51326036147820708, 0.48673963852179264} */ |
free_vector(andc,1,n);
|
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
|
int i, ii,j,k; |
wav=ivector(1,imx);
|
double *min, *max, *meandiff, maxmax,sumnew=0.; |
dh=imatrix(1,lastpass-firstpass+1,1,imx);
|
/* double **matprod2(); */ /* test */ |
mw=imatrix(1,lastpass-firstpass+1,1,imx);
|
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
|
double **newm; |
/* Concatenates waves */
|
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
|
int ncvloop=0; |
|
|
|
min=vector(1,nlstate); |
Tcode=ivector(1,100);
|
max=vector(1,nlstate); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
|
meandiff=vector(1,nlstate); |
ncodemax[1]=1;
|
|
if (cptcovn > 0) tricode(Tvar,nbcode,imx);
|
/* Starting with matrix unity */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
codtab=imatrix(1,100,1,10);
|
for (j=1;j<=nlstate+ndeath;j++){ |
h=0;
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
m=pow(2,cptcoveff);
|
} |
|
|
for(k=1;k<=cptcoveff; k++){
|
cov[1]=1.; |
for(i=1; i <=(m/pow(2,k));i++){
|
|
for(j=1; j <= ncodemax[k]; j++){
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
|
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
h++;
|
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){ |
if (h>m) h=1;codtab[h][k]=j;
|
ncvloop++; |
}
|
newm=savm; |
}
|
/* Covariates have to be included here again */ |
}
|
cov[2]=agefin; |
}
|
if(nagesqr==1) |
|
cov[3]= agefin*agefin;; |
/* Calculates basic frequencies. Computes observed prevalence at single age
|
for (k=1; k<=cptcovn;k++) { |
and prints on file fileres'p'. */
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
|
/* Here comes the value of the covariate 'ij' */ |
if ((nbocc(strfprev,'/')==1) && (nbocc(strlprev,'/')==1)){
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
boolprev=0;
|
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
cutv(stra,strb,strfprev,'/');
|
} |
dateprev1=(double)(atoi(strb)+atoi(stra)/12.);
|
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
cutv(stra,strb,strlprev,'/');
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
dateprev2=(double)(atoi(strb)+atoi(stra)/12.);
|
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
}
|
for (k=1; k<=cptcovprod;k++) /* Useless */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
else if ((nbocc(strfprev,'/')==0) &&(nbocc(strlprev,'/')==0)){
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
boolprev=1;
|
|
fprev=atoi(strfprev); lprev=atoi(strlprev);
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
}
|
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
else {
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
printf("Error in statement lprevalence or fprevalence\n");
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
goto end;
|
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
}
|
/* age and covariate values of ij are in 'cov' */ |
|
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprev, lprev,mint,anint,boolprev,dateprev1,dateprev2);
|
|
|
savm=oldm; |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
oldm=newm; |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
|
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
for(j=1; j<=nlstate; j++){ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
max[j]=0.; |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
|
min[j]=1.; |
|
} |
/* For Powell, parameters are in a vector p[] starting at p[1]
|
for(i=1;i<=nlstate;i++){ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
|
sumnew=0; |
p=param[1][1]; /* *(*(*(param +1)+1)+0) */
|
for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k]; |
|
for(j=1; j<=nlstate; j++){ |
if(mle==1){
|
prlim[i][j]= newm[i][j]/(1-sumnew); |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
|
max[j]=FMAX(max[j],prlim[i][j]); |
}
|
min[j]=FMIN(min[j],prlim[i][j]); |
|
} |
/*--------- results files --------------*/
|
} |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);
|
|
fprintf(ficres,"fprevalence=%s lprevalence=%s pop_based=%d\n",strfprev,strlprev,popbased);
|
maxmax=0.; |
fprintf(ficres,"fprevalence=%s lprevalence=%s nforecast=%d mob_average=%d\n",strfprevfore,strlprevfore,nforecast,mobilav);
|
for(j=1; j<=nlstate; j++){ |
|
meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */ |
jk=1;
|
maxmax=FMAX(maxmax,meandiff[j]); |
fprintf(ficres,"# Parameters\n");
|
/* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */ |
printf("# Parameters\n");
|
} /* j loop */ |
for(i=1,jk=1; i <=nlstate; i++){
|
*ncvyear= (int)age- (int)agefin; |
for(k=1; k <=(nlstate+ndeath); k++){
|
/* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
if (k != i)
|
if(maxmax < ftolpl){ |
{
|
/* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
printf("%d%d ",i,k);
|
free_vector(min,1,nlstate); |
fprintf(ficres,"%1d%1d ",i,k);
|
free_vector(max,1,nlstate); |
for(j=1; j <=ncovmodel; j++){
|
free_vector(meandiff,1,nlstate); |
printf("%f ",p[jk]);
|
return prlim; |
fprintf(ficres,"%f ",p[jk]);
|
} |
jk++;
|
} /* age loop */ |
}
|
/* After some age loop it doesn't converge */ |
printf("\n");
|
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
fprintf(ficres,"\n");
|
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
}
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
}
|
free_vector(min,1,nlstate); |
}
|
free_vector(max,1,nlstate); |
if(mle==1){
|
free_vector(meandiff,1,nlstate); |
/* Computing hessian and covariance matrix */
|
|
ftolhess=ftol; /* Usually correct */
|
return prlim; /* should not reach here */ |
hesscov(matcov, p, npar, delti, ftolhess, func);
|
} |
}
|
|
fprintf(ficres,"# Scales\n");
|
|
printf("# Scales\n");
|
/**** Back Prevalence limit (stable or period prevalence) ****************/ |
for(i=1,jk=1; i <=nlstate; i++){
|
|
for(j=1; j <=nlstate+ndeath; j++){
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
if (j!=i) {
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
fprintf(ficres,"%1d%1d",i,j);
|
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij) |
printf("%1d%1d",i,j);
|
{ |
for(k=1; k<=ncovmodel;k++){
|
/* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit |
printf(" %.5e",delti[jk]);
|
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
fprintf(ficres," %.5e",delti[jk]);
|
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
jk++;
|
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
}
|
/* or prevalence in state 1, prevalence in state 2, 0 */ |
printf("\n");
|
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
fprintf(ficres,"\n");
|
/* Initial matrix pimij */ |
}
|
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
}
|
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
}
|
/* 0, 0 , 1} */ |
|
/* |
k=1;
|
* and after some iteration: */ |
fprintf(ficres,"# Covariance\n");
|
/* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */ |
printf("# Covariance\n");
|
/* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */ |
for(i=1;i<=npar;i++){
|
/* 0, 0 , 1} */ |
/* if (k>nlstate) k=1;
|
/* And prevalence by suppressing the deaths are close to identical rows in prlim: */ |
i1=(i-1)/(ncovmodel*nlstate)+1;
|
/* {0.51571254859325999, 0.4842874514067399, */ |
fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
|
/* 0.51326036147820708, 0.48673963852179264} */ |
printf("%s%d%d",alph[k],i1,tab[i]);*/
|
/* If we start from prlim again, prlim tends to a constant matrix */ |
fprintf(ficres,"%3d",i);
|
|
printf("%3d",i);
|
int i, ii,j,k; |
for(j=1; j<=i;j++){
|
double *min, *max, *meandiff, maxmax,sumnew=0.; |
fprintf(ficres," %.5e",matcov[i][j]);
|
/* double **matprod2(); */ /* test */ |
printf(" %.5e",matcov[i][j]);
|
double **out, cov[NCOVMAX+1], **bmij(); |
}
|
double **newm; |
fprintf(ficres,"\n");
|
double **dnewm, **doldm, **dsavm; /* for use */ |
printf("\n");
|
double **oldm, **savm; /* for use */ |
k++;
|
|
}
|
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
|
int ncvloop=0; |
while((c=getc(ficpar))=='#' && c!= EOF){
|
|
ungetc(c,ficpar);
|
min=vector(1,nlstate); |
fgets(line, MAXLINE, ficpar);
|
max=vector(1,nlstate); |
puts(line);
|
meandiff=vector(1,nlstate); |
fputs(line,ficparo);
|
|
}
|
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
ungetc(c,ficpar);
|
oldm=oldms; savm=savms; |
|
|
fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
|
/* Starting with matrix unity */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
if (fage <= 2) {
|
for (j=1;j<=nlstate+ndeath;j++){ |
bage = agemin;
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
fage = agemax;
|
} |
}
|
|
|
cov[1]=1.; |
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
|
|
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
|
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
|
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
/*------------ gnuplot -------------*/
|
for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */ |
chdir(pathcd);
|
ncvloop++; |
if((ficgp=fopen("graph.plt","w"))==NULL) {
|
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
printf("Problem with file graph.gp");goto end;
|
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
}
|
/* Covariates have to be included here again */ |
#ifdef windows
|
cov[2]=agefin; |
fprintf(ficgp,"cd \"%s\" \n",pathc);
|
if(nagesqr==1) |
#endif
|
cov[3]= agefin*agefin;; |
m=pow(2,cptcoveff);
|
for (k=1; k<=cptcovn;k++) { |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* 1eme*/
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
for (cpt=1; cpt<= nlstate ; cpt ++) {
|
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
for (k1=1; k1<= m ; k1 ++) {
|
} |
|
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
#ifdef windows
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);
|
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
#endif
|
for (k=1; k<=cptcovprod;k++) /* Useless */ |
#ifdef unix
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
#endif
|
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
for (i=1; i<= nlstate ; i ++) {
|
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
|
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
}
|
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
|
/* ij should be linked to the correct index of cov */ |
for (i=1; i<= nlstate ; i ++) {
|
/* age and covariate values ij are in 'cov', but we need to pass |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
|
* ij for the observed prevalence at age and status and covariate |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
* number: prevacurrent[(int)agefin][ii][ij] |
}
|
*/ |
fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
for (i=1; i<= nlstate ; i ++) {
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
savm=oldm; |
}
|
oldm=newm; |
fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
|
for(j=1; j<=nlstate; j++){ |
#ifdef unix
|
max[j]=0.; |
fprintf(ficgp,"\nset ter gif small size 400,300");
|
min[j]=1.; |
#endif
|
} |
fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
|
for(j=1; j<=nlstate; j++){ |
}
|
for(i=1;i<=nlstate;i++){ |
}
|
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
/*2 eme*/
|
bprlim[i][j]= newm[i][j]; |
|
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
for (k1=1; k1<= m ; k1 ++) {
|
min[i]=FMIN(min[i],bprlim[i][j]); |
fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);
|
} |
|
} |
for (i=1; i<= nlstate+1 ; i ++) {
|
|
k=2*i;
|
maxmax=0.; |
fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
|
for(i=1; i<=nlstate; i++){ |
for (j=1; j<= nlstate+1 ; j ++) {
|
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
|
maxmax=FMAX(maxmax,meandiff[i]); |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
}
|
} /* j loop */ |
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
|
*ncvyear= -( (int)age- (int)agefin); |
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
|
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/ |
fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
|
if(maxmax < ftolpl){ |
for (j=1; j<= nlstate+1 ; j ++) {
|
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
|
free_vector(min,1,nlstate); |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
free_vector(max,1,nlstate); |
}
|
free_vector(meandiff,1,nlstate); |
fprintf(ficgp,"\" t\"\" w l 0,");
|
return bprlim; |
fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
|
} |
for (j=1; j<= nlstate+1 ; j ++) {
|
} /* age loop */ |
if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
|
/* After some age loop it doesn't converge */ |
else fprintf(ficgp," \%%*lf (\%%*lf)");
|
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
}
|
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
else fprintf(ficgp,"\" t\"\" w l 0,");
|
free_vector(min,1,nlstate); |
}
|
free_vector(max,1,nlstate); |
fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
|
free_vector(meandiff,1,nlstate); |
}
|
|
|
return bprlim; /* should not reach here */ |
/*3eme*/
|
} |
|
|
for (k1=1; k1<= m ; k1 ++) {
|
/*************** transition probabilities ***************/ |
for (cpt=1; cpt<= nlstate ; cpt ++) {
|
|
k=2+nlstate*(cpt-1);
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);
|
{ |
for (i=1; i< nlstate ; i ++) {
|
/* According to parameters values stored in x and the covariate's values stored in cov, |
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);
|
computes the probability to be observed in state j being in state i by appying the |
}
|
model to the ncovmodel covariates (including constant and age). |
fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
|
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
}
|
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
}
|
ncth covariate in the global vector x is given by the formula: |
|
j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel |
/* CV preval stat */
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
for (k1=1; k1<= m ; k1 ++) {
|
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
for (cpt=1; cpt<nlstate ; cpt ++) {
|
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
k=3;
|
Outputs ps[i][j] the probability to be observed in j being in j according to |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);
|
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
for (i=1; i< nlstate ; i ++)
|
*/ |
fprintf(ficgp,"+$%d",k+i+1);
|
double s1, lnpijopii; |
fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
|
/*double t34;*/ |
|
int i,j, nc, ii, jj; |
l=3+(nlstate+ndeath)*cpt;
|
|
fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
|
for(i=1; i<= nlstate; i++){ |
for (i=1; i< nlstate ; i ++) {
|
for(j=1; j<i;j++){ |
l=3+(nlstate+ndeath)*cpt;
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
fprintf(ficgp,"+$%d",l+i+1);
|
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
}
|
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
|
} |
}
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
}
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
|
} |
/* proba elementaires */
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(i=1,jk=1; i <=nlstate; i++){
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for(k=1; k <=(nlstate+ndeath); k++){
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
if (k != i) {
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
for(j=1; j <=ncovmodel; j++){
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/
|
} |
/*fprintf(ficgp,"%s",alph[1]);*/
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
fprintf(ficgp,"p%d=%f ",jk,p[jk]);
|
} |
jk++;
|
} |
fprintf(ficgp,"\n");
|
|
}
|
for(i=1; i<= nlstate; i++){ |
}
|
s1=0; |
}
|
for(j=1; j<i; j++){ |
}
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
|
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
for(jk=1; jk <=m; jk++) {
|
} |
fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot [%.f:%.f] ",agemin,agemax);
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
i=1;
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
for(k2=1; k2<=nlstate; k2++) {
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
k3=i;
|
} |
for(k=1; k<=(nlstate+ndeath); k++) {
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
if (k != k2){
|
ps[i][i]=1./(s1+1.); |
fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
|
/* Computing other pijs */ |
ij=1;
|
for(j=1; j<i; j++) |
for(j=3; j <=ncovmodel; j++) {
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
|
for(j=i+1; j<=nlstate+ndeath; j++) |
fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ij++;
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
}
|
} /* end i */ |
else
|
|
fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
}
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
fprintf(ficgp,")/(1");
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
for(k1=1; k1 <=nlstate; k1++){
|
} |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
|
} |
ij=1;
|
|
for(j=3; j <=ncovmodel; j++){
|
|
if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
ij++;
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
}
|
/* } */ |
else
|
/* printf("\n "); */ |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
|
/* } */ |
}
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
fprintf(ficgp,")");
|
/* |
}
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
fprintf(ficgp,") t \"p%d%d\" ", k2,k);
|
goto end;*/ |
if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
|
return ps; |
i=i+ncovmodel;
|
} |
}
|
|
}
|
/*************** backward transition probabilities ***************/ |
}
|
|
fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
}
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
|
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
fclose(ficgp);
|
{ |
|
/* Computes the backward probability at age agefin and covariate ij |
chdir(path);
|
* and returns in **ps as well as **bmij. |
|
*/ |
free_ivector(wav,1,imx);
|
int i, ii, j,k; |
free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
|
|
free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
|
double **out, **pmij(); |
free_ivector(num,1,n);
|
double sumnew=0.; |
free_vector(agedc,1,n);
|
double agefin; |
/*free_matrix(covar,1,NCOVMAX,1,n);*/
|
|
fclose(ficparo);
|
double **dnewm, **dsavm, **doldm; |
fclose(ficres);
|
double **bbmij; |
/* }*/
|
|
|
doldm=ddoldms; /* global pointers */ |
/*________fin mle=1_________*/
|
dnewm=ddnewms; |
|
dsavm=ddsavms; |
|
|
|
agefin=cov[2]; |
/* No more information from the sample is required now */
|
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
/* Reads comments: lines beginning with '#' */
|
the observed prevalence (with this covariate ij) */ |
while((c=getc(ficpar))=='#' && c!= EOF){
|
dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); |
ungetc(c,ficpar);
|
/* We do have the matrix Px in savm and we need pij */ |
fgets(line, MAXLINE, ficpar);
|
for (j=1;j<=nlstate+ndeath;j++){ |
puts(line);
|
sumnew=0.; /* w1 p11 + w2 p21 only on live states */ |
fputs(line,ficparo);
|
for (ii=1;ii<=nlstate;ii++){ |
}
|
sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; |
ungetc(c,ficpar);
|
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
|
if(sumnew >= 1.e-10){ |
printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);
|
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
|
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/*--------- index.htm --------*/
|
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
|
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
strcpy(optionfilehtm,optionfile);
|
/* }else */ |
strcat(optionfilehtm,".htm");
|
doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
if((fichtm=fopen(optionfilehtm,"w"))==NULL) {
|
}else{ |
printf("Problem with %s \n",optionfilehtm);goto end;
|
printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); |
}
|
} |
|
} /*End ii */ |
fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">
|
} /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ |
Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>
|
/* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */ |
Total number of observations=%d <br>
|
bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>
|
/* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */ |
<hr size=\"2\" color=\"#EC5E5E\">
|
/* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
<li>Outputs files<br><br>\n
|
/* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
- Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
|
/* left Product of this matrix by diag matrix of prevalences (savm) */ |
- Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>
|
for (j=1;j<=nlstate+ndeath;j++){ |
- Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
- Transition probabilities: <a href=\"pij%s\">pij%s</a><br>
|
dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0); |
- Copy of the parameter file: <a href=\"o%s\">o%s</a><br>
|
} |
- Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>
|
} /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */ |
- Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>
|
ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */ |
- Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>
|
/* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
- Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>
|
/* end bmij */ |
- Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>
|
return ps; |
<br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);
|
} |
|
/*************** transition probabilities ***************/ |
fprintf(fichtm," <li>Graphs</li><p>");
|
|
|
double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
m=cptcoveff;
|
{ |
if (cptcovn < 1) {m=1;ncodemax[1]=1;}
|
/* According to parameters values stored in x and the covariate's values stored in cov, |
|
computes the probability to be observed in state j being in state i by appying the |
j1=0;
|
model to the ncovmodel covariates (including constant and age). |
for(k1=1; k1<=m;k1++){
|
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
for(i1=1; i1<=ncodemax[k1];i1++){
|
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
j1++;
|
ncth covariate in the global vector x is given by the formula: |
if (cptcovn > 0) {
|
j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
for (cpt=1; cpt<=cptcoveff;cpt++)
|
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);
|
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
|
Outputs ps[i][j] the probability to be observed in j being in j according to |
}
|
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
|
*/ |
<img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
|
double s1, lnpijopii; |
for(cpt=1; cpt<nlstate;cpt++){
|
/*double t34;*/ |
fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
|
int i,j, nc, ii, jj; |
<img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
|
|
}
|
for(i=1; i<= nlstate; i++){ |
for(cpt=1; cpt<=nlstate;cpt++) {
|
for(j=1; j<i;j++){ |
fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
interval) in state (%d): v%s%d%d.gif <br>
|
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
<img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
|
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
}
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
for(cpt=1; cpt<=nlstate;cpt++) {
|
} |
fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
<img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
|
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
}
|
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and
|
for(j=i+1; j<=nlstate+ndeath;j++){ |
health expectancies in states (1) and (2): e%s%d.gif<br>
|
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
<img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
|
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
fprintf(fichtm,"\n</body>");
|
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
}
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
}
|
} |
fclose(fichtm);
|
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
} |
/*--------------- Prevalence limit --------------*/
|
} |
|
|
strcpy(filerespl,"pl");
|
for(i=1; i<= nlstate; i++){ |
strcat(filerespl,fileres);
|
s1=0; |
if((ficrespl=fopen(filerespl,"w"))==NULL) {
|
for(j=1; j<i; j++){ |
printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
}
|
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
printf("Computing prevalence limit: result on file '%s' \n", filerespl);
|
} |
fprintf(ficrespl,"#Prevalence limit\n");
|
for(j=i+1; j<=nlstate+ndeath; j++){ |
fprintf(ficrespl,"#Age ");
|
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
|
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
fprintf(ficrespl,"\n");
|
} |
|
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
prlim=matrix(1,nlstate,1,nlstate);
|
ps[i][i]=1./(s1+1.); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
/* Computing other pijs */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
for(j=1; j<i; j++) |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
|
for(j=i+1; j<=nlstate+ndeath; j++) |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
|
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
k=0;
|
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
agebase=agemin;
|
} /* end i */ |
agelim=agemax;
|
|
ftolpl=1.e-10;
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
i1=cptcoveff;
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
if (cptcovn < 1){i1=1;}
|
ps[ii][jj]=0; |
|
ps[ii][ii]=1; |
for(cptcov=1;cptcov<=i1;cptcov++){
|
} |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
} |
k=k+1;
|
/* Added for backcast */ /* Transposed matrix too */ |
/*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
fprintf(ficrespl,"\n#******");
|
s1=0.; |
for(j=1;j<=cptcoveff;j++)
|
for(ii=1; ii<= nlstate+ndeath; ii++){ |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
s1+=ps[ii][jj]; |
fprintf(ficrespl,"******\n");
|
} |
|
for(ii=1; ii<= nlstate; ii++){ |
for (age=agebase; age<=agelim; age++){
|
ps[ii][jj]=ps[ii][jj]/s1; |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
|
} |
fprintf(ficrespl,"%.0f",age );
|
} |
for(i=1; i<=nlstate;i++)
|
/* Transposition */ |
fprintf(ficrespl," %.5f", prlim[i][i]);
|
for(jj=1; jj<= nlstate+ndeath; jj++){ |
fprintf(ficrespl,"\n");
|
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
}
|
s1=ps[ii][jj]; |
}
|
ps[ii][jj]=ps[jj][ii]; |
}
|
ps[jj][ii]=s1; |
fclose(ficrespl);
|
} |
|
} |
/*------------- h Pij x at various ages ------------*/
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
|
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
strcpy(filerespij,"pij"); strcat(filerespij,fileres);
|
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
if((ficrespij=fopen(filerespij,"w"))==NULL) {
|
/* } */ |
printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
|
/* printf("\n "); */ |
}
|
/* } */ |
printf("Computing pij: result on file '%s' \n", filerespij);
|
/* printf("\n ");printf("%lf ",cov[2]);*/ |
|
/* |
stepsize=(int) (stepm+YEARM-1)/YEARM;
|
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
/*if (stepm<=24) stepsize=2;*/
|
goto end;*/ |
|
return ps; |
agelim=AGESUP;
|
} |
hstepm=stepsize*YEARM; /* Every year of age */
|
|
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
|
|
|
/**************** Product of 2 matrices ******************/ |
k=0;
|
|
for(cptcov=1;cptcov<=i1;cptcov++){
|
double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b) |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
{ |
k=k+1;
|
/* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times |
fprintf(ficrespij,"\n#****** ");
|
b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */ |
for(j=1;j<=cptcoveff;j++)
|
/* in, b, out are matrice of pointers which should have been initialized |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
before: only the contents of out is modified. The function returns |
fprintf(ficrespij,"******\n");
|
a pointer to pointers identical to out */ |
|
int i, j, k; |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
|
for(i=nrl; i<= nrh; i++) |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
|
for(k=ncolol; k<=ncoloh; k++){ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
|
out[i][k]=0.; |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
for(j=ncl; j<=nch; j++) |
oldm=oldms;savm=savms;
|
out[i][k] +=in[i][j]*b[j][k]; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
|
} |
fprintf(ficrespij,"# Age");
|
return out; |
for(i=1; i<=nlstate;i++)
|
} |
for(j=1; j<=nlstate+ndeath;j++)
|
|
fprintf(ficrespij," %1d-%1d",i,j);
|
|
fprintf(ficrespij,"\n");
|
/************* Higher Matrix Product ***************/ |
for (h=0; h<=nhstepm; h++){
|
|
fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
for(i=1; i<=nlstate;i++)
|
{ |
for(j=1; j<=nlstate+ndeath;j++)
|
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
fprintf(ficrespij," %.5f", p3mat[i][j][h]);
|
'nhstepm*hstepm*stepm' months (i.e. until |
fprintf(ficrespij,"\n");
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
}
|
nhstepm*hstepm matrices. |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
fprintf(ficrespij,"\n");
|
(typically every 2 years instead of every month which is too big |
}
|
for the memory). |
}
|
Model is determined by parameters x and covariates have to be |
}
|
included manually here. |
|
|
/* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/
|
*/ |
|
|
fclose(ficrespij);
|
int i, j, d, h, k; |
|
double **out, cov[NCOVMAX+1]; |
/*---------- Forecasting ------------------*/
|
double **newm; |
|
double agexact; |
strcpy(fileresf,"f");
|
double agebegin, ageend; |
strcat(fileresf,fileres);
|
|
if((ficresf=fopen(fileresf,"w"))==NULL) {
|
/* Hstepm could be zero and should return the unit matrix */ |
printf("Problem with forecast resultfile: %s\n", fileresf);goto end;
|
for (i=1;i<=nlstate+ndeath;i++) |
}
|
for (j=1;j<=nlstate+ndeath;j++){ |
printf("Computing forecasting: result on file '%s' \n", fileresf);
|
oldm[i][j]=(i==j ? 1.0 : 0.0); |
|
po[i][j][0]=(i==j ? 1.0 : 0.0); |
if ((nbocc(strfprevfore,'/')==1) && (nbocc(strlprevfore,'/')==1)){
|
} |
boolprev=0;
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
cutv(stra,strb,strfprevfore,'/');
|
for(h=1; h <=nhstepm; h++){ |
dateprev1=(double)(atoi(strb)+atoi(stra)/12.);
|
for(d=1; d <=hstepm; d++){ |
cutv(stra,strb,strlprevfore,'/');
|
newm=savm; |
dateprev2=(double)(atoi(strb)+atoi(stra)/12.);
|
/* Covariates have to be included here again */ |
}
|
cov[1]=1.; |
|
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
else if ((nbocc(strfprevfore,'/')==0) &&(nbocc(strlprevfore,'/')==0)){
|
cov[2]=agexact; |
boolprev=1;
|
if(nagesqr==1) |
fprev=atoi(strfprevfore); lprev=atoi(strlprevfore);
|
cov[3]= agexact*agexact; |
}
|
for (k=1; k<=cptcovn;k++) |
else {
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
printf("Error in statement lprevalence or fprevalence\n");
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
goto end;
|
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
}
|
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax, fprevfore, lprevfore,mint,anint,boolprev,dateprev1,dateprev2);
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
free_matrix(mint,1,maxwav,1,n);
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
free_matrix(anint,1,maxwav,1,n);
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
free_matrix(agev,1,maxwav,1,imx);
|
|
/* Mobile average */
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
if (cptcoveff==0) ncodemax[cptcoveff]=1;
|
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
|
/* right multiplication of oldm by the current matrix */ |
if (mobilav==1) {
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
for (agedeb=bage+3; agedeb<=fage-2; agedeb++)
|
/* if((int)age == 70){ */ |
for (i=1; i<=nlstate;i++)
|
/* printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
mobaverage[(int)agedeb][i][cptcod]=0.;
|
/* printf("%d pmmij ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
for (agedeb=bage+4; agedeb<=fage; agedeb++){
|
/* printf("%f ",pmmij[i][j]); */ |
for (i=1; i<=nlstate;i++){
|
/* } */ |
for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
|
/* printf(" oldm "); */ |
for (cpt=0;cpt<=4;cpt++){
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];
|
/* printf("%f ",oldm[i][j]); */ |
}
|
/* } */ |
mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;
|
/* printf("\n"); */ |
}
|
/* } */ |
}
|
/* } */ |
}
|
savm=oldm; |
}
|
oldm=newm; |
|
} |
stepsize=(int) (stepm+YEARM-1)/YEARM;
|
for(i=1; i<=nlstate+ndeath; i++) |
if (stepm<=12) stepsize=1;
|
for(j=1;j<=nlstate+ndeath;j++) { |
|
po[i][j][h]=newm[i][j]; |
agelim=AGESUP;
|
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
hstepm=stepsize*YEARM; /* Every year of age */
|
} |
hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */
|
/*printf("h=%d ",h);*/ |
|
} /* end h */ |
if (popforecast==1) {
|
/* printf("\n H=%d \n",h); */ |
if((ficpop=fopen(popfile,"r"))==NULL) {
|
return po; |
printf("Problem with population file : %s\n",popfile);goto end;
|
} |
}
|
|
popage=ivector(0,AGESUP);
|
/************* Higher Back Matrix Product ***************/ |
popeffectif=vector(0,AGESUP);
|
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
popcount=vector(0,AGESUP);
|
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij ) |
|
{ |
i=1;
|
/* Computes the transition matrix starting at age 'age' over |
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)
|
'nhstepm*hstepm*stepm' months (i.e. until |
{
|
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
i=i+1;
|
nhstepm*hstepm matrices. |
}
|
Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
imx=i;
|
(typically every 2 years instead of every month which is too big |
|
for the memory). |
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
|
Model is determined by parameters x and covariates have to be |
}
|
included manually here. |
|
|
for(cptcov=1;cptcov<=i1;cptcov++){
|
*/ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
|
|
k=k+1;
|
int i, j, d, h, k; |
fprintf(ficresf,"\n#****** ");
|
double **out, cov[NCOVMAX+1]; |
for(j=1;j<=cptcoveff;j++) {
|
double **newm; |
fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
double agexact; |
}
|
double agebegin, ageend; |
fprintf(ficresf,"******\n");
|
double **oldm, **savm; |
fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");
|
|
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
|
oldm=oldms;savm=savms; |
if (popforecast==1) fprintf(ficresf," [Population]");
|
/* Hstepm could be zero and should return the unit matrix */ |
|
for (i=1;i<=nlstate+ndeath;i++) |
for (agedeb=fage; agedeb>=bage; agedeb--){
|
for (j=1;j<=nlstate+ndeath;j++){ |
fprintf(ficresf,"\n%.f %.f 0",agedeb, agedeb);
|
oldm[i][j]=(i==j ? 1.0 : 0.0); |
if (mobilav==1) {
|
po[i][j][0]=(i==j ? 1.0 : 0.0); |
for(j=1; j<=nlstate;j++)
|
} |
fprintf(ficresf," %.3f",mobaverage[(int)agedeb][j][cptcod]);
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
}
|
for(h=1; h <=nhstepm; h++){ |
else {
|
for(d=1; d <=hstepm; d++){ |
for(j=1; j<=nlstate;j++)
|
newm=savm; |
fprintf(ficresf," %.3f",probs[(int)agedeb][j][cptcod]);
|
/* Covariates have to be included here again */ |
}
|
cov[1]=1.; |
|
agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
for(j=1; j<=ndeath;j++) fprintf(ficresf," 0.00000");
|
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
if (popforecast==1) fprintf(ficresf," [%.f] ",popeffectif[(int)agedeb]);
|
cov[2]=agexact; |
}
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
for (cpt=1; cpt<=nforecast;cpt++) {
|
for (k=1; k<=cptcovn;k++) |
fprintf(ficresf,"\n");
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
|
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
nhstepm = nhstepm/hstepm;
|
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
oldm=oldms;savm=savms;
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
|
for (h=0; h<=nhstepm; h++){
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
if (h*hstepm/YEARM*stepm==cpt)
|
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
fprintf(ficresf,"\n%.f %.f %.f",agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);
|
/* Careful transposed matrix */ |
|
/* age is in cov[2] */ |
|
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
for(j=1; j<=nlstate+ndeath;j++) {
|
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
kk1=0.;kk2=0;
|
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
for(i=1; i<=nlstate;i++) {
|
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
if (mobilav==1)
|
/* if((int)age == 70){ */ |
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];
|
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
else kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];
|
/* printf("%d pmmij ",i); */ |
}
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
if (h*hstepm/YEARM*stepm==cpt) {
|
/* printf("%f ",pmmij[i][j]); */ |
fprintf(ficresf," %.3f", kk1);
|
/* } */ |
if (popforecast==1) fprintf(ficresf," [%.f]", kk2);
|
/* printf(" oldm "); */ |
}
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
}
|
/* printf("%f ",oldm[i][j]); */ |
}
|
/* } */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
|
/* printf("\n"); */ |
|
/* } */ |
}
|
/* } */ |
}
|
savm=oldm; |
}
|
oldm=newm; |
}
|
} |
if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
|
for(i=1; i<=nlstate+ndeath; i++) |
if (popforecast==1) {
|
for(j=1;j<=nlstate+ndeath;j++) { |
free_ivector(popage,0,AGESUP);
|
po[i][j][h]=newm[i][j]; |
free_vector(popeffectif,0,AGESUP);
|
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
free_vector(popcount,0,AGESUP);
|
} |
}
|
/*printf("h=%d ",h);*/ |
free_imatrix(s,1,maxwav+1,1,n);
|
} /* end h */ |
free_vector(weight,1,n);
|
/* printf("\n H=%d \n",h); */ |
fclose(ficresf);
|
return po; |
/*---------- Health expectancies and variances ------------*/
|
} |
|
|
strcpy(filerest,"t");
|
|
strcat(filerest,fileres);
|
#ifdef NLOPT |
if((ficrest=fopen(filerest,"w"))==NULL) {
|
double myfunc(unsigned n, const double *p1, double *grad, void *pd){ |
printf("Problem with total LE resultfile: %s\n", filerest);goto end;
|
double fret; |
}
|
double *xt; |
printf("Computing Total LEs with variances: file '%s' \n", filerest);
|
int j; |
|
myfunc_data *d2 = (myfunc_data *) pd; |
|
/* xt = (p1-1); */ |
strcpy(filerese,"e");
|
xt=vector(1,n); |
strcat(filerese,fileres);
|
for (j=1;j<=n;j++) xt[j]=p1[j-1]; /* xt[1]=p1[0] */ |
if((ficreseij=fopen(filerese,"w"))==NULL) {
|
|
printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
|
fret=(d2->function)(xt); /* p xt[1]@8 is fine */ |
}
|
/* fret=(*func)(xt); /\* p xt[1]@8 is fine *\/ */ |
printf("Computing Health Expectancies: result on file '%s' \n", filerese);
|
printf("Function = %.12lf ",fret); |
|
for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); |
strcpy(fileresv,"v");
|
printf("\n"); |
strcat(fileresv,fileres);
|
free_vector(xt,1,n); |
if((ficresvij=fopen(fileresv,"w"))==NULL) {
|
return fret; |
printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
|
} |
}
|
#endif |
printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
|
|
|
/*************** log-likelihood *************/ |
k=0;
|
double func( double *x) |
for(cptcov=1;cptcov<=i1;cptcov++){
|
{ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
int i, ii, j, k, mi, d, kk; |
k=k+1;
|
int ioffset=0; |
fprintf(ficrest,"\n#****** ");
|
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
for(j=1;j<=cptcoveff;j++)
|
double **out; |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
double lli; /* Individual log likelihood */ |
fprintf(ficrest,"******\n");
|
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
fprintf(ficreseij,"\n#****** ");
|
double bbh, survp; |
for(j=1;j<=cptcoveff;j++)
|
long ipmx; |
fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
|
double agexact; |
fprintf(ficreseij,"******\n");
|
/*extern weight */ |
|
/* We are differentiating ll according to initial status */ |
fprintf(ficresvij,"\n#****** ");
|
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
for(j=1;j<=cptcoveff;j++)
|
/*for(i=1;i<imx;i++) |
fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
|
printf(" %d\n",s[4][i]); |
fprintf(ficresvij,"******\n");
|
*/ |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
|
++countcallfunc; |
oldm=oldms;savm=savms;
|
|
evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);
|
cov[1]=1.; |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
|
|
oldm=oldms;savm=savms;
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
|
ioffset=0; |
|
if(mle==1){ |
fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
|
/* Computes the values of the ncovmodel covariates of the model |
fprintf(ficrest,"\n");
|
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
|
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
hf=1;
|
to be observed in j being in i according to the model. |
if (stepm >= YEARM) hf=stepm/YEARM;
|
*/ |
epj=vector(1,nlstate+1);
|
ioffset=2+nagesqr+cptcovage; |
for(age=bage; age <=fage ;age++){
|
/* Fixed */ |
prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
|
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
if (popbased==1) {
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
for(i=1; i<=nlstate;i++)
|
} |
prlim[i][i]=probs[(int)age][i][k];
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
}
|
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
|
has been calculated etc */ |
fprintf(ficrest," %.0f",age);
|
/* For an individual i, wav[i] gives the number of effective waves */ |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
|
/* We compute the contribution to Likelihood of each effective transition |
for(i=1, epj[j]=0.;i <=nlstate;i++) {
|
mw[mi][i] is real wave of the mi th effectve wave */ |
epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];
|
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
}
|
s2=s[mw[mi+1][i]][i]; |
epj[nlstate+1] +=epj[j];
|
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
}
|
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
for(i=1, vepp=0.;i <=nlstate;i++)
|
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
for(j=1;j <=nlstate;j++)
|
*/ |
vepp += vareij[i][j][(int)age];
|
for(mi=1; mi<= wav[i]-1; mi++){ |
fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));
|
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
for(j=1;j <=nlstate;j++){
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; |
fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));
|
} |
}
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
fprintf(ficrest,"\n");
|
for (j=1;j<=nlstate+ndeath;j++){ |
}
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
}
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
}
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
fclose(ficreseij);
|
if(nagesqr==1) |
fclose(ficresvij);
|
cov[3]= agexact*agexact; /* Should be changed here */ |
fclose(ficrest);
|
for (kk=1; kk<=cptcovage;kk++) { |
fclose(ficpar);
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
free_vector(epj,1,nlstate+1);
|
} |
/* scanf("%d ",i); */
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
/*------- Variance limit prevalence------*/
|
savm=oldm; |
|
oldm=newm; |
strcpy(fileresvpl,"vpl");
|
} /* end mult */ |
strcat(fileresvpl,fileres);
|
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
|
/* But now since version 0.9 we anticipate for bias at large stepm. |
exit(0);
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
}
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
k=0;
|
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
for(cptcov=1;cptcov<=i1;cptcov++){
|
* probability in order to take into account the bias as a fraction of the way |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
|
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
k=k+1;
|
* -stepm/2 to stepm/2 . |
fprintf(ficresvpl,"\n#****** ");
|
* For stepm=1 the results are the same as for previous versions of Imach. |
for(j=1;j<=cptcoveff;j++)
|
* For stepm > 1 the results are less biased than in previous versions. |
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
|
*/ |
fprintf(ficresvpl,"******\n");
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
varpl=matrix(1,nlstate,(int) bage, (int) fage);
|
bbh=(double)bh[mi][i]/(double)stepm; |
oldm=oldms;savm=savms;
|
/* bias bh is positive if real duration |
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
|
* is higher than the multiple of stepm and negative otherwise. |
}
|
*/ |
}
|
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ |
|
if( s2 > nlstate){ |
fclose(ficresvpl);
|
/* i.e. if s2 is a death state and if the date of death is known |
|
then the contribution to the likelihood is the probability to |
/*---------- End : free ----------------*/
|
die between last step unit time and current step unit time, |
free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
|
which is also equal to probability to die before dh |
|
minus probability to die before dh-stepm . |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
|
In version up to 0.92 likelihood was computed |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
|
as if date of death was unknown. Death was treated as any other |
|
health state: the date of the interview describes the actual state |
|
and not the date of a change in health state. The former idea was |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
|
to consider that at each interview the state was recorded |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
|
(healthy, disable or death) and IMaCh was corrected; but when we |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
|
introduced the exact date of death then we should have modified |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
|
the contribution of an exact death to the likelihood. This new |
|
contribution is smaller and very dependent of the step unit |
free_matrix(matcov,1,npar,1,npar);
|
stepm. It is no more the probability to die between last interview |
free_vector(delti,1,npar);
|
and month of death but the probability to survive from last |
|
interview up to one month before death multiplied by the |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
|
probability to die within a month. Thanks to Chris |
|
Jackson for correcting this bug. Former versions increased |
printf("End of Imach\n");
|
mortality artificially. The bad side is that we add another loop |
/* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */
|
which slows down the processing. The difference can be up to 10% |
|
lower mortality. |
/* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
|
*/ |
/*printf("Total time was %d uSec.\n", total_usecs);*/
|
/* If, at the beginning of the maximization mostly, the |
/*------ End -----------*/
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
end:
|
s1 at precedent wave, to be dead a month before current |
#ifdef windows
|
wave is equal to probability, being at state s1 at |
chdir(pathcd);
|
precedent wave, to be dead at mont of the current |
#endif
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
system("..\\gp37mgw\\wgnuplot graph.plt");
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
#ifdef windows
|
*/ |
while (z[0] != 'q') {
|
/* #ifdef INFINITYORIGINAL */ |
chdir(pathcd);
|
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
printf("\nType e to edit output files, c to start again, and q for exiting: ");
|
/* #else */ |
scanf("%s",z);
|
/* if ((out[s1][s2] - savm[s1][s2]) < mytinydouble) */ |
if (z[0] == 'c') system("./imach");
|
/* lli=log(mytinydouble); */ |
else if (z[0] == 'e') {
|
/* else */ |
chdir(path);
|
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
system(optionfilehtm);
|
/* #endif */ |
}
|
lli=log(out[s1][s2] - savm[s1][s2]); |
else if (z[0] == 'q') exit(0);
|
|
}
|
} else if ( s2==-1 ) { /* alive */ |
#endif
|
for (j=1,survp=0. ; j<=nlstate; j++) |
}
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
|
/*survp += out[s1][j]; */ |
|
lli= log(survp); |
|
} |
|
else if (s2==-4) { |
|
for (j=3,survp=0. ; j<=nlstate; j++) |
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
|
lli= log(survp); |
|
} |
|
else if (s2==-5) { |
|
for (j=1,survp=0. ; j<=2; j++) |
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
|
lli= log(survp); |
|
} |
|
else{ |
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
|
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
|
} |
|
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
|
/*if(lli ==000.0)*/ |
|
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
/* if (lli < log(mytinydouble)){ */ |
|
/* printf("Close to inf lli = %.10lf < %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */ |
|
/* fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */ |
|
/* } */ |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} else if(mle==2){ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<=dh[mi][i]; d++){ |
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} else if(mle==3){ /* exponential inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
} |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
}else if (mle==4){ /* ml=4 no inter-extrapolation */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
} |
|
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
if( s2 > nlstate){ |
|
lli=log(out[s1][s2] - savm[s1][s2]); |
|
} else if ( s2==-1 ) { /* alive */ |
|
for (j=1,survp=0. ; j<=nlstate; j++) |
|
survp += out[s1][j]; |
|
lli= log(survp); |
|
}else{ |
|
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
|
} |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
|
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
for(d=0; d<dh[mi][i]; d++){ |
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
} |
|
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/ |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
} /* End of if */ |
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
|
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
|
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
|
return -l; |
|
} |
|
|
|
/*************** log-likelihood *************/ |
|
double funcone( double *x) |
|
{ |
|
/* Same as func but slower because of a lot of printf and if */ |
|
int i, ii, j, k, mi, d, kk; |
|
int ioffset=0; |
|
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
|
double **out; |
|
double lli; /* Individual log likelihood */ |
|
double llt; |
|
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
|
double bbh, survp; |
|
double agexact; |
|
double agebegin, ageend; |
|
/*extern weight */ |
|
/* We are differentiating ll according to initial status */ |
|
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
|
/*for(i=1;i<imx;i++) |
|
printf(" %d\n",s[4][i]); |
|
*/ |
|
cov[1]=1.; |
|
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
|
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
ioffset=2+nagesqr+cptcovage; |
|
/* Fixed */ |
|
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
|
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
|
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
|
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
|
/* cov[2+6]=covar[Tvar[6]][i]; */ |
|
/* cov[2+6]=covar[2][i]; V2 */ |
|
/* cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i]; */ |
|
/* cov[2+7]=covar[Tvar[7]][i]; */ |
|
/* cov[2+7]=covar[7][i]; V7=V1*V2 */ |
|
/* cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i]; */ |
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
|
/* cov[2+9]=covar[1][i]; V1 */ |
|
} |
|
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
|
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
|
/* } */ |
|
/* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */ |
|
/* cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */ |
|
/* } */ |
|
|
|
|
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
|
/* Wave varying (but not age varying) */ |
|
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
|
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
|
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
|
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
|
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
|
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
|
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
|
/* } */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++) |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
|
} |
|
|
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
|
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
|
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
|
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
|
and mw[mi+1][i]. dh depends on stepm.*/ |
|
newm=savm; |
|
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
|
cov[2]=agexact; |
|
if(nagesqr==1) |
|
cov[3]= agexact*agexact; |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
|
} |
|
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
|
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
|
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */ |
|
/* 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */ |
|
savm=oldm; |
|
oldm=newm; |
|
} /* end mult */ |
|
|
|
s1=s[mw[mi][i]][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
/* if(s2==-1){ */ |
|
/* printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
|
/* /\* exit(1); *\/ */ |
|
/* } */ |
|
bbh=(double)bh[mi][i]/(double)stepm; |
|
/* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
if( s2 > nlstate && (mle <5) ){ /* Jackson */ |
|
lli=log(out[s1][s2] - savm[s1][s2]); |
|
} else if ( s2==-1 ) { /* alive */ |
|
for (j=1,survp=0. ; j<=nlstate; j++) |
|
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
|
lli= log(survp); |
|
}else if (mle==1){ |
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
|
} else if(mle==2){ |
|
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ |
|
} else if(mle==3){ /* exponential inter-extrapolation */ |
|
lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ |
|
} else if (mle==4){ /* mle=4 no inter-extrapolation */ |
|
lli=log(out[s1][s2]); /* Original formula */ |
|
} else{ /* mle=0 back to 1 */ |
|
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
|
/*lli=log(out[s1][s2]); */ /* Original formula */ |
|
} /* End of if */ |
|
ipmx +=1; |
|
sw += weight[i]; |
|
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
|
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
|
if(globpr){ |
|
fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
|
%11.6f %11.6f %11.6f ", \ |
|
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
|
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
|
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
|
llt +=ll[k]*gipmx/gsw; |
|
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
|
} |
|
fprintf(ficresilk," %10.6f\n", -llt); |
|
} |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
|
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
|
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
|
if(globpr==0){ /* First time we count the contributions and weights */ |
|
gipmx=ipmx; |
|
gsw=sw; |
|
} |
|
return -l; |
|
} |
|
|
|
|
|
/*************** function likelione ***********/ |
|
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
|
{ |
|
/* This routine should help understanding what is done with |
|
the selection of individuals/waves and |
|
to check the exact contribution to the likelihood. |
|
Plotting could be done. |
|
*/ |
|
int k; |
|
|
|
if(*globpri !=0){ /* Just counts and sums, no printings */ |
|
strcpy(fileresilk,"ILK_"); |
|
strcat(fileresilk,fileresu); |
|
if((ficresilk=fopen(fileresilk,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresilk); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
|
} |
|
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
|
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
|
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
|
for(k=1; k<=nlstate; k++) |
|
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
|
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
|
} |
|
|
|
*fretone=(*funcone)(p); |
|
if(*globpri !=0){ |
|
fclose(ficresilk); |
|
if (mle ==0) |
|
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle); |
|
else if(mle >=1) |
|
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
|
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
|
|
|
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
} |
|
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
|
<img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
|
<img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
fflush(fichtm); |
|
} |
|
return; |
|
} |
|
|
|
|
|
/*********** Maximum Likelihood Estimation ***************/ |
|
|
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
|
{ |
|
int i,j, iter=0; |
|
double **xi; |
|
double fret; |
|
double fretone; /* Only one call to likelihood */ |
|
/* char filerespow[FILENAMELENGTH];*/ |
|
|
|
#ifdef NLOPT |
|
int creturn; |
|
nlopt_opt opt; |
|
/* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
|
double *lb; |
|
double minf; /* the minimum objective value, upon return */ |
|
double * p1; /* Shifted parameters from 0 instead of 1 */ |
|
myfunc_data dinst, *d = &dinst; |
|
#endif |
|
|
|
|
|
xi=matrix(1,npar,1,npar); |
|
for (i=1;i<=npar;i++) |
|
for (j=1;j<=npar;j++) |
|
xi[i][j]=(i==j ? 1.0 : 0.0); |
|
printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
|
strcpy(filerespow,"POW_"); |
|
strcat(filerespow,fileres); |
|
if((ficrespow=fopen(filerespow,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", filerespow); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); |
|
} |
|
fprintf(ficrespow,"# Powell\n# iter -2*LL"); |
|
for (i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate+ndeath;j++) |
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
|
fprintf(ficrespow,"\n"); |
|
#ifdef POWELL |
|
powell(p,xi,npar,ftol,&iter,&fret,func); |
|
#endif |
|
|
|
#ifdef NLOPT |
|
#ifdef NEWUOA |
|
opt = nlopt_create(NLOPT_LN_NEWUOA,npar); |
|
#else |
|
opt = nlopt_create(NLOPT_LN_BOBYQA,npar); |
|
#endif |
|
lb=vector(0,npar-1); |
|
for (i=0;i<npar;i++) lb[i]= -HUGE_VAL; |
|
nlopt_set_lower_bounds(opt, lb); |
|
nlopt_set_initial_step1(opt, 0.1); |
|
|
|
p1= (p+1); /* p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */ |
|
d->function = func; |
|
printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d)); |
|
nlopt_set_min_objective(opt, myfunc, d); |
|
nlopt_set_xtol_rel(opt, ftol); |
|
if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) { |
|
printf("nlopt failed! %d\n",creturn); |
|
} |
|
else { |
|
printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT); |
|
printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf); |
|
iter=1; /* not equal */ |
|
} |
|
nlopt_destroy(opt); |
|
#endif |
|
free_matrix(xi,1,npar,1,npar); |
|
fclose(ficrespow); |
|
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
|
fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
|
fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
|
|
|
} |
|
|
|
/**** Computes Hessian and covariance matrix ***/ |
|
void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double [])) |
|
{ |
|
double **a,**y,*x,pd; |
|
/* double **hess; */ |
|
int i, j; |
|
int *indx; |
|
|
|
double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar); |
|
double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar); |
|
void lubksb(double **a, int npar, int *indx, double b[]) ; |
|
void ludcmp(double **a, int npar, int *indx, double *d) ; |
|
double gompertz(double p[]); |
|
/* hess=matrix(1,npar,1,npar); */ |
|
|
|
printf("\nCalculation of the hessian matrix. Wait...\n"); |
|
fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n"); |
|
for (i=1;i<=npar;i++){ |
|
printf("%d-",i);fflush(stdout); |
|
fprintf(ficlog,"%d-",i);fflush(ficlog); |
|
|
|
hess[i][i]=hessii(p,ftolhess,i,delti,func,npar); |
|
|
|
/* printf(" %f ",p[i]); |
|
printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/ |
|
} |
|
|
|
for (i=1;i<=npar;i++) { |
|
for (j=1;j<=npar;j++) { |
|
if (j>i) { |
|
printf(".%d-%d",i,j);fflush(stdout); |
|
fprintf(ficlog,".%d-%d",i,j);fflush(ficlog); |
|
hess[i][j]=hessij(p,hess, delti,i,j,func,npar); |
|
|
|
hess[j][i]=hess[i][j]; |
|
/*printf(" %lf ",hess[i][j]);*/ |
|
} |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
printf("\nInverting the hessian to get the covariance matrix. Wait...\n"); |
|
fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n"); |
|
|
|
a=matrix(1,npar,1,npar); |
|
y=matrix(1,npar,1,npar); |
|
x=vector(1,npar); |
|
indx=ivector(1,npar); |
|
for (i=1;i<=npar;i++) |
|
for (j=1;j<=npar;j++) a[i][j]=hess[i][j]; |
|
ludcmp(a,npar,indx,&pd); |
|
|
|
for (j=1;j<=npar;j++) { |
|
for (i=1;i<=npar;i++) x[i]=0; |
|
x[j]=1; |
|
lubksb(a,npar,indx,x); |
|
for (i=1;i<=npar;i++){ |
|
matcov[i][j]=x[i]; |
|
} |
|
} |
|
|
|
printf("\n#Hessian matrix#\n"); |
|
fprintf(ficlog,"\n#Hessian matrix#\n"); |
|
for (i=1;i<=npar;i++) { |
|
for (j=1;j<=npar;j++) { |
|
printf("%.6e ",hess[i][j]); |
|
fprintf(ficlog,"%.6e ",hess[i][j]); |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
|
|
/* printf("\n#Covariance matrix#\n"); */ |
|
/* fprintf(ficlog,"\n#Covariance matrix#\n"); */ |
|
/* for (i=1;i<=npar;i++) { */ |
|
/* for (j=1;j<=npar;j++) { */ |
|
/* printf("%.6e ",matcov[i][j]); */ |
|
/* fprintf(ficlog,"%.6e ",matcov[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
/* } */ |
|
|
|
/* Recompute Inverse */ |
|
/* for (i=1;i<=npar;i++) */ |
|
/* for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */ |
|
/* ludcmp(a,npar,indx,&pd); */ |
|
|
|
/* printf("\n#Hessian matrix recomputed#\n"); */ |
|
|
|
/* for (j=1;j<=npar;j++) { */ |
|
/* for (i=1;i<=npar;i++) x[i]=0; */ |
|
/* x[j]=1; */ |
|
/* lubksb(a,npar,indx,x); */ |
|
/* for (i=1;i<=npar;i++){ */ |
|
/* y[i][j]=x[i]; */ |
|
/* printf("%.3e ",y[i][j]); */ |
|
/* fprintf(ficlog,"%.3e ",y[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
/* } */ |
|
|
|
/* Verifying the inverse matrix */ |
|
#ifdef DEBUGHESS |
|
y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov); |
|
|
|
printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n"); |
|
fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n"); |
|
|
|
for (j=1;j<=npar;j++) { |
|
for (i=1;i<=npar;i++){ |
|
printf("%.2f ",y[i][j]); |
|
fprintf(ficlog,"%.2f ",y[i][j]); |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
#endif |
|
|
|
free_matrix(a,1,npar,1,npar); |
|
free_matrix(y,1,npar,1,npar); |
|
free_vector(x,1,npar); |
|
free_ivector(indx,1,npar); |
|
/* free_matrix(hess,1,npar,1,npar); */ |
|
|
|
|
|
} |
|
|
|
/*************** hessian matrix ****************/ |
|
double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar) |
|
{ /* Around values of x, computes the function func and returns the scales delti and hessian */ |
|
int i; |
|
int l=1, lmax=20; |
|
double k1,k2, res, fx; |
|
double p2[MAXPARM+1]; /* identical to x */ |
|
double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; |
|
int k=0,kmax=10; |
|
double l1; |
|
|
|
fx=func(x); |
|
for (i=1;i<=npar;i++) p2[i]=x[i]; |
|
for(l=0 ; l <=lmax; l++){ /* Enlarging the zone around the Maximum */ |
|
l1=pow(10,l); |
|
delts=delt; |
|
for(k=1 ; k <kmax; k=k+1){ |
|
delt = delta*(l1*k); |
|
p2[theta]=x[theta] +delt; |
|
k1=func(p2)-fx; /* Might be negative if too close to the theoretical maximum */ |
|
p2[theta]=x[theta]-delt; |
|
k2=func(p2)-fx; |
|
/*res= (k1-2.0*fx+k2)/delt/delt; */ |
|
res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */ |
|
|
|
#ifdef DEBUGHESSII |
|
printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
|
fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx); |
|
#endif |
|
/*if(fabs(k1-2.0*fx+k2) <1.e-13){ */ |
|
if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){ |
|
k=kmax; |
|
} |
|
else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */ |
|
k=kmax; l=lmax*10; |
|
} |
|
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ |
|
delts=delt; |
|
} |
|
} /* End loop k */ |
|
} |
|
delti[theta]=delts; |
|
return res; |
|
|
|
} |
|
|
|
double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar) |
|
{ |
|
int i; |
|
int l=1, lmax=20; |
|
double k1,k2,k3,k4,res,fx; |
|
double p2[MAXPARM+1]; |
|
int k, kmax=1; |
|
double v1, v2, cv12, lc1, lc2; |
|
|
|
int firstime=0; |
|
|
|
fx=func(x); |
|
for (k=1; k<=kmax; k=k+10) { |
|
for (i=1;i<=npar;i++) p2[i]=x[i]; |
|
p2[thetai]=x[thetai]+delti[thetai]*k; |
|
p2[thetaj]=x[thetaj]+delti[thetaj]*k; |
|
k1=func(p2)-fx; |
|
|
|
p2[thetai]=x[thetai]+delti[thetai]*k; |
|
p2[thetaj]=x[thetaj]-delti[thetaj]*k; |
|
k2=func(p2)-fx; |
|
|
|
p2[thetai]=x[thetai]-delti[thetai]*k; |
|
p2[thetaj]=x[thetaj]+delti[thetaj]*k; |
|
k3=func(p2)-fx; |
|
|
|
p2[thetai]=x[thetai]-delti[thetai]*k; |
|
p2[thetaj]=x[thetaj]-delti[thetaj]*k; |
|
k4=func(p2)-fx; |
|
res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */ |
|
if(k1*k2*k3*k4 <0.){ |
|
firstime=1; |
|
kmax=kmax+10; |
|
} |
|
if(kmax >=10 || firstime ==1){ |
|
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
|
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
|
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
} |
|
#ifdef DEBUGHESSIJ |
|
v1=hess[thetai][thetai]; |
|
v2=hess[thetaj][thetaj]; |
|
cv12=res; |
|
/* Computing eigen value of Hessian matrix */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj); |
|
fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj); |
|
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
|
} |
|
#endif |
|
} |
|
return res; |
|
} |
|
|
|
/* Not done yet: Was supposed to fix if not exactly at the maximum */ |
|
/* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */ |
|
/* { */ |
|
/* int i; */ |
|
/* int l=1, lmax=20; */ |
|
/* double k1,k2,k3,k4,res,fx; */ |
|
/* double p2[MAXPARM+1]; */ |
|
/* double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */ |
|
/* int k=0,kmax=10; */ |
|
/* double l1; */ |
|
|
|
/* fx=func(x); */ |
|
/* for(l=0 ; l <=lmax; l++){ /\* Enlarging the zone around the Maximum *\/ */ |
|
/* l1=pow(10,l); */ |
|
/* delts=delt; */ |
|
/* for(k=1 ; k <kmax; k=k+1){ */ |
|
/* delt = delti*(l1*k); */ |
|
/* for (i=1;i<=npar;i++) p2[i]=x[i]; */ |
|
/* p2[thetai]=x[thetai]+delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]+delti[thetaj]/k; */ |
|
/* k1=func(p2)-fx; */ |
|
|
|
/* p2[thetai]=x[thetai]+delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]-delti[thetaj]/k; */ |
|
/* k2=func(p2)-fx; */ |
|
|
|
/* p2[thetai]=x[thetai]-delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]+delti[thetaj]/k; */ |
|
/* k3=func(p2)-fx; */ |
|
|
|
/* p2[thetai]=x[thetai]-delti[thetai]/k; */ |
|
/* p2[thetaj]=x[thetaj]-delti[thetaj]/k; */ |
|
/* k4=func(p2)-fx; */ |
|
/* res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */ |
|
/* #ifdef DEBUGHESSIJ */ |
|
/* printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */ |
|
/* fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */ |
|
/* #endif */ |
|
/* if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */ |
|
/* k=kmax; */ |
|
/* } */ |
|
/* else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */ |
|
/* k=kmax; l=lmax*10; */ |
|
/* } */ |
|
/* else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ */ |
|
/* delts=delt; */ |
|
/* } */ |
|
/* } /\* End loop k *\/ */ |
|
/* } */ |
|
/* delti[theta]=delts; */ |
|
/* return res; */ |
|
/* } */ |
|
|
|
|
|
/************** Inverse of matrix **************/ |
|
void ludcmp(double **a, int n, int *indx, double *d) |
|
{ |
|
int i,imax,j,k; |
|
double big,dum,sum,temp; |
|
double *vv; |
|
|
|
vv=vector(1,n); |
|
*d=1.0; |
|
for (i=1;i<=n;i++) { |
|
big=0.0; |
|
for (j=1;j<=n;j++) |
|
if ((temp=fabs(a[i][j])) > big) big=temp; |
|
if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
|
vv[i]=1.0/big; |
|
} |
|
for (j=1;j<=n;j++) { |
|
for (i=1;i<j;i++) { |
|
sum=a[i][j]; |
|
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; |
|
a[i][j]=sum; |
|
} |
|
big=0.0; |
|
for (i=j;i<=n;i++) { |
|
sum=a[i][j]; |
|
for (k=1;k<j;k++) |
|
sum -= a[i][k]*a[k][j]; |
|
a[i][j]=sum; |
|
if ( (dum=vv[i]*fabs(sum)) >= big) { |
|
big=dum; |
|
imax=i; |
|
} |
|
} |
|
if (j != imax) { |
|
for (k=1;k<=n;k++) { |
|
dum=a[imax][k]; |
|
a[imax][k]=a[j][k]; |
|
a[j][k]=dum; |
|
} |
|
*d = -(*d); |
|
vv[imax]=vv[j]; |
|
} |
|
indx[j]=imax; |
|
if (a[j][j] == 0.0) a[j][j]=TINY; |
|
if (j != n) { |
|
dum=1.0/(a[j][j]); |
|
for (i=j+1;i<=n;i++) a[i][j] *= dum; |
|
} |
|
} |
|
free_vector(vv,1,n); /* Doesn't work */ |
|
; |
|
} |
|
|
|
void lubksb(double **a, int n, int *indx, double b[]) |
|
{ |
|
int i,ii=0,ip,j; |
|
double sum; |
|
|
|
for (i=1;i<=n;i++) { |
|
ip=indx[i]; |
|
sum=b[ip]; |
|
b[ip]=b[i]; |
|
if (ii) |
|
for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; |
|
else if (sum) ii=i; |
|
b[i]=sum; |
|
} |
|
for (i=n;i>=1;i--) { |
|
sum=b[i]; |
|
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; |
|
b[i]=sum/a[i][i]; |
|
} |
|
} |
|
|
|
void pstamp(FILE *fichier) |
|
{ |
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
|
} |
|
|
|
/************ Frequencies ********************/ |
|
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
|
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
|
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
|
{ /* Some frequencies */ |
|
|
|
int i, m, jk, j1, bool, z1,j, k, iv; |
|
int iind=0, iage=0; |
|
int mi; /* Effective wave */ |
|
int first; |
|
double ***freq; /* Frequencies */ |
|
double *meanq; |
|
double **meanqt; |
|
double *pp, **prop, *posprop, *pospropt; |
|
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
|
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
|
double agebegin, ageend; |
|
|
|
pp=vector(1,nlstate); |
|
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
|
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
|
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
|
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
meanqt=matrix(1,lastpass,1,nqtveff); |
|
strcpy(fileresp,"P_"); |
|
strcat(fileresp,fileresu); |
|
/*strcat(fileresphtm,fileresu);*/ |
|
if((ficresp=fopen(fileresp,"w"))==NULL) { |
|
printf("Problem with prevalence resultfile: %s\n", fileresp); |
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
|
exit(0); |
|
} |
|
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
|
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
|
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} |
|
else{ |
|
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm); |
|
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
|
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
|
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
|
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} |
|
else{ |
|
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
|
|
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
j1=0; |
|
|
|
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
|
j=cptcoveff; /* Only dummy covariates of the model */ |
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
first=1; |
|
|
|
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
|
reference=low_education V1=0,V2=0 |
|
med_educ V1=1 V2=0, |
|
high_educ V1=0 V2=1 |
|
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
|
*/ |
|
|
|
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */ |
|
posproptt=0.; |
|
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
|
scanf("%d", i);*/ |
|
for (i=-5; i<=nlstate+ndeath; i++) |
|
for (jk=-5; jk<=nlstate+ndeath; jk++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
freq[i][jk][m]=0; |
|
|
|
for (i=1; i<=nlstate; i++) { |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
posprop[i]=0; |
|
pospropt[i]=0; |
|
} |
|
/* for (z1=1; z1<= nqfveff; z1++) { */ |
|
/* meanq[z1]+=0.; */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* meanqt[m][z1]=0.; */ |
|
/* } */ |
|
/* } */ |
|
|
|
dateintsum=0; |
|
k2cpt=0; |
|
/* For that combination of covariate j1, we count and print the frequencies in one pass */ |
|
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
|
bool=1; |
|
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
|
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
|
/* for (z1=1; z1<= nqfveff; z1++) { */ |
|
/* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* } */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
/* if(Tvaraff[z1] ==-20){ */ |
|
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
|
/* }else if(Tvaraff[z1] ==-10){ */ |
|
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
|
/* }else */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
|
/* Tests if this individual iind responded to j1 (V4=1 V3=0) */ |
|
bool=0; |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
|
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
|
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} /* Onlyf fixed */ |
|
} /* end z1 */ |
|
} /* cptcovn > 0 */ |
|
} /* end any */ |
|
if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ /* For that wave */ |
|
m=mw[mi][iind]; |
|
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
|
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
|
bool=0; |
|
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
|
bool=0; |
|
} |
|
} |
|
} |
|
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
|
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
|
if(bool==1){ |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} /* end if between passes */ |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) { |
|
dateintsum=dateintsum+k2; |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
} /* end bool 2 */ |
|
} /* end m */ |
|
} /* end bool */ |
|
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is feeded for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
pstamp(ficresp); |
|
/* if (ncoveff>0) { */ |
|
if (cptcoveff>0) { |
|
fprintf(ficresp, "\n#********** Variable "); |
|
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
for(i=1; i<=nlstate;i++) { |
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
|
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(ficresphtmfr,"<th>Age</th> "); |
|
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(jk!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m); |
|
} |
|
} |
|
fprintf(ficresphtmfr, "\n"); |
|
|
|
/* For each age */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
fprintf(ficresphtm,"<tr>"); |
|
if(iage==iagemax+1){ |
|
fprintf(ficlog,"1"); |
|
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
|
fprintf(ficlog,"0"); |
|
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
|
}else if(iage==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
|
}else{ |
|
if(first==1){ |
|
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
|
fprintf(ficlog,"Age %d", iage); |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
|
pp[jk] += freq[jk][m][iage]; |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[jk][m][iage]; |
|
if(pp[jk]>=1.e-10){ |
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
} |
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
|
} |
|
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
|
/* posprop[jk]=0; */ |
|
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
|
pp[jk] += freq[jk][m][iage]; |
|
} /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */ |
|
|
|
for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){ |
|
pos += pp[jk]; /* pos is the total number of transitions until this age */ |
|
posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state |
|
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
|
pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state |
|
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
|
} |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if(pos>=1.e-5){ |
|
if(first==1) |
|
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
|
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
|
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
|
} |
|
if( iage <= iagemax){ |
|
if(pos>=1.e-5){ |
|
fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
|
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
|
/*probs[iage][jk][j1]= pp[jk]/pos;*/ |
|
/*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/ |
|
} |
|
else{ |
|
fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta); |
|
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta); |
|
} |
|
} |
|
pospropt[jk] +=posprop[jk]; |
|
} /* end loop jk */ |
|
/* pospropt=0.; */ |
|
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
|
for(m=-1; m <=nlstate+ndeath; m++){ |
|
if(freq[jk][m][iage] !=0 ) { /* minimizing output */ |
|
if(first==1){ |
|
printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]); |
|
} |
|
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]); |
|
} |
|
if(jk!=0 && m!=0) |
|
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]); |
|
} |
|
} /* end loop jk */ |
|
posproptt=0.; |
|
for(jk=1; jk <=nlstate; jk++){ |
|
posproptt += pospropt[jk]; |
|
} |
|
fprintf(ficresphtmfr,"</tr>\n "); |
|
if(iage <= iagemax){ |
|
fprintf(ficresp,"\n"); |
|
fprintf(ficresphtm,"</tr>\n"); |
|
} |
|
if(first==1) |
|
printf("Others in log...\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end loop age iage */ |
|
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if(posproptt < 1.e-5){ |
|
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt); |
|
}else{ |
|
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt); |
|
} |
|
} |
|
fprintf(ficresphtm,"</tr>\n"); |
|
fprintf(ficresphtm,"</table>\n"); |
|
fprintf(ficresphtmfr,"</table>\n"); |
|
if(posproptt < 1.e-5){ |
|
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
|
fprintf(ficres,"\n This combination (%d) is not valid and no result will be produced\n\n",j1); |
|
invalidvarcomb[j1]=1; |
|
}else{ |
|
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
|
invalidvarcomb[j1]=0; |
|
} |
|
fprintf(ficresphtmfr,"</table>\n"); |
|
} /* end selected combination of covariate j1 */ |
|
dateintmean=dateintsum/k2cpt; |
|
|
|
fclose(ficresp); |
|
fclose(ficresphtm); |
|
fclose(ficresphtmfr); |
|
free_vector(meanq,1,nqfveff); |
|
free_matrix(meanqt,1,lastpass,1,nqtveff); |
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
|
free_vector(pospropt,1,nlstate); |
|
free_vector(posprop,1,nlstate); |
|
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
|
free_vector(pp,1,nlstate); |
|
/* End of freqsummary */ |
|
} |
|
|
|
/************ Prevalence ********************/ |
|
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
|
{ |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
|
|
int i, m, jk, j1, bool, z1,j, iv; |
|
int mi; /* Effective wave */ |
|
int iage; |
|
double agebegin, ageend; |
|
|
|
double **prop; |
|
double posprop; |
|
double y2; /* in fractional years */ |
|
int iagemin, iagemax; |
|
int first; /** to stop verbosity which is redirected to log file */ |
|
|
|
iagemin= (int) agemin; |
|
iagemax= (int) agemax; |
|
/*pp=vector(1,nlstate);*/ |
|
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
|
j1=0; |
|
|
|
/*j=cptcoveff;*/ |
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
first=1; |
|
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
|
for (i=1; i<=nlstate; i++) |
|
for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++) |
|
prop[i][iage]=0.0; |
|
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
|
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
|
fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1); |
|
|
|
for (i=1; i<=imx; i++) { /* Each individual */ |
|
bool=1; |
|
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
|
for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */ |
|
m=mw[mi][i]; |
|
/* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */ |
|
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
|
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
|
bool=0; |
|
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
|
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
|
bool=0; |
|
} |
|
} |
|
if(bool==1){ /* Otherwise we skip that wave/person */ |
|
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
|
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
|
if(m >=firstpass && m <=lastpass){ |
|
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
|
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
|
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
|
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
|
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){ |
|
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
|
exit(1); |
|
} |
|
if (s[m][i]>0 && s[m][i]<=nlstate) { |
|
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
|
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
|
prop[s[m][i]][iagemax+3] += weight[i]; |
|
} /* end valid statuses */ |
|
} /* end selection of dates */ |
|
} /* end selection of waves */ |
|
} /* end bool */ |
|
} /* end wave */ |
|
} /* end individual */ |
|
for(i=iagemin; i <= iagemax+3; i++){ |
|
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
|
posprop += prop[jk][i]; |
|
} |
|
|
|
for(jk=1; jk <=nlstate ; jk++){ |
|
if( i <= iagemax){ |
|
if(posprop>=1.e-5){ |
|
probs[i][jk][j1]= prop[jk][i]/posprop; |
|
} else{ |
|
if(first==1){ |
|
first=0; |
|
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]); |
|
} |
|
} |
|
} |
|
}/* end jk */ |
|
}/* end i */ |
|
/*} *//* end i1 */ |
|
} /* end j1 */ |
|
|
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
|
/*free_vector(pp,1,nlstate);*/ |
|
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
} /* End of prevalence */ |
|
|
|
/************* Waves Concatenation ***************/ |
|
|
|
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
|
{ |
|
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
|
Death is a valid wave (if date is known). |
|
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
|
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
|
and mw[mi+1][i]. dh depends on stepm. |
|
*/ |
|
|
|
int i=0, mi=0, m=0, mli=0; |
|
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
|
double sum=0., jmean=0.;*/ |
|
int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0; |
|
int j, k=0,jk, ju, jl; |
|
double sum=0.; |
|
first=0; |
|
firstwo=0; |
|
firsthree=0; |
|
firstfour=0; |
|
jmin=100000; |
|
jmax=-1; |
|
jmean=0.; |
|
|
|
/* Treating live states */ |
|
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
|
mi=0; /* First valid wave */ |
|
mli=0; /* Last valid wave */ |
|
m=firstpass; |
|
while(s[m][i] <= nlstate){ /* a live state */ |
|
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
|
mli=m-1;/* mw[++mi][i]=m-1; */ |
|
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
|
mw[++mi][i]=m; |
|
mli=m; |
|
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
|
if(m < lastpass){ /* m < lastpass, standard case */ |
|
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
|
} |
|
else{ /* m >= lastpass, eventual special issue with warning */ |
|
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
|
break; |
|
#else |
|
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
|
if(firsthree == 0){ |
|
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
|
firsthree=1; |
|
} |
|
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
|
mw[++mi][i]=m; |
|
mli=m; |
|
} |
|
if(s[m][i]==-2){ /* Vital status is really unknown */ |
|
nbwarn++; |
|
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
|
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
} |
|
break; |
|
} |
|
break; |
|
#endif |
|
}/* End m >= lastpass */ |
|
}/* end while */ |
|
|
|
/* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */ |
|
/* After last pass */ |
|
/* Treating death states */ |
|
if (s[m][i] > nlstate){ /* In a death state */ |
|
/* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */ |
|
/* } */ |
|
mi++; /* Death is another wave */ |
|
/* if(mi==0) never been interviewed correctly before death */ |
|
/* Only death is a correct wave */ |
|
mw[mi][i]=m; |
|
} |
|
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
|
else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */ |
|
/* m++; */ |
|
/* mi++; */ |
|
/* s[m][i]=nlstate+1; /\* We are setting the status to the last of non live state *\/ */ |
|
/* mw[mi][i]=m; */ |
|
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
|
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */ |
|
nbwarn++; |
|
if(firstfiv==0){ |
|
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
firstfiv=1; |
|
}else{ |
|
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
} |
|
}else{ /* Death occured afer last wave potential bias */ |
|
nberr++; |
|
if(firstwo==0){ |
|
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
firstwo=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
} |
|
}else{ /* end date of interview is known */ |
|
/* death is known but not confirmed by death status at any wave */ |
|
if(firstfour==0){ |
|
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
firstfour=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
|
} |
|
} /* end if date of death is known */ |
|
#endif |
|
wav[i]=mi; /* mi should be the last effective wave (or mli) */ |
|
/* wav[i]=mw[mi][i]; */ |
|
if(mi==0){ |
|
nbwarn++; |
|
if(first==0){ |
|
printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
|
first=1; |
|
} |
|
if(first==1){ |
|
fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
|
} |
|
} /* end mi==0 */ |
|
} /* End individuals */ |
|
/* wav and mw are no more changed */ |
|
|
|
|
|
for(i=1; i<=imx; i++){ |
|
for(mi=1; mi<wav[i];mi++){ |
|
if (stepm <=0) |
|
dh[mi][i]=1; |
|
else{ |
|
if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
|
if (agedc[i] < 2*AGESUP) { |
|
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
|
if(j==0) j=1; /* Survives at least one month after exam */ |
|
else if(j<0){ |
|
nberr++; |
|
printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
|
j=1; /* Temporary Dangerous patch */ |
|
printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
|
fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
|
fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
|
} |
|
k=k+1; |
|
if (j >= jmax){ |
|
jmax=j; |
|
ijmax=i; |
|
} |
|
if (j <= jmin){ |
|
jmin=j; |
|
ijmin=i; |
|
} |
|
sum=sum+j; |
|
/*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
|
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
|
} |
|
} |
|
else{ |
|
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
|
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
|
|
|
k=k+1; |
|
if (j >= jmax) { |
|
jmax=j; |
|
ijmax=i; |
|
} |
|
else if (j <= jmin){ |
|
jmin=j; |
|
ijmin=i; |
|
} |
|
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
|
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
|
if(j<0){ |
|
nberr++; |
|
printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
|
fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
|
} |
|
sum=sum+j; |
|
} |
|
jk= j/stepm; |
|
jl= j -jk*stepm; |
|
ju= j -(jk+1)*stepm; |
|
if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
|
if(jl==0){ |
|
dh[mi][i]=jk; |
|
bh[mi][i]=0; |
|
}else{ /* We want a negative bias in order to only have interpolation ie |
|
* to avoid the price of an extra matrix product in likelihood */ |
|
dh[mi][i]=jk+1; |
|
bh[mi][i]=ju; |
|
} |
|
}else{ |
|
if(jl <= -ju){ |
|
dh[mi][i]=jk; |
|
bh[mi][i]=jl; /* bias is positive if real duration |
|
* is higher than the multiple of stepm and negative otherwise. |
|
*/ |
|
} |
|
else{ |
|
dh[mi][i]=jk+1; |
|
bh[mi][i]=ju; |
|
} |
|
if(dh[mi][i]==0){ |
|
dh[mi][i]=1; /* At least one step */ |
|
bh[mi][i]=ju; /* At least one step */ |
|
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
|
} |
|
} /* end if mle */ |
|
} |
|
} /* end wave */ |
|
} |
|
jmean=sum/k; |
|
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
|
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
|
} |
|
|
|
/*********** Tricode ****************************/ |
|
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
|
{ |
|
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
|
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
|
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
|
* Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable |
|
* nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); |
|
*/ |
|
|
|
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
|
int modmaxcovj=0; /* Modality max of covariates j */ |
|
int cptcode=0; /* Modality max of covariates j */ |
|
int modmincovj=0; /* Modality min of covariates j */ |
|
|
|
|
|
/* cptcoveff=0; */ |
|
/* *cptcov=0; */ |
|
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
|
|
/* Loop on covariates without age and products and no quantitative variable */ |
|
/* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ |
|
for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
|
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
|
if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
|
switch(Fixed[k]) { |
|
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
|
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
|
ij=(int)(covar[Tvar[k]][i]); |
|
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
|
* If product of Vn*Vm, still boolean *: |
|
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
|
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
|
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
|
modality of the nth covariate of individual i. */ |
|
if (ij > modmaxcovj) |
|
modmaxcovj=ij; |
|
else if (ij < modmincovj) |
|
modmincovj=ij; |
|
if ((ij < -1) && (ij > NCOVMAX)){ |
|
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
|
exit(1); |
|
}else |
|
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
|
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
|
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
|
/* getting the maximum value of the modality of the covariate |
|
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
|
female ies 1, then modmaxcovj=1. |
|
*/ |
|
} /* end for loop on individuals i */ |
|
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
|
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
|
cptcode=modmaxcovj; |
|
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
|
/*for (i=0; i<=cptcode; i++) {*/ |
|
for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ |
|
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
|
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
|
if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ |
|
if( j != -1){ |
|
ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th |
|
covariate for which somebody answered excluding |
|
undefined. Usually 2: 0 and 1. */ |
|
} |
|
ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th |
|
covariate for which somebody answered including |
|
undefined. Usually 3: -1, 0 and 1. */ |
|
} /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for |
|
* historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
|
} /* Ndum[-1] number of undefined modalities */ |
|
|
|
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
|
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ |
|
/* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ |
|
/* modmincovj=3; modmaxcovj = 7; */ |
|
/* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ |
|
/* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ |
|
/* defining two dummy variables: variables V1_1 and V1_2.*/ |
|
/* nbcode[Tvar[j]][ij]=k; */ |
|
/* nbcode[Tvar[j]][1]=0; */ |
|
/* nbcode[Tvar[j]][2]=1; */ |
|
/* nbcode[Tvar[j]][3]=2; */ |
|
/* To be continued (not working yet). */ |
|
ij=0; /* ij is similar to i but can jump over null modalities */ |
|
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
|
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
|
break; |
|
} |
|
ij++; |
|
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ |
|
cptcode = ij; /* New max modality for covar j */ |
|
} /* end of loop on modality i=-1 to 1 or more */ |
|
break; |
|
case 1: /* Testing on varying covariate, could be simple and |
|
* should look at waves or product of fixed * |
|
* varying. No time to test -1, assuming 0 and 1 only */ |
|
ij=0; |
|
for(i=0; i<=1;i++){ |
|
nbcode[Tvar[k]][++ij]=i; |
|
} |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
|
} /* end dummy test */ |
|
|
|
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
|
/* /\*recode from 0 *\/ */ |
|
/* k is a modality. If we have model=V1+V1*sex */ |
|
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
|
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
|
/* } */ |
|
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
|
/* if (ij > ncodemax[j]) { */ |
|
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
|
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
|
/* break; */ |
|
/* } */ |
|
/* } /\* end of loop on modality k *\/ */ |
|
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
|
|
|
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
|
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
|
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
|
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
|
ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ |
|
Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ |
|
} /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ |
|
|
|
ij=0; |
|
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
|
for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
|
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
|
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
|
/* If product not in single variable we don't print results */ |
|
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
|
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
|
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
|
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
|
if(Fixed[k]!=0) |
|
anyvaryingduminmodel=1; |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ |
|
/* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ |
|
/* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ |
|
/* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
} |
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
|
/* ij--; */ |
|
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
|
*cptcov=ij; /*Number of total real effective covariates: effective |
|
* because they can be excluded from the model and real |
|
* if in the model but excluded because missing values, but how to get k from ij?*/ |
|
for(j=ij+1; j<= cptcovt; j++){ |
|
Tvaraff[j]=0; |
|
Tmodelind[j]=0; |
|
} |
|
for(j=ntveff+1; j<= cptcovt; j++){ |
|
TmodelInvind[j]=0; |
|
} |
|
/* To be sorted */ |
|
; |
|
} |
|
|
|
|
|
/*********** Health Expectancies ****************/ |
|
|
|
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] ) |
|
|
|
{ |
|
/* Health expectancies, no variances */ |
|
int i, j, nhstepm, hstepm, h, nstepm; |
|
int nhstepma, nstepma; /* Decreasing with age */ |
|
double age, agelim, hf; |
|
double ***p3mat; |
|
double eip; |
|
|
|
pstamp(ficreseij); |
|
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
|
fprintf(ficreseij,"# Age"); |
|
for(i=1; i<=nlstate;i++){ |
|
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficreseij," e%1d%1d ",i,j); |
|
} |
|
fprintf(ficreseij," e%1d. ",i); |
|
} |
|
fprintf(ficreseij,"\n"); |
|
|
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* We compute the life expectancy from trapezoids spaced every estepm months |
|
* This is mainly to measure the difference between two models: for example |
|
* if stepm=24 months pijx are given only every 2 years and by summing them |
|
* we are calculating an estimate of the Life Expectancy assuming a linear |
|
* progression in between and thus overestimating or underestimating according |
|
* to the curvature of the survival function. If, for the same date, we |
|
* estimate the model with stepm=1 month, we can keep estepm to 24 months |
|
* to compare the new estimate of Life expectancy with the same linear |
|
* hypothesis. A more precise result, taking into account a more precise |
|
* curvature will be obtained if estepm is as small as stepm. */ |
|
|
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelin. |
|
Look at hpijx to understand the reason of that which relies in memory size |
|
and note for a fixed period like estepm months */ |
|
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed only each two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
|
|
agelim=AGESUP; |
|
/* If stepm=6 months */ |
|
/* Computed by stepm unit matrices, product of hstepm matrices, stored |
|
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */ |
|
|
|
/* nhstepm age range expressed in number of stepm */ |
|
nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
|
|
for (age=bage; age<=fage; age ++){ |
|
nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
|
|
|
/* If stepm=6 months */ |
|
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
|
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
|
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
|
printf("%d|",(int)age);fflush(stdout); |
|
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
|
|
|
/* Computing expectancies */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
|
eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf; |
|
|
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
|
} |
|
|
|
fprintf(ficreseij,"%3.0f",age ); |
|
for(i=1; i<=nlstate;i++){ |
|
eip=0; |
|
for(j=1; j<=nlstate;j++){ |
|
eip +=eij[i][j][(int)age]; |
|
fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] ); |
|
} |
|
fprintf(ficreseij,"%9.4f", eip ); |
|
} |
|
fprintf(ficreseij,"\n"); |
|
|
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
} |
|
|
|
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] ) |
|
|
|
{ |
|
/* Covariances of health expectancies eij and of total life expectancies according |
|
to initial status i, ei. . |
|
*/ |
|
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
|
int nhstepma, nstepma; /* Decreasing with age */ |
|
double age, agelim, hf; |
|
double ***p3matp, ***p3matm, ***varhe; |
|
double **dnewm,**doldm; |
|
double *xp, *xm; |
|
double **gp, **gm; |
|
double ***gradg, ***trgradg; |
|
int theta; |
|
|
|
double eip, vip; |
|
|
|
varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage); |
|
xp=vector(1,npar); |
|
xm=vector(1,npar); |
|
dnewm=matrix(1,nlstate*nlstate,1,npar); |
|
doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate); |
|
|
|
pstamp(ficresstdeij); |
|
fprintf(ficresstdeij,"# Health expectancies with standard errors\n"); |
|
fprintf(ficresstdeij,"# Age"); |
|
for(i=1; i<=nlstate;i++){ |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresstdeij," e%1d%1d (SE)",i,j); |
|
fprintf(ficresstdeij," e%1d. ",i); |
|
} |
|
fprintf(ficresstdeij,"\n"); |
|
|
|
pstamp(ficrescveij); |
|
fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n"); |
|
fprintf(ficrescveij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
cptj= (j-1)*nlstate+i; |
|
for(i2=1; i2<=nlstate;i2++) |
|
for(j2=1; j2<=nlstate;j2++){ |
|
cptj2= (j2-1)*nlstate+i2; |
|
if(cptj2 <= cptj) |
|
fprintf(ficrescveij," %1d%1d,%1d%1d",i,j,i2,j2); |
|
} |
|
} |
|
fprintf(ficrescveij,"\n"); |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* We compute the life expectancy from trapezoids spaced every estepm months |
|
* This is mainly to measure the difference between two models: for example |
|
* if stepm=24 months pijx are given only every 2 years and by summing them |
|
* we are calculating an estimate of the Life Expectancy assuming a linear |
|
* progression in between and thus overestimating or underestimating according |
|
* to the curvature of the survival function. If, for the same date, we |
|
* estimate the model with stepm=1 month, we can keep estepm to 24 months |
|
* to compare the new estimate of Life expectancy with the same linear |
|
* hypothesis. A more precise result, taking into account a more precise |
|
* curvature will be obtained if estepm is as small as stepm. */ |
|
|
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelin. |
|
Look at hpijx to understand the reason of that which relies in memory size |
|
and note for a fixed period like estepm months */ |
|
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed only each two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
|
|
/* If stepm=6 months */ |
|
/* nhstepm age range expressed in number of stepm */ |
|
agelim=AGESUP; |
|
nstepm=(int) rint((agelim-bage)*YEARM/stepm); |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
|
|
p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate); |
|
trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar); |
|
gp=matrix(0,nhstepm,1,nlstate*nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate*nlstate); |
|
|
|
for (age=bage; age<=fage; age ++){ |
|
nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */ |
|
/* Typically if 20 years nstepm = 20*12/6=40 stepm */ |
|
/* if (stepm >= YEARM) hstepm=1;*/ |
|
nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */ |
|
|
|
/* If stepm=6 months */ |
|
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
|
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
|
/* Computing Variances of health expectancies */ |
|
/* Gradient is computed with plus gp and minus gm. Code is duplicated in order to |
|
decrease memory allocation */ |
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
|
} |
|
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
|
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
|
|
|
for(j=1; j<= nlstate; j++){ |
|
for(i=1; i<=nlstate; i++){ |
|
for(h=0; h<=nhstepm-1; h++){ |
|
gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.; |
|
gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.; |
|
} |
|
} |
|
} |
|
|
|
for(ij=1; ij<= nlstate*nlstate; ij++) |
|
for(h=0; h<=nhstepm-1; h++){ |
|
gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta]; |
|
} |
|
}/* End theta */ |
|
|
|
|
|
for(h=0; h<=nhstepm-1; h++) |
|
for(j=1; j<=nlstate*nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
|
|
for(ij=1;ij<=nlstate*nlstate;ij++) |
|
for(ji=1;ji<=nlstate*nlstate;ji++) |
|
varhe[ij][ji][(int)age] =0.; |
|
|
|
printf("%d|",(int)age);fflush(stdout); |
|
fprintf(ficlog,"%d|",(int)age);fflush(ficlog); |
|
for(h=0;h<=nhstepm-1;h++){ |
|
for(k=0;k<=nhstepm-1;k++){ |
|
matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]); |
|
for(ij=1;ij<=nlstate*nlstate;ij++) |
|
for(ji=1;ji<=nlstate*nlstate;ji++) |
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
|
} |
|
} |
|
|
|
/* Computing expectancies */ |
|
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
|
eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf; |
|
|
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
|
} |
|
|
|
fprintf(ficresstdeij,"%3.0f",age ); |
|
for(i=1; i<=nlstate;i++){ |
|
eip=0.; |
|
vip=0.; |
|
for(j=1; j<=nlstate;j++){ |
|
eip += eij[i][j][(int)age]; |
|
for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */ |
|
vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age]; |
|
fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) ); |
|
} |
|
fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip)); |
|
} |
|
fprintf(ficresstdeij,"\n"); |
|
|
|
fprintf(ficrescveij,"%3.0f",age ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
cptj= (j-1)*nlstate+i; |
|
for(i2=1; i2<=nlstate;i2++) |
|
for(j2=1; j2<=nlstate;j2++){ |
|
cptj2= (j2-1)*nlstate+i2; |
|
if(cptj2 <= cptj) |
|
fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]); |
|
} |
|
} |
|
fprintf(ficrescveij,"\n"); |
|
|
|
} |
|
free_matrix(gm,0,nhstepm,1,nlstate*nlstate); |
|
free_matrix(gp,0,nhstepm,1,nlstate*nlstate); |
|
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate); |
|
free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar); |
|
free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
free_vector(xm,1,npar); |
|
free_vector(xp,1,npar); |
|
free_matrix(dnewm,1,nlstate*nlstate,1,npar); |
|
free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate); |
|
free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage); |
|
} |
|
|
|
/************ Variance ******************/ |
|
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
|
{ |
|
/* Variance of health expectancies */ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
|
/* double **newm;*/ |
|
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
|
|
|
/* int movingaverage(); */ |
|
double **dnewm,**doldm; |
|
double **dnewmp,**doldmp; |
|
int i, j, nhstepm, hstepm, h, nstepm ; |
|
int k; |
|
double *xp; |
|
double **gp, **gm; /* for var eij */ |
|
double ***gradg, ***trgradg; /*for var eij */ |
|
double **gradgp, **trgradgp; /* for var p point j */ |
|
double *gpp, *gmp; /* for var p point j */ |
|
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
|
double ***p3mat; |
|
double age,agelim, hf; |
|
/* double ***mobaverage; */ |
|
int theta; |
|
char digit[4]; |
|
char digitp[25]; |
|
|
|
char fileresprobmorprev[FILENAMELENGTH]; |
|
|
|
if(popbased==1){ |
|
if(mobilav!=0) |
|
strcpy(digitp,"-POPULBASED-MOBILAV_"); |
|
else strcpy(digitp,"-POPULBASED-NOMOBIL_"); |
|
} |
|
else |
|
strcpy(digitp,"-STABLBASED_"); |
|
|
|
/* if (mobilav!=0) { */ |
|
/* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */ |
|
/* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* printf(" Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* } */ |
|
/* } */ |
|
|
|
strcpy(fileresprobmorprev,"PRMORPREV-"); |
|
sprintf(digit,"%-d",ij); |
|
/*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/ |
|
strcat(fileresprobmorprev,digit); /* Tvar to be done */ |
|
strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */ |
|
strcat(fileresprobmorprev,fileresu); |
|
if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobmorprev); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev); |
|
} |
|
printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
|
pstamp(ficresprobmorprev); |
|
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," p.%-d SE",j); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j); |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficgp,"\n# Routine varevsij"); |
|
fprintf(ficgp,"\nunset title \n"); |
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
|
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
|
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
|
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
pstamp(ficresvij); |
|
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
|
if(popbased==1) |
|
fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav); |
|
else |
|
fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficresvij,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++) |
|
fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j); |
|
fprintf(ficresvij,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar); |
|
doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
|
|
gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath); |
|
gpp=vector(nlstate+1,nlstate+ndeath); |
|
gmp=vector(nlstate+1,nlstate+ndeath); |
|
trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
|
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
/* For example we decided to compute the life expectancy with the smallest unit */ |
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
|
nhstepm is the number of hstepm from age to agelim |
|
nstepm is the number of stepm from age to agelim. |
|
Look at function hpijx to understand why because of memory size limitations, |
|
we decided (b) to get a life expectancy respecting the most precise curvature of the |
|
survival function given by stepm (the optimization length). Unfortunately it |
|
means that if the survival funtion is printed every two years of age and if |
|
you sum them up and add 1 year (area under the trapezoids) you won't get the same |
|
results. So we changed our mind and took the option of the best precision. |
|
*/ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */ |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
gradg=ma3x(0,nhstepm,1,npar,1,nlstate); |
|
gp=matrix(0,nhstepm,1,nlstate); |
|
gm=matrix(0,nhstepm,1,nlstate); |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
|
for(j=1; j<= nlstate; j++){ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
|
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* Next for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
|
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
|
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
|
for(h=0; h<=nhstepm; h++){ |
|
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
|
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
|
} |
|
} |
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
for(j=1; j<= nlstate; j++) /* vareij */ |
|
for(h=0; h<=nhstepm; h++){ |
|
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
|
} |
|
|
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
|
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
|
} |
|
|
|
} /* End theta */ |
|
|
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
|
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
|
for(theta=1; theta <=npar; theta++) |
|
trgradgp[j][theta]=gradgp[theta][j]; |
|
|
|
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] =0.; |
|
|
|
for(h=0;h<=nhstepm;h++){ |
|
for(k=0;k<=nhstepm;k++){ |
|
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
|
for(i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate;j++) |
|
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
|
} |
|
} |
|
|
|
/* pptj */ |
|
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
|
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
|
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
|
varppt[j][i]=doldmp[j][i]; |
|
/* end ppptj */ |
|
/* x centered again */ |
|
|
|
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
|
|
if (popbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][ij]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
|
} |
|
} |
|
|
|
/* This for computing probability of death (h=1 means |
|
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
|
as a weighted average of prlim. |
|
*/ |
|
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
|
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
|
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
|
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
|
} |
|
/* end probability of death */ |
|
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
|
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
|
for(i=1; i<=nlstate;i++){ |
|
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
|
} |
|
} |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
|
fprintf(ficresvij,"%.0f ",age ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate;j++){ |
|
fprintf(ficresvij," %.4f", vareij[i][j][(int)age]); |
|
} |
|
fprintf(ficresvij,"\n"); |
|
free_matrix(gp,0,nhstepm,1,nlstate); |
|
free_matrix(gm,0,nhstepm,1,nlstate); |
|
free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate); |
|
free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar); |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* End age */ |
|
free_vector(gpp,nlstate+1,nlstate+ndeath); |
|
free_vector(gmp,nlstate+1,nlstate+ndeath); |
|
free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath); |
|
free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/ |
|
/* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */ |
|
fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480"); |
|
/* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
|
fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
|
fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev)); |
|
fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
/* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit); |
|
*/ |
|
/* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */ |
|
fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit); |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,nlstate); |
|
free_matrix(dnewm,1,nlstate,1,npar); |
|
free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar); |
|
free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
fclose(ficresprobmorprev); |
|
fflush(ficgp); |
|
fflush(fichtm); |
|
} /* end varevsij */ |
|
|
|
/************ Variance of prevlim ******************/ |
|
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[]) |
|
{ |
|
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
|
double **dnewm,**doldm; |
|
int i, j, nhstepm, hstepm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mgm, **mgp; |
|
double age,agelim; |
|
int theta; |
|
|
|
pstamp(ficresvpl); |
|
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
|
fprintf(ficresvpl,"# Age"); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvpl," %1d-%1d",i,i); |
|
fprintf(ficresvpl,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewm=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
|
|
hstepm=1*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
|
agelim = AGESUP; |
|
for (age=bage; age<=fage; age ++){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
if (stepm >= YEARM) hstepm=1; |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
gradg=matrix(1,npar,1,nlstate); |
|
mgp=matrix(1,npar,1,nlstate); |
|
mgm=matrix(1,npar,1,nlstate); |
|
gp=vector(1,nlstate); |
|
gm=vector(1,nlstate); |
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
else |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
for(i=1;i<=nlstate;i++){ |
|
gp[i] = prlim[i][i]; |
|
mgp[theta][i] = prlim[i][i]; |
|
} |
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
else |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
|
for(i=1;i<=nlstate;i++){ |
|
gm[i] = prlim[i][i]; |
|
mgm[theta][i] = prlim[i][i]; |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
/* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */ |
|
} /* End theta */ |
|
|
|
trgradg =matrix(1,nlstate,1,npar); |
|
|
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\nmgm mgp %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf(" %d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\n gradg %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf("%d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf("%d %lf ",theta,gradg[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
|
|
for(i=1;i<=nlstate;i++) |
|
varpl[i][(int)age] =0.; |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
|
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
|
}else{ |
|
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
|
fprintf(ficresvpl,"%.0f ",age ); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
|
fprintf(ficresvpl,"\n"); |
|
free_vector(gp,1,nlstate); |
|
free_vector(gm,1,nlstate); |
|
free_matrix(mgm,1,npar,1,nlstate); |
|
free_matrix(mgp,1,npar,1,nlstate); |
|
free_matrix(gradg,1,npar,1,nlstate); |
|
free_matrix(trgradg,1,nlstate,1,npar); |
|
} /* End age */ |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,npar); |
|
free_matrix(dnewm,1,nlstate,1,nlstate); |
|
|
|
} |
|
|
|
/************ Variance of one-step probabilities ******************/ |
|
void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[]) |
|
{ |
|
int i, j=0, k1, l1, tj; |
|
int k2, l2, j1, z1; |
|
int k=0, l; |
|
int first=1, first1, first2; |
|
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
|
double **dnewm,**doldm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mu; |
|
double age, cov[NCOVMAX+1]; |
|
double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */ |
|
int theta; |
|
char fileresprob[FILENAMELENGTH]; |
|
char fileresprobcov[FILENAMELENGTH]; |
|
char fileresprobcor[FILENAMELENGTH]; |
|
double ***varpij; |
|
|
|
strcpy(fileresprob,"PROB_"); |
|
strcat(fileresprob,fileres); |
|
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprob); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
|
} |
|
strcpy(fileresprobcov,"PROBCOV_"); |
|
strcat(fileresprobcov,fileresu); |
|
if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcov); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov); |
|
} |
|
strcpy(fileresprobcor,"PROBCOR_"); |
|
strcat(fileresprobcor,fileresu); |
|
if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", fileresprobcor); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor); |
|
} |
|
printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob); |
|
printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov); |
|
printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor); |
|
pstamp(ficresprob); |
|
fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n"); |
|
fprintf(ficresprob,"# Age"); |
|
pstamp(ficresprobcov); |
|
fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n"); |
|
fprintf(ficresprobcov,"# Age"); |
|
pstamp(ficresprobcor); |
|
fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n"); |
|
fprintf(ficresprobcor,"# Age"); |
|
|
|
|
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
fprintf(ficresprob," p%1d-%1d (SE)",i,j); |
|
fprintf(ficresprobcov," p%1d-%1d ",i,j); |
|
fprintf(ficresprobcor," p%1d-%1d ",i,j); |
|
} |
|
/* fprintf(ficresprob,"\n"); |
|
fprintf(ficresprobcov,"\n"); |
|
fprintf(ficresprobcor,"\n"); |
|
*/ |
|
xp=vector(1,npar); |
|
dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
|
doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
|
mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
|
varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage); |
|
first=1; |
|
fprintf(ficgp,"\n# Routine varprob"); |
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
|
fprintf(fichtm,"\n"); |
|
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
|
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
|
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
|
and drawn. It helps understanding how is the covariance between two incidences.\ |
|
They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n"); |
|
fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \ |
|
It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \ |
|
would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \ |
|
standard deviations wide on each axis. <br>\ |
|
Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\ |
|
and made the appropriate rotation to look at the uncorrelated principal directions.<br>\ |
|
To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n"); |
|
|
|
cov[1]=1; |
|
/* tj=cptcoveff; */ |
|
tj = (int) pow(2,cptcoveff); |
|
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
|
j1=0; |
|
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/ |
|
if (cptcovn>0) { |
|
fprintf(ficresprob, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprob, "**********\n#\n"); |
|
fprintf(ficresprobcov, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcov, "**********\n#\n"); |
|
|
|
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
|
|
|
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcor, "**********\n#"); |
|
if(invalidvarcomb[j1]){ |
|
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
|
fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); |
|
continue; |
|
} |
|
} |
|
gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath)); |
|
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
|
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
|
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
|
for (age=bage; age<=fage; age ++){ |
|
cov[2]=age; |
|
if(nagesqr==1) |
|
cov[3]= age*age; |
|
for (k=1; k<=cptcovn;k++) { |
|
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
|
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
|
* 1 1 1 1 1 |
|
* 2 2 1 1 1 |
|
* 3 1 2 1 1 |
|
*/ |
|
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
|
} |
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
|
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
for (k=1; k<=cptcovprod;k++) |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
|
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++) |
|
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
|
|
|
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
|
|
|
k=0; |
|
for(i=1; i<= (nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
gp[k]=pmmij[i][j]; |
|
} |
|
} |
|
|
|
for(i=1; i<=npar; i++) |
|
xp[i] = x[i] - (i==theta ?delti[theta]:(double)0); |
|
|
|
pmij(pmmij,cov,ncovmodel,xp,nlstate); |
|
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
gm[k]=pmmij[i][j]; |
|
} |
|
} |
|
|
|
for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) |
|
gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta]; |
|
} |
|
|
|
for(j=1; j<=(nlstate)*(nlstate+ndeath);j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
|
|
matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg); |
|
|
|
pmij(pmmij,cov,ncovmodel,x,nlstate); |
|
|
|
k=0; |
|
for(i=1; i<=(nlstate); i++){ |
|
for(j=1; j<=(nlstate+ndeath);j++){ |
|
k=k+1; |
|
mu[k][(int) age]=pmmij[i][j]; |
|
} |
|
} |
|
for(i=1;i<=(nlstate)*(nlstate+ndeath);i++) |
|
for(j=1;j<=(nlstate)*(nlstate+ndeath);j++) |
|
varpij[i][j][(int)age] = doldm[i][j]; |
|
|
|
/*printf("\n%d ",(int)age); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i])); |
|
}*/ |
|
|
|
fprintf(ficresprob,"\n%d ",(int)age); |
|
fprintf(ficresprobcov,"\n%d ",(int)age); |
|
fprintf(ficresprobcor,"\n%d ",(int)age); |
|
|
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++) |
|
fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age])); |
|
for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){ |
|
fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]); |
|
fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]); |
|
} |
|
i=0; |
|
for (k=1; k<=(nlstate);k++){ |
|
for (l=1; l<=(nlstate+ndeath);l++){ |
|
i++; |
|
fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l); |
|
fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l); |
|
for (j=1; j<=i;j++){ |
|
/* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */ |
|
fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]); |
|
fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age])); |
|
} |
|
} |
|
}/* end of loop for state */ |
|
} /* end of loop for age */ |
|
free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath)); |
|
free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar); |
|
|
|
/* Confidence intervalle of pij */ |
|
/* |
|
fprintf(ficgp,"\nunset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\""); |
|
fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65"); |
|
fprintf(fichtm,"\n<br>Probability with confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname); |
|
fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname); |
|
fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname); |
|
fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob); |
|
*/ |
|
|
|
/* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/ |
|
first1=1;first2=2; |
|
for (k2=1; k2<=(nlstate);k2++){ |
|
for (l2=1; l2<=(nlstate+ndeath);l2++){ |
|
if(l2==k2) continue; |
|
j=(k2-1)*(nlstate+ndeath)+l2; |
|
for (k1=1; k1<=(nlstate);k1++){ |
|
for (l1=1; l1<=(nlstate+ndeath);l1++){ |
|
if(l1==k1) continue; |
|
i=(k1-1)*(nlstate+ndeath)+l1; |
|
if(i<=j) continue; |
|
for (age=bage; age<=fage; age ++){ |
|
if ((int)age %5==0){ |
|
v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM; |
|
v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM; |
|
mu1=mu[i][(int) age]/stepm*YEARM ; |
|
mu2=mu[j][(int) age]/stepm*YEARM; |
|
c12=cv12/sqrt(v1*v2); |
|
/* Computing eigen value of matrix of covariance */ |
|
lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.; |
|
if ((lc2 <0) || (lc1 <0) ){ |
|
if(first2==1){ |
|
first1=0; |
|
printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor); |
|
} |
|
fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog); |
|
/* lc1=fabs(lc1); */ /* If we want to have them positive */ |
|
/* lc2=fabs(lc2); */ |
|
} |
|
|
|
/* Eigen vectors */ |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
|
/*v21=sqrt(1.-v11*v11); *//* error */ |
|
v21=(lc1-v1)/cv12*v11; |
|
v12=-v21; |
|
v22=v11; |
|
tnalp=v21/v11; |
|
if(first1==1){ |
|
first1=0; |
|
printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
} |
|
fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp); |
|
/*printf(fignu*/ |
|
/* mu1+ v11*lc1*cost + v12*lc2*sin(t) */ |
|
/* mu2+ v21*lc1*cost + v22*lc2*sin(t) */ |
|
if(first==1){ |
|
first=0; |
|
fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n"); |
|
fprintf(ficgp,"\nset parametric;unset label"); |
|
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset ter svg size 640, 480"); |
|
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
|
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
|
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
|
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
|
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12); |
|
fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
|
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
|
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
|
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
|
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
|
}else{ |
|
first=0; |
|
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
|
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
|
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
|
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
|
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
|
}/* if first */ |
|
} /* age mod 5 */ |
|
} /* end loop age */ |
|
fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2); |
|
first=1; |
|
} /*l12 */ |
|
} /* k12 */ |
|
} /*l1 */ |
|
}/* k1 */ |
|
} /* loop on combination of covariates j1 */ |
|
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
|
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
|
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
|
free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar); |
|
free_vector(xp,1,npar); |
|
fclose(ficresprob); |
|
fclose(ficresprobcov); |
|
fclose(ficresprobcor); |
|
fflush(ficgp); |
|
fflush(fichtmcov); |
|
} |
|
|
|
|
|
/******************* Printing html file ***********/ |
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
|
int lastpass, int stepm, int weightopt, char model[],\ |
|
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
|
int popforecast, int prevfcast, int backcast, int estepm , \ |
|
double jprev1, double mprev1,double anprev1, double dateprev1, \ |
|
double jprev2, double mprev2,double anprev2, double dateprev2){ |
|
int jj1, k1, i1, cpt; |
|
|
|
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
|
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
|
</ul>"); |
|
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
|
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
|
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
|
fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
|
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
|
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
|
fprintf(fichtm,"\ |
|
- Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
|
stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_")); |
|
fprintf(fichtm,"\ |
|
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
|
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
|
fprintf(fichtm,"\ |
|
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
|
fprintf(fichtm,"\ |
|
- Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
|
fprintf(fichtm,"\ |
|
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
|
<a href=\"%s\">%s</a> <br>\n", |
|
estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_")); |
|
if(prevfcast==1){ |
|
fprintf(fichtm,"\ |
|
- Prevalence projections by age and states: \ |
|
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
|
} |
|
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
|
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
jj1=0; |
|
for(k1=1; k1<=m;k1++){ |
|
|
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++){ |
|
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
|
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
|
} |
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
|
printf("\nCombination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
} |
|
/* aij, bij */ |
|
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
|
<img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
|
/* Pij */ |
|
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
|
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
|
/* Quasi-incidences */ |
|
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
|
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
|
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
|
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
|
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
|
/* Survival functions (period) in state j */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1); |
|
} |
|
/* State specific survival functions (period) */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
|
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
|
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
|
} |
|
/* Period (stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
|
} |
|
if(backcast==1){ |
|
/* Period (stable) back prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1); |
|
} |
|
} |
|
if(prevfcast==1){ |
|
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
|
<img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); |
|
} |
|
} |
|
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
|
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
|
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
|
} |
|
/* } /\* end i1 *\/ */ |
|
}/* End k1 */ |
|
fprintf(fichtm,"</ul>"); |
|
|
|
fprintf(fichtm,"\ |
|
\n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\ |
|
- Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \ |
|
- 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \ |
|
But because parameters are usually highly correlated (a higher incidence of disability \ |
|
and a higher incidence of recovery can give very close observed transition) it might \ |
|
be very useful to look not only at linear confidence intervals estimated from the \ |
|
variances but at the covariance matrix. And instead of looking at the estimated coefficients \ |
|
(parameters) of the logistic regression, it might be more meaningful to visualize the \ |
|
covariance matrix of the one-step probabilities. \ |
|
See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres); |
|
|
|
fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_")); |
|
fprintf(fichtm,"\ |
|
- Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_")); |
|
|
|
fprintf(fichtm,"\ |
|
- Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n", |
|
subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_")); |
|
fprintf(fichtm,"\ |
|
- Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \ |
|
<a href=\"%s\">%s</a> <br>\n</li>", |
|
estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_")); |
|
fprintf(fichtm,"\ |
|
- (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \ |
|
<a href=\"%s\">%s</a> <br>\n</li>", |
|
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
|
fprintf(fichtm,"\ |
|
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
|
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
|
fprintf(fichtm,"\ |
|
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
|
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
|
fprintf(fichtm,"\ |
|
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
|
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
|
/* - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */ |
|
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
|
/* <br>",fileres,fileres,fileres,fileres); */ |
|
/* else */ |
|
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
|
fflush(fichtm); |
|
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
|
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
jj1=0; |
|
for(k1=1; k1<=m;k1++){ |
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */ |
|
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
|
continue; |
|
} |
|
} |
|
for(cpt=1; cpt<=nlstate;cpt++) { |
|
fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ |
|
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\ |
|
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
|
} |
|
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
|
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
|
true period expectancies (those weighted with period prevalences are also\ |
|
drawn in addition to the population based expectancies computed using\ |
|
observed and cahotic prevalences: <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\ |
|
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
|
/* } /\* end i1 *\/ */ |
|
}/* End k1 */ |
|
fprintf(fichtm,"</ul>"); |
|
fflush(fichtm); |
|
} |
|
|
|
/******************* Gnuplot file **************/ |
|
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){ |
|
|
|
char dirfileres[132],optfileres[132]; |
|
char gplotcondition[132]; |
|
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
|
int lv=0, vlv=0, kl=0; |
|
int ng=0; |
|
int vpopbased; |
|
int ioffset; /* variable offset for columns */ |
|
|
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
|
/* printf("Problem with file %s",optionfilegnuplot); */ |
|
/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */ |
|
/* } */ |
|
|
|
/*#ifdef windows */ |
|
fprintf(ficgp,"cd \"%s\" \n",pathc); |
|
/*#endif */ |
|
m=pow(2,cptcoveff); |
|
|
|
/* Contribution to likelihood */ |
|
/* Plot the probability implied in the likelihood */ |
|
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
|
fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";"); |
|
/* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */ |
|
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
|
/* nice for mle=4 plot by number of matrix products. |
|
replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */ |
|
/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */ |
|
/* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */ |
|
fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk)); |
|
fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_")); |
|
fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk)); |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i); |
|
fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot \"%s\"",subdirf(fileresilk)); |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j); |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
|
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
|
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
|
fprintf(ficgp,"\nset out;unset log\n"); |
|
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
strcpy(dirfileres,optionfilefiname); |
|
strcpy(optfileres,"vpl"); |
|
/* 1eme*/ |
|
for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */ |
|
for (k1=1; k1<= m && selected(k1) ; k1 ++) { /* For each valid combination of covariate */ |
|
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
|
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files "); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
|
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
|
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \n\ |
|
set ylabel \"Probability\" \n \ |
|
set ter svg size 640, 480\n \ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
|
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
|
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
|
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
|
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */ |
|
if(cptcoveff ==0){ |
|
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt ); |
|
}else{ |
|
kl=0; |
|
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
kl++; |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(k==cptcoveff){ |
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
|
4+(cpt-1), cpt ); /* 4 or 6 ?*/ |
|
}else{ |
|
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
} |
|
} /* end covariate */ |
|
} /* end if no covariate */ |
|
} /* end if backcast */ |
|
fprintf(ficgp,"\nset out \n"); |
|
} /* k1 */ |
|
} /* cpt */ |
|
/*2 eme*/ |
|
for (k1=1; k1<= m ; k1 ++) { |
|
|
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
|
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
|
if(vpopbased==0) |
|
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
|
else |
|
fprintf(ficgp,"\nreplot "); |
|
for (i=1; i<= nlstate+1 ; i ++) { |
|
k=2*i; |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
|
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
|
} /* state */ |
|
} /* vpopbased */ |
|
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
|
} /* k1 */ |
|
|
|
|
|
/*3eme*/ |
|
for (k1=1; k1<= m ; k1 ++) { |
|
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
/* k=2+nlstate*(2*cpt-2); */ |
|
k=2+(nlstate+1)*(cpt-1); |
|
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
|
fprintf(ficgp,"set ter svg size 640, 480\n\ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
|
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
|
|
*/ |
|
for (i=1; i< nlstate ; i ++) { |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
|
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
|
} |
|
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
|
} |
|
} |
|
|
|
/* 4eme */ |
|
/* Survival functions (period) from state i in state j by initial state i */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
|
|
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
}else{ |
|
fprintf(ficgp,", '' "); |
|
} |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate+ndeath ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* 5eme */ |
|
/* Survival functions (period) from state i in state j by final state j */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
|
|
|
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
if(j==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
|
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
|
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
|
fprintf(ficgp,", '' "); |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
if(j < nlstate) |
|
fprintf(ficgp,"$%d +",k+l); |
|
else |
|
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
|
} |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
/* 6eme */ |
|
/* CV preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
|
|
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
|
|
|
|
/* 7eme */ |
|
if(backcast == 1){ |
|
/* CV back preval stable (period) for each covariate */ |
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
/* l=(nlstate+ndeath)*(i-1)+1; */ |
|
l=(nlstate+ndeath)*(cpt-1)+1; |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */ |
|
/* for (j=2; j<= nlstate ; j ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
|
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
|
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if backcast */ |
|
|
|
/* 8eme */ |
|
if(prevfcast==1){ |
|
/* Projection from cross-sectional to stable (period) for each covariate */ |
|
|
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
|
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; |
|
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
|
} |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\n \ |
|
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
if(cptcoveff ==0){ /* No covariate */ |
|
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
fprintf(ficgp," u %d:(", ioffset); |
|
if(i==nlstate+1) |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
}else{ /* more than 2 covariates */ |
|
if(cptcoveff ==1){ |
|
ioffset=4; /* Age is in 4 */ |
|
}else{ |
|
ioffset=6; /* Age is in 6 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
} |
|
fprintf(ficgp," u %d:(",ioffset); |
|
kl=0; |
|
strcpy(gplotcondition,"("); |
|
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
|
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
|
kl++; |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
|
kl++; |
|
if(k <cptcoveff && cptcoveff>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
}else{ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevfcast */ |
|
|
|
|
|
/* proba elementaires */ |
|
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
fprintf(ficgp,"# initial state %d\n",i); |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
fprintf(ficgp,"# current state %d\n",k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
fprintf(ficgp,"p%d=%f; ",jk,p[jk]); |
|
jk++; |
|
} |
|
fprintf(ficgp,"\n"); |
|
} |
|
} |
|
} |
|
fprintf(ficgp,"##############\n#\n"); |
|
|
|
/*goto avoid;*/ |
|
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
|
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
|
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
|
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
|
fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n"); |
|
fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n"); |
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n"); |
|
fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n"); |
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n"); |
|
fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n"); |
|
fprintf(ficgp,"# (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n"); |
|
fprintf(ficgp,"# +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n"); |
|
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
|
fprintf(ficgp,"#\n"); |
|
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
|
fprintf(ficgp,"# ng=%d\n",ng); |
|
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
|
for(jk=1; jk <=m; jk++) { |
|
fprintf(ficgp,"# jk=%d\n",jk); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
|
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
|
if (ng==1){ |
|
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
|
fprintf(ficgp,"\nunset log y"); |
|
}else if (ng==2){ |
|
fprintf(ficgp,"\nset ylabel \"Probability\"\n"); |
|
fprintf(ficgp,"\nset log y"); |
|
}else if (ng==3){ |
|
fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n"); |
|
fprintf(ficgp,"\nset log y"); |
|
}else |
|
fprintf(ficgp,"\nunset title "); |
|
fprintf(ficgp,"\nplot [%.f:%.f] ",ageminpar,agemaxpar); |
|
i=1; |
|
for(k2=1; k2<=nlstate; k2++) { |
|
k3=i; |
|
for(k=1; k<=(nlstate+ndeath); k++) { |
|
if (k != k2){ |
|
switch( ng) { |
|
case 1: |
|
if(nagesqr==0) |
|
fprintf(ficgp," p%d+p%d*x",i,i+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
|
break; |
|
case 2: /* ng=2 */ |
|
if(nagesqr==0) |
|
fprintf(ficgp," exp(p%d+p%d*x",i,i+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr); |
|
break; |
|
case 3: |
|
if(nagesqr==0) |
|
fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr); |
|
break; |
|
} |
|
ij=1;/* To be checked else nbcode[0][0] wrong */ |
|
for(j=3; j <=ncovmodel-nagesqr; j++) { |
|
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
|
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
|
ij++; |
|
} |
|
} |
|
else |
|
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); /* Valgrind bug nbcode */ |
|
} |
|
}else{ |
|
i=i-ncovmodel; |
|
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
|
fprintf(ficgp," (1."); |
|
} |
|
|
|
if(ng != 1){ |
|
fprintf(ficgp,")/(1"); |
|
|
|
for(k1=1; k1 <=nlstate; k1++){ |
|
if(nagesqr==0) |
|
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
|
else /* nagesqr =1 */ |
|
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
|
|
|
ij=1; |
|
for(j=3; j <=ncovmodel-nagesqr; j++){ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
|
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
|
ij++; |
|
} |
|
} |
|
else |
|
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */ |
|
} |
|
fprintf(ficgp,")"); |
|
} |
|
fprintf(ficgp,")"); |
|
if(ng ==2) |
|
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
|
else /* ng= 3 */ |
|
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
|
}else{ /* end ng <> 1 */ |
|
if( k !=k2) /* logit p11 is hard to draw */ |
|
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
|
} |
|
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
|
fprintf(ficgp,","); |
|
if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath)) |
|
fprintf(ficgp,","); |
|
i=i+ncovmodel; |
|
} /* end k */ |
|
} /* end k2 */ |
|
fprintf(ficgp,"\n set out\n"); |
|
} /* end jk */ |
|
} /* end ng */ |
|
/* avoid: */ |
|
fflush(ficgp); |
|
} /* end gnuplot */ |
|
|
|
|
|
/*************** Moving average **************/ |
|
/* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */ |
|
int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){ |
|
|
|
int i, cpt, cptcod; |
|
int modcovmax =1; |
|
int mobilavrange, mob; |
|
int iage=0; |
|
|
|
double sum=0.; |
|
double age; |
|
double *sumnewp, *sumnewm; |
|
double *agemingood, *agemaxgood; /* Currently identical for all covariates */ |
|
|
|
|
|
/* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */ |
|
/* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */ |
|
|
|
sumnewp = vector(1,ncovcombmax); |
|
sumnewm = vector(1,ncovcombmax); |
|
agemingood = vector(1,ncovcombmax); |
|
agemaxgood = vector(1,ncovcombmax); |
|
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
sumnewm[cptcod]=0.; |
|
sumnewp[cptcod]=0.; |
|
agemingood[cptcod]=0; |
|
agemaxgood[cptcod]=0; |
|
} |
|
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
|
|
|
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
|
if(mobilav==1) mobilavrange=5; /* default */ |
|
else mobilavrange=mobilav; |
|
for (age=bage; age<=fage; age++) |
|
for (i=1; i<=nlstate;i++) |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
/* We keep the original values on the extreme ages bage, fage and for |
|
fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2 |
|
we use a 5 terms etc. until the borders are no more concerned. |
|
*/ |
|
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
|
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
|
for (i=1; i<=nlstate;i++){ |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
|
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
|
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
|
} |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
|
} |
|
} |
|
}/* end age */ |
|
}/* end mob */ |
|
}else |
|
return -1; |
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
|
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
|
if(invalidvarcomb[cptcod]){ |
|
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
|
continue; |
|
} |
|
|
|
agemingood[cptcod]=fage-(mob-1)/2; |
|
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */ |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* age */ |
|
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
/* From youngest, finding the oldest wrong */ |
|
agemaxgood[cptcod]=bage+(mob-1)/2; |
|
for (age=bage+(mob-1)/2; age<=fage; age++){ |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* age */ |
|
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
|
|
for (age=bage; age<=fage; age++){ |
|
printf("%d %d ", cptcod, (int)age); |
|
sumnewp[cptcod]=0.; |
|
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewp[cptcod]+=probs[(int)age][i][cptcod]; |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
/* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
/* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */ |
|
} |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* brutal averaging */ |
|
for (i=1; i<=nlstate;i++){ |
|
for (age=1; age<=bage; age++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
for (age=fage; age<=AGESUP; age++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
|
} |
|
} /* end i status */ |
|
for (i=nlstate+1; i<=nlstate+ndeath;i++){ |
|
for (age=1; age<=AGESUP; age++){ |
|
/*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/ |
|
mobaverage[(int)age][i][cptcod]=0.; |
|
} |
|
} |
|
}/* end cptcod */ |
|
free_vector(sumnewm,1, ncovcombmax); |
|
free_vector(sumnewp,1, ncovcombmax); |
|
free_vector(agemaxgood,1, ncovcombmax); |
|
free_vector(agemingood,1, ncovcombmax); |
|
return 0; |
|
}/* End movingaverage */ |
|
|
|
|
|
/************** Forecasting ******************/ |
|
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
|
/* proj1, year, month, day of starting projection |
|
agemin, agemax range of age |
|
dateprev1 dateprev2 range of dates during which prevalence is computed |
|
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; |
|
double agec; /* generic age */ |
|
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
|
double *popeffectif,*popcount; |
|
double ***p3mat; |
|
/* double ***mobaverage; */ |
|
char fileresf[FILENAMELENGTH]; |
|
|
|
agelim=AGESUP; |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
|
/* firstpass, lastpass, stepm, weightopt, model); */ |
|
|
|
strcpy(fileresf,"F_"); |
|
strcat(fileresf,fileresu); |
|
if((ficresf=fopen(fileresf,"w"))==NULL) { |
|
printf("Problem with forecast resultfile: %s\n", fileresf); |
|
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
|
} |
|
printf("Computing forecasting: result on file '%s', please wait... \n", fileresf); |
|
fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else hstepm=estepm; |
|
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
|
fractional in yp1 */ |
|
anprojmean=yp; |
|
yp2=modf((yp1*12),&yp); |
|
mprojmean=yp; |
|
yp1=modf((yp2*30.5),&yp); |
|
jprojmean=yp; |
|
if(jprojmean==0) jprojmean=1; |
|
if(mprojmean==0) jprojmean=1; |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
|
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
|
for(k=1;k<=i1;k++){ |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) projection ignored because no cases \n",k); |
|
continue; |
|
} |
|
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresf," yearproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresf," p%d%d",i,j); |
|
fprintf(ficresf," wp.%d",j); |
|
} |
|
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
|
fprintf(ficresf,"\n"); |
|
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
|
for (agec=fage; agec>=(ageminpar-1); agec--){ |
|
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==yearp) { |
|
fprintf(ficresf,"\n"); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
|
} |
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
ppij=0.; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav==1) |
|
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k]; |
|
else { |
|
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
|
} |
|
if (h*hstepm/YEARM*stepm== yearp) { |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} |
|
} /* end i */ |
|
if (h*hstepm/YEARM*stepm==yearp) { |
|
fprintf(ficresf," %.3f", ppij); |
|
} |
|
}/* end j */ |
|
} /* end h */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
|
fclose(ficresf); |
|
printf("End of Computing forecasting \n"); |
|
fprintf(ficlog,"End of Computing forecasting\n"); |
|
|
|
} |
|
|
|
/* /\************** Back Forecasting ******************\/ */ |
|
/* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
|
/* /\* back1, year, month, day of starting backection */ |
|
/* agemin, agemax range of age */ |
|
/* dateprev1 dateprev2 range of dates during which prevalence is computed */ |
|
/* anback2 year of en of backection (same day and month as back1). */ |
|
/* *\/ */ |
|
/* int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */ |
|
/* double agec; /\* generic age *\/ */ |
|
/* double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */ |
|
/* double *popeffectif,*popcount; */ |
|
/* double ***p3mat; */ |
|
/* /\* double ***mobaverage; *\/ */ |
|
/* char fileresfb[FILENAMELENGTH]; */ |
|
|
|
/* agelim=AGESUP; */ |
|
/* /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */ |
|
/* in each health status at the date of interview (if between dateprev1 and dateprev2). */ |
|
/* We still use firstpass and lastpass as another selection. */ |
|
/* *\/ */ |
|
/* /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */ |
|
/* /\* firstpass, lastpass, stepm, weightopt, model); *\/ */ |
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
/* strcpy(fileresfb,"FB_"); */ |
|
/* strcat(fileresfb,fileresu); */ |
|
/* if((ficresfb=fopen(fileresfb,"w"))==NULL) { */ |
|
/* printf("Problem with back forecast resultfile: %s\n", fileresfb); */ |
|
/* fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */ |
|
/* } */ |
|
/* printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
|
/* fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
|
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
|
/* /\* if (mobilav!=0) { *\/ */ |
|
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
|
/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* } *\/ */ |
|
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
|
/* if (stepm<=12) stepsize=1; */ |
|
/* if(estepm < stepm){ */ |
|
/* printf ("Problem %d lower than %d\n",estepm, stepm); */ |
|
/* } */ |
|
/* else hstepm=estepm; */ |
|
|
|
/* hstepm=hstepm/stepm; */ |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* anprojmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mprojmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jprojmean=yp; */ |
|
/* if(jprojmean==0) jprojmean=1; */ |
|
/* if(mprojmean==0) jprojmean=1; */ |
|
|
|
/* i1=cptcoveff; */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
|
/* fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); */ |
|
|
|
/* fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */ |
|
|
|
/* /\* if (h==(int)(YEARM*yearp)){ *\/ */ |
|
/* for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */ |
|
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
|
/* k=k+1; */ |
|
/* fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */ |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* } */ |
|
/* fprintf(ficresfb," yearbproj age"); */ |
|
/* for(j=1; j<=nlstate+ndeath;j++){ */ |
|
/* for(i=1; i<=nlstate;i++) */ |
|
/* fprintf(ficresfb," p%d%d",i,j); */ |
|
/* fprintf(ficresfb," p.%d",j); */ |
|
/* } */ |
|
/* for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { */ |
|
/* /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { *\/ */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
|
/* nhstepm=(int) rint((agelim-agec)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h*hstepm/YEARM*stepm ==yearp) { */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* ppij=0.; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* if (mobilav==1) */ |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */ |
|
/* } */ |
|
/* if (h*hstepm/YEARM*stepm== yearp) { */ |
|
/* fprintf(ficresfb," %.3f", p3mat[i][j][h]); */ |
|
/* } */ |
|
/* } /\* end i *\/ */ |
|
/* if (h*hstepm/YEARM*stepm==yearp) { */ |
|
/* fprintf(ficresfb," %.3f", ppij); */ |
|
/* } */ |
|
/* }/\* end j *\/ */ |
|
/* } /\* end h *\/ */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } /\* end agec *\/ */ |
|
/* } /\* end yearp *\/ */ |
|
/* } /\* end cptcod *\/ */ |
|
/* } /\* end cptcov *\/ */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* fclose(ficresfb); */ |
|
/* printf("End of Computing Back forecasting \n"); */ |
|
/* fprintf(ficlog,"End of Computing Back forecasting\n"); */ |
|
|
|
/* } */ |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
|
|
|
/* int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */ |
|
/* int *popage; */ |
|
/* double calagedatem, agelim, kk1, kk2; */ |
|
/* double *popeffectif,*popcount; */ |
|
/* double ***p3mat,***tabpop,***tabpopprev; */ |
|
/* /\* double ***mobaverage; *\/ */ |
|
/* char filerespop[FILENAMELENGTH]; */ |
|
|
|
/* tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* agelim=AGESUP; */ |
|
/* calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */ |
|
|
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
|
|
/* strcpy(filerespop,"POP_"); */ |
|
/* strcat(filerespop,fileresu); */ |
|
/* if((ficrespop=fopen(filerespop,"w"))==NULL) { */ |
|
/* printf("Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* } */ |
|
/* printf("Computing forecasting: result on file '%s' \n", filerespop); */ |
|
/* fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */ |
|
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
|
/* /\* if (mobilav!=0) { *\/ */ |
|
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
|
/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* } *\/ */ |
|
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
|
/* if (stepm<=12) stepsize=1; */ |
|
|
|
/* agelim=AGESUP; */ |
|
|
|
/* hstepm=1; */ |
|
/* hstepm=hstepm/stepm; */ |
|
|
|
/* if (popforecast==1) { */ |
|
/* if((ficpop=fopen(popfile,"r"))==NULL) { */ |
|
/* printf("Problem with population file : %s\n",popfile);exit(0); */ |
|
/* fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */ |
|
/* } */ |
|
/* popage=ivector(0,AGESUP); */ |
|
/* popeffectif=vector(0,AGESUP); */ |
|
/* popcount=vector(0,AGESUP); */ |
|
|
|
/* i=1; */ |
|
/* while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */ |
|
|
|
/* imx=i; */ |
|
/* for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */ |
|
/* } */ |
|
|
|
/* for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */ |
|
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
|
/* k=k+1; */ |
|
/* fprintf(ficrespop,"\n#******"); */ |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* } */ |
|
/* fprintf(ficrespop,"******\n"); */ |
|
/* fprintf(ficrespop,"# Age"); */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */ |
|
/* if (popforecast==1) fprintf(ficrespop," [Population]"); */ |
|
|
|
/* for (cpt=0; cpt<=0;cpt++) { */ |
|
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
|
|
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
|
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
|
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
|
/* fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* kk1=0.;kk2=0; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* if (mobilav==1) */ |
|
/* kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */ |
|
/* else { */ |
|
/* kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */ |
|
/* } */ |
|
/* } */ |
|
/* if (h==(int)(calagedatem+12*cpt)){ */ |
|
/* tabpop[(int)(agedeb)][j][cptcod]=kk1; */ |
|
/* /\*fprintf(ficrespop," %.3f", kk1); */ |
|
/* if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */ |
|
/* } */ |
|
/* } */ |
|
/* for(i=1; i<=nlstate;i++){ */ |
|
/* kk1=0.; */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; */ |
|
/* } */ |
|
/* tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */ |
|
/* } */ |
|
|
|
/* if (h==(int)(calagedatem+12*cpt)) */ |
|
/* for(j=1; j<=nlstate;j++) */ |
|
/* fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */ |
|
/* } */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* /\******\/ */ |
|
|
|
/* for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { */ |
|
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
|
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
|
/* fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* kk1=0.;kk2=0; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; */ |
|
/* } */ |
|
/* if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); */ |
|
/* } */ |
|
/* } */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* if (popforecast==1) { */ |
|
/* free_ivector(popage,0,AGESUP); */ |
|
/* free_vector(popeffectif,0,AGESUP); */ |
|
/* free_vector(popcount,0,AGESUP); */ |
|
/* } */ |
|
/* free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* fclose(ficrespop); */ |
|
/* } /\* End of popforecast *\/ */ |
|
|
|
int fileappend(FILE *fichier, char *optionfich) |
|
{ |
|
if((fichier=fopen(optionfich,"a"))==NULL) { |
|
printf("Problem with file: %s\n", optionfich); |
|
fprintf(ficlog,"Problem with file: %s\n", optionfich); |
|
return (0); |
|
} |
|
fflush(fichier); |
|
return (1); |
|
} |
|
|
|
|
|
/**************** function prwizard **********************/ |
|
void prwizard(int ncovmodel, int nlstate, int ndeath, char model[], FILE *ficparo) |
|
{ |
|
|
|
/* Wizard to print covariance matrix template */ |
|
|
|
char ca[32], cb[32]; |
|
int i,j, k, li, lj, lk, ll, jj, npar, itimes; |
|
int numlinepar; |
|
|
|
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
for(i=1; i <=nlstate; i++){ |
|
jj=0; |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
jj++; |
|
/*ca[0]= k+'a'-1;ca[1]='\0';*/ |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %lf",param[i][j][k]); */ |
|
/* fprintf(ficparo," %lf",param[i][j][k]); */ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
printf("# Scales (for hessian or gradient estimation)\n"); |
|
fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n"); |
|
npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ |
|
for(i=1; i <=nlstate; i++){ |
|
jj=0; |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
jj++; |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
printf("%1d%1d",i,j); |
|
fflush(stdout); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %le",delti3[i][j][k]); */ |
|
/* fprintf(ficparo," %le",delti3[i][j][k]); */ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
numlinepar++; |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
printf("# Covariance matrix\n"); |
|
/* # 121 Var(a12)\n\ */ |
|
/* # 122 Cov(b12,a12) Var(b12)\n\ */ |
|
/* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ |
|
/* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ |
|
/* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ |
|
/* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ |
|
/* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ |
|
/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ |
|
fflush(stdout); |
|
fprintf(ficparo,"# Covariance matrix\n"); |
|
/* # 121 Var(a12)\n\ */ |
|
/* # 122 Cov(b12,a12) Var(b12)\n\ */ |
|
/* # ...\n\ */ |
|
/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ |
|
|
|
for(itimes=1;itimes<=2;itimes++){ |
|
jj=0; |
|
for(i=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
for(k=1; k<=ncovmodel;k++){ |
|
jj++; |
|
ca[0]= k+'a'-1;ca[1]='\0'; |
|
if(itimes==1){ |
|
printf("#%1d%1d%d",i,j,k); |
|
fprintf(ficparo,"#%1d%1d%d",i,j,k); |
|
}else{ |
|
printf("%1d%1d%d",i,j,k); |
|
fprintf(ficparo,"%1d%1d%d",i,j,k); |
|
/* printf(" %.5le",matcov[i][j]); */ |
|
} |
|
ll=0; |
|
for(li=1;li <=nlstate; li++){ |
|
for(lj=1;lj <=nlstate+ndeath; lj++){ |
|
if(lj==li) continue; |
|
for(lk=1;lk<=ncovmodel;lk++){ |
|
ll++; |
|
if(ll<=jj){ |
|
cb[0]= lk +'a'-1;cb[1]='\0'; |
|
if(ll<jj){ |
|
if(itimes==1){ |
|
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
}else{ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
}else{ |
|
if(itimes==1){ |
|
printf(" Var(%s%1d%1d)",ca,i,j); |
|
fprintf(ficparo," Var(%s%1d%1d)",ca,i,j); |
|
}else{ |
|
printf(" 0."); |
|
fprintf(ficparo," 0."); |
|
} |
|
} |
|
} |
|
} /* end lk */ |
|
} /* end lj */ |
|
} /* end li */ |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
numlinepar++; |
|
} /* end k*/ |
|
} /*end j */ |
|
} /* end i */ |
|
} /* end itimes */ |
|
|
|
} /* end of prwizard */ |
|
/******************* Gompertz Likelihood ******************************/ |
|
double gompertz(double x[]) |
|
{ |
|
double A,B,L=0.0,sump=0.,num=0.; |
|
int i,n=0; /* n is the size of the sample */ |
|
|
|
for (i=1;i<=imx ; i++) { |
|
sump=sump+weight[i]; |
|
/* sump=sump+1;*/ |
|
num=num+1; |
|
} |
|
|
|
|
|
/* for (i=0; i<=imx; i++) |
|
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
|
|
for (i=1;i<=imx ; i++) |
|
{ |
|
if (cens[i] == 1 && wav[i]>1) |
|
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
|
|
|
if (cens[i] == 0 && wav[i]>1) |
|
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
|
+log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); |
|
|
|
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
|
if (wav[i] > 1 ) { /* ??? */ |
|
L=L+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
|
} |
|
} |
|
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
|
|
return -2*L*num/sump; |
|
} |
|
|
|
#ifdef GSL |
|
/******************* Gompertz_f Likelihood ******************************/ |
|
double gompertz_f(const gsl_vector *v, void *params) |
|
{ |
|
double A,B,LL=0.0,sump=0.,num=0.; |
|
double *x= (double *) v->data; |
|
int i,n=0; /* n is the size of the sample */ |
|
|
|
for (i=0;i<=imx-1 ; i++) { |
|
sump=sump+weight[i]; |
|
/* sump=sump+1;*/ |
|
num=num+1; |
|
} |
|
|
|
|
|
/* for (i=0; i<=imx; i++) |
|
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]); |
|
for (i=1;i<=imx ; i++) |
|
{ |
|
if (cens[i] == 1 && wav[i]>1) |
|
A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp))); |
|
|
|
if (cens[i] == 0 && wav[i]>1) |
|
A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp))) |
|
+log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM); |
|
|
|
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
|
if (wav[i] > 1 ) { /* ??? */ |
|
LL=LL+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
|
} |
|
} |
|
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump); |
|
|
|
return -2*LL*num/sump; |
|
} |
|
#endif |
|
|
|
/******************* Printing html file ***********/ |
|
void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \ |
|
int lastpass, int stepm, int weightopt, char model[],\ |
|
int imx, double p[],double **matcov,double agemortsup){ |
|
int i,k; |
|
|
|
fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>"); |
|
fprintf(fichtm," mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp); |
|
for (i=1;i<=2;i++) |
|
fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
|
fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">"); |
|
fprintf(fichtm,"</ul>"); |
|
|
|
fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>"); |
|
|
|
fprintf(fichtm,"\nAge l<inf>x</inf> q<inf>x</inf> d(x,x+1) L<inf>x</inf> T<inf>x</inf> e<infx</inf><br>"); |
|
|
|
for (k=agegomp;k<(agemortsup-2);k++) |
|
fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]); |
|
|
|
|
|
fflush(fichtm); |
|
} |
|
|
|
/******************* Gnuplot file **************/ |
|
void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){ |
|
|
|
char dirfileres[132],optfileres[132]; |
|
|
|
int ng; |
|
|
|
|
|
/*#ifdef windows */ |
|
fprintf(ficgp,"cd \"%s\" \n",pathc); |
|
/*#endif */ |
|
|
|
|
|
strcpy(dirfileres,optionfilefiname); |
|
strcpy(optfileres,"vpl"); |
|
fprintf(ficgp,"set out \"graphmort.svg\"\n "); |
|
fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); |
|
fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); |
|
/* fprintf(ficgp, "set size 0.65,0.65\n"); */ |
|
fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp); |
|
|
|
} |
|
|
|
int readdata(char datafile[], int firstobs, int lastobs, int *imax) |
|
{ |
|
|
|
/*-------- data file ----------*/ |
|
FILE *fic; |
|
char dummy[]=" "; |
|
int i=0, j=0, n=0, iv=0; |
|
int lstra; |
|
int linei, month, year,iout; |
|
char line[MAXLINE], linetmp[MAXLINE]; |
|
char stra[MAXLINE], strb[MAXLINE]; |
|
char *stratrunc; |
|
|
|
|
|
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
|
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
|
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
|
} |
|
|
|
i=1; |
|
linei=0; |
|
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
|
linei=linei+1; |
|
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
|
if(line[j] == '\t') |
|
line[j] = ' '; |
|
} |
|
for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){ |
|
; |
|
}; |
|
line[j+1]=0; /* Trims blanks at end of line */ |
|
if(line[0]=='#'){ |
|
fprintf(ficlog,"Comment line\n%s\n",line); |
|
printf("Comment line\n%s\n",line); |
|
continue; |
|
} |
|
trimbb(linetmp,line); /* Trims multiple blanks in line */ |
|
strcpy(line, linetmp); |
|
|
|
/* Loops on waves */ |
|
for (j=maxwav;j>=1;j--){ |
|
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
|
cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ |
|
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
|
return 1; |
|
} |
|
}else{ |
|
errno=0; |
|
/* what_kind_of_number(strb); */ |
|
dval=strtod(strb,&endptr); |
|
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
|
/* if(strb != endptr && *endptr == '\0') */ |
|
/* dval=dlval; */ |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
cotqvar[j][iv][i]=dval; |
|
cotvar[j][ntv+iv][i]=dval; |
|
} |
|
strcpy(line,stra); |
|
}/* end loop ntqv */ |
|
|
|
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
if(lval <-1 || lval >1){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
|
return 1; |
|
} |
|
cotvar[j][iv][i]=(double)(lval); |
|
strcpy(line,stra); |
|
}/* end loop ntv */ |
|
|
|
/* Statuses at wave */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
|
|
s[j][i]=lval; |
|
|
|
/* Date of Interview */ |
|
strcpy(line,stra); |
|
cutv(stra, strb,line,' '); |
|
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
|
} |
|
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
|
month=99; |
|
year=9999; |
|
}else{ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); |
|
return 1; |
|
} |
|
anint[j][i]= (double) year; |
|
mint[j][i]= (double)month; |
|
strcpy(line,stra); |
|
} /* End loop on waves */ |
|
|
|
/* Date of death */ |
|
cutv(stra, strb,line,' '); |
|
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
|
} |
|
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
|
month=99; |
|
year=9999; |
|
}else{ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
|
return 1; |
|
} |
|
andc[i]=(double) year; |
|
moisdc[i]=(double) month; |
|
strcpy(line,stra); |
|
|
|
/* Date of birth */ |
|
cutv(stra, strb,line,' '); |
|
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
|
} |
|
else if( (iout=sscanf(strb,"%s.", dummy)) != 0){ |
|
month=99; |
|
year=9999; |
|
}else{ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
|
return 1; |
|
} |
|
if (year==9999) { |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
|
return 1; |
|
|
|
} |
|
annais[i]=(double)(year); |
|
moisnais[i]=(double)(month); |
|
strcpy(line,stra); |
|
|
|
/* Sample weight */ |
|
cutv(stra, strb,line,' '); |
|
errno=0; |
|
dval=strtod(strb,&endptr); |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei); |
|
fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei); |
|
fflush(ficlog); |
|
return 1; |
|
} |
|
weight[i]=dval; |
|
strcpy(line,stra); |
|
|
|
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
|
cutv(stra, strb, line, ' '); |
|
if(strb[0]=='.') { /* Missing value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
/* what_kind_of_number(strb); */ |
|
dval=strtod(strb,&endptr); |
|
/* if(strb != endptr && *endptr == '\0') */ |
|
/* dval=dlval; */ |
|
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
coqvar[iv][i]=dval; |
|
covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ |
|
} |
|
strcpy(line,stra); |
|
}/* end loop nqv */ |
|
|
|
/* Covariate values */ |
|
for (j=ncovcol;j>=1;j--){ |
|
cutv(stra, strb,line,' '); |
|
if(strb[0]=='.') { /* Missing covariate value */ |
|
lval=-1; |
|
}else{ |
|
errno=0; |
|
lval=strtol(strb,&endptr,10); |
|
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); |
|
return 1; |
|
} |
|
} |
|
if(lval <-1 || lval >1){ |
|
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j); |
|
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
|
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
|
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
|
For example, for multinomial values like 1, 2 and 3,\n \ |
|
build V1=0 V2=0 for the reference value (1),\n \ |
|
V1=1 V2=0 for (2) \n \ |
|
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
|
output of IMaCh is often meaningless.\n \ |
|
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
|
return 1; |
|
} |
|
covar[j][i]=(double)(lval); |
|
strcpy(line,stra); |
|
} |
|
lstra=strlen(stra); |
|
|
|
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
|
stratrunc = &(stra[lstra-9]); |
|
num[i]=atol(stratrunc); |
|
} |
|
else |
|
num[i]=atol(stra); |
|
/*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){ |
|
printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/ |
|
|
|
i=i+1; |
|
} /* End loop reading data */ |
|
|
|
*imax=i-1; /* Number of individuals */ |
|
fclose(fic); |
|
|
|
return (0); |
|
/* endread: */ |
|
printf("Exiting readdata: "); |
|
fclose(fic); |
|
return (1); |
|
} |
|
|
|
void removespace(char **stri){/*, char stro[]) {*/ |
|
char *p1 = *stri, *p2 = *stri; |
|
do |
|
while (*p2 == ' ') |
|
p2++; |
|
while (*p1++ == *p2++); |
|
*stri=p1; |
|
} |
|
|
|
int decoderesult ( char resultline[]) |
|
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
|
{ |
|
int j=0, k=0; |
|
char resultsav[MAXLINE]; |
|
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
|
|
|
removespace(&resultline); |
|
printf("decoderesult:%s\n",resultline); |
|
|
|
if (strstr(resultline,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' result: %s ",resultline); |
|
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultsav, resultline); |
|
if (strlen(resultsav) >1){ |
|
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */ |
|
} |
|
|
|
for(k=1; k<=j;k++){ /* Loop on total covariates of the model */ |
|
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' |
|
resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */ |
|
cutl(strc,strd,strb,'='); /* strb:V4=1 strc=1 strd=V4 */ |
|
Tvalsel[k]=atof(strc); /* 1 */ |
|
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
|
Tvarsel[k]=atoi(strc); |
|
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
|
/* cptcovsel++; */ |
|
if (nbocc(stra,'=') >0) |
|
strcpy(resultsav,stra); /* and analyzes it */ |
|
} |
|
return (0); |
|
} |
|
int selected( int kvar){ /* Selected combination of covariates */ |
|
if(Tvarsel[kvar]) |
|
return (0); |
|
else |
|
return(1); |
|
} |
|
int decodemodel( char model[], int lastobs) |
|
/**< This routine decodes the model and returns: |
|
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
|
* - nagesqr = 1 if age*age in the model, otherwise 0. |
|
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
|
* - cptcovs number of simple covariates |
|
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
|
* which is a new column after the 9 (ncovcol) variables. |
|
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
|
{ |
|
int i, j, k, ks; |
|
int j1, k1, k2, k3, k4; |
|
char modelsav[80]; |
|
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
|
char *strpt; |
|
|
|
/*removespace(model);*/ |
|
if (strlen(model) >1){ /* If there is at least 1 covariate */ |
|
j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0; |
|
if (strstr(model,"AGE") !=0){ |
|
printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model); |
|
fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog); |
|
return 1; |
|
} |
|
if (strstr(model,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' model=%s ",model); |
|
fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); |
|
return 1; |
|
} |
|
strcpy(modelsav,model); |
|
if ((strpt=strstr(model,"age*age")) !=0){ |
|
printf(" strpt=%s, model=%s\n",strpt, model); |
|
if(strpt != model){ |
|
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
|
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
|
corresponding column of parameters.\n",model); |
|
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
|
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
|
corresponding column of parameters.\n",model); fflush(ficlog); |
|
return 1; |
|
} |
|
nagesqr=1; |
|
if (strstr(model,"+age*age") !=0) |
|
substrchaine(modelsav, model, "+age*age"); |
|
else if (strstr(model,"age*age+") !=0) |
|
substrchaine(modelsav, model, "age*age+"); |
|
else |
|
substrchaine(modelsav, model, "age*age"); |
|
}else |
|
nagesqr=0; |
|
if (strlen(modelsav) >1){ |
|
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
|
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
|
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */ |
|
cptcovt= j+1; /* Number of total covariates in the model, not including |
|
* cst, age and age*age |
|
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
|
/* including age products which are counted in cptcovage. |
|
* but the covariates which are products must be treated |
|
* separately: ncovn=4- 2=2 (V1+V3). */ |
|
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
|
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
|
|
|
|
/* Design |
|
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
|
* < ncovcol=8 > |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
|
* k= 1 2 3 4 5 6 7 8 |
|
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
|
* covar[k,i], value of kth covariate if not including age for individual i: |
|
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
|
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
|
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
|
* Tage[++cptcovage]=k |
|
* if products, new covar are created after ncovcol with k1 |
|
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
|
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
|
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
|
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
|
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
|
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
|
* < ncovcol=8 > |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
|
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
|
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
|
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
|
* p Tprod[1]@2={ 6, 5} |
|
*p Tvard[1][1]@4= {7, 8, 5, 6} |
|
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
|
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
|
*How to reorganize? |
|
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
|
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
|
* {2, 1, 4, 8, 5, 6, 3, 7} |
|
* Struct [] |
|
*/ |
|
|
|
/* This loop fills the array Tvar from the string 'model'.*/ |
|
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
|
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
|
/* k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */ |
|
/* k=3 V4 Tvar[k=3]= 4 (from V4) */ |
|
/* k=2 V1 Tvar[k=2]= 1 (from V1) */ |
|
/* k=1 Tvar[1]=2 (from V2) */ |
|
/* k=5 Tvar[5] */ |
|
/* for (k=1; k<=cptcovn;k++) { */ |
|
/* cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
|
/* |
|
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
|
for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/ |
|
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
|
} |
|
cptcovage=0; |
|
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
|
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
|
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
|
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
|
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
|
/*scanf("%d",i);*/ |
|
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
|
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
|
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
|
/* covar is not filled and then is empty */ |
|
cptcovprod--; |
|
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
|
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
|
Typevar[k]=1; /* 1 for age product */ |
|
cptcovage++; /* Sums the number of covariates which include age as a product */ |
|
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
|
/*printf("stre=%s ", stre);*/ |
|
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
|
cptcovprod--; |
|
cutl(stre,strb,strc,'V'); |
|
Tvar[k]=atoi(stre); |
|
Typevar[k]=1; /* 1 for age product */ |
|
cptcovage++; |
|
Tage[cptcovage]=k; |
|
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
|
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
|
cptcovn++; |
|
cptcovprodnoage++;k1++; |
|
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
|
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but |
|
because this model-covariate is a construction we invent a new column |
|
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
|
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
|
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
|
Typevar[k]=2; /* 2 for double fixed dummy covariates */ |
|
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
|
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
|
Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */ |
|
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
|
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
|
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
|
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
|
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
|
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
|
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
|
for (i=1; i<=lastobs;i++){ |
|
/* Computes the new covariate which is a product of |
|
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
|
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
|
} |
|
} /* End age is not in the model */ |
|
} /* End if model includes a product */ |
|
else { /* no more sum */ |
|
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
|
/* scanf("%d",i);*/ |
|
cutl(strd,strc,strb,'V'); |
|
ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */ |
|
cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */ |
|
Tvar[k]=atoi(strd); |
|
Typevar[k]=0; /* 0 for simple covariates */ |
|
} |
|
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
|
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
|
scanf("%d",i);*/ |
|
} /* end of loop + on total covariates */ |
|
} /* end if strlen(modelsave == 0) age*age might exist */ |
|
} /* end if strlen(model == 0) */ |
|
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
|
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
|
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
|
printf("cptcovprod=%d ", cptcovprod); |
|
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
|
scanf("%d ",i);*/ |
|
|
|
|
|
/* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind |
|
of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */ |
|
/* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1 = 5 possible variables data: 2 fixed 3, varying |
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
|
k = 1 2 3 4 5 6 7 8 9 |
|
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
|
Typevar[k]= 0 0 0 2 1 0 2 1 1 |
|
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
|
Dummy[k] 1 0 0 0 3 1 1 2 3 |
|
Tmodelind[combination of covar]=k; |
|
*/ |
|
/* Dispatching between quantitative and time varying covariates */ |
|
/* If Tvar[k] >ncovcol it is a product */ |
|
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
|
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
|
printf("Model=%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
fprintf(ficlog,"Model=%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
|
|
for(k=1, ncovf=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ |
|
if (Tvar[k] <=ncovcol && (Typevar[k]==0 || Typevar[k]==2)){ /* Simple or product fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){ /* Remind that product Vn*Vm are added in k*/ /* Only simple fixed quantitative variable */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 1; |
|
nqfveff++; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FQ; |
|
ncovf++; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
ntveff++; /* Only simple time varying dummy variable */ |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VD; |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
|
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
nqtveff++; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VQ; |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
|
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
|
printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); |
|
printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); |
|
}else if (Typevar[k] == 1) { /* product with age */ |
|
ncova++; |
|
TvarA[ncova]=Tvar[k]; |
|
TvarAind[ncova]=k; |
|
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFD; |
|
/* ncoveff++; */ |
|
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
|
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVD; /* Product age * varying dummy */ |
|
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
|
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
|
} |
|
}else if (Typevar[k] == 2) { /* product without age */ |
|
k1=Tposprod[k]; |
|
if(Tvard[k1][1] <=ncovcol){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
ncovf++; /* Varying variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 0; /* or 2 ?*/ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /* end k1 */ |
|
}else{ |
|
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
} |
|
printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); |
|
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
} |
|
/* Searching for doublons in the model */ |
|
for(k1=1; k1<= cptcovt;k1++){ |
|
for(k2=1; k2 <k1;k2++){ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ |
|
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
|
if(Tvar[k1]==Tvar[k2]){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
}else if (Typevar[k1] ==2){ |
|
k3=Tposprod[k1]; |
|
k4=Tposprod[k2]; |
|
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
|
printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
printf("ncovf=%d, ncovv=%d, ncova=%d\n",ncovf,ncovv,ncova); |
|
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d\n",ncovf,ncovv,ncova); |
|
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
|
/*endread:*/ |
|
printf("Exiting decodemodel: "); |
|
return (1); |
|
} |
|
|
|
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
|
{ |
|
int i, m; |
|
int firstone=0; |
|
|
|
for (i=1; i<=imx; i++) { |
|
for(m=2; (m<= maxwav); m++) { |
|
if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){ |
|
anint[m][i]=9999; |
|
if (s[m][i] != -2) /* Keeping initial status of unknown vital status */ |
|
s[m][i]=-1; |
|
} |
|
if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){ |
|
*nberr = *nberr + 1; |
|
if(firstone == 0){ |
|
firstone=1; |
|
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
|
} |
|
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
|
s[m][i]=-1; |
|
} |
|
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
|
(*nberr)++; |
|
printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); |
|
fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); |
|
s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
|
} |
|
} |
|
} |
|
|
|
for (i=1; i<=imx; i++) { |
|
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
|
for(m=firstpass; (m<= lastpass); m++){ |
|
if(s[m][i] >0 || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */ |
|
if (s[m][i] >= nlstate+1) { |
|
if(agedc[i]>0){ |
|
if((int)moisdc[i]!=99 && (int)andc[i]!=9999){ |
|
agev[m][i]=agedc[i]; |
|
/*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/ |
|
}else { |
|
if ((int)andc[i]!=9999){ |
|
nbwarn++; |
|
printf("Warning negative age at death: %ld line:%d\n",num[i],i); |
|
fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i); |
|
agev[m][i]=-1; |
|
} |
|
} |
|
} /* agedc > 0 */ |
|
} /* end if */ |
|
else if(s[m][i] !=9){ /* Standard case, age in fractional |
|
years but with the precision of a month */ |
|
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
|
if((int)mint[m][i]==99 || (int)anint[m][i]==9999) |
|
agev[m][i]=1; |
|
else if(agev[m][i] < *agemin){ |
|
*agemin=agev[m][i]; |
|
printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin); |
|
} |
|
else if(agev[m][i] >*agemax){ |
|
*agemax=agev[m][i]; |
|
/* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/ |
|
} |
|
/*agev[m][i]=anint[m][i]-annais[i];*/ |
|
/* agev[m][i] = age[i]+2*m;*/ |
|
} /* en if 9*/ |
|
else { /* =9 */ |
|
/* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */ |
|
agev[m][i]=1; |
|
s[m][i]=-1; |
|
} |
|
} |
|
else if(s[m][i]==0) /*= 0 Unknown */ |
|
agev[m][i]=1; |
|
else{ |
|
printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); |
|
fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); |
|
agev[m][i]=0; |
|
} |
|
} /* End for lastpass */ |
|
} |
|
|
|
for (i=1; i<=imx; i++) { |
|
for(m=firstpass; (m<=lastpass); m++){ |
|
if (s[m][i] > (nlstate+ndeath)) { |
|
(*nberr)++; |
|
printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
|
fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
|
return 1; |
|
} |
|
} |
|
} |
|
|
|
/*for (i=1; i<=imx; i++){ |
|
for (m=firstpass; (m<lastpass); m++){ |
|
printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); |
|
} |
|
|
|
}*/ |
|
|
|
|
|
printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); |
|
fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); |
|
|
|
return (0); |
|
/* endread:*/ |
|
printf("Exiting calandcheckages: "); |
|
return (1); |
|
} |
|
|
|
#if defined(_MSC_VER) |
|
/*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/ |
|
/*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/ |
|
//#include "stdafx.h" |
|
//#include <stdio.h> |
|
//#include <tchar.h> |
|
//#include <windows.h> |
|
//#include <iostream> |
|
typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL); |
|
|
|
LPFN_ISWOW64PROCESS fnIsWow64Process; |
|
|
|
BOOL IsWow64() |
|
{ |
|
BOOL bIsWow64 = FALSE; |
|
|
|
//typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS) |
|
// (HANDLE, PBOOL); |
|
|
|
//LPFN_ISWOW64PROCESS fnIsWow64Process; |
|
|
|
HMODULE module = GetModuleHandle(_T("kernel32")); |
|
const char funcName[] = "IsWow64Process"; |
|
fnIsWow64Process = (LPFN_ISWOW64PROCESS) |
|
GetProcAddress(module, funcName); |
|
|
|
if (NULL != fnIsWow64Process) |
|
{ |
|
if (!fnIsWow64Process(GetCurrentProcess(), |
|
&bIsWow64)) |
|
//throw std::exception("Unknown error"); |
|
printf("Unknown error\n"); |
|
} |
|
return bIsWow64 != FALSE; |
|
} |
|
#endif |
|
|
|
void syscompilerinfo(int logged) |
|
{ |
|
/* #include "syscompilerinfo.h"*/ |
|
/* command line Intel compiler 32bit windows, XP compatible:*/ |
|
/* /GS /W3 /Gy |
|
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
|
"_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D |
|
"UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo |
|
/Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch" |
|
*/ |
|
/* 64 bits */ |
|
/* |
|
/GS /W3 /Gy |
|
/Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG" |
|
/D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope |
|
/Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir |
|
"x64\Release\" /Fp"x64\Release\IMaCh.pch" */ |
|
/* Optimization are useless and O3 is slower than O2 */ |
|
/* |
|
/GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" |
|
/D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo |
|
/Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel |
|
/Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" |
|
*/ |
|
/* Link is */ /* /OUT:"visual studio |
|
2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT |
|
/PDB:"visual studio |
|
2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE |
|
"kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib" |
|
"comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib" |
|
"oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib" |
|
/MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO |
|
/SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker' |
|
uiAccess='false'" |
|
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
|
/NOLOGO /TLBID:1 |
|
*/ |
|
#if defined __INTEL_COMPILER |
|
#if defined(__GNUC__) |
|
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
|
#endif |
|
#elif defined(__GNUC__) |
|
#ifndef __APPLE__ |
|
#include <gnu/libc-version.h> /* Only on gnu */ |
|
#endif |
|
struct utsname sysInfo; |
|
int cross = CROSS; |
|
if (cross){ |
|
printf("Cross-"); |
|
if(logged) fprintf(ficlog, "Cross-"); |
|
} |
|
#endif |
|
|
|
#include <stdint.h> |
|
|
|
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
|
#if defined(__clang__) |
|
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
|
#endif |
|
#if defined(__ICC) || defined(__INTEL_COMPILER) |
|
printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */ |
|
#endif |
|
#if defined(__GNUC__) || defined(__GNUG__) |
|
printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */ |
|
#endif |
|
#if defined(__HP_cc) || defined(__HP_aCC) |
|
printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */ |
|
#endif |
|
#if defined(__IBMC__) || defined(__IBMCPP__) |
|
printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */ |
|
#endif |
|
#if defined(_MSC_VER) |
|
printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */ |
|
#endif |
|
#if defined(__PGI) |
|
printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */ |
|
#endif |
|
#if defined(__SUNPRO_C) || defined(__SUNPRO_CC) |
|
printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */ |
|
#endif |
|
printf(" for "); if (logged) fprintf(ficlog, " for "); |
|
|
|
// http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros |
|
#ifdef _WIN32 // note the underscore: without it, it's not msdn official! |
|
// Windows (x64 and x86) |
|
printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) "); |
|
#elif __unix__ // all unices, not all compilers |
|
// Unix |
|
printf("Unix ");if(logged) fprintf(ficlog,"Unix "); |
|
#elif __linux__ |
|
// linux |
|
printf("linux ");if(logged) fprintf(ficlog,"linux "); |
|
#elif __APPLE__ |
|
// Mac OS, not sure if this is covered by __posix__ and/or __unix__ though.. |
|
printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS "); |
|
#endif |
|
|
|
/* __MINGW32__ */ |
|
/* __CYGWIN__ */ |
|
/* __MINGW64__ */ |
|
// http://msdn.microsoft.com/en-us/library/b0084kay.aspx |
|
/* _MSC_VER //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /? */ |
|
/* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */ |
|
/* _WIN64 // Defined for applications for Win64. */ |
|
/* _M_X64 // Defined for compilations that target x64 processors. */ |
|
/* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */ |
|
|
|
#if UINTPTR_MAX == 0xffffffff |
|
printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */ |
|
#elif UINTPTR_MAX == 0xffffffffffffffff |
|
printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */ |
|
#else |
|
printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */ |
|
#endif |
|
|
|
#if defined(__GNUC__) |
|
# if defined(__GNUC_PATCHLEVEL__) |
|
# define __GNUC_VERSION__ (__GNUC__ * 10000 \ |
|
+ __GNUC_MINOR__ * 100 \ |
|
+ __GNUC_PATCHLEVEL__) |
|
# else |
|
# define __GNUC_VERSION__ (__GNUC__ * 10000 \ |
|
+ __GNUC_MINOR__ * 100) |
|
# endif |
|
printf(" using GNU C version %d.\n", __GNUC_VERSION__); |
|
if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__); |
|
|
|
if (uname(&sysInfo) != -1) { |
|
printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine); |
|
if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine); |
|
} |
|
else |
|
perror("uname() error"); |
|
//#ifndef __INTEL_COMPILER |
|
#if !defined (__INTEL_COMPILER) && !defined(__APPLE__) |
|
printf("GNU libc version: %s\n", gnu_get_libc_version()); |
|
if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version()); |
|
#endif |
|
#endif |
|
|
|
// void main() |
|
// { |
|
#if defined(_MSC_VER) |
|
if (IsWow64()){ |
|
printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n"); |
|
if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n"); |
|
} |
|
else{ |
|
printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n"); |
|
if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n"); |
|
} |
|
// printf("\nPress Enter to continue..."); |
|
// getchar(); |
|
// } |
|
|
|
#endif |
|
|
|
|
|
} |
|
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
|
int i, j, k, i1 ; |
|
/* double ftolpl = 1.e-10; */ |
|
double age, agebase, agelim; |
|
double tot; |
|
|
|
strcpy(filerespl,"PL_"); |
|
strcat(filerespl,fileresu); |
|
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
|
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
|
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
|
} |
|
printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
|
fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
|
pstamp(ficrespl); |
|
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
|
fprintf(ficrespl,"#Age "); |
|
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
|
fprintf(ficrespl,"\n"); |
|
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
|
agebase=ageminpar; |
|
agelim=agemaxpar; |
|
|
|
/* i1=pow(2,ncoveff); */ |
|
i1=pow(2,cptcoveff); /* Number of dummy covariates */ |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(k=1; k<=i1;k++){ |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
|
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
|
/* k=k+1; */ |
|
/* to clean */ |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficrespl,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
|
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/ |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrespl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no case \n",k); |
|
fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficrespl,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
|
fprintf(ficrespl,"Total Years_to_converge\n"); |
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k); |
|
fprintf(ficrespl,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += prlim[i][i]; |
|
fprintf(ficrespl," %.5f", prlim[i][i]); |
|
} |
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
return 0; |
|
} |
|
|
|
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
|
/* Computes the back prevalence limit for any combination of covariate values |
|
* at any age between ageminpar and agemaxpar |
|
*/ |
|
int i, j, k, i1 ; |
|
/* double ftolpl = 1.e-10; */ |
|
double age, agebase, agelim; |
|
double tot; |
|
/* double ***mobaverage; */ |
|
/* double **dnewm, **doldm, **dsavm; /\* for use *\/ */ |
|
|
|
strcpy(fileresplb,"PLB_"); |
|
strcat(fileresplb,fileresu); |
|
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
|
printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
|
fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
|
} |
|
printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
|
fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
|
pstamp(ficresplb); |
|
fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl); |
|
fprintf(ficresplb,"#Age "); |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
|
fprintf(ficresplb,"\n"); |
|
|
|
|
|
/* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */ |
|
|
|
agebase=ageminpar; |
|
agelim=agemaxpar; |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(k=1; k<=i1;k++){ |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficresplb,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
|
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresplb,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no cases \n",k); |
|
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficresplb,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
|
fprintf(ficresplb,"Total Years_to_converge\n"); |
|
|
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
if(mobilavproj > 0){ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k); |
|
}else if (mobilavproj == 0){ |
|
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
exit(1); |
|
}else{ |
|
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k); |
|
} |
|
fprintf(ficresplb,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += bprlim[i][i]; |
|
fprintf(ficresplb," %.5f", bprlim[i][i]); |
|
} |
|
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
|
|
/* hBijx(p, bage, fage); */ |
|
/* fclose(ficrespijb); */ |
|
|
|
return 0; |
|
} |
|
|
|
int hPijx(double *p, int bage, int fage){ |
|
/*------------- h Pij x at various ages ------------*/ |
|
|
|
int stepsize; |
|
int agelim; |
|
int hstepm; |
|
int nhstepm; |
|
int h, i, i1, j, k; |
|
|
|
double agedeb; |
|
double ***p3mat; |
|
|
|
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
|
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
|
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
|
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
|
} |
|
printf("Computing pij: result on file '%s' \n", filerespij); |
|
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
/*if (stepm<=24) stepsize=2;*/ |
|
|
|
agelim=AGESUP; |
|
hstepm=stepsize*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
|
/* hstepm=1; aff par mois*/ |
|
pstamp(ficrespij); |
|
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
|
i1= pow(2,cptcoveff); |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
|
/* k=k+1; */ |
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficrespij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrespij,"******\n"); |
|
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %1d-%1d",i,j); |
|
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
/*}*/ |
|
} |
|
return 0; |
|
} |
|
|
|
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
|
/*------------- h Bij x at various ages ------------*/ |
|
|
|
int stepsize; |
|
/* int agelim; */ |
|
int ageminl; |
|
int hstepm; |
|
int nhstepm; |
|
int h, i, i1, j, k; |
|
|
|
double agedeb; |
|
double ***p3mat; |
|
|
|
strcpy(filerespijb,"PIJB_"); strcat(filerespijb,fileresu); |
|
if((ficrespijb=fopen(filerespijb,"w"))==NULL) { |
|
printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1; |
|
fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1; |
|
} |
|
printf("Computing pij back: result on file '%s' \n", filerespijb); |
|
fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb); |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
/*if (stepm<=24) stepsize=2;*/ |
|
|
|
/* agelim=AGESUP; */ |
|
ageminl=30; |
|
hstepm=stepsize*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
|
/* hstepm=1; aff par mois*/ |
|
pstamp(ficrespijb); |
|
fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x "); |
|
i1= pow(2,cptcoveff); |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
|
/* k=k+1; */ |
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficrespijb,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrespijb,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
|
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
|
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
|
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
|
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
|
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k); |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
/*}*/ |
|
} |
|
return 0; |
|
} /* hBijx */ |
|
|
|
|
|
/***********************************************/ |
|
/**************** Main Program *****************/ |
|
/***********************************************/ |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
#ifdef GSL |
|
const gsl_multimin_fminimizer_type *T; |
|
size_t iteri = 0, it; |
|
int rval = GSL_CONTINUE; |
|
int status = GSL_SUCCESS; |
|
double ssval; |
|
#endif |
|
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
|
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
|
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
|
int jj, ll, li, lj, lk; |
|
int numlinepar=0; /* Current linenumber of parameter file */ |
|
int num_filled; |
|
int itimes; |
|
int NDIM=2; |
|
int vpopbased=0; |
|
|
|
char ca[32], cb[32]; |
|
/* FILE *fichtm; *//* Html File */ |
|
/* FILE *ficgp;*/ /*Gnuplot File */ |
|
struct stat info; |
|
double agedeb=0.; |
|
|
|
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
|
double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */ |
|
|
|
double fret; |
|
double dum=0.; /* Dummy variable */ |
|
double ***p3mat; |
|
/* double ***mobaverage; */ |
|
|
|
char line[MAXLINE]; |
|
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
|
char model[MAXLINE], modeltemp[MAXLINE]; |
|
char resultline[MAXLINE]; |
|
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
|
char *tok, *val; /* pathtot */ |
|
int firstobs=1, lastobs=10; |
|
int c, h , cpt, c2; |
|
int jl=0; |
|
int i1, j1, jk, stepsize=0; |
|
int count=0; |
|
|
|
int *tab; |
|
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
|
int backcast=0; |
|
int mobilav=0,popforecast=0; |
|
int hstepm=0, nhstepm=0; |
|
int agemortsup; |
|
float sumlpop=0.; |
|
double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000; |
|
double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000; |
|
|
|
double bage=0, fage=110., age, agelim=0., agebase=0.; |
|
double ftolpl=FTOL; |
|
double **prlim; |
|
double **bprlim; |
|
double ***param; /* Matrix of parameters */ |
|
double *p; |
|
double **matcov; /* Matrix of covariance */ |
|
double **hess; /* Hessian matrix */ |
|
double ***delti3; /* Scale */ |
|
double *delti; /* Scale */ |
|
double ***eij, ***vareij; |
|
double **varpl; /* Variances of prevalence limits by age */ |
|
double *epj, vepp; |
|
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
|
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000; |
|
|
|
double **ximort; |
|
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
|
int *dcwave; |
|
|
|
char z[1]="c"; |
|
|
|
/*char *strt;*/ |
|
char strtend[80]; |
|
|
|
|
|
/* setlocale (LC_ALL, ""); */ |
|
/* bindtextdomain (PACKAGE, LOCALEDIR); */ |
|
/* textdomain (PACKAGE); */ |
|
/* setlocale (LC_CTYPE, ""); */ |
|
/* setlocale (LC_MESSAGES, ""); */ |
|
|
|
/* gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */ |
|
rstart_time = time(NULL); |
|
/* (void) gettimeofday(&start_time,&tzp);*/ |
|
start_time = *localtime(&rstart_time); |
|
curr_time=start_time; |
|
/*tml = *localtime(&start_time.tm_sec);*/ |
|
/* strcpy(strstart,asctime(&tml)); */ |
|
strcpy(strstart,asctime(&start_time)); |
|
|
|
/* printf("Localtime (at start)=%s",strstart); */ |
|
/* tp.tm_sec = tp.tm_sec +86400; */ |
|
/* tm = *localtime(&start_time.tm_sec); */ |
|
/* tmg.tm_year=tmg.tm_year +dsign*dyear; */ |
|
/* tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */ |
|
/* tmg.tm_hour=tmg.tm_hour + 1; */ |
|
/* tp.tm_sec = mktime(&tmg); */ |
|
/* strt=asctime(&tmg); */ |
|
/* printf("Time(after) =%s",strstart); */ |
|
/* (void) time (&time_value); |
|
* printf("time=%d,t-=%d\n",time_value,time_value-86400); |
|
* tm = *localtime(&time_value); |
|
* strstart=asctime(&tm); |
|
* printf("tim_value=%d,asctime=%s\n",time_value,strstart); |
|
*/ |
|
|
|
nberr=0; /* Number of errors and warnings */ |
|
nbwarn=0; |
|
#ifdef WIN32 |
|
_getcwd(pathcd, size); |
|
#else |
|
getcwd(pathcd, size); |
|
#endif |
|
syscompilerinfo(0); |
|
printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion); |
|
if(argc <=1){ |
|
printf("\nEnter the parameter file name: "); |
|
if(!fgets(pathr,FILENAMELENGTH,stdin)){ |
|
printf("ERROR Empty parameter file name\n"); |
|
goto end; |
|
} |
|
i=strlen(pathr); |
|
if(pathr[i-1]=='\n') |
|
pathr[i-1]='\0'; |
|
i=strlen(pathr); |
|
if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */ |
|
pathr[i-1]='\0'; |
|
} |
|
i=strlen(pathr); |
|
if( i==0 ){ |
|
printf("ERROR Empty parameter file name\n"); |
|
goto end; |
|
} |
|
for (tok = pathr; tok != NULL; ){ |
|
printf("Pathr |%s|\n",pathr); |
|
while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0'); |
|
printf("val= |%s| pathr=%s\n",val,pathr); |
|
strcpy (pathtot, val); |
|
if(pathr[0] == '\0') break; /* Dirty */ |
|
} |
|
} |
|
else{ |
|
strcpy(pathtot,argv[1]); |
|
} |
|
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
|
/*cygwin_split_path(pathtot,path,optionfile); |
|
printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/ |
|
/* cutv(path,optionfile,pathtot,'\\');*/ |
|
|
|
/* Split argv[0], imach program to get pathimach */ |
|
printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]); |
|
split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname); |
|
printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname); |
|
/* strcpy(pathimach,argv[0]); */ |
|
/* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */ |
|
split(pathtot,path,optionfile,optionfilext,optionfilefiname); |
|
printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname); |
|
#ifdef WIN32 |
|
_chdir(path); /* Can be a relative path */ |
|
if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */ |
|
#else |
|
chdir(path); /* Can be a relative path */ |
|
if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */ |
|
#endif |
|
printf("Current directory %s!\n",pathcd); |
|
strcpy(command,"mkdir "); |
|
strcat(command,optionfilefiname); |
|
if((outcmd=system(command)) != 0){ |
|
printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd); |
|
/* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */ |
|
/* fclose(ficlog); */ |
|
/* exit(1); */ |
|
} |
|
/* if((imk=mkdir(optionfilefiname))<0){ */ |
|
/* perror("mkdir"); */ |
|
/* } */ |
|
|
|
/*-------- arguments in the command line --------*/ |
|
|
|
/* Main Log file */ |
|
strcat(filelog, optionfilefiname); |
|
strcat(filelog,".log"); /* */ |
|
if((ficlog=fopen(filelog,"w"))==NULL) { |
|
printf("Problem with logfile %s\n",filelog); |
|
goto end; |
|
} |
|
fprintf(ficlog,"Log filename:%s\n",filelog); |
|
fprintf(ficlog,"Version %s %s",version,fullversion); |
|
fprintf(ficlog,"\nEnter the parameter file name: \n"); |
|
fprintf(ficlog,"pathimach=%s\npathtot=%s\n\ |
|
path=%s \n\ |
|
optionfile=%s\n\ |
|
optionfilext=%s\n\ |
|
optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname); |
|
|
|
syscompilerinfo(1); |
|
|
|
printf("Local time (at start):%s",strstart); |
|
fprintf(ficlog,"Local time (at start): %s",strstart); |
|
fflush(ficlog); |
|
/* (void) gettimeofday(&curr_time,&tzp); */ |
|
/* printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */ |
|
|
|
/* */ |
|
strcpy(fileres,"r"); |
|
strcat(fileres, optionfilefiname); |
|
strcat(fileresu, optionfilefiname); /* Without r in front */ |
|
strcat(fileres,".txt"); /* Other files have txt extension */ |
|
strcat(fileresu,".txt"); /* Other files have txt extension */ |
|
|
|
/* Main ---------arguments file --------*/ |
|
|
|
if((ficpar=fopen(optionfile,"r"))==NULL) { |
|
printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno)); |
|
fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno)); |
|
fflush(ficlog); |
|
/* goto end; */ |
|
exit(70); |
|
} |
|
|
|
|
|
|
|
strcpy(filereso,"o"); |
|
strcat(filereso,fileresu); |
|
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
|
printf("Problem with Output resultfile: %s\n", filereso); |
|
fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso); |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
|
|
/* Reads comments: lines beginning with '#' */ |
|
numlinepar=0; |
|
|
|
/* First parameter line */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \ |
|
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
|
if (num_filled != 5) { |
|
printf("Should be 5 parameters\n"); |
|
} |
|
numlinepar++; |
|
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
} |
|
/* Second parameter line */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \ |
|
&ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){ |
|
if (num_filled != 11) { |
|
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
|
printf("but line=%s\n",line); |
|
} |
|
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
} |
|
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
|
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
/* Third parameter line */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
|
if (num_filled == 0) |
|
model[0]='\0'; |
|
else if (num_filled != 1){ |
|
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
model[0]='\0'; |
|
goto end; |
|
} |
|
else{ |
|
if (model[0]=='+'){ |
|
for(i=1; i<=strlen(model);i++) |
|
modeltemp[i-1]=model[i]; |
|
strcpy(model,modeltemp); |
|
} |
|
} |
|
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
|
printf("model=1+age+%s\n",model);fflush(stdout); |
|
} |
|
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
|
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
|
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
|
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
|
fflush(ficlog); |
|
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
|
if(model[0]=='#'){ |
|
printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \ |
|
'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \ |
|
'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \ |
|
if(mle != -1){ |
|
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n"); |
|
exit(1); |
|
} |
|
} |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
|
z[0]=line[1]; |
|
} |
|
/* printf("****line [1] = %c \n",line[1]); */ |
|
fputs(line, stdout); |
|
//puts(line); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
|
coqvar=matrix(1,nqv,1,n); /**< Fixed quantitative covariate */ |
|
cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n); /**< Time varying covariate (dummy and quantitative)*/ |
|
cotqvar=ma3x(1,maxwav,1,nqtv,1,n); /**< Time varying quantitative covariate */ |
|
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
|
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
|
v1+v2*age+v2*v3 makes cptcovn = 3 |
|
*/ |
|
if (strlen(model)>1) |
|
ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/ |
|
else |
|
ncovmodel=2; /* Constant and age */ |
|
nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */ |
|
npar= nforce*ncovmodel; /* Number of parameters like aij*/ |
|
if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){ |
|
printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX); |
|
fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX); |
|
fflush(stdout); |
|
fclose (ficlog); |
|
goto end; |
|
} |
|
delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
delti=delti3[1][1]; |
|
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
|
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
|
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
|
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
|
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
fclose (ficparo); |
|
fclose (ficlog); |
|
goto end; |
|
exit(0); |
|
} else if(mle==-5) { /* Main Wizard */ |
|
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
|
printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
|
fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso); |
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
matcov=matrix(1,npar,1,npar); |
|
hess=matrix(1,npar,1,npar); |
|
} else{ /* Begin of mle != -1 or -5 */ |
|
/* Read guessed parameters */ |
|
/* Reads comments: lines beginning with '#' */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
for(i=1; i <=nlstate; i++){ |
|
j=0; |
|
for(jj=1; jj <=nlstate+ndeath; jj++){ |
|
if(jj==i) continue; |
|
j++; |
|
fscanf(ficpar,"%1d%1d",&i1,&j1); |
|
if ((i1 != i) || (j1 != jj)){ |
|
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
|
It might be a problem of design; if ncovcol and the model are correct\n \ |
|
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
|
exit(1); |
|
} |
|
fprintf(ficparo,"%1d%1d",i1,j1); |
|
if(mle==1) |
|
printf("%1d%1d",i,jj); |
|
fprintf(ficlog,"%1d%1d",i,jj); |
|
for(k=1; k<=ncovmodel;k++){ |
|
fscanf(ficpar," %lf",¶m[i][j][k]); |
|
if(mle==1){ |
|
printf(" %lf",param[i][j][k]); |
|
fprintf(ficlog," %lf",param[i][j][k]); |
|
} |
|
else |
|
fprintf(ficlog," %lf",param[i][j][k]); |
|
fprintf(ficparo," %lf",param[i][j][k]); |
|
} |
|
fscanf(ficpar,"\n"); |
|
numlinepar++; |
|
if(mle==1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
fflush(ficlog); |
|
|
|
/* Reads scales values */ |
|
p=param[1][1]; |
|
|
|
/* Reads comments: lines beginning with '#' */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
for(i=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath-1; j++){ |
|
fscanf(ficpar,"%1d%1d",&i1,&j1); |
|
if ( (i1-i) * (j1-j) != 0){ |
|
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
|
exit(1); |
|
} |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i1,j1); |
|
fprintf(ficlog,"%1d%1d",i1,j1); |
|
for(k=1; k<=ncovmodel;k++){ |
|
fscanf(ficpar,"%le",&delti3[i][j][k]); |
|
printf(" %le",delti3[i][j][k]); |
|
fprintf(ficparo," %le",delti3[i][j][k]); |
|
fprintf(ficlog," %le",delti3[i][j][k]); |
|
} |
|
fscanf(ficpar,"\n"); |
|
numlinepar++; |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
fflush(ficlog); |
|
|
|
/* Reads covariance matrix */ |
|
delti=delti3[1][1]; |
|
|
|
|
|
/* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */ |
|
|
|
/* Reads comments: lines beginning with '#' */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
matcov=matrix(1,npar,1,npar); |
|
hess=matrix(1,npar,1,npar); |
|
for(i=1; i <=npar; i++) |
|
for(j=1; j <=npar; j++) matcov[i][j]=0.; |
|
|
|
/* Scans npar lines */ |
|
for(i=1; i <=npar; i++){ |
|
count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk); |
|
if(count != 3){ |
|
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
|
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
|
fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
|
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
|
exit(1); |
|
}else{ |
|
if(mle==1) |
|
printf("%1d%1d%d",i1,j1,jk); |
|
} |
|
fprintf(ficlog,"%1d%1d%d",i1,j1,jk); |
|
fprintf(ficparo,"%1d%1d%d",i1,j1,jk); |
|
for(j=1; j <=i; j++){ |
|
fscanf(ficpar," %le",&matcov[i][j]); |
|
if(mle==1){ |
|
printf(" %.5le",matcov[i][j]); |
|
} |
|
fprintf(ficlog," %.5le",matcov[i][j]); |
|
fprintf(ficparo," %.5le",matcov[i][j]); |
|
} |
|
fscanf(ficpar,"\n"); |
|
numlinepar++; |
|
if(mle==1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
/* End of read covariance matrix npar lines */ |
|
for(i=1; i <=npar; i++) |
|
for(j=i+1;j<=npar;j++) |
|
matcov[i][j]=matcov[j][i]; |
|
|
|
if(mle==1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
|
|
fflush(ficlog); |
|
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
|
|
|
/* Main data |
|
*/ |
|
n= lastobs; |
|
num=lvector(1,n); |
|
moisnais=vector(1,n); |
|
annais=vector(1,n); |
|
moisdc=vector(1,n); |
|
andc=vector(1,n); |
|
weight=vector(1,n); |
|
agedc=vector(1,n); |
|
cod=ivector(1,n); |
|
for(i=1;i<=n;i++){ |
|
num[i]=0; |
|
moisnais[i]=0; |
|
annais[i]=0; |
|
moisdc[i]=0; |
|
andc[i]=0; |
|
agedc[i]=0; |
|
cod[i]=0; |
|
weight[i]=1.0; /* Equal weights, 1 by default */ |
|
} |
|
mint=matrix(1,maxwav,1,n); |
|
anint=matrix(1,maxwav,1,n); |
|
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
|
tab=ivector(1,NCOVMAX); |
|
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
|
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
|
|
|
/* Reads data from file datafile */ |
|
if (readdata(datafile, firstobs, lastobs, &imx)==1) |
|
goto end; |
|
|
|
/* Calculation of the number of parameters from char model */ |
|
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
|
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
|
k=3 V4 Tvar[k=3]= 4 (from V4) |
|
k=2 V1 Tvar[k=2]= 1 (from V1) |
|
k=1 Tvar[1]=2 (from V2) |
|
*/ |
|
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
TvarF=ivector(1,NCOVMAX); /* */ |
|
TvarFind=ivector(1,NCOVMAX); /* */ |
|
TvarV=ivector(1,NCOVMAX); /* */ |
|
TvarVind=ivector(1,NCOVMAX); /* */ |
|
TvarA=ivector(1,NCOVMAX); /* */ |
|
TvarAind=ivector(1,NCOVMAX); /* */ |
|
TvarFD=ivector(1,NCOVMAX); /* */ |
|
TvarFDind=ivector(1,NCOVMAX); /* */ |
|
TvarFQ=ivector(1,NCOVMAX); /* */ |
|
TvarFQind=ivector(1,NCOVMAX); /* */ |
|
TvarVD=ivector(1,NCOVMAX); /* */ |
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
|
TvarVQ=ivector(1,NCOVMAX); /* */ |
|
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
|
Tvarsel=ivector(1,NCOVMAX); /* */ |
|
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
|
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
|
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
|
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
|
*/ |
|
/* For model-covariate k tells which data-covariate to use but |
|
because this model-covariate is a construction we invent a new column |
|
ncovcol + k1 |
|
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
|
Tvar[3=V1*V4]=4+1 etc */ |
|
Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */ |
|
Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */ |
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
|
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
|
*/ |
|
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
|
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
|
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
|
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
|
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
|
4 covariates (3 plus signs) |
|
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
|
*/ |
|
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual dummy, fixed or varying: |
|
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , |
|
* V1 df, V2 qf, V3 & V4 dv, V5 qv |
|
* Tmodelind[1]@9={9,0,3,2,}*/ |
|
TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/ |
|
TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual quantitative, fixed or varying: |
|
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
/* Main decodemodel */ |
|
|
|
|
|
if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3 = {4, 3, 5}*/ |
|
goto end; |
|
|
|
if((double)(lastobs-imx)/(double)imx > 1.10){ |
|
nbwarn++; |
|
printf("Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx); |
|
fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx); |
|
} |
|
/* if(mle==1){*/ |
|
if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/ |
|
for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */ |
|
} |
|
|
|
/*-calculation of age at interview from date of interview and age at death -*/ |
|
agev=matrix(1,maxwav,1,imx); |
|
|
|
if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1) |
|
goto end; |
|
|
|
|
|
agegomp=(int)agemin; |
|
free_vector(moisnais,1,n); |
|
free_vector(annais,1,n); |
|
/* free_matrix(mint,1,maxwav,1,n); |
|
free_matrix(anint,1,maxwav,1,n);*/ |
|
/* free_vector(moisdc,1,n); */ |
|
/* free_vector(andc,1,n); */ |
|
/* */ |
|
|
|
wav=ivector(1,imx); |
|
/* dh=imatrix(1,lastpass-firstpass+1,1,imx); */ |
|
/* bh=imatrix(1,lastpass-firstpass+1,1,imx); */ |
|
/* mw=imatrix(1,lastpass-firstpass+1,1,imx); */ |
|
dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/ |
|
bh=imatrix(1,lastpass-firstpass+2,1,imx); |
|
mw=imatrix(1,lastpass-firstpass+2,1,imx); |
|
|
|
/* Concatenates waves */ |
|
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
|
Death is a valid wave (if date is known). |
|
mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i |
|
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
|
and mw[mi+1][i]. dh depends on stepm. |
|
*/ |
|
|
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
|
/* */ |
|
|
|
free_vector(moisdc,1,n); |
|
free_vector(andc,1,n); |
|
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
|
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
|
ncodemax[1]=1; |
|
Ndum =ivector(-1,NCOVMAX); |
|
cptcoveff=0; |
|
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
|
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
|
} |
|
|
|
ncovcombmax=pow(2,cptcoveff); |
|
invalidvarcomb=ivector(1, ncovcombmax); |
|
for(i=1;i<ncovcombmax;i++) |
|
invalidvarcomb[i]=0; |
|
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
|
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
|
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
|
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
|
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
|
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
|
/* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, |
|
* codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded |
|
* (currently 0 or 1) in the data. |
|
* In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of |
|
* corresponding modality (h,j). |
|
*/ |
|
|
|
h=0; |
|
/*if (cptcovn > 0) */ |
|
m=pow(2,cptcoveff); |
|
|
|
/**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1 |
|
* For k=4 covariates, h goes from 1 to m=2**k |
|
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
|
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
|
* h\k 1 2 3 4 |
|
*______________________________ |
|
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
|
* 2 2 1 1 1 |
|
* 3 i=2 1 2 1 1 |
|
* 4 2 2 1 1 |
|
* 5 i=3 1 i=2 1 2 1 |
|
* 6 2 1 2 1 |
|
* 7 i=4 1 2 2 1 |
|
* 8 2 2 2 1 |
|
* 9 i=5 1 i=3 1 i=2 1 2 |
|
* 10 2 1 1 2 |
|
* 11 i=6 1 2 1 2 |
|
* 12 2 2 1 2 |
|
* 13 i=7 1 i=4 1 2 2 |
|
* 14 2 1 2 2 |
|
* 15 i=8 1 2 2 2 |
|
* 16 2 2 2 2 |
|
*/ |
|
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
|
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
|
* and the value of each covariate? |
|
* V1=1, V2=1, V3=2, V4=1 ? |
|
* h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok. |
|
* h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st. |
|
* In order to get the real value in the data, we use nbcode |
|
* nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0 |
|
* We are keeping this crazy system in order to be able (in the future?) |
|
* to have more than 2 values (0 or 1) for a covariate. |
|
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
|
* h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1 |
|
* bbbbbbbb |
|
* 76543210 |
|
* h-1 00000101 (6-1=5) |
|
*(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift |
|
* & |
|
* 1 00000001 (1) |
|
* 00000000 = 1 & ((h-1) >> (k-1)) |
|
* +1= 00000001 =1 |
|
* |
|
* h=14, k=3 => h'=h-1=13, k'=k-1=2 |
|
* h' 1101 =2^3+2^2+0x2^1+2^0 |
|
* >>k' 11 |
|
* & 00000001 |
|
* = 00000001 |
|
* +1 = 00000010=2 = codtabm(14,3) |
|
* Reverse h=6 and m=16? |
|
* cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1. |
|
* for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff) |
|
* decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 |
|
* decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1) |
|
* V3=decodtabm(14,3,2**4)=2 |
|
* h'=13 1101 =2^3+2^2+0x2^1+2^0 |
|
*(h-1) >> (j-1) 0011 =13 >> 2 |
|
* &1 000000001 |
|
* = 000000001 |
|
* +1= 000000010 =2 |
|
* 2211 |
|
* V1=1+1, V2=0+1, V3=1+1, V4=1+1 |
|
* V3=2 |
|
* codtabm and decodtabm are identical |
|
*/ |
|
|
|
|
|
free_ivector(Ndum,-1,NCOVMAX); |
|
|
|
|
|
|
|
/* Initialisation of ----------- gnuplot -------------*/ |
|
strcpy(optionfilegnuplot,optionfilefiname); |
|
if(mle==-3) |
|
strcat(optionfilegnuplot,"-MORT_"); |
|
strcat(optionfilegnuplot,".gp"); |
|
|
|
if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) { |
|
printf("Problem with file %s",optionfilegnuplot); |
|
} |
|
else{ |
|
fprintf(ficgp,"\n# IMaCh-%s\n", version); |
|
fprintf(ficgp,"# %s\n", optionfilegnuplot); |
|
//fprintf(ficgp,"set missing 'NaNq'\n"); |
|
fprintf(ficgp,"set datafile missing 'NaNq'\n"); |
|
} |
|
/* fclose(ficgp);*/ |
|
|
|
|
|
/* Initialisation of --------- index.htm --------*/ |
|
|
|
strcpy(optionfilehtm,optionfilefiname); /* Main html file */ |
|
if(mle==-3) |
|
strcat(optionfilehtm,"-MORT_"); |
|
strcat(optionfilehtm,".htm"); |
|
if((fichtm=fopen(optionfilehtm,"w"))==NULL) { |
|
printf("Problem with %s \n",optionfilehtm); |
|
exit(0); |
|
} |
|
|
|
strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */ |
|
strcat(optionfilehtmcov,"-cov.htm"); |
|
if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL) { |
|
printf("Problem with %s \n",optionfilehtmcov), exit(0); |
|
} |
|
else{ |
|
fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
|
|
fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本å¦è¡“振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
|
\n\ |
|
<hr size=\"2\" color=\"#EC5E5E\">\ |
|
<ul><li><h4>Parameter files</h4>\n\ |
|
- Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\ |
|
- Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\ |
|
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
|
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
|
- Date and time at start: %s</ul>\n",\ |
|
optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ |
|
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
|
fileres,fileres,\ |
|
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
|
fflush(fichtm); |
|
|
|
strcpy(pathr,path); |
|
strcat(pathr,optionfilefiname); |
|
#ifdef WIN32 |
|
_chdir(optionfilefiname); /* Move to directory named optionfile */ |
|
#else |
|
chdir(optionfilefiname); /* Move to directory named optionfile */ |
|
#endif |
|
|
|
|
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
|
and for any valid combination of covariates |
|
and prints on file fileres'p'. */ |
|
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
|
firstpass, lastpass, stepm, weightopt, model); |
|
|
|
fprintf(fichtm,"\n"); |
|
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
|
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
|
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
|
imx,agemin,agemax,jmin,jmax,jmean); |
|
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
|
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
|
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
|
p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
|
|
|
globpr=0; /* To get the number ipmx of contributions and the sum of weights*/ |
|
/* For mortality only */ |
|
if (mle==-3){ |
|
ximort=matrix(1,NDIM,1,NDIM); |
|
for(i=1;i<=NDIM;i++) |
|
for(j=1;j<=NDIM;j++) |
|
ximort[i][j]=0.; |
|
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
|
cens=ivector(1,n); |
|
ageexmed=vector(1,n); |
|
agecens=vector(1,n); |
|
dcwave=ivector(1,n); |
|
|
|
for (i=1; i<=imx; i++){ |
|
dcwave[i]=-1; |
|
for (m=firstpass; m<=lastpass; m++) |
|
if (s[m][i]>nlstate) { |
|
dcwave[i]=m; |
|
/* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ |
|
break; |
|
} |
|
} |
|
|
|
for (i=1; i<=imx; i++) { |
|
if (wav[i]>0){ |
|
ageexmed[i]=agev[mw[1][i]][i]; |
|
j=wav[i]; |
|
agecens[i]=1.; |
|
|
|
if (ageexmed[i]> 1 && wav[i] > 0){ |
|
agecens[i]=agev[mw[j][i]][i]; |
|
cens[i]= 1; |
|
}else if (ageexmed[i]< 1) |
|
cens[i]= -1; |
|
if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) |
|
cens[i]=0 ; |
|
} |
|
else cens[i]=-1; |
|
} |
|
|
|
for (i=1;i<=NDIM;i++) { |
|
for (j=1;j<=NDIM;j++) |
|
ximort[i][j]=(i == j ? 1.0 : 0.0); |
|
} |
|
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
|
/*printf("%lf %lf", p[1], p[2]);*/ |
|
|
|
|
|
#ifdef GSL |
|
printf("GSL optimization\n"); fprintf(ficlog,"Powell\n"); |
|
#else |
|
printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
|
#endif |
|
strcpy(filerespow,"POW-MORT_"); |
|
strcat(filerespow,fileresu); |
|
if((ficrespow=fopen(filerespow,"w"))==NULL) { |
|
printf("Problem with resultfile: %s\n", filerespow); |
|
fprintf(ficlog,"Problem with resultfile: %s\n", filerespow); |
|
} |
|
#ifdef GSL |
|
fprintf(ficrespow,"# GSL optimization\n# iter -2*LL"); |
|
#else |
|
fprintf(ficrespow,"# Powell\n# iter -2*LL"); |
|
#endif |
|
/* for (i=1;i<=nlstate;i++) |
|
for(j=1;j<=nlstate+ndeath;j++) |
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
|
*/ |
|
fprintf(ficrespow,"\n"); |
|
#ifdef GSL |
|
/* gsl starts here */ |
|
T = gsl_multimin_fminimizer_nmsimplex; |
|
gsl_multimin_fminimizer *sfm = NULL; |
|
gsl_vector *ss, *x; |
|
gsl_multimin_function minex_func; |
|
|
|
/* Initial vertex size vector */ |
|
ss = gsl_vector_alloc (NDIM); |
|
|
|
if (ss == NULL){ |
|
GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0); |
|
} |
|
/* Set all step sizes to 1 */ |
|
gsl_vector_set_all (ss, 0.001); |
|
|
|
/* Starting point */ |
|
|
|
x = gsl_vector_alloc (NDIM); |
|
|
|
if (x == NULL){ |
|
gsl_vector_free(ss); |
|
GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); |
|
} |
|
|
|
/* Initialize method and iterate */ |
|
/* p[1]=0.0268; p[NDIM]=0.083; */ |
|
/* gsl_vector_set(x, 0, 0.0268); */ |
|
/* gsl_vector_set(x, 1, 0.083); */ |
|
gsl_vector_set(x, 0, p[1]); |
|
gsl_vector_set(x, 1, p[2]); |
|
|
|
minex_func.f = &gompertz_f; |
|
minex_func.n = NDIM; |
|
minex_func.params = (void *)&p; /* ??? */ |
|
|
|
sfm = gsl_multimin_fminimizer_alloc (T, NDIM); |
|
gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss); |
|
|
|
printf("Iterations beginning .....\n\n"); |
|
printf("Iter. # Intercept Slope -Log Likelihood Simplex size\n"); |
|
|
|
iteri=0; |
|
while (rval == GSL_CONTINUE){ |
|
iteri++; |
|
status = gsl_multimin_fminimizer_iterate(sfm); |
|
|
|
if (status) printf("error: %s\n", gsl_strerror (status)); |
|
fflush(0); |
|
|
|
if (status) |
|
break; |
|
|
|
rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6); |
|
ssval = gsl_multimin_fminimizer_size (sfm); |
|
|
|
if (rval == GSL_SUCCESS) |
|
printf ("converged to a local maximum at\n"); |
|
|
|
printf("%5d ", iteri); |
|
for (it = 0; it < NDIM; it++){ |
|
printf ("%10.5f ", gsl_vector_get (sfm->x, it)); |
|
} |
|
printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval); |
|
} |
|
|
|
printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n"); |
|
|
|
gsl_vector_free(x); /* initial values */ |
|
gsl_vector_free(ss); /* inital step size */ |
|
for (it=0; it<NDIM; it++){ |
|
p[it+1]=gsl_vector_get(sfm->x,it); |
|
fprintf(ficrespow," %.12lf", p[it]); |
|
} |
|
gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1) */ |
|
#endif |
|
#ifdef POWELL |
|
powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz); |
|
#endif |
|
fclose(ficrespow); |
|
|
|
hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); |
|
|
|
for(i=1; i <=NDIM; i++) |
|
for(j=i+1;j<=NDIM;j++) |
|
matcov[i][j]=matcov[j][i]; |
|
|
|
printf("\nCovariance matrix\n "); |
|
fprintf(ficlog,"\nCovariance matrix\n "); |
|
for(i=1; i <=NDIM; i++) { |
|
for(j=1;j<=NDIM;j++){ |
|
printf("%f ",matcov[i][j]); |
|
fprintf(ficlog,"%f ",matcov[i][j]); |
|
} |
|
printf("\n "); fprintf(ficlog,"\n "); |
|
} |
|
|
|
printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp); |
|
for (i=1;i<=NDIM;i++) { |
|
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
|
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
|
} |
|
lsurv=vector(1,AGESUP); |
|
lpop=vector(1,AGESUP); |
|
tpop=vector(1,AGESUP); |
|
lsurv[agegomp]=100000; |
|
|
|
for (k=agegomp;k<=AGESUP;k++) { |
|
agemortsup=k; |
|
if (p[1]*exp(p[2]*(k-agegomp))>1) break; |
|
} |
|
|
|
for (k=agegomp;k<agemortsup;k++) |
|
lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp))); |
|
|
|
for (k=agegomp;k<agemortsup;k++){ |
|
lpop[k]=(lsurv[k]+lsurv[k+1])/2.; |
|
sumlpop=sumlpop+lpop[k]; |
|
} |
|
|
|
tpop[agegomp]=sumlpop; |
|
for (k=agegomp;k<(agemortsup-3);k++){ |
|
/* tpop[k+1]=2;*/ |
|
tpop[k+1]=tpop[k]-lpop[k]; |
|
} |
|
|
|
|
|
printf("\nAge lx qx dx Lx Tx e(x)\n"); |
|
for (k=agegomp;k<(agemortsup-2);k++) |
|
printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]); |
|
|
|
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
|
ageminpar=50; |
|
agemaxpar=100; |
|
if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){ |
|
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
}else{ |
|
printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar); |
|
printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p); |
|
} |
|
printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \ |
|
stepm, weightopt,\ |
|
model,imx,p,matcov,agemortsup); |
|
|
|
free_vector(lsurv,1,AGESUP); |
|
free_vector(lpop,1,AGESUP); |
|
free_vector(tpop,1,AGESUP); |
|
free_matrix(ximort,1,NDIM,1,NDIM); |
|
free_ivector(cens,1,n); |
|
free_vector(agecens,1,n); |
|
free_ivector(dcwave,1,n); |
|
#ifdef GSL |
|
#endif |
|
} /* Endof if mle==-3 mortality only */ |
|
/* Standard */ |
|
else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */ |
|
globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */ |
|
/* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */ |
|
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
|
printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
for (k=1; k<=npar;k++) |
|
printf(" %d %8.5f",k,p[k]); |
|
printf("\n"); |
|
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
|
/* mlikeli uses func not funcone */ |
|
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
|
} |
|
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
|
globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */ |
|
/* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */ |
|
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
|
} |
|
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
|
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
|
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
for (k=1; k<=npar;k++) |
|
printf(" %d %8.5f",k,p[k]); |
|
printf("\n"); |
|
|
|
/*--------- results files --------------*/ |
|
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); |
|
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
fprintf(ficres,"%1d%1d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
fprintf(ficlog,"%12.7f ",p[jk]); |
|
fprintf(ficres,"%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
} |
|
} |
|
} |
|
if(mle != 0){ |
|
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
|
ftolhess=ftol; /* Usually correct */ |
|
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
|
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} |
|
} /* end of hesscov and Wald tests */ |
|
|
|
/* */ |
|
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
|
printf("# Scales (for hessian or gradient estimation)\n"); |
|
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
|
for(i=1,jk=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if (j!=i) { |
|
fprintf(ficres,"%1d%1d",i,j); |
|
printf("%1d%1d",i,j); |
|
fprintf(ficlog,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
printf(" %.5e",delti[jk]); |
|
fprintf(ficlog," %.5e",delti[jk]); |
|
fprintf(ficres," %.5e",delti[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
} |
|
} |
|
} |
|
|
|
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
|
if(mle >= 1) /* To big for the screen */ |
|
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
|
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
|
/* # 121 Var(a12)\n\ */ |
|
/* # 122 Cov(b12,a12) Var(b12)\n\ */ |
|
/* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */ |
|
/* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */ |
|
/* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */ |
|
/* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */ |
|
/* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */ |
|
/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */ |
|
|
|
|
|
/* Just to have a covariance matrix which will be more understandable |
|
even is we still don't want to manage dictionary of variables |
|
*/ |
|
for(itimes=1;itimes<=2;itimes++){ |
|
jj=0; |
|
for(i=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j==i) continue; |
|
for(k=1; k<=ncovmodel;k++){ |
|
jj++; |
|
ca[0]= k+'a'-1;ca[1]='\0'; |
|
if(itimes==1){ |
|
if(mle>=1) |
|
printf("#%1d%1d%d",i,j,k); |
|
fprintf(ficlog,"#%1d%1d%d",i,j,k); |
|
fprintf(ficres,"#%1d%1d%d",i,j,k); |
|
}else{ |
|
if(mle>=1) |
|
printf("%1d%1d%d",i,j,k); |
|
fprintf(ficlog,"%1d%1d%d",i,j,k); |
|
fprintf(ficres,"%1d%1d%d",i,j,k); |
|
} |
|
ll=0; |
|
for(li=1;li <=nlstate; li++){ |
|
for(lj=1;lj <=nlstate+ndeath; lj++){ |
|
if(lj==li) continue; |
|
for(lk=1;lk<=ncovmodel;lk++){ |
|
ll++; |
|
if(ll<=jj){ |
|
cb[0]= lk +'a'-1;cb[1]='\0'; |
|
if(ll<jj){ |
|
if(itimes==1){ |
|
if(mle>=1) |
|
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
|
}else{ |
|
if(mle>=1) |
|
printf(" %.5e",matcov[jj][ll]); |
|
fprintf(ficlog," %.5e",matcov[jj][ll]); |
|
fprintf(ficres," %.5e",matcov[jj][ll]); |
|
} |
|
}else{ |
|
if(itimes==1){ |
|
if(mle>=1) |
|
printf(" Var(%s%1d%1d)",ca,i,j); |
|
fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); |
|
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
|
}else{ |
|
if(mle>=1) |
|
printf(" %.7e",matcov[jj][ll]); |
|
fprintf(ficlog," %.7e",matcov[jj][ll]); |
|
fprintf(ficres," %.7e",matcov[jj][ll]); |
|
} |
|
} |
|
} |
|
} /* end lk */ |
|
} /* end lj */ |
|
} /* end li */ |
|
if(mle>=1) |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
numlinepar++; |
|
} /* end k*/ |
|
} /*end j */ |
|
} /* end i */ |
|
} /* end itimes */ |
|
|
|
fflush(ficlog); |
|
fflush(ficres); |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
|
|
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
|
/* ungetc(c,ficpar); */ |
|
/* fgets(line, MAXLINE, ficpar); */ |
|
/* fputs(line,stdout); */ |
|
/* fputs(line,ficparo); */ |
|
/* } */ |
|
/* ungetc(c,ficpar); */ |
|
|
|
estepm=0; |
|
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
|
|
|
if (num_filled != 6) { |
|
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
|
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
|
goto end; |
|
} |
|
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
|
} |
|
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
|
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
|
|
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
|
if (estepm==0 || estepm < stepm) estepm=stepm; |
|
if (fage <= 2) { |
|
bage = ageminpar; |
|
fage = agemaxpar; |
|
} |
|
|
|
fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n"); |
|
fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
|
/* Other stuffs, more or less useful */ |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
|
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
|
|
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
|
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
|
fprintf(ficlog,"pop_based=%d\n",popbased); |
|
fprintf(ficparo,"pop_based=%d\n",popbased); |
|
fprintf(ficres,"pop_based=%d\n",popbased); |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj); |
|
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
/* Results */ |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){ |
|
if (num_filled == 0) |
|
resultline[0]='\0'; |
|
else if (num_filled != 1){ |
|
printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line); |
|
} |
|
printf("Result %d: result line should be at minimum 'line=' %s, result=%s\n",num_filled, line, resultline); |
|
decoderesult(resultline); |
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
continue; |
|
}else |
|
break; |
|
} |
|
if (feof(ficpar)) |
|
break; |
|
else{ /* Processess output results for this combination of covariate values */ |
|
} |
|
} |
|
|
|
|
|
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
|
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
|
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
|
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
|
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
|
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
|
}else{ |
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p); |
|
} |
|
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
|
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \ |
|
jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2); |
|
|
|
/*------------ free_vector -------------*/ |
|
/* chdir(path); */ |
|
|
|
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
|
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
|
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
|
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
|
free_lvector(num,1,n); |
|
free_vector(agedc,1,n); |
|
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
|
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
|
fclose(ficparo); |
|
fclose(ficres); |
|
|
|
|
|
/* Other results (useful)*/ |
|
|
|
|
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
|
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
|
prlim=matrix(1,nlstate,1,nlstate); |
|
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
|
fclose(ficrespl); |
|
|
|
/*------------- h Pij x at various ages ------------*/ |
|
/*#include "hpijx.h"*/ |
|
hPijx(p, bage, fage); |
|
fclose(ficrespij); |
|
|
|
/* ncovcombmax= pow(2,cptcoveff); */ |
|
/*-------------- Variance of one-step probabilities---*/ |
|
k=1; |
|
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
|
/* Prevalence for each covariates in probs[age][status][cov] */ |
|
probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
|
for(i=1;i<=AGESUP;i++) |
|
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
|
for(k=1;k<=ncovcombmax;k++) |
|
probs[i][j][k]=0.; |
|
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
if (mobilav!=0 ||mobilavproj !=0 ) { |
|
mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
|
for(i=1;i<=AGESUP;i++) |
|
for(j=1;j<=nlstate;j++) |
|
for(k=1;k<=ncovcombmax;k++) |
|
mobaverages[i][j][k]=0.; |
|
mobaverage=mobaverages; |
|
if (mobilav!=0) { |
|
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
|
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
|
} |
|
} |
|
/* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */ |
|
/* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
else if (mobilavproj !=0) { |
|
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
|
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
} |
|
} |
|
}/* end if moving average */ |
|
|
|
/*---------- Forecasting ------------------*/ |
|
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
|
if(prevfcast==1){ |
|
/* if(stepm ==1){*/ |
|
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
|
} |
|
if(backcast==1){ |
|
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
|
|
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
|
bprlim=matrix(1,nlstate,1,nlstate); |
|
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
|
fclose(ficresplb); |
|
|
|
hBijx(p, bage, fage, mobaverage); |
|
fclose(ficrespijb); |
|
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
|
|
/* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj, |
|
bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
|
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
|
} |
|
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
|
|
|
free_ivector(wav,1,imx); |
|
free_imatrix(dh,1,lastpass-firstpass+2,1,imx); |
|
free_imatrix(bh,1,lastpass-firstpass+2,1,imx); |
|
free_imatrix(mw,1,lastpass-firstpass+2,1,imx); |
|
|
|
|
|
/*---------- Health expectancies, no variances ------------*/ |
|
|
|
strcpy(filerese,"E_"); |
|
strcat(filerese,fileresu); |
|
if((ficreseij=fopen(filerese,"w"))==NULL) { |
|
printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
|
fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0); |
|
} |
|
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
|
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ /* For any combination of dummy covariates, fixed and varying */ |
|
fprintf(ficreseij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficreseij,"******\n"); |
|
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
|
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
} |
|
fclose(ficreseij); |
|
printf("done evsij\n");fflush(stdout); |
|
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
|
|
|
/*---------- State-specific expectancies and variances ------------*/ |
|
|
|
|
|
strcpy(filerest,"T_"); |
|
strcat(filerest,fileresu); |
|
if((ficrest=fopen(filerest,"w"))==NULL) { |
|
printf("Problem with total LE resultfile: %s\n", filerest);goto end; |
|
fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end; |
|
} |
|
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
|
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
|
|
|
|
|
strcpy(fileresstde,"STDE_"); |
|
strcat(fileresstde,fileresu); |
|
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
|
printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
|
fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
|
} |
|
printf(" Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
fprintf(ficlog," Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
|
|
strcpy(filerescve,"CVE_"); |
|
strcat(filerescve,fileresu); |
|
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
|
printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
|
fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
|
} |
|
printf(" Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
|
fprintf(ficlog," Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
|
|
|
strcpy(fileresv,"V_"); |
|
strcat(fileresv,fileresu); |
|
if((ficresvij=fopen(fileresv,"w"))==NULL) { |
|
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
|
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
|
} |
|
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
|
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
printf("\n#****** "); |
|
fprintf(ficrest,"\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++){ |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrest,"******\n"); |
|
fprintf(ficlog,"******\n"); |
|
printf("******\n"); |
|
|
|
fprintf(ficresstdeij,"\n#****** "); |
|
fprintf(ficrescveij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresstdeij,"******\n"); |
|
fprintf(ficrescveij,"******\n"); |
|
|
|
fprintf(ficresvij,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresvij,"******\n"); |
|
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
printf(" cvevsij combination#=%d, ",k); |
|
fprintf(ficlog, " cvevsij combination#=%d, ",k); |
|
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
|
printf(" end cvevsij \n "); |
|
fprintf(ficlog, " end cvevsij \n "); |
|
|
|
/* |
|
*/ |
|
/* goto endfree; */ |
|
|
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
|
pstamp(ficrest); |
|
|
|
|
|
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
|
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
|
cptcod= 0; /* To be deleted */ |
|
printf("varevsij vpopbased=%d \n",vpopbased); |
|
fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased); |
|
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
|
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
|
if(vpopbased==1) |
|
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
|
else |
|
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
|
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
|
fprintf(ficrest,"\n"); |
|
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
|
epj=vector(1,nlstate+1); |
|
printf("Computing age specific period (stable) prevalences in each health state \n"); |
|
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
|
for(age=bage; age <=fage ;age++){ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */ |
|
if (vpopbased==1) { |
|
if(mobilav ==0){ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=probs[(int)age][i][k]; |
|
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][k]; |
|
} |
|
} |
|
|
|
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
|
/* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */ |
|
/* printf(" age %4.0f ",age); */ |
|
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
|
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
|
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
|
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
|
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
|
} |
|
epj[nlstate+1] +=epj[j]; |
|
} |
|
/* printf(" age %4.0f \n",age); */ |
|
|
|
for(i=1, vepp=0.;i <=nlstate;i++) |
|
for(j=1;j <=nlstate;j++) |
|
vepp += vareij[i][j][(int)age]; |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
|
for(j=1;j <=nlstate;j++){ |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
|
} |
|
fprintf(ficrest,"\n"); |
|
} |
|
} /* End vpopbased */ |
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
|
free_vector(epj,1,nlstate+1); |
|
printf("done \n");fflush(stdout); |
|
fprintf(ficlog,"done\n");fflush(ficlog); |
|
|
|
/*}*/ |
|
} /* End k */ |
|
|
|
printf("done State-specific expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficresvpl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
free_vector(weight,1,n); |
|
free_imatrix(Tvard,1,NCOVMAX,1,2); |
|
free_imatrix(s,1,maxwav+1,1,n); |
|
free_matrix(anint,1,maxwav,1,n); |
|
free_matrix(mint,1,maxwav,1,n); |
|
free_ivector(cod,1,n); |
|
free_ivector(tab,1,NCOVMAX); |
|
fclose(ficresstdeij); |
|
fclose(ficrescveij); |
|
fclose(ficresvij); |
|
fclose(ficrest); |
|
fclose(ficpar); |
|
|
|
|
|
/*---------- End : free ----------------*/ |
|
if (mobilav!=0 ||mobilavproj !=0) |
|
free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
|
free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
|
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
|
} /* mle==-3 arrives here for freeing */ |
|
/* endfree:*/ |
|
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
|
free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n); |
|
free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n); |
|
free_matrix(coqvar,1,maxwav,1,n); |
|
free_matrix(covar,0,NCOVMAX,1,n); |
|
free_matrix(matcov,1,npar,1,npar); |
|
free_matrix(hess,1,npar,1,npar); |
|
/*free_vector(delti,1,npar);*/ |
|
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
free_matrix(agev,1,maxwav,1,imx); |
|
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
|
|
free_ivector(ncodemax,1,NCOVMAX); |
|
free_ivector(ncodemaxwundef,1,NCOVMAX); |
|
free_ivector(Dummy,-1,NCOVMAX); |
|
free_ivector(Fixed,-1,NCOVMAX); |
|
free_ivector(Typevar,-1,NCOVMAX); |
|
free_ivector(Tvar,1,NCOVMAX); |
|
free_ivector(TvarFD,1,NCOVMAX); |
|
free_ivector(TvarFDind,1,NCOVMAX); |
|
free_ivector(TvarF,1,NCOVMAX); |
|
free_ivector(TvarFind,1,NCOVMAX); |
|
free_ivector(TvarV,1,NCOVMAX); |
|
free_ivector(TvarVind,1,NCOVMAX); |
|
free_ivector(TvarA,1,NCOVMAX); |
|
free_ivector(TvarAind,1,NCOVMAX); |
|
free_ivector(TvarFQ,1,NCOVMAX); |
|
free_ivector(TvarFQind,1,NCOVMAX); |
|
free_ivector(TvarVD,1,NCOVMAX); |
|
free_ivector(TvarVDind,1,NCOVMAX); |
|
free_ivector(TvarVQ,1,NCOVMAX); |
|
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(Tvarsel,1,NCOVMAX); |
|
free_vector(Tvalsel,1,NCOVMAX); |
|
free_ivector(Tposprod,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(invalidvarcomb,1,ncovcombmax); |
|
free_ivector(Tage,1,NCOVMAX); |
|
free_ivector(Tmodelind,1,NCOVMAX); |
|
free_ivector(TmodelInvind,1,NCOVMAX); |
|
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
|
/* free_imatrix(codtab,1,100,1,10); */ |
|
fflush(fichtm); |
|
fflush(ficgp); |
|
|
|
|
|
if((nberr >0) || (nbwarn>0)){ |
|
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
|
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
|
}else{ |
|
printf("End of Imach\n"); |
|
fprintf(ficlog,"End of Imach\n"); |
|
} |
|
printf("See log file on %s\n",filelog); |
|
/* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */ |
|
/*(void) gettimeofday(&end_time,&tzp);*/ |
|
rend_time = time(NULL); |
|
end_time = *localtime(&rend_time); |
|
/* tml = *localtime(&end_time.tm_sec); */ |
|
strcpy(strtend,asctime(&end_time)); |
|
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
|
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
|
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
|
|
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
|
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
|
/* printf("Total time was %d uSec.\n", total_usecs);*/ |
|
/* if(fileappend(fichtm,optionfilehtm)){ */ |
|
fprintf(fichtm,"<br>Local time at start %s<br>Local time at end %s<br>\n</body></html>",strstart, strtend); |
|
fclose(fichtm); |
|
fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end %s<br>\n</body></html>",strstart, strtend); |
|
fclose(fichtmcov); |
|
fclose(ficgp); |
|
fclose(ficlog); |
|
/*------ End -----------*/ |
|
|
|
|
|
printf("Before Current directory %s!\n",pathcd); |
|
#ifdef WIN32 |
|
if (_chdir(pathcd) != 0) |
|
printf("Can't move to directory %s!\n",path); |
|
if(_getcwd(pathcd,MAXLINE) > 0) |
|
#else |
|
if(chdir(pathcd) != 0) |
|
printf("Can't move to directory %s!\n", path); |
|
if (getcwd(pathcd, MAXLINE) > 0) |
|
#endif |
|
printf("Current directory %s!\n",pathcd); |
|
/*strcat(plotcmd,CHARSEPARATOR);*/ |
|
sprintf(plotcmd,"gnuplot"); |
|
#ifdef _WIN32 |
|
sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach); |
|
#endif |
|
if(!stat(plotcmd,&info)){ |
|
printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout); |
|
if(!stat(getenv("GNUPLOTBIN"),&info)){ |
|
printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout); |
|
}else |
|
strcpy(pplotcmd,plotcmd); |
|
#ifdef __unix |
|
strcpy(plotcmd,GNUPLOTPROGRAM); |
|
if(!stat(plotcmd,&info)){ |
|
printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout); |
|
}else |
|
strcpy(pplotcmd,plotcmd); |
|
#endif |
|
}else |
|
strcpy(pplotcmd,plotcmd); |
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
|
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
|
|
if((outcmd=system(plotcmd)) != 0){ |
|
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
|
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
|
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
|
if((outcmd=system(plotcmd)) != 0) |
|
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
|
} |
|
printf(" Successful, please wait..."); |
|
while (z[0] != 'q') { |
|
/* chdir(path); */ |
|
printf("\nType e to edit results with your browser, g to graph again and q for exit: "); |
|
scanf("%s",z); |
|
/* if (z[0] == 'c') system("./imach"); */ |
|
if (z[0] == 'e') { |
|
#ifdef __APPLE__ |
|
sprintf(pplotcmd, "open %s", optionfilehtm); |
|
#elif __linux |
|
sprintf(pplotcmd, "xdg-open %s", optionfilehtm); |
|
#else |
|
sprintf(pplotcmd, "%s", optionfilehtm); |
|
#endif |
|
printf("Starting browser with: %s",pplotcmd);fflush(stdout); |
|
system(pplotcmd); |
|
} |
|
else if (z[0] == 'g') system(plotcmd); |
|
else if (z[0] == 'q') exit(0); |
|
} |
|
end: |
|
while (z[0] != 'q') { |
|
printf("\nType q for exiting: "); fflush(stdout); |
|
scanf("%s",z); |
|
} |
|
} |